II.1
Bonds and Swaps

III.1.1 INTRODUCTION

A financial security is a tradable legal claim on a firm’s assets or income that is traded in an
organized market, such as an exchange or a broker’s market. There are two main classes of
securities: primitive securities and derivative securities. A primitive security is a financial
claim that has its own intrinsic price. In other words, the price of a primitive security is
not a function of the prices of other primitive securities. A derivative security is a financial
claim with a pay-off that is a function of the prices of one or more primitive securities.

This chapter focuses on interest rate sensitive securities that are traded in the debt markets,
and on bonds and swaps in particular. We are not concerned here with the very short term
debt markets, or money markets which trade in numerous interest rate sensitive instruments
with maturities typically up to 1 year.! Our focus is on the market risk analysis of bonds
and swaps, and at the time of issue most swaps have maturities of 2 years or more.

Virtually all bonds are primitive securities that are listed on exchanges but are traded by
brokers in over-the-counter (OTC) markets. The exception is private placements which are
like transferable loans. Since there is no secondary market, private placements are usually
accounted for in the banking book, whereas most other interest rate sensitive securities are
marked to market in the trading book. Forward rate agreements and swaps are derivative
securities that are also traded OTC but they are not listed on an exchange.

By examining the relationships between bonds, forward rate agreements and swaps we
explain how to value them, how to analyse their market risks and how to hedge these risks.
Developed debt markets simultaneously trade numerous securities of the same maturity. For
instance, for the same expiry date we may have trades in fixed and floating coupon bonds,
forward rate agreements and swaps. Within each credit rating we use these instruments to
derive a unique term structure for market interest rates called the zero coupon yield curve.
We show how to construct such a curve from the prices of all liquid interest rate sensitive
securities.

Bond futures, bond options and swaptions are covered in Chapters I11.2 and I1I.3. However,
in this chapter we do consider bonds with embedded options, also called convertible bonds.
Convertible bonds are hybrid securities because they can be converted into the common stock
of the company. These claims on the firm’s assets share the security of bonds at the same time
as enjoying exposure to gains in the stock price. The bond component makes them less risky
than pure stock, but their value depends on other variables in addition to the stock price.

The outline of this chapter is as follows. In Section III.1.2 we introduce fundamental
concepts for the analysis of bonds and associated interest rate sensitive securities. Here

! Money market instruments include Treasury bills and other discount bonds, interbank loans, sale and repurchase agreements,
commercial paper and certificates of deposit. Exceptionally some of these instruments can go up to 270 days maturity.
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we explain the difference between discrete and continuous compounding of interest and
show how to translate between the two conventions. Then we introduce the terminology
used for common types of market interest rates, describe the distinction between spot and
forward interest rates and show how to translate between the spot curve and the forward
curve.

Section III.1.3 begins with a brief catalogue of the different types of bonds that are
commonly traded. We can distinguish bonds by the type of issuer, type of coupon (i.e. fixed
or floating) and the bond maturity (i.e. the time until the claim expires) and we make the
distinction between fixed coupon bonds and floating rate notes. Section III.1.4 examines the
relationship between the price of a fixed coupon bond and its yield, and introduces the zero
coupon yield curve for a given credit rating. We also examine the characteristics of the zero
coupon spot yield curve and the term structure of forward interest rates.

Section III.1.5 examines the traditional measures of market risk on a single bond and on
a bond portfolio. We introduce bond duration and convexity as the first and second order
bond price sensitivities to changes in yield. These sensitivities allow us to apply Taylor
expansion to approximate the change in bond price when its yield changes. Then we show
how to approximate the change in value of a bond portfolio when the zero coupon curve
shifts, using the value duration and the value convexity of the portfolio. Finally, we consider
how to immunize a bond portfolio against movements in the yield curve.

Section III.1.6 focuses on bonds with semi-annual or quarterly coupons and floating rate
notes. Section III.1.7 introduces forward rate agreements and interest rate swaps and explains
the relationship between these and floating rate notes. We demonstrate that the market risk
of a swap derives mainly from the fixed leg, which can be analysed as a bond with coupon
equal to the swap rate. Examples explain how to fix the rate on a standard fixed-for-floating
swap, and how the cash flows on a cross-currency basis swap are calculated. Several other
types of swaps are also defined.

