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Governing Equations of Fluid
and Structural Mechanics

In this chapter, we introduce the partial differential equations that govern the fluid and
structural mechanics parts of the fluid–structure interaction (FSI) problem. The fluid and
structural mechanics equations are complemented by the applicable boundary conditions and
constitutive models. For the structural mechanics part of the problem, we adopt mostly a 3D
solid description, but include a discussion of thin structures such as shells and membranes.
Both strong and weak (or variational) forms of the fluid and structural mechanics equations
are presented. We conclude the section with an Arbitrary Lagrangian–Eulerian (ALE)
description of the fluid mechanics equations suitable for moving-domain computations.

1.1 Governing Equations of Fluid Mechanics

The fluid mechanics part of the FSI problem is governed by the Navier–Stokes equations
of incompressible flows. In what follows, we present the strong and weak forms of these
equations and discuss the applicable boundary conditions.

1.1.1 Strong Form of the Navier–Stokes Equations of Incompressible Flows

Let Ωt ∈ Rnsd , nsd = 2, 3, be the spatial fluid mechanics domain with boundary Γt at time
t ∈ (0,T ) (see Figure 1.1 for an illustration). The subscript t indicates that the fluid mechanics
spatial domain is time-dependent. The Navier–Stokes equations of incompressible flows1

may be written on Ωt and ∀ t ∈ (0,T ) as

∂ (ρu)
∂t
+∇∇∇ · (ρu ⊗ u −σσσ) − ρf = 0, (1.1)

∇∇∇ · u = 0, (1.2)

1Although the term “incompressible Navier–Stokes equations” is often employed instead of “Navier–Stokes
equations of incompressible flows,” we prefer the latter because it is the flows and not the equations that are
incompressible.
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Figure 1.1 Fluid mechanics spatial domain and its boundary

where ρ, u, and f are the density, velocity, and the external force (per unit mass), respectively,
and the stress tensor σσσ is defined as

σσσ (u, p) = −pI + 2μεεε (u) . (1.3)

Here p is the pressure, I is the identity tensor, μ is the dynamic viscosity, and εεε (u) is the
strain-rate tensor given by

εεε (u) =
1
2

(
∇∇∇u +∇∇∇uT

)
. (1.4)

Equations (1.1) and (1.2) represent the local balance of linear momentum and mass, respec-
tively, and the momentum balance equation is written in the so-called conservative form. The
local mass balance for incompressible flows states that the velocity field must be divergence-
free at every point in space and time, which is also known as the incompressibility constraint
(see Equation (1.2)).

Remark 1.1 In Equation (1.1), and everywhere in this book, we denote by∇∇∇ the gradient
with respect to the spatial coordinates x. We also denote by ∂

∂t the time derivative that is taken
holding x fixed. If coordinates other than x are used, the gradient operator will be assigned
the appropriate subscript.

For incompressible flows, we can write the momentum equation also as

ρ

(
∂u
∂t
+∇∇∇ · (u ⊗ u) − f

)
−∇∇∇ ·σσσ = 0, (1.5)

For constant density, Equation (1.5) represents the conservative form of the momentum equa-
tion. Starting from Equation (1.1) and using the conservation of mass, or starting from Equa-
tion (1.5) and using ∇∇∇ · u = 0, we can obtain

ρ

(
∂u
∂t
+ u · ∇∇∇u − f

)
−∇∇∇ ·σσσ = 0, (1.6)

∇∇∇ · u = 0. (1.7)
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In this case, the momentum balance equation is written in the so-called convective form.
We use the convective form of the Navier–Stokes equations in the rest of the section. The
convective form of the Navier–Stokes equations can further be simplified by using the incom-
pressibility constraint in the viscous part of the stress tensor. In this case, assuming constant
viscosity:

∇∇∇ ·σσσ (u, p) = −∇∇∇p + μΔu, (1.8)

which leads to

ρ

(
∂u
∂t
+ u · ∇∇∇u − f

)
+∇∇∇p − μΔu = 0. (1.9)

Although this form of the linear-momentum balance equation is often used in the computa-
tions reported in the literature, we do not favor this choice because it leads to a non-objective
definition of the Cauchy stress. For the importance of objectivity in fluid mechanics simula-
tions, see, e.g., Limache et al. (2008) and references therein.

Assuming a fixed Cartesian basis onRnsd , we let indices i and j take on the values 1, . . . , nsd.
We focus on the case of the spatial dimension nsd = 3. We let ui denote the ith Cartesian
component of u, and let xi denote the ith component of x. We denote differentiation by a
comma (e.g., ui, j = ui,x j = ∂ui/∂x j). We will also use the summation convention, in which
repeated indices imply summation; e.g., in R3,

ui, j j = ui,11 + ui,22 + ui,33 =
∂2ui

∂x2
1

+
∂2ui

∂x2
2

+
∂2ui

∂x2
3

. (1.10)

Using index notation, the Navier–Stokes equations of incompressible flows, as given by Equa-
tions (1.6) and (1.7), can be rewritten as:

ρ
(
ui,t + u jui, j − fi

)
− σi j, j = 0, (1.11)

ui,i = 0, (1.12)

where

σi j = −pδi j + 2μεi j, (1.13)

εi j =
1
2

(
ui, j + u j,i

)
, (1.14)

and δi j is the Kronecker delta (i.e., δi j = 1 if i = j, and δi j = 0 if i � j).

Remark 1.2 Note the use of indices on the Cauchy stress σi j in Equation (1.11). Here,
and in what follows, we adopt the convention where the first index, in this case i, indicates
the direction in which the stress is acting, while the second index, j, indicates that the stress
is acting on a plane normal to the x j-axis. This is the opposite of the convention used in
the papers written by the second and third authors of the book. However, we also note that
as a consequence of the local moment equilibrium, the Cauchy stress is symmetric, which
implies σi j = σ ji. This, in turn, implies that the roles of indices in the Cauchy stress may be
interchanged without any effect on the governing equations.
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Remark 1.3 We also declare the notations we have adopted for the representations
related to the gradient and divergence operations on vectors and tensors. The gradient of a
vector field is represented as

∇∇∇a ≡ ∂a/∂x = ∂ai

∂x j
ei ⊗ e j, (1.15)

where ∂ai

∂x j
are the Cartesian components of ∇∇∇a. We note that the first index corresponds to the

vector component, while the second index corresponds to the spatial derivative. The diver-
gence of a tensor is represented as

∇∇∇ · A = ∂Ai j

∂x j
ei, (1.16)

where the contraction occurs on the second index. In the special case A = a ⊗ b, that repre-
sentation becomes

∇∇∇ · (a ⊗ b) =
∂(aib j)

∂x j
ei. (1.17)

The advective term, however, is represented as

b · ∇∇∇a = b j
∂ai

∂x j
ei. (1.18)

To complete the statement of the fluid mechanics problem, we need to specify the boundary
conditions. In general, on a given part of the spatial boundary, either kinematic or traction
boundary conditions are prescribed. Kinematic boundary conditions are also referred to as
essential or Dirichlet, while traction boundary conditions are also called natural or Neumann.
Because the unknown velocity is a vector, one needs to generalize the boundary conditions to
the vector case. The essential and natural boundary conditions for Equation (1.11) are

ui = gi on (Γt)gi, (1.19)

σi jn j = hi on (Γt)hi, (1.20)

where, for every velocity component i, (Γt)gi and (Γt)hi are the complementary subsets of the
domain boundary Γt, ni’s are components of the unit outward normal vector n, and gi and hi

are given functions.

Remark 1.4 Equations (1.19) and (1.20) pertain to boundary condition specification for
individual Cartesian components of the velocity and traction vectors. This is sufficient for
many cases of interest. However, more general boundary conditions are possible and will be
discussed in the later sections of this book.

In the case where the fluid velocity vector is specified on the entire boundary of the fluid
domain, the pressure is determined up to an arbitrary constant (that is, if p satisfies Equa-
tions (1.6) and (1.7), then so does p +C, where C is an arbitrary constant over Ωt) and∫

Γt

g · n dΓ =
∫
Γt

gini dΓ = 0, (1.21)

which is a consequence of the incompressibility constraint. Equation (1.21) is often the source
of difficulty for FSI coupling in the case of flows in enclosed domains.
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1.1.2 Model Differential Equations

The Navier–Stokes equations of incompressible flows describe a wide range of behavior in
viscous incompressible flows. Several simplifications of these equations are considered in the
literature (and in practice) to better understand and model the physical phenomena involved.
The two important special cases of the Navier–Stokes equations are the Stokes and Euler
equations of incompressible flows.
Stokes equations. The Stokes equations are obtained by neglecting the convective terms in
Equation (1.6), that is,

ρ

(
∂u
∂t
− f

)
−∇∇∇ ·σσσ = 0, (1.22)

∇∇∇ · u = 0. (1.23)

The above model is used for describing very slow (e.g., “creeping”) flows. Note that
the Stokes equations are linear with respect to both velocity and pressure, while the
Navier–Stokes equations are not.

Euler equations. The other special case corresponds to inviscid flows described by
the Euler equations of incompressible flows, namely

ρ

(
∂u
∂t
+ u · ∇∇∇u − f

)
−∇∇∇p = 0, (1.24)

∇∇∇ · u = 0. (1.25)

The Euler equations retain the quadratic nonlinearity of the convective term.