Section III.1.8 examines a bond portfolio’s sensitivities to market interest rates, introducing
the present value of a basis point (PV01) as the fundamental measure of sensitivity to changes
in market interest rates.” We are careful to distinguish between the PVO1 and the dollar
duration of a bond portfolio: although the two measures of interest rate risk are usually very
close in value, they are conceptually different.

Section II1.1.9 describes how we bootstrap zero coupon rates from money market rates and
prices of coupon bonds of different maturities. Then we explain how splines and parametric
functions are used to fit the zero coupon yield curve. We present a case study that compares
the application of different types of yield curve fitting models to the UK LIBOR curve and
discuss the advantages and limitations of each model. Section III.1.10 explains the special
features of convertible bonds and surveys the literature on convertible bond valuation models.
Section III.1.11 summarizes and concludes.

III.1.2 INTEREST RATES

The future value of an investment depends upon how the interest is calculated. Simple interest
is paid only on the principal amount invested, but when an investment pays compound interest
it pays interest on both the principal and previous interest payments. There are two methods

2 One basis point equals 0.01%.
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of calculating interest, based on discrete compounding and continuous compounding. Discrete
compounding means that interest payments are periodically accrued to the account, such
as every 6 months or every month. Continuous compounding is a theoretical construct that
assumes interest payments are continuously accrued, although this is impossible in practice.
Both simple and compound interest calculations are possible with discrete compounding but
with continuous compounding only compound interest rates apply.

Interest rates are divided into spot rates and forward rates. A spot rate of maturity T is
an interest rate that applies from now, time 0, until time T. A forward rate is an interest
rate starting at some time ¢ in the future and applying until some time T, with T >t > 0.
With forward interest rates we have to distinguish between the term (i.e. the time until the
forward rate applies) and the tenor (i.e. the period over which it applies). The aim of this
section is to introduce the reader to discretely compounded and continuously compounded
spot and forward interest rates and establish the connections between them.

Since they are calculated differently, continuously compounded interest rates are different
from discretely compounded interest rates and it is common to use different notation for these.
In this text we shall use lower-case r for continuously compounded spot rates and capital
R for discretely compounded spot rates. We use lower-case f for continuously compounded
forward rates and upper-case F for discretely compounded forward rates. When we want to
make the maturity of the rate explicit we use a subscript, so for instance R, denotes the
discretely compounded spot rate of maturity T and f,, denotes the continuously compounded
forward rate with term n and tenor m (i.e. starting at time n and ending at time n + m). For
instance, the forward rate f, _, starts at time ¢ and ends at time T and has tenor T —t.

The debt market convention is to quote rates in discretely compounded terms, with com-
pounding on an annual or semi-annual basis. Since each market has its own day count
convention the analysis of a portfolio of debt market instruments can be full of tedious tech-
nical details arising from different market conventions. For this reason banks convert market
interest rates into continuously compounded interest rates because they greatly simplify the
analysis of price and risk of debt market instruments.

III.1.2.1 Continuously Compounded Spot and Forward Rates

The principal N is the nominal amount invested. It is measured in terms of the local currency,
e.g. dollars. The maturity T is the number of years of the investment. Note that T is measured
in years so, for instance, T =0.5 represents 6 months; in general T can be any finite, positive
real number. Let r; denote the continuously compounded T-maturity interest rate. Note that
this is always quoted as an annual rate, for any T. Finally, let V denote the continuously
compounded value of the investment at maturity.

It follows from Section 1.1.4.5 and the properties of the exponential function (see
Section 1.1.2.4) that

V =Nexp(ryT). (TIL.1.1)
Conversely, the present value of an amount V paid at some future time T is
N =Vexp(—r;T). (TI1.1.2)

Formally, exp (r;T) is called the continuous compounding factor and exp (—r;T) is called
the continuous discount factor for maturity T.

We now show how continuously compounded spot and forward rates are related. Let
2 (E fo,l) denote the continuously compounded spot interest rate that applies for one period,
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from time O until time 1. Let us say for simplicity that one period is 1 year, so the spot
1-year rate applies from now and over the next year. Then the 1-year forward interest rate
f1.1 is the 1-year rate that will apply 1 year from now. Denote by r, (E fo’z) the spot interest
rate, quoted in annual terms, which applies for two periods (i.e. over the next 2 years in this
example). The value of the investment should be the same whether we invest for 2 years
at the current 2-year spot rate, or for 1 year at the 1-year spot rate and then roll over the
investment at the 1-year spot rate prevailing 1 year from now. But the fair value of the
1-year spot rate prevailing 1 year from now is the 1-year forward interest rate. Hence, the
compounding factors must satisfy exp(2r,) =exp(r,) exp(f, ;). In other words,

N +fi4
==
This argument has a natural extension to k-period rates. The general relationship between
continuously compounded spot and forward compounding factors is that the k-period spot
rate is the arithmetic average of the one-period spot rate and k — 1 one-period forward
interest rates:

(II.1.3)

L)

Tszo’szo,l‘i‘fl,l‘f';;-- +fk—l,1. (IIL.1.4)

III.1.2.2 Discretely Compounded Spot Rates

The discretely compounded analogue of equations (III.1.1) and (II1.1.2) depends on whether
simple or compound interest is used. Again let N denote the principal (i.e. the amount
invested) and let T denote the number of years of the investment. But now denote by R the
discretely compounded T-maturity interest rate, again quoted in annual terms. Under simple
compounding of interest the future value of a principal N invested now over a period of T
years is
V=N(1+R;T). (II1.1.5)
However, under compound interest,
V=N(+R;)". (I11.1.6)
Similarly, with simple interest the present value of an amount V paid at some future time
T is
N=V(+R,T)™". (I11.1.7)
but with compound interest it is
N=V(1+R;) " (I11.1.8)

Simple interest is usually only applied to a single payment over a fixed period of less
than 1 year. For a period T of less than 1 year the discretely compounded discount factor is

8, =(1+R,T)", (II1.1.9)
and when T is an integral number of years it is
dr=(1+Ry)". (111.1.10)

When T is greater than 1 year but not an integral number of years the discretely compounded
discount factor for maturity T is

Sr=(+R) A+ (T-[TDHRy) ", (IIL1.11)
where [T] denotes the integer part of T.
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Remarks on Notation

1. In this chapter and throughout this book we shall be discounting a sequence of cash
flows at a set of future dates. Usually at least the first date occurs within 1 year,
and frequently several dates are less than 1 year. The cash flow payments almost
never occur in exactly integer years. Hence, the formula (III.1.11) should be used for
the discount factor on these payment dates. However, to specify this will make the
formulae look more complex than they really are. Hence, we shall assume that cash
flows occur annually, or semi-annually, to avoid this burdensome notation. This is not
without loss of generality, but all the concepts that we focus on can be illustrated under
this assumption.

2. We remark that some authors use the notation B, instead of &, for the discretely
compounded discount factor of maturity T, because this also is the price of a pure
discount bond of maturity T and redemption value 1. We shall see in the next section
that a discount bond, which is also called a zero coupon bond or a bullet bond, is one
of the basic building blocks for the market risk analysis of cash flows.

3. When market interest rates are quoted, the rate is specified along with type of rate
(normally annual or semi-annual) and the frequency of payments. In money markets
discretely compounded interest rates are quoted in annual terms with 365 days. In
bond markets they are quoted in either annual or semi-annual terms with either 360 or
365 days per year. To avoid too many technical details in this text, when we consider
discretely compounded interest rates we shall assume that all interest rates are quoted
in annual terms and with 365 days per year, unless otherwise stated.

The frequency of payments can be annual, semi-annual, quarterly or even monthly. If the
annual rate quoted is denoted by R and the interest payments are made n times each year,
then

. R\\"
Annual compounding factor = (1 + (—)) . (TIL.1.12)

n

For instance, (1 + 14R)? is the annual compounding factor when interest payments are semi-
annual and R is the 1 year interest rate. In general, if a principal amount N is invested at a
discretely compounded annual interest rate R, which has n compounding periods per year,
then its value after m compounding periods is

R m
V=N<1+—> . (IIL.1.13)
n

It is worth noting that:

n—o0

R n
lim (1 + —) =exp(R), (I.1.14)
n

and this is why the continuously compounded interest rate takes an exponential form.