Advection–diffusion equation. The linear advection–diffusion equation can be seen as
an equation obtained by relaxing the incompressibility constraint (and, as a result, neglecting
the pressure, which is also the Lagrange multiplier that enforces the incompressibility
constraint) and “freezing” the advective velocity u, namely

ρ

(
∂φφφ

∂t
+ u · ∇∇∇φφφ − f

)
− μΔφφφ = 0, (1.26)

where we replaced u with a vector φφφ. Dividing Equation (1.26) by the density and realizing
that the vector components of φφφ are decoupled, we obtain a classical form of the scalar, time-
dependent advection–diffusion equation:

∂φ

∂t
+ u · ∇∇∇φ − νΔφ − f = 0, (1.27)

where ν = μ/ρ is the kinematic viscosity. The advection–diffusion equation (Equation (1.27))
generally models transport of species, with concentration denoted by φ, in the presence of
molecular diffusion. In this case ν is replaced with molecular diffusivity κ. Equation (1.27)
is often employed as a starting point for the development of numerical formulations in fluid
mechanics.
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1.1.3 Nondimensional Equations and Numbers

To nondimensionalize the equations of fluid mechanics, we select a characteristic flow speed
U and length scale L. We define

u = u∗U, (1.28)

∇∇∇ = ∇∇∇∗ 1
L
, (1.29)

where u∗ is the nondimensional flow velocity and∇∇∇∗ is the nondimensional gradient operator.
Equation (1.29) implies

Δ = ∇∇∇ · ∇∇∇ = 1
L2

(∇∇∇∗) · (∇∇∇∗) = 1
L2
Δ∗, (1.30)

where Δ∗ is the nondimensional Laplace operator. Starting from the steady version of the
advection–diffusion equation (Equation (1.27)), assuming zero forcing, and introducing the
definitions given by Equations (1.28)–(1.30), we obtain

U
L

(u∗ · ∇∇∇∗)φ − ν
L2

(Δ∗)φ = 0. (1.31)

Rearranging the terms in the above equation gives

(u∗ · ∇∇∇∗) φ − 1
Pe

(Δ∗) φ = 0, (1.32)

where

Pe =
UL
ν

(1.33)

is the Peclet number that represents the significance of advection relative to diffusion. For
large Pe advection dominates, while for small Pe diffusion dominates. The case Pe = ∞
corresponds to pure advection. In the case of pure advection φ may only be set on the inflow
part of the boundary Γ−t , which is defined as

Γ−t = {x | u · n ≤ 0 ∀x ⊂ Γt } . (1.34)

The advection-dominant case gives rise to interior and boundary layers in φ, which causes
difficulties in the numerical approximation of advection–diffusion equations. Diffusion domi-
nance precludes the formation of thin layers in the solution and presents very little challenge
to the numerical approximation. This situation is illustrated in Figure 1.2.

Performing the same analysis for the Navier–Stokes equations, we obtain the analog of the
Peclet number, the Reynolds number Re, given by

Re =
UL
ν
=
ρUL
μ
. (1.35)

The limit Re→ 0 yields the Stokes flow, while large Re values give rise to turbulent solutions
to the Navier–Stokes equations. Turbulence may be characterized as a continuous spectrum of
spatial and temporal scales in the velocity and pressure fields, and also presents a significant
challenge for accurate approximation of the solutions to the Navier–Stokes equations in this
regime.
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x1Pe = 0

Pe = ∞
φ = 1

φ = 0

Figure 1.2 Illustration of the solution behavior for the advection–diffusion equation at Pe number
ranging from zero to nearly infinity. In the figure, 1D setup is assumed, advective velocity is constant
and points from left to right, and φ is set to unity on the left side of the interval and zero on the right
side. For Pe = 0 the analytical solution is a straight line connecting the prescribed boundary values. As
the Pe number increases, the solution forms a thin boundary layer on the right side of the domain. Such
boundary layers present a source of difficulty for numerical approximation of the advection–diffusion
equation

1.1.4 Some Specific Boundary Conditions

In this section we give a detailed account of the boundary conditions that are most often used
in fluid mechanics simulations.

Solid surface. At a solid surface it is convenient to split the velocity vector into its
normal and tangential components. For this, along with the normal vector n, we define in 3D
two orthonormal tangential vectors t1 and t2 (see Figure 1.3). In this new basis the velocity
vector components become

un = u · n, (1.36)

ut1 = u · t1, (1.37)

ut2 = u · t2. (1.38)

Independent of whether the flow is viscous or inviscid, the no-penetration boundary condi-
tion becomes

un = gn, (1.39)

where gn is the normal velocity of the solid surface. In the case of viscous flows, the remaining
velocity components are set to

ut1 = gt1 , (1.40)

ut2 = gt2 , (1.41)

where gt’s are the tangential velocities of the solid surface. This results in the so-called no-slip
boundary condition. However, in the case of turbulent boundary layers, or in the presence of
“rough” surfaces, the tangential traction boundary conditions are adopted in place of no-slip
boundary conditions, leading to so-called wall function formulations (see, e.g., Wilcox, 1998).
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n

t1

t2

u

un = u · n

ut1 = u · t1

ut2 = u · t2

Figure 1.3 The normal vector n and two orthonormal vectors t1 and t2

Free surface. Another case of interest are the boundary conditions at a fluid surface
that is free to deform, or the free surface (see, e.g., Tezduyar, 1992; Tezduyar et al., 1993,
1996; Johnson and Tezduyar, 1994; Guler et al., 1999; Akin et al., 2007; Takizawa et al.,
2007a,b; Akkerman et al., 2011). In this case, the following traction boundary condition
holds:

σσσn = −patmn, (1.42)

where patm is the atmospheric pressure. The pressure may be scaled such that patm = 0, in
which case a homogeneous traction boundary condition is enforced.
External boundaries. This situation presents the most commonly encountered setup in com-
putational fluid mechanics. One is interested in computing the flow over an object placed in
a free stream. A truncated problem domain is created, which encloses the object and con-
tains external boundaries. Typically, the external boundaries contain the inflow, outflow, and
lateral (or side) boundaries (see Figure 1.4). No-slip condition is applied on the object. The
external boundaries are placed sufficiently far from the object to approximate the free-stream
conditions. The free-stream conditions are

u = u∞, (1.43)

or

σσσn = σσσ∞n, (1.44)
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SIDE BOUNDARY

INFLOW
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OUTFLOW
BOUNDARY

σσσ∞nOBJECT

Figure 1.4 External boundaries (inflow, outflow, and side)

where the subscript∞ is used to indicate quantities far from the object. Using index notation,
the free-stream boundary conditions may be expressed as

ui = (ui)∞ on (Γt)gi, (1.45)

σi jn j =
(
σi j

)
∞ n j on (Γt)hi. (1.46)

In most cases,

u∞ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1.47)

which leads to

σσσ∞ = −p∞I, (1.48)

and, consequently, to

σσσ∞n = −p∞n. (1.49)

It is often possible to scale the pressure so that p∞ = 0. With this, the recommended boundary
conditions at the external boundaries become:

• At the inflow boundary the entire velocity vector is prescribed:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1

u2

u3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.50)

• At the outflow boundary, free-stream traction boundary conditions are prescribed:

σσσn = 0. (1.51)

Assuming the normal vector is n = (1, 0, 0)T , we obtain, in component form,
⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ11

σ21

σ31

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.52)
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Outflow boundary conditions given by Equation (1.51) are referred to as traction-free or
“do-nothing” boundary conditions (see, e.g., Gresho and Sani, 2000). The second phrase
originates from the fact that in the finite element method zero-stress boundary conditions
are satisfied naturally and require no additional computer implementation.

• At the lateral boundaries zero normal velocity and zero tangential traction are prescribed,
namely

u · n = 0, (1.53)

t1 ·σσσn = 0, (1.54)

t2 ·σσσn = 0. (1.55)

For the top and bottom lateral boundaries, where the normal vector is n = (0,±1, 0)T , and
the tangential vectors are t1 = (1, 0, 0)T and t2 = (0, 0, 1)T , we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ12

u2

σ32

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.56)

For the span-wise lateral boundaries, where the normal vector is n = (0, 0,±1)T , and the
tangential vectors are t1 = (1, 0, 0)T and t2 = (0, 1, 0)T , we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ13

σ23

u3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.57)

We will consider other, more specialized, boundary conditions in the chapters on specific
applications of FSI.