ExAMPLE III.1.1: CONTINUOUS VERSUS DISCRETE COMPOUNDING

Find the value of $500 in 3.5 years’ time if it earns interest of 4% per annum and interest
is compounded semi-annually. How does this compare with the continuously compounded
value?
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SOoLUTION

0.04\
V =500 x (1 + T) =$574.34,

but under continuous compounding the value will be greater:
V =500 x exp(0.04 x 3.5) =$575.14.

II1.1.2.3 Translation between Discrete Rates and Continuous Rates

The discrete compounding discount factor (III.1.11) is difficult to work with in practice since
different markets often have different day count conventions; many practitioners therefore con-
vert all rates to continuously compounded rates and do their analysis with these instead. There
is a straightforward translation between discrete and continuously compounded interest rates.

Let R and r; denote the discretely and continuously compounded rates of maturity T.
R} and r are equivalent if they provide the same return. Suppose there are n compounding
periods per annum on the discretely compounded rate. Then equating returns gives

R nT
exp(r;T) = (1 + f) ,

i.e. exp(ry) = (1 +Ry/n)", and taking logarithms of both sides gives the continuously com-
pounded rate that is equivalent to R, as

R
rT=n1n<1+—T>. (111.1.15)
n

For instance, the continuously compounded equivalent of a semi-annual rate of 5% is
21n (1.025) =4.9385%.
Similarly, the discretely compounded rate that is equivalent to r is

RTzn(exp(%T) - 1). (IIL1.16)

III.1.2.4 Spot and Forward Rates with Discrete Compounding

Recall that we use F, to denote an m-period discretely compounded forward interest rate
starting n periods ahead, that is, n is the term and m is the tenor of the rate. For instance,
if the period is measured in months as in the example below, then F¢ 4 denotes the 9-month
forward rate 6-months ahead, i.e. the interest rate that applies between 6 months from now
and 15 months from now.

The argument leading to the relationship (III.1.3) between continuously compounded
forward and spot rates also extends to discretely compounded forward and spot rates.
Measuring periods in 1 year, we have

(1+R)*=(1+R)) (1+F,,) (II1.1.17)
and in general
(1+R) =(1+Fy,) (1+F ) ... (1+F_,). (111.1.18)
The relationship (III.1.18) allows forward rates of various terms and tenors to be calculated
from the spot rate curve, as the following examples show.

EXAMPLE III.1.2: CALCULATING FORWARD RATES (1)

Find the 1-year and 2-year forward rates, given that the discretely compounded annual spot
interest rates are 5%, 6% and 6.5% for maturities 1 year, 2 year and 3 years, respectively.



Bonds and Swaps 7

SoLUTION

1.06?
1-year forward rate, F, | = —— — 1=7.0%
’ 1.05
1.065°
2-year forward rate, F, | = ——— —1=7.5%
’ 1.062

A variety of forward rates can be computed from any given spot rate curve, as shown by
the following example.
ExaMPLE III.1.3: CALCULATING FORWARD RATES (2)

Given the spot rates in Table III.1.1, calculate a set of discretely compounded 3-month
forward rates for 3 months, 6 months and 9 months ahead. Also calculate Fy 4, the 6-month
forward rate that applies 6 months ahead.

SoLUTION

Table III.1.1 Discretely compounded spot and forward rates

Maturity (months) Spot rates Forward rates

3 4.5% Fys 4.5%
6 4.3% Fy3 4.05%
9 4.2% Fq, 3.92%
12 4.0% Fy3 3.30%

The 3-month forward rates are shown in Table III.1.1. Note that in the table, the forward
rate matures at the time specified by the row and starts 3 months earlier. The forward rate from
0 months to 3 months is the same as the spot rate, and this is entered in the first row. Denote
the spot and forward rates as above. Since the rates are quoted in annual terms, we have:

FO 3 F3 3 FO 6
I+—=])(1+—==)=14+—).
( + 4 ) ( + 4 + 2
Thus the 3 month forward rate at 3 months (i.e. effective from 3 months to 6 months) is

given by:
Fos Fos\
F,,=4 I+—=)l1+—==) -1
o X[(* 2)(*4

0.043 0.045\""
=4x|(1+ > 1+ 1 —1]=0.0405 = 4.05%.