1.1.5 Weak Form of the Navier–Stokes Equations

We denote by Su and Sp the sets of infinite-dimensional trial functions for the velocity and
pressure. The function sets Su and Sp are defined as

Su =
{
u

∣∣∣ u(·, t) ∈ (H1(Ωt))
nsd , ui = gi on (Γt)gi

}
(1.58)

and

Sp =

{
p

∣∣∣∣∣∣ p(·) ∈ L2(Ωt),
∫
Ωt

p dΩ = 0 if Γt = (Γt)g

}
. (1.59)

Here L2(Ωt) denotes the space of scalar-valued functions that are square-integrable on Ωt, and
(H1(Ωt))nsd denotes the space of vector-valued functions with square-integrable derivatives
on Ωt. The functions in Su satisfy the essential boundary conditions of the fluid mechanics
problem. In the case when the essential boundary conditions are set on all of Γt, we require
that the average of the pressure field over Ωt is zero, which is built into the definition
of Sp.
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In conjunction with Su and Sp, we define the sets of test functions (also called “weighting
functions” in this book) for the linear-momentum and continuity equations, denoted by Vu

andVp as

Vu =
{
w

∣∣∣ w(·) ∈ (H1(Ωt))
nsd , wi = 0 on (Γt)gi

}
(1.60)

and

Vp = Sp. (1.61)

Note that the function sets Su andVu only differ in the definition of boundary conditions, that
is, the test functions for the linear-momentum balance equations vanish on the parts of the
boundary where the fluid velocity is prescribed. The sets of pressure trial functions and the
continuity equation test functions are coincident.

To derive the weak form of the fluid mechanics equations, following the standard approach,
we multiply Equations (1.6) and (1.7) by the linear-momentum and continuity equation test
functions respectively, integrate over Ωt, and add the equations to obtain

∫
Ωt

w · ρ
(
∂u
∂t
+ u · ∇∇∇u − f

)
dΩ −

∫
Ωt

w · (∇∇∇ ·σσσ (u, p)) dΩ +
∫
Ωt

q∇∇∇ · u dΩ = 0. (1.62)

We integrate by parts the Cauchy stress terms in Equation (1.62) and apply the homogeneous
form of the essential boundary conditions on w to get

−
∫
Ωt

w · (∇∇∇ ·σσσ (u, p)) dΩ =
∫
Ωt

εεε (w) : σσσ (u, p) dΩ −
∫

(Γt)h

w ·σσσ (u, p) n dΓ, (1.63)

where (Γt)h is the abstract representation of the natural boundary of the fluid mechanics
domain. We replace the traction vector σσσ (u, p) n with its prescribed value h on (Γt)h in the
last term on the right-hand-side of Equation (1.63) to obtain

−
∫
Ωt

w · (∇∇∇ ·σσσ (u, p)) dΩ =
∫
Ωt

εεε (w) : σσσ (u, p) dΩ −
∫

(Γt)h

w · h dΓ. (1.64)

Combining Equations (1.62) and (1.64) results in the weak form of the Navier–Stokes equa-
tions: find u ∈ Su and p ∈ Sp, such that ∀ w ∈ Vu and q ∈ Vp:

∫
Ωt

w · ρ
(
∂u
∂t
+ u · ∇∇∇u − f

)
dΩ +

∫
Ωt

εεε (w) : σσσ (u, p) dΩ

−
∫

(Γt)h

w · h dΓ +
∫
Ωt

q∇∇∇ · u dΩ = 0. (1.65)

The weak formulation given by Equation (1.65) is the point of departure for the finite element
formulations of the fluid mechanics problem. The details of the finite element method will
be presented in later chapters. Note that while the velocity boundary conditions for the weak
formulation of the fluid mechanics equations are built into the corresponding function sets, the
traction boundary conditions are imposed weakly as a consequence of the integration-by-parts
procedure described by Equations (1.63) and (1.64).
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1.2 Governing Equations of Structural Mechanics

In this section we present the governing equations of structural mechanics. The equations are
derived on the basis of 3D continuum modeling. We conclude this section with a presentation
of the governing equations for shell, membrane, and cable structures.

1.2.1 Kinematics

Let Ω0 ∈ Rnsd be the material domain of a structure in the reference configuration, and let
Γ0 be its boundary. Let Ωt ∈ Rnsd , t ∈ (0,T ), be the material domain of a structure in the
current configuration, and let Γt be its boundary. For the upcoming developments we assume
that the reference configuration coincides with the initial configuration or the configuration of
the structure taken at t = 0. Let X be the coordinates of the initial or reference configuration,
and let y be the displacement with respect to the initial configuration. We think of y = y(X, t)
as a time-varying vector field over Ω0 and define a mapping

x(X, t) = X + y(X, t), (1.66)

which maps the coordinates of material points in the reference configuration to their coun-
terparts in the current configuration. We also denote by x the coordinates of the current
configuration. Because this “abuse of notation” is standard practice in continuum mechanics,
we adopt it here as well. The setup is illustrated in Figure 1.5.

The velocity u and acceleration a of the structure are obtained by differentiating the dis-
placement y with respect to time holding the material coordinate X fixed, namely

u =
dy
dt

(1.67)

x2

x1x3

y

Ω0

Γ0

Ωt

Γt

X

x

Figure 1.5 Reference and current configurations
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and

a =
d2y
dt2
. (1.68)

Remark 1.5 Here, and everywhere in the book, d
dt will denote the total time derivative, or

the time derivative taken holding the material coordinate X fixed.

The deformation gradient F is given by

F =
∂x
∂X
= I +

∂y
∂X
, (1.69)

which we use to define the Cauchy–Green deformation tensor C as

C = FT F, (1.70)

and the Green–Lagrange strain tensor E as

E =
1
2

(C − I) . (1.71)

The determinant of the deformation gradient J is given by

J = det F. (1.72)

We now introduce the index notation for the structural mechanics. Due to the presence of the
reference and current configurations, the quantities referring to the reference configuration are
typically subscripted with upper-case indices (e.g., I, J,K), and those referring to the current
configuration with lower-case indices (e.g., i, j, k). However, despite the use of different index
types, we assume that the vector and tensor components in the reference and current configu-
rations are referred to a fixed Cartesian basis. The summation convention applies to the upper-
and lower-case indices separately, and all indices take on the values 1, . . . , nsd.

The Cartesian components of the deformation gradient become

FiI =
∂xi

∂XI
= δiI +

∂yi

∂XI
, (1.73)

which means that one “leg” of the deformation gradient tensor is in the reference and another
is in the current configuration. The components of the Cauchy–Green deformation tensor and
the Green–Lagrange strain tensor are given by

CIJ = FiI FiJ (1.74)

and

EIJ =
1
2

(CIJ − δIJ), (1.75)

respectively. Note that the tensors C and E are completely defined in the reference or unde-
formed configuration.
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1.2.2 Principle of Virtual Work and Variational Formulation of Structural
Mechanics

The starting point for the structural mechanics formulations is the principle of virtual work
(see, e.g., Belytschko et al., 2000):

δW = δWint + δWext = 0, (1.76)

where W, Wint, and Wext are the total, internal, and external work, respectively, and δ denotes
their variation with respect to the virtual displacement w. Given the structural displacement y,
δW is computed by taking the directional derivative of W as

δW =
d
dε

W(y + εw)
∣∣∣∣∣
ε=0
. (1.77)

Here δWext includes the virtual work done by the inertial and body forces and surface tractions,
and is given by

δWext =

∫
Ωt

w · ρ (f − a) dΩ +
∫

(Γt)h

w · h dΓ, (1.78)

where ρ is the mass density of the structure in the current configuration, f is the body force per
unit mass, and h is the external traction vector applied on the subset (Γt)h of the total boundary
Γt.

The virtual work done by the internal stresses, δWint, may be computed as

δWint = −
∫
Ω0

δE : S dΩ. (1.79)

Here S is the second Piola–Kirchhoff stress tensor, which is symmetric and work-conjugate
to E. Although S is not possible to measure experimentally, it plays a prominent role in con-
stitutive modeling of materials.

In Equation (1.79), δE is the variation of the Green–Lagrange strain tensor, which is also
referred to as the virtual strain. Putting Equations (1.76)–(1.79) together, and recognizing that
w is arbitrary, we arrive at the variational formulation of the structural mechanics problem:
find the structural displacement y ∈ Sy, such that ∀ w ∈ Vy:∫

Ωt

w · ρa dΩ +
∫
Ω0

δE : S dΩ −
∫
Ωt

w · ρf dΩ −
∫

(Γt)h

w · h dΓ = 0. (1.80)

Here Sy and Vy are the sets of trial and test functions for the structural mechanics problem,
defined as

Sy =
{
y

∣∣∣ y(·, t) ∈ (H1(Ωt))
nsd , yi = gi on (Γt)gi

}
, (1.81)

and

Vy =
{
w

∣∣∣ w(·) ∈ (H1(Ωt))
nsd , wi = 0 on (Γt)gi

}
. (1.82)

Here, for each i, (Γt)gi and (Γt)hi are the complementary subsets of the domain boundary
Γt, and gi is a given function. Note that the essential boundary conditions are built into the
definition of the function sets of the structural mechanics problem. The variational formulation
given by Equation (1.80) is the point of departure for the structural mechanics finite element
formulations.
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1.2.3 Conservation of Mass

In Equation (1.80) the structural density ρ in the current configuration is not known a priori.
To derive the dependence of the structural density on the structural displacement, we first
define the structural mass m as

m =
∫
Ωt

ρ dΩt. (1.83)

We assume that the structural mass is conserved at all times, which may be expressed as

dm
dt
= 0. (1.84)

Introducing Equation (1.83) into Equation (1.84), changing variables to the reference config-
uration, and taking the time derivative inside the integral, we obtain

dm
dt
=

d
dt

∫
Ωt

ρ dΩt =

∫
Ω0

dρJ
dt

dΩ0 = 0. (1.85)

Because Ω0 is arbitrary, we can localize the results to any material point in the structure as

dρJ
dt
= 0. (1.86)

This, in turn, means that the product ρJ is only a function of the material point, namely
ρJ = ρJ(X). At t = 0 the structure is undeformed, meaning J = 1. Defining ρ0 = ρ0(X)
to be the structural mass density in the undeformed configuration, we obtain the following
point-wise statement of the conservation of mass:

ρ0 = ρJ. (1.87)

Because ρ0 is considered to be known, given the structural displacement field, Equation (1.87)
may be used to obtain the density at a material point in the current configuration using
this simple algebraic expression. The relationship given by Equation (1.87) is known as the
Lagrangian description of mass conservation.

1.2.4 Structural Mechanics Formulation in the Current Configuration

In the variational formulation given by Equation (1.80), the stress terms are written with
respect to the reference configuration, while the remaining terms are expressed in the current
configuration. In order to have a formulation that is written purely in the current configura-
tion, we proceed as follows. We first make explicit the dependence of the virtual strain δE on
the virtual displacement w. Starting with the definition of E in Equation (1.71) and taking the
variation as in Equation (1.77) gives

δE =
1
2

(
FT∇∇∇Xw +∇∇∇XwT F

)
, (1.88)

where ∇∇∇X denotes the gradient taken with respect to the spatial coordinates of the reference
configuration. Due to the symmetry of S, the scalar product δE : S simplifies to

δE : S = ∇∇∇Xw : P, (1.89)
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where

P = FS (1.90)

is the first Piola–Kirchhoff stress tensor, which is nonsymmetric. With these definitions the
variational formulation of the structural mechanics problem becomes: find y ∈ Sy, such that
∀ w ∈ Vy:∫

Ωt

w · ρadΩ +
∫
Ω0

∇∇∇Xw : P dΩ −
∫
Ωt

w · ρf dΩ −
∫

(Γt)h

w · h dΓ = 0. (1.91)

We now change variables in the stress terms in Equation (1.91) to obtain∫
Ω0

∇∇∇Xw : P dΩ =
∫
Ω0

∇∇∇Xw : (FS) dΩ =
∫
Ω0

∂wi

∂XJ

∂xi

∂XI
S IJ dΩ (1.92)

=

∫
Ωt

∂wi

∂x j

(
∂xi

∂XI
S IJ
∂x j

∂XJ
J−1

)
dΩ (1.93)

=

∫
Ωt

∇∇∇w :
(
J−1FSFT

)
dΩ, (1.94)

where in the last term we recognize the Cauchy stress tensor σσσ:

σσσ = J−1FSFT . (1.95)

Using index notation, the component form of Equation (1.95) may be written as

σi j = J−1FiIS IJ F jJ . (1.96)

The Cauchy stress, unlike the second Piola–Kirchhoff stress, may be measured experimen-
tally. Due to the the symmetry of the Cauchy stress tensor, we can write∫

Ωt

∇∇∇w : σσσ dΩ =
∫
Ωt

εεε(w) : σσσ dΩ, (1.97)

where, as before,

εεε(w) =
1
2

(
∇∇∇w +∇∇∇wT

)
. (1.98)

Combining Equations (1.91), (1.92), (1.95), and (1.97), we obtain the structural mechanics
variational formulation in the current configuration: find y ∈ Sy, such that ∀ w ∈ Vy:∫

Ωt

w · ρa dΩ +
∫
Ωt

εεε(w) : σσσ dΩ −
∫
Ωt

w · ρf dΩ −
∫

(Γt)h

w · h dΓ = 0. (1.99)

An equivalent variational formulation of the structural mechanics problem may be developed
in the reference configuration. We present that in the next section.

To infer the strong formulation of the structural problem from Equation (1.99), we integrate
by parts the stress terms, apply the homogeneous form of the essential boundary conditions
on w, and group the interior and boundary integral terms to obtain∫

Ωt

w· (ρ (a − f) −∇∇∇ ·σσσ) dΩ +
∫

(Γt)h

w · (σσσn − h) dΓ = 0. (1.100)
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Because Equation (1.100) holds for all admissible w, we conclude that

ρ (a − f) −∇∇∇ ·σσσ = 0 (1.101)

at every point inside Ωt and

σσσn − h = 0 (1.102)

at every point on the traction boundary (Γt)h. Equations (1.101) and (1.102) constitute the
point-wise balance of linear momentum and traction boundary condition, respectively, in the
current configuration.

Using index notation, the strong form of the structural mechanics equations may be
written as

ρ (ai − fi) − σi j, j = 0 in Ωt, (1.103)

yi = gi on (Γt)gi, (1.104)

σi jn j = hi on (Γt)hi. (1.105)

Here, ni’s are components of the unit outward normal vector n in the current configuration,
and hi’s are given functions. Note that the boundary conditions for the displacement lead to
the boundary conditions for the velocity and acceleration, namely

ui =
dgi

dt
on (Γt)gi, (1.106)

and

ai =
d2gi

dt2
on (Γt)gi. (1.107)

1.2.5 Structural Mechanics Formulation in the Reference Configuration

To infer the weak form of the structural mechanics equations in the reference configuration
Ω0, we again start with the variational formulation given by Equation (1.80), and change
variables in the inertial and body force terms as∫

Ωt

w · ρ (a − f) dΩ =
∫
Ω0

w · ρ0 (a − f) dΩ. (1.108)

Mass conservation given by Equation (1.87) is also employed to arrive at the above result.
Combining Equations (1.80), (1.88), (1.89), and (1.108), we obtain the following variational
formulation of the structural mechanics problem posed inΩ0: find y ∈ Sy, such that ∀w ∈ Vy:∫

Ω0

w · ρ0a dΩ +
∫
Ω0

∇∇∇Xw : P dΩ −
∫
Ω0

w · ρ0f dΩ −
∫

(Γ0)h

w · ĥ dΓ = 0, (1.109)

where ĥ, is the traction vector acting in the reference configuration. Integrating by parts the
stress terms in Equation (1.109), applying the homogeneous form of the essential boundary
conditions on w, and grouping the interior and boundary integrals, we obtain∫

Ω0

w · (ρ0 (a − f) −∇∇∇X · P) dΩ +
∫

(Γ0)h

w ·
(
Pn̂ − ĥ

)
dΓ = 0, (1.110)
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which holds for all admissible w, and where n̂ is the unit normal in the reference configuration.
From Equation (1.110) we infer the point-wise balance of linear momentum in Ω0:

ρ0 (a − f) −∇∇∇X · P = 0, (1.111)

and the traction boundary condition on (Γ0)h:

Pn̂ − ĥ = 0. (1.112)

Using index notation, the strong form of the structural mechanics boundary value problem
may be written as

ρ0 (ai − fi) − PiI,I = 0 in Ω0, (1.113)

yi = gi on (Γ0)gi, (1.114)

PiI n̂I = ĥi on (Γ0)hi. (1.115)

Remark 1.6 The variational statement given by Equation (1.99) is sometimes called the
updated Lagrangian formulation of structural mechanics, while Equation (1.109) corresponds
to the so-called total Lagrangian formulation of structural mechanics (see, e.g., Belytschko
et al., 2000). Both formulations are equivalent in that they produce identical solutions for the
same input. The choice of the formulation is often dictated by constitutive modeling, boundary
conditions, ease of computer implementation, and other factors.

1.2.6 Additional Boundary Conditions of Practical Interest

In this section we briefly describe two cases of structural mechanics boundary conditions that
are often employed in practice. These are the follower pressure load and elastic-foundation
boundary conditions.

Follower pressure load. This case presents a situation where the structural deforma-
tion is driven by the external applied pressure load on (Γt)h. In this case, the stress vector h
becomes

h = −pn, (1.116)

where p is the magnitude of the applied pressure. Because the pressure is applied to the part
of the domain boundary that is in motion, this boundary condition leads to a nonlinearity that
needs to be handled in the computation. Changing variables to the reference configuration and
using Nanson’s formula (see. e.g., Holzapfel, 2000)

n dΓt = JF−T n̂ dΓ0, (1.117)

where dΓt and dΓ0 are the differential surface area elements in the current and reference con-
figurations, respectively, we obtain

∫
(Γt)h

w · h dΓt = −
∫

(Γt)h

w · pn dΓt = −
∫

(Γ0)h

w · pJF−T n̂ dΓ0. (1.118)
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From Equation (1.118) we conclude that the resultant reference configuration traction vector
ĥ for the follower pressure load is

ĥ = −pJF−T n̂, (1.119)

and the corresponding boundary condition becomes

Pn̂ + pJF−T n̂ = 0, (1.120)

or, using index notation,

PiI n̂I + pJF−1
Ii n̂I = 0. (1.121)

Elastic foundation. In this case, the structure is assumed to be supported by an elastic-
foundation, which is modeled using the spring analogy. The traction vector is made
proportional to the structural displacement as

h = −ky, (1.122)

where k > 0 is the spring constant. In this case, the traction term in the variational equations
of structural mechanics is replaced with∫

(Γt)h

w · h dΓ = −
∫

(Γt)h

w · ky dΓ. (1.123)