This is the forward rate in the second row. Similarly, the 3-month forward rate at 6 months
is given by the relationship

F06 F63 3F()‘)
1+ 22 ) (1+22) =1 2.
(15) (7)) = (1

Substituting in for the spot rates Fy¢ and F,o and solving for the forward rate gives

Fg3=3.92%. Similarly,
3F F
<1 éfg) (1 Z.S> N (l Fo,lz)’
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and this gives Fy ; =3.30%. And finally, F4 ¢ = 3.62% is found by solving
F F
(1 + %) (1 + %) =(1+Fyp,).

I11.1.2.5 LIBOR

LIBOR stands for ‘London Inter Bank Offered Rate’. It is the interest rate charged for short
term lending between major banks. It is almost always greater than the base rate, which is
the rate that banks obtain when they deposit their reserves with the central bank. LIBOR is
published each day (between 11.00 and 11.30) by the British Bankers” Association (BBA).
The BBA takes a survey of the lending rates set by a sample of major banks in all major
currencies. Thus the LIBOR rates refer to funds not just in sterling but also in US dollars
and all the major currencies. The terms for the lending rates are usually overnight, 1 week,
2 weeks, 1 month, and then monthly up to 1 year. The shorter rates up to 3 or 6 months are
very precise at the time they are measured, but the actual rates at which banks will lend to
one another continue to vary throughout the day.

London is the main financial centre in the world and so LIBOR has become the standard
reference rate for discounting short term future cash flows to present value terms. It is used
to find the fair (or theoretical) value of forwards and futures, forward rate agreements and
swaps, bonds, options, loans and mortgages in all major currencies except the euro. For the
euro the usual reference rates are the EURIBOR rates compiled by the European Banking
Federation. Also emerging economies such as India are now developing their own reference
rates, such as MIBOR in Mumbai.

III.1.3 CATEGORIZATION OF BONDS

The principal or face value of the bond is the amount to be repaid to the bond holder at
maturity (if the bond is issued at a discount or premium, the principal is not the amount
invested). The coupon on a bond determines the periodic payment to the bond holder by the
issuer until the bond expires. The amount paid is equal to the coupon multiplied by the face
value. When we price a bond we assume that the face value is 100.® If the price is 100 we
say the bond is priced at par; bonds are below par if their price is below 100 and above par
if their price is above 100. On the expiry date of the bond, the bond holder redeems the bond
with the issuer. The redemption value of the bond is often but not always the same as the
face value.* The issuer of a bond raises funds by selling bonds in the primary market.’ This
is called debt financing. Between issue and expiry, bonds may be traded in the secondary
market where trading is usually OTC.®

The bond market is a very old market that has evolved separately in many different
countries. Each country has different conventions, and even within a country there are
numerous variations on bond specifications. In the following we provide only a very general
summary of the different types of straight bonds that are commonly traded, categorizing

3 Depending on the currency unit, bonds usually have a minimum amount invested much greater than 100. For instance, the
minimum amount one can buy of Fannie Mae bonds is $1,000. Nevertheless their market prices are always quoted as a percentage
of the face value, i.e. based on the face value of 100.

4 For instance, there could be a bonus payment at maturity, in addition to payment of the face value.

3 Usually bonds are underwritten by banks and placed with their investors.

6 But some government bonds are exchange traded.
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them by issuer and the type of coupon paid. Readers seeking more specific details are
recommended to consult the excellent books by Fabozzi (2005) or Choudhry (2005, 2006).

III.1.3.1 Categorization by Issuer

Bonds are divided into different categories according to the priority of their claim on the
issuer’s assets, if the issuer becomes insolvent. For instance, senior bond holders will be paid
before junior bond holders and, if the bond is issued by a company that has also sold shares
on its equity, all bond holders are paid before the equity holders. This gives bonds a security
not shared by stocks and so investing in bonds is less risky than investing in equities. This
is one of the reasons why bond prices are typically less volatile than share prices.

Almost all bonds have a credit rating which corresponds to the perceived probability that
the issuer will default on its debt repayments. The best credit rating, corresponding to an
extremely small probability of default, is labelled AAA by Standard & Poor’s and Aaa by
Moody’s. Only a few bonds, such as G10 government bonds and some corporate bonds,
have this credit rating. Standard & Poor’s credit ratings range from AAA to C, and the C
rating corresponds to a 1-year default probability of 20% or more. Any bond rated below
investment grade (BBB) is called a junk bond.