Note that the limit k → ∞ represents a rigid foundation and the limit k → 0 gives a
zero-traction boundary condition. In some cases it is desirable to only employ the spring anal-
ogy in the direction normal to the boundary. In this case, the boundary condition (1.122) is
replaced by

h = −k (y · n) n, (1.124)

which yields the following traction term:∫
(Γt)h

w · h dΓ = −
∫

(Γt)h

(w · n) k (y · n) dΓ. (1.125)

1.2.7 Some Constitutive Models

To present the constitutive models in structural mechanics, we restrict the presentation to the
class of hyperelastic materials. More complicated cases, such as inelastic materials, may be
found in Simo and Hughes (1998). The theory of hyperelasticity assumes the existence of a
stored elastic-energy density per unit volume of the undeformed configuration, ϕ, expressed
as a function of the strain as

ϕ = ϕ (E) . (1.126)

The second Piola–Kirchhoff stress S is obtained by differentiating ϕ with respect to E as

S (E) =
∂ϕ (E)
∂E

. (1.127)
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Given the second Piola–Kirchhoff stress, the Cauchy stress is computed according to
Equation (1.95) or (1.96). The tensor of elastic moduli, which plays an important role in the
linearization of the structural mechanics equations, is defined as the second derivative of ϕ
with respect to E, namely,

� (E) =
∂2ϕ (E)
∂E∂E

. (1.128)

Different forms of ϕ(E) in Equation (1.126) lead to different constitutive relationships
between stress and strain. Here we present a few important cases.

St. Venant–Kirchhoff model. This model is characterized by ϕ(E) defined as

ϕ(E) =
1
2

E : �E, (1.129)

where � is a fourth-rank tensor of elastic moduli that is independent of the state of defor-
mation. Using Equation (1.127), it is easy to see that this choice of the elastic-energy den-
sity leads to a linear relationship between the Green–Lagrange strain and the second Piola–
Kirchhoff stress:

S (E) = �E. (1.130)

Because E respects the principle of objectivity (see e.g., Holzapfel, 2000), this constitutive
relationship is applicable to modeling structures in the regime of large displacements in that
all rigid-body motions (i.e., translations and large rotations) produce no strains. However, the
model is only physically valid in the small-strain regime as many materials deviate from a
linear stress-strain relationship, even for very modest strain levels.

The constitutive tensor �may be designed to represent various types of material anisotropy
(e.g., composite materials). The simplest case is the isotropic material for which the constitu-
tive tensor, in the component form, becomes

CIJKL =

(
κ − 2

3
μ

)
δIJδKL + μ (δIKδJL + δILδJK) , (1.131)

where κ and μ are the material bulk and shear moduli, respectively. These are related to the
material Young’s modulus, E, and Poisson’s ratio, ν, as

κ = λ +
2
3
μ, (1.132)

μ =
E

2(1 + ν)
, (1.133)

λ =
νE

(1 + ν)(1 − 2ν)
, (1.134)

where μ and λ are the well-known Lamé constants of the linear-elasticity model.

Neo-Hookean model with dilatational penalty. It is well known that the St. Venant–
Kirchhoff model is unstable in the regime of strong compression (see Holzapfel, 2000).
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A constitutive model that addresses this drawback was proposed in Simo and Hughes (1998).
The model is isotropic, and the elastic-energy density takes the form

ϕ(C, J) =
1
2
μ
(
J−2/3trC − 3

)
+

1
2
κ

(
1
2

(
J2 − 1

)
− ln J

)
. (1.135)

Note that the elastic-energy density is written with respect to the Cauchy–Green stress tensor
C and the determinant of the Jacobian of the deformation gradient J. The J2 − 1 term penal-
izes the deviation of J from unity and the ln J term stabilizes the formulation for the regime
of strong compression. With this definition of the elastic-energy density, the second Piola–
Kirchhoff stress tensor S and the tensor of elastic moduli � may be explicitly computed, and
are given by

S = μJ−2/3

(
I − 1

3
trC C−1

)
+

1
2
κ
(
J2 − 1

)
C−1 (1.136)

and

� =

(
2
9
μJ−2/3trC + κJ2

)
C−1 ⊗ C−1

+

(
2
3
μJ−2/3trC − κ

(
J2 − 1

))
C−1 
 C−1

− 2
3
μJ−2/3

(
I ⊗ C−1 + C−1 ⊗ I

)
. (1.137)

In (1.137), the symbols ⊗ and 
 are defined as

(A ⊗ B)IJKL = (A)IJ (B)KL , (1.138)

(
C−1 
 C−1

)
IJKL
=

(
C−1

)
IK

(
C−1

)
JL
+

(
C−1

)
IL

(
C−1

)
JK

2
. (1.139)

In this model, κ and μ are also interpreted as the material bulk and shear moduli, respectively.
One can see this by evaluating the material constitutive tensor � from Equation (1.137)
for the case when the reference and current configurations coincide. In this case, x = X,
F = C = I, and the material modulus from Equation (1.137) reduces to the form given by
Equation (1.131).

Mooney–Rivlin model. For the compressible Mooney–Rivlin material, the expression
for S, in component form, is given as

S IJ = 2 (C1 +C2CKK) δIJ − 2C2CIJ + (KPEN ln J − 2 (C1 + 2C2)) C−1
IJ , (1.140)

where C1 and C2 are the Mooney–Rivlin material constants. The near-incompressibility is
enforced with the penalty term KPEN ln J (see Betsch et al., 1996), where KPEN is a penalty
parameter determined based on the expression given in Stuparu (2002) for the bulk modulus:

KPEN =
2 (C1 +C2)
(1 − 2νPEN)

. (1.141)
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Here νPEN (with a value close to 0.50) is the “penalty” Poisson’s ratio used in the expression
in place of the actual Poisson’s ratio.

Fung model. For the Fung material, the expression for S is given as

S IJ = 2D1D2(eD2(CKK−3)δIJ −C−1
IJ ) + KPEN ln J C−1

IJ , (1.142)

where D1 and D2 are the Fung material constants, and KPEN is defined as

KPEN =
2D1D2

(1 − 2νPEN)
. (1.143)

1.2.8 Linearization of the Structural Mechanics Equations: Tangent Stiffness and
Equations of Linear Elasticity

In this section we linearize the structural mechanics equations. Linearization gives a tangent
stiffness operator that is used in the implementation of the Newton–Raphson method to solve
the nonlinear structural equations. Linearization also gives rise to the equations of linear
elastodynamics, which are often used in structural modeling.

To arrive at the linearized structural mechanics problem, we “perturb” the structure around
its deformed state and only keep the terms that are linear in the displacement perturbation.
Namely, we set

δW(w, ȳ) +
d
dε
δW(w, ȳ + εy)

∣∣∣∣∣
ε=0
= 0, (1.144)

where ȳ is the structural displacement that defines its deformed state, y now plays the role of
a small displacement perturbation, and

δW(w, ȳ) =
∫
Ω0

w · ρ0ā dΩ +
∫
Ω0

∇∇∇Xw : P̄ dΩ −
∫
Ω0

w · ρ0 f̄ dΩ −
∫

(Γ0)h

w · ¯̂h dΓ (1.145)

are the structural mechanics variational equations evaluated at ȳ. The superimposed bar
denotes quantities evaluated at the deformed state.

Linearization of the internal virtual-work terms gives

d
dε
δWint(w, ȳ + εy)

∣∣∣∣∣
ε=0
= δ

∫
Ω0

FT∇∇∇Xw : S dΩ (1.146)

=

∫
Ω0

(
δFT∇∇∇Xw : S̄ + F̄T∇∇∇Xw : δS

)
dΩ (1.147)

=

∫
Ω0

⎛⎜⎜⎜⎜⎝∇∇∇Xw : ∇∇∇XyS̄ + F̄T∇∇∇Xw :

⎛⎜⎜⎜⎜⎝ ∂S
∂E

⎞⎟⎟⎟⎟⎠ 1
2

(
F̄T∇∇∇Xy +∇∇∇XyT F̄

)⎞⎟⎟⎟⎟⎠ dΩ.

(1.148)

Recognizing that

∂S
∂E
=
∂2ϕ

∂E∂E
= �, (1.149)
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and using the minor symmetry of �, Equation (1.148) may be written as∫
Ω0

(
F̄T∇∇∇Xw : �̄F̄T∇∇∇Xy +∇∇∇Xw : ∇∇∇XyS̄

)
dΩ. (1.150)

Using index notation, Equation (1.150) may be expressed as∫
Ω0

wi,J D̄iJkLyk,L dΩ, (1.151)

where D̄iJkL’s are the components of the tangent stiffness tensor given by

D̄iJkL = F̄iIC̄IJKLF̄kK + δikS̄ JL. (1.152)

The first term on the right-hand-side of Equation (1.152) is the material stiffness, while the
second term is the geometric stiffness contribution to the tangent stiffness tensor.

Linearization of the external virtual-work gives

d
dε
δWext(w, ȳ + εy)

∣∣∣∣∣
ε=0
=

∫
Ω0

w · ρ0a dΩ −
∫
Ω0

w · ρ0f dΩ −
∫

(Γ0)h

w · ĥ dΓ, (1.153)

where a, f, and ĥ are now the increments of acceleration, body force, and surface traction,
respectively.

Using Equation (1.144) and the above derivations, we arrive at the variational statement of
a complete linearized problem: given the structural displacement state ȳ, find the displacement
perturbation y ∈ Sy, such that ∀ w ∈ Vy:

∫
Ω0

w · ρ0ā dΩ +
∫
Ω0

∇∇∇Xw : P̄ dΩ −
∫
Ω0

w · ρ0 f̄ dΩ −
∫

(Γ0)h

w · ¯̂h dΓ

+

∫
Ω0

w · ρ0a dΩ +
∫
Ω0

(
F̄T∇∇∇Xw : �̄F̄T∇∇∇Xy +∇∇∇Xw : ∇∇∇XyS̄

)
dΩ

−
∫
Ω0

w · ρ0f dΩ −
∫

(Γ0)h

w · ĥ dΓ = 0. (1.154)

If the structural mechanics equations are linearized around an equilibrium configuration (i.e.,
the displacement state ȳ satisfies the variational equations), then the linearized problem given
by Equation (1.154) reduces to: given ȳ, find y ∈ Sy, such that ∀ w ∈ Vy:

∫
Ω0

w · ρ0a dΩ +
∫
Ω0

(
F̄T∇∇∇Xw : �̄F̄T∇∇∇Xy +∇∇∇Xw : ∇∇∇XyS̄

)
dΩ

−
∫
Ω0

w · ρ0f dΩ −
∫

(Γ0)h

w · ĥ dΓ = 0. (1.155)

An important special case of the formulation given by Equation (1.155) is obtained when the
virtual-work equations are linearized around the stress-free undisplaced configuration. In this
case, ȳ = 0, F̄ = I, Ē = 0, S̄ = 0, and we obtain∫

Ω

w · ρa dΩ +
∫
Ω

εεε(w) : �εεε(y) dΩ −
∫
Ω

w · ρf dΩ −
∫
Γh

w · h dΓ = 0, (1.156)



24 Computational Fluid–Structure Interaction: Methods and Applications

where εεε(y) is the linear, or infinitesimal, strain, which is a linearization of the Green–Lagrange
strain about an undeformed configuration. Infinitesimal strain vanishes for the rigid-body
translation, however, it does not vanish for the rigid-body rotation. As a result, the formula-
tion given by Equation (1.156) is not suitable for structural mechanics problems where large
deformations are expected (see Figure 1.6). Equation (1.156) represents the well-known varia-
tional formulation of linear elastodynamics. The equations of linear elastostatics are obtained
by omitting the inertial term in Equation (1.156).

y

L
cos θ

L
θ

Infinitesimal Rotation

εεε(y) = 0
E(y) � 0

y

L
L

θ

Finite Rotation

εεε(y) � 0
E(y) = 0

Figure 1.6 Elastic bar undergoing infinitesimal and finite rotations. In the case of infinitesimal rotation,
linear-elastic analysis produces zero strain and, as a result, zero stress, which is nonphysical since the
bar elongates. In the case of finite rotation, linear-elastic analysis produces a nonzero strain and stress,
which is also nonphysical. In general, structural analysis with large displacements requires an objective
strain measure to produce physically correct results

Remark 1.7 Note that because the reference and current configurations coincide, we no
longer distinguish between x and X in Equation (1.156). As a result, we remove the subscript
from ∇∇∇X, and set Ω = Ω0 = Ωt and Γ = Γ0 = Γt.

We conclude this section with the linearization of the follower pressure load. For conve-
nience, we employ index notation. We begin with the expression for the follower-pressure-
load boundary condition in the reference configuration and first compute

δ
[
JF−1

Ii

]
= δJF−1

Ii + JδF−1
Ii = JF−1

J j y j,J F−1
Ii − JF−1

I j y j,J F−1
Ji . (1.157)

Introducing the above variation into Equation (1.118), we obtain

−
∫

(Γ0)h

wi pδ [JFIi] n̂I dΓ = −
∫

(Γ0)h

wi pJ
(
F−1

J j F−1
Ii − F−1

I j F−1
Ji

)
n̂Iy j,J dΓ. (1.158)

Changing variables in the above expression to the current configuration, we obtain

−
∫

(Γt)h

(
wi pniy j, j − wi pn jy j,i

)
dΓ, (1.159)
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which is somewhat simpler than Equation (1.158). The above linearization is employed in the
implementation of consistent tangent stiffness matrices in nonlinear structural analysis. An
alternative linearization of the follower pressure load, which uses the parametric coordinates
of the boundary surface, may be found in Wriggers (2008).

1.2.9 Thin Structures: Shell, Membrane, and Cable Models

1.2.9.1 Kirchhoff–Love Shell Model

In this section we follow the developments of Kiendl et al. (2009, 2010) and Bazilevs et al.
(2011c) that present the governing equations of the Kirchhoff–Love shell theory. The theory
is appropriate for thin-shell structures and, when discretized using smooth basis functions,
requires no rotational degrees of freedom.

In the case of shells, the 3D continuum description is reduced to that of the shell midsur-
face, and the transverse normal stress is neglected. Furthermore, the Kirchhoff–Love theory
assumes that the shell director remains normal to its middle surface during the deformation,
which implies that the transverse shear strains are zero. As a result, only in-plane stress
and strain tensors are considered, and the indices α = 1, 2 and β = 1, 2 are employed to
denote their components. We denote by Γs

0 and Γs
t the shell midsurface in the reference and

deformed configurations, respectively. Furthermore, hth is the (variable) shell thickness, and
ξ3 ∈ [−hth/2, hth/2] is the through-thickness coordinate.

We introduce the following standard shell kinematic quantities and relationships
(see Bischoff et al., 2004; Kiendl et al., 2009 for more details):

Eαβ = εαβ + ξ3καβ, (1.160)

εαβ =
1
2

(
gα · gβ −Gα ·Gβ

)
, (1.161)

καβ = −∂gα
∂ξβ
· g3 −

(
−∂Gα
∂ξβ
·G3

)
, (1.162)

gα =
∂x
∂ξα
, (1.163)

Gα =
∂X
∂ξα
, (1.164)

g3 =
g1 × g2

‖g1 × g2‖ , (1.165)

G3 =
G1 ×G2

‖G1 ×G2‖ , (1.166)

Gα = (Gα ·Gβ)−1Gβ. (1.167)

Here, Eαβ, εαβ, and καβ are the contravariant components of the in-plane Green–Lagrange
strain, membrane strain, and curvature tensors, respectively. The spatial coordinates of
the shell midsurface in the current and reference configurations are x = x(ξ1, ξ2) and
X = X(ξ1, ξ2), parameterized by ξ1 and ξ2. The covariant surface basis vectors in the current
and reference configurations are g α and Gα. The unit outward normal vectors to the shell
midsurface in the current and reference configurations are g 3 and G3. The contravariant
surface basis vectors in the reference configuration are denoted by Gα (see Figure 1.7).
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Figure 1.7 Shell kinematics

We select the local Cartesian basis vectors as follows:

e1 =
G1

‖G1‖ , (1.168)

e2 =
G2 − (G2 · e1)e1

‖G2 − (G2 · e1)e1‖
, (1.169)

that is, the first local basis vector is the normalized first covariant basis vector in the reference
configuration. The local Cartesian basis vectors eα are used in expressing a constitutive rela-
tionship for the shell. Because the local basis is orthonormal, we make no distinction between
covariant and contravariant quantities, which are expressed with respect to it.

With the above definitions, we calculate the components of the Green–Lagrange strain
tensor and its variation in the local coordinate system as

Eαβ = εαβ + ξ3καβ, (1.170)

δEαβ = δεαβ + ξ3δκαβ, (1.171)

εαβ = εγδ(Gγ · eα)(Gδ · eβ), (1.172)

καβ = κγδ(Gγ · eα)(Gδ · eβ), (1.173)

δεαβ = δεγδ(Gγ · eα)(Gδ · eβ), (1.174)

δκαβ = δκγδ(Gγ · eα)(Gδ · eβ). (1.175)

The variations δεγδ and δκγδ may be computed directly by taking the variational derivatives
of the expressions given by Equations (1.161) and (1.162) with respect to the displacement
vector.
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We define the vectors of membrane strain and curvature components in the local coordinate
system as

εεε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε11

ε22

ε12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1.176)

and

κκκ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
κ11

κ22

κ12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (1.177)

together with a Green–Lagrange strain vector

E = εεε + ξ3κκκ. (1.178)

We assume St. Venant–Kirchhoff material law and write the following stress–strain relation-
ship in the local coordinate system:

S = � E, (1.179)

where S is a vector of components of the second Piola–Kirchhoff stress tensor in the local
coordinate system, and � is a constitutive material matrix, which is symmetric. Introduc-
ing Equations (1.178) and (1.179) into the expression for the internal virtual work given by
Equation (1.79), we obtain

δWint = −
∫
Ω0

δE · S dΩ (1.180)

= −
∫
Γs

0

(∫
hth

δE · � E dξ3

)
dΓ (1.181)

= −
∫
Γs

0

δεεε ·
((∫

hth

� dξ3

)
εεε +

(∫
hth

ξ3� dξ3

)
κκκ

)
dΓ

−
∫
Γs

0

δκκκ ·
((∫

hth

ξ3� dξ3

)
εεε +

(∫
hth

ξ3
2� dξ3

)
κκκ

)
dΓ. (1.182)

For a general orthotropic material,

�ort =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

(1 − ν12ν21)
ν21E1

(1 − ν12ν21)
0

ν12E2

(1 − ν12ν21)
E2

(1 − ν12ν21)
0

0 0 G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.183)

In Equation (1.183), E1 and E2 are the Young’s moduli in the directions defined by the local
basis vectors, ν12 and ν21 are the Poisson’s ratios, G12 is the shear modulus, and ν21E1 = ν12E2
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Figure 1.8 Schematic of a composite laminate

to ensure the symmetry of the constitutive material matrix �ort. In the case of an isotropic
material, E1 = E2 = E, ν21 = ν12 = ν, and G12 = E/(2(1 + ν)).

In the case of composite materials, we assume that the structure is composed of a set
of plies, each modeled as an orthotropic material. We use the classical laminated-plate the-
ory Reddy, 2004, and homogenize the material through-thickness constitutive behavior for a
given composite ply layout. Let k denotes the kth ply (or lamina) and let n be the total number
of plies (see Figure 1.8). We assume each ply has the same thickness hth/n. Pre-integrating
through the shell thickness in Equation (1.182), the extensional stiffness Kexte, coupling stiff-
ness Kcoup, and bending stiffness Kbend are given by

Kexte =

∫
hth

� dξ3 =
hth

n

n∑
k=1

�k, (1.184)

Kcoup =

∫
hth

ξ3� dξ3 =
h2

th

n2

n∑
k=1

�k

(
k − n

2
− 1

2

)
, (1.185)

Kbend =

∫
hth

ξ3
2� dξ3 =

h3
th

n3

n∑
k=1

�k

⎛⎜⎜⎜⎜⎜⎝
(
k − n

2
− 1

2

)2

+
1

12

⎞⎟⎟⎟⎟⎟⎠ , (1.186)

where

�k = TT (φk)�ort T(φk), (1.187)

T(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos2 φ sin2 φ sin φ cos φ
sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ − sin2 φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1.188)

In the above equations, φ is the fiber orientation angle in each ply, Equation (1.187) transforms
�ort from the principal material coordinates to the laminate coordinates (defined by the local
Cartesian basis) for each ply, and �k is constant within each ply. Note that, setting n = 1 and
�k = �ort in Equations (1.184)–(1.186), we get Kcoup = 0 and

Kexte = hth�ort, (1.189)
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Kbend =
h3

th

12
�ort, (1.190)

which are the classical membrane and bending stiffnesses for an orthotropic shell.
With the above definitions, the expression for the internal virtual work for a composite

shell may now be compactly written as

δWint = −
∫
Γs

0

δεεε ·
(
Kexteεεε +Kcoupκκκ

)
dΓ −

∫
Γs

0

δκκκ ·
(
Kcoupεεε +Kbendκκκ

)
dΓ. (1.191)

The complete variational formulation of the Kirchhoff–Love shell is given by: find the dis-
placement of the shell midsurface y ∈ Sy, such that ∀ w ∈ Vy:∫

Γs
0

w · hthρ0 (a − f) dΓ

+

∫
Γs

0

δεεε ·
(
Kexteεεε +Kcoupκκκ

)
dΓ

+

∫
Γs

0

δκκκ ·
(
Kcoupεεε +Kbendκκκ

)
dΓ −

∫
(Γs

t )h

w · h dΓ = 0, (1.192)

where
(
Γs

t
)
h is the shell subdomain with a prescribed traction boundary condition, and ρ0 is

the through-thickness-averaged shell density given by

ρ0 =
1

hth

∫
hth

ρ0 dξ3. (1.193)

Note that, for simplicity of the exposition, in Equation (1.192), we omitted the terms corre-
sponding to the prescribed traction on the edges of the shell. Although not presented here,
such terms are implemented in our structural analysis programs.

1.2.9.2 Membrane Model

The membrane formulation is obtained by neglecting the curvature tensor in the definition of
the in-plane Green–Lagrange strain (see Equation (1.160)) in the equations of the Kirchhoff–
Love shell. This results in a simplified structural model, in which the bending effects are
neglected. The variational formulation for membrane structures may be stated as follows: find
y ∈ Sy, such that ∀ w ∈ Vy:∫

Γs
0

w · hthρ0 (a − f) dΓ +
∫
Γs

0

δεεε ·Kexteεεε dΓ −
∫

(Γs
t )h

w · h dΓ = 0. (1.194)

Since only the first derivatives with respect to the parametric domain coordinates are employed
in this variational formulation, C0-continuous basis functions may be used to discretize the
membrane equations.

The membrane formulation, in the case of an isotropic material, may be written without
using the local coordinate system. In this case, the variational formulation of the membrane
model becomes: find y ∈ Sy, such that ∀ w ∈ Vy:∫

Γs
0

w · hthρ0 (a − f) dΓ +
∫
Γs

0

δεαβhthS αβ dΓ −
∫

(Γs
t )h

w · h dΓ = 0, (1.195)
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where

S αβ =
(
λ̄GαβGγδ + μ

(
GαγGβδ +GαδGβγ

))
εγδ, (1.196)

εγδ are the in-plane components of the Green–Lagrange strain tensor given by Equa-
tion (1.161), λ̄ = 2λμ/(λ + 2μ), and Gαβ are the contravariant metric tensor components in
the undeformed configuration. Just as in the case of the shell model, for simplicity of the
exposition, we omitted the edge-traction terms from Equations (1.194) and (1.195).

1.2.9.3 Cable Model

For cables, under the assumption of uniaxial tension, the parametric domain reduces to a line
(see Figure 1.9), the indices α = β = 1, and the bending effects are also neglected in the
developments in Section 1.2.9.1. Furthermore, the Poisson’s effect is also neglected, which
leaves the Young’s modulus Ec as the only material parameter in the cable constitutive model.
The variational formulation for cable structures may be stated as follows: find y ∈ Sy, such
that ∀ w ∈ Vy:∫

S 0

w · Acρ0 (a − f) dS +
∫

S 0

δε11AcEcε11 dS −
∫

(S t)h

w · h dS = 0, (1.197)

where S 0 and S t are the curves that define the cable axis in the reference and deformed con-
figuration, respectively, (S t)h is the part of S t with a prescribed traction boundary condition,
and, in this case, h has the dimensions of force per unit length.

x1

x2

x3

G1

g1

y(ξ1)

X(ξ1)

x(ξ1)

Figure 1.9 Cable kinematics

The cable formulation may be stated without using the local coordinate system as follows:
find y ∈ Sy, such that ∀ w ∈ Vy:∫

S 0

w · Acρ0 (a − f) dS +
∫

S 0

δε11AcEcG
11G11ε11 dS −

∫
(S t)h

w · h dS = 0. (1.198)
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Although the terms representing the traction boundary conditions at the end points are not
explicitly included in Equation (1.198), they are implemented in our analysis programs.

1.3 Governing Equations of Fluid Mechanics in Moving Domains

In this section we revisit the fluid mechanics governing equations and recast them in the ALE
framework. The ALE form of the fluid mechanics equations is often used to simulate flows
on moving domains, including FSI.

1.3.1 Kinematics of ALE and Space–Time Descriptions

The ALE description also makes use of a reference domain. However, the major difference
from the Lagrangian approach, which is typically adopted for structural mechanics, is that the
motion of the fluid mechanics problem reference domain does not follow the motion of the
fluid itself. For this reason, we denote this reference domain by Ω̂ ∈ Rnsd and the coordinates
in this reference domain by x̂. See Figure 1.10 for an illustration. The fluid spatial domain Ωt

is given by

Ωt =
{
x

∣∣∣ x = φφφ (x̂, t) ∀x̂ ∈ Ω̂, t ∈ (0,T )
}
. (1.199)

The mapping given by Equation (1.199) takes the form

φφφ (x̂, t) = x̂ + ŷ (x̂, t) , (1.200)

where ŷ is the time-dependent displacement of the reference fluid domain. With this definition
of the ALE map, the fluid domain velocity is given by

û =
∂ŷ
∂t

∣∣∣∣∣
x̂
, (1.201)

where
∣∣∣∣
x̂

denotes the time derivative taken holding x̂ fixed, the deformation gradient is
defined as

F̂ =
∂x
∂x̂
= I +

∂ŷ
∂x̂
, (1.202)

and Ĵ = det F̂ is the Jacobian of the deformation gradient.
We recall the Piola transformation, a classical result in continuum mechanics (see, e.g.,

Wriggers, 2008). Given an arbitrary vector field γγγ defined on the spatial domain, we define a
vector field on the reference domain as

γ̂γγ = Ĵ F̂−1γγγ. (1.203)

In this case, the following equality holds:∫
Ωt

∇∇∇ · γγγ dΩ =
∫
Ω̂

∇∇∇x̂ · γ̂γγ dΩ̂. (1.204)

Relationship (1.203) is the Piola transformation, which preserves the divergence, or conser-
vation, structure of the vector field in the reference configuration (see Equation (1.204)). The
Piola transformation also applies to tensor-valued quantities.
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Figure 1.10 Reference and fluid spatial domains

To derive the ALE equations of fluid mechanics, we introduce the notion of a space–time
domain, which we will also use in the later sections when discussing the space–time method
for moving-domain problems. We begin with the fluid domain reference configuration Ω̂ and
define its space–time counterpart Q̂ by extruding Ω̂ along the time axis as

Q̂ = Ω̂ × (0,T ) =
{
(x̂, t)

∣∣∣ ∀x̂ ∈ Ω̂, t ∈ (0,T )
}
. (1.205)

The space–time domain in the current configuration Qt is defined by

Qt =

{
(x, t)

∣∣∣∣∣∣
{

t
x

}
=

{
t

φφφ (x̂, t)

}
∀ (x̂, t) ∈ Q̂

}
. (1.206)

Note that time is synchronized in both configurations. The deformation gradient from Q̂ to Qt

is given directly by ⎧⎪⎪⎨⎪⎪⎩
∂t
∂t

∂t
∂x̂

∂x
∂t

∂x
∂x̂

⎫⎪⎪⎬⎪⎪⎭ =
{

1 0T

û F̂

}
, (1.207)

and its determinant is coincident with that of the spatial mapping

det

{
1 0T

û F̂

}
= Ĵ. (1.208)

Just as in the spatial case (see Equation (1.203)), there is an analog of the Piola transforma-
tion for space–time domains (see Bazilevs et al., 2008). Given a vector field, (γ0, γγγ)T : Qt →
R

nsd+1, we define a vector field, (γ̂0, γ̂γγ)T : Q̂→ Rnsd+1 as
{
γ̂0

γ̂γγ

}
= Ĵ

{
1 0T

û F̂

}−1 {
γ0

γγγ

}
= Ĵ

{
1 0T

−F̂−1û F̂−1

}{
γ0

γγγ

}
=

{
Ĵγ0

ĴF̂−1(γγγ − γ0û)

}
. (1.209)
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In this case, the following space–time integral relationship holds:

∫
Qt

(
∂γ0

∂t
+∇∇∇ · γγγ

)
dQ =

∫
Q̂

(
∂γ̂0

∂t

∣∣∣∣∣
x̂
+∇∇∇x̂ · γ̂γγ

)
dQ̂, (1.210)

which shows that the space–time Piola transformation preserves the conservation structure of
a vector field in space–time.

Using index notation, the space–time Piola transformation given by Equation (1.209)
becomes {

γ̂0

γ̂I

}
=

{
Ĵγ0

ĴF̂−1
Ii (γi − γ0ûi)

}
, (1.211)

where the upper- and lower-case indices refer to the referential and spatial quantities, respec-
tively, and the integral equality (1.210) may be written as

∫
Qt

(
γ0,t + γi,i

)
dQ =

∫
Q̂

(
γ̂0,t

∣∣∣
x̂
+ γ̂I,I

)
dQ̂. (1.212)

1.3.2 ALE Formulation of Fluid Mechanics

We begin with the conservative form of the linear-momentum equation written on the spatial
domain Ωt, t ∈ (0,T ) (see Equation (1.1)):

∂ (ρu)
∂t
+∇∇∇ · (ρu ⊗ u −σσσ) − ρf = 0. (1.213)

This equation is a suitable starting point for space–time finite element discretizations, which
approximate both the space and time behavior using basis functions. However, if one wants
to use a more standard semi-discrete approach, in which the space part is handled with finite
elements and the time part is handled with a finite-difference-like time integration method,
Equation (1.213) is not a convenient starting point. To arrive at a form of the differential
equations that is suitable for a semi-discrete approach, we first integrate Equation (1.213)
over Qt:

∫
Qt

(
∂ (ρu)
∂t
+∇∇∇ · (ρu ⊗ u −σσσ) − ρf

)
dQ = 0, (1.214)

and then rewrite the result using index notation as
∫

Qt

(
(ρui),t +

(
ρuiu j − σi j

)
, j
− ρ fi

)
dQ = 0. (1.215)

Changing variables Qt → Q̂ in Equation (1.215) and applying the space–time Piola transfor-
mation given by Equation (1.209) (with γ0 = ρui and γ j = ρuiu j − σi j for each component i),
we obtain ∫

Q̂

( (
Ĵρui

)
,t

∣∣∣∣
x̂
+

(
Ĵ
(
ρui(u j − û j) − σi j

)
F̂−1

J j

)
,J
− Ĵρ fi

)
dQ̂ = 0. (1.216)
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Because
∫

Q̂
=

∫ T

0

∫
Ω̂

, and x̂ and t are independent variables, we can interchange the order of

space and time integrations, namely
∫

Q̂
=

∫
Ω̂

∫ T

0
. We note that this cannot be done for

∫
Qt

,
because x and t are not independent. Furthermore, because the time interval is arbitrary, we
can “localize” Equation (1.216) in time to obtain

∫
Ω̂

( (
Ĵρui

)
,t

∣∣∣∣
x̂
+

(
Ĵ
(
ρui

(
u j − û j

)
− σi j

)
F̂−1

J j

)
,J
− Ĵρ fi

)
dΩ̂ = 0. (1.217)

Changing variables Ω̂→ Ωt in Equation (1.217) and applying the spatial Piola transformation
given by Equation (1.203) gives

∫
Ωt

(
1

Ĵ

(
Ĵρui

)
,t

∣∣∣∣
x̂
+

(
ρui(u j − û j) − σi j

)
, j
− ρ fi

)
dΩ = 0. (1.218)

Localizing Equation (1.218) in space gives a point-wise balance of linear momentum:

1

Ĵ

(
Ĵρui

)
,t

∣∣∣∣
x̂
+

(
ρui(u j − û j) − σi j

)
, j
− ρ fi = 0, (1.219)

which may be rewritten using vector notation as

1

Ĵ

∂Ĵρu
∂t

∣∣∣∣∣∣
x̂

+∇∇∇ · (ρu ⊗ (u − û) −σσσ) − ρf = 0. (1.220)

Equation (1.220) above is the conservative form of the linear-momentum balance equation
of fluid mechanics in the ALE description. This form is often taken as the starting point of
the numerical formulations of fluid mechanics on moving domains (see, e.g., Le Tallec and
Mouro, 2001).

A so-called convective form of the ALE equations may be obtained from the conser-
vative form as follows. We first differentiate through the time derivative and convective terms
in Equation (1.220) to obtain

ρ

(
1

Ĵ

∂Ĵ
∂t

∣∣∣∣∣∣
x̂

u +
∂u
∂t

∣∣∣∣∣
x̂

)
+ ρ (u∇∇∇ · (u − û) + (u − û) · ∇∇∇u) −∇∇∇ ·σσσ − ρf = 0, (1.221)

where we also assume that the density ρ is constant. Using a well-known identity in continuum
mechanics (see, e.g., Wriggers, 2008)

∂Ĵ
∂t

∣∣∣∣∣∣
x̂

= Ĵ∇∇∇ · û (1.222)

and the incompressibility constraint ∇∇∇ · u = 0 in Equation (1.221), we obtain

ρ

(
∂u
∂t

∣∣∣∣∣
x̂
+ (u − û) · ∇∇∇u − f

)
−∇∇∇ ·σσσ = 0. (1.223)

This is the convective form of the linear-momentum balance equation of incompressible flows
in the ALE description. Note that Equation (1.223) is a substantially simplified version of
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Equation (1.220). While in the fully continuous setting the conservative and convective forms
of the fluid mechanics equations are equivalent, this is not always the case in the discrete
setting. See the remarks below for further elaboration.

Remark 1.8 The discrete geometric conservation law is satisfied if the numerical formu-
lation preserves a constant fluid velocity in space and time when there are no body forces and
the stress tensor is self-equilibrating (see, e.g., Farhat et al., 2001 and references therein). If
the constant fluid velocity is assumed, it is easily seen that Equation (1.223), corresponding to
the convective form of the linear-momentum equations, is identically satisfied. Furthermore,
assuming that the time integration method “respects” a constant solution, that is, if the veloc-
ity field is constant in time the discrete approximation to the time derivative is zero, then the
formulation satisfies the geometric conservation law at the fully discrete level. Any reasonable
time integration method should satisfy this condition.

Remark 1.9 The satisfaction of the discrete geometric conservation law for the ALE
formulation based on the conservative form of the linear-momentum balance given by
Equation (1.220) depends on whether the identity given by Equation (1.222) holds at the
fully discrete level. Due to the different treatment of space and time discretizations in ALE
methods, Equation (1.222) may not be satisfied in the fully discrete case.

Remark 1.10 The situation is reversed for the global conservation of linear momentum.
The conservative form of the linear-momentum equations typically leads to fully discrete for-
mulations that are globally momentum-conserving. Global momentum conservation for ALE
formulations based on the convective form of the equations typically holds only up to the time
discretization (see, e.g., Bazilevs et al., 2008).

Remark 1.11 Because in space–time formulations the basis functions depend on both
space and time, Equation (1.222) holds at the fully discrete level. As a result, space–time
formulations naturally satisfy the discrete geometric conservation law and the global conser-
vation of linear momentum.