Table III.1.2 sets out the common types of bond issuers ordered by the size of the markets
in these bonds, stating the terminology used when we refer to these bonds and listing some
specific examples of each type of bond.

Table III.1.2 Examples of bonds

Issuer Examples
Issuer Currency Maturity  Coupon Yield® Rating
Financial institutions HBOS GBP Apr. 2008  5.50% 6.23% AA
(banks, insurance Goldman Sachs USD Nov 2014  4.25% 6.01% AA-
companies and Deutsche Fin. EUR Jul. 2009 1.75% 4.33% AA
financial companies) KFW Int. Fin. JPY Mar 2010  6.38% 1.00% AAA
Governments (called Australia AUS Feb. 2017  6.00% 5.96% AAA
sovereign, Treasury or  Greece EUR Jul 2017 4.30% 4.58% A
government bonds) Brazil GBP Mar 2015  7.88% 5.96% BB+
Government agencies Fannie Mae USD Jun 2017 5.375% 5.53% AAA
(agency bondsb) Freddie Mac USD Nov 2017 5.125% 5.14% AAA
Towns/regions Dutchess County USD Sep 2050 535% 3.53% AA
(municipal bonds) NYSU Dev. Corp. USD Jan 2025 5.00% 3.13% AA-
Corporations (corporate General Motors USD Nov 2031  8.00% 7.46% BB+
bonds) Tokyo Motor JPY June 2008  0.75% 0.90% AAA
Boots GBP May 2009 5.50% 8.65% BBB

“Yields quoted as of 25 August 2007, reopening auctions.
"The main suppliers of agency bonds are the US housing associations that issue bonds backed by mortgages. See
www.fanniemae.com and www.freddiemac.com for further details.

Bonds can be further categorized as follows:

e Domestic bonds are issued in the country of domicile of the issuer. In other words, they
are issued by a domestic borrower in their local market and they are denominated in
the local currency.
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* Foreign bonds are issued by a foreign borrower in the local currency. For instance, a
US issuer can issue a sterling denominated bond in the UK market (this is called a
Yankee).

e Eurobonds are bearer bonds that are issued on the international market in any currency.’
This is a broker’s market with a self-regulatory body called the International Capital
Markets Association (ICMA).

III.1.3.2 Categorization by Coupon and Maturity

The coupon payments on a bond are usually made at regular intervals. Often they are made
once every year, in which case we say the bond has annual coupons, or every 6 months for
a semi-annual coupon bond. If the coupons are semi-annual then half of the coupon payment
is made every 6 months.’

The majority of bonds pay a fixed coupon: for instance, a 5% annual 2015 bond pays
the bond holder 5% of the face value every year until 2015. However, some bonds, called
floating rate notes or floaters for short, have a variable coupon. The periodic payment is
based on a reference rate such as the LIBOR rate prevailing at the time that the coupon is
paid.'” For instance, a semi-annual floater pays 6-month LIBOR plus spread, and a quarterly
floater pays 3-month LIBOR plus spread.

Bonds are further divided into short term bonds (2-5 years), medium term bonds (5-15
years) and long term bonds (over 15 years) where the numbers in parentheses here refer to the
time between issue and expiry.'! Interest rate sensitive securities that have less than 2 years
to expiry at issue are generally regarded as money market instruments. Most money market
instruments such as US Treasury bills pay no coupons. They are just priced at a discount
to their par value of 100. If they are held until expiry the profit is guaranteed. For instance,
if a US Treasury bill is purchased at 95 and held until expiry the return is 5/95 =5.26%.?
Even though very few bonds pay no coupon it is convenient to work with hypothetical zero
coupon bonds of different maturities and different credit ratings.!* In particular, for reasons
that will become evident in Section III.1.4.3, the yields on zero coupon bonds are used as
market interest rates for different credit ratings.

III.1.4 CHARACTERISTICS OF BONDS AND INTEREST RATES

In the following we begin by using market interest rates to price a bond. We do not question
how these interest rates have been derived. Then we explore the relationship between the
price of a bond and the yield on a bond and show that two bonds with the same maturity but
different coupons have different yields. However, all zero coupon bonds of the same maturity
have the same yield. This zero coupon yield is the market interest rate of that maturity. But

7 Bearer bonds are like banknotes — they belong to the person who holds the bond in his hand. But the owners of other types of
bonds must be registered.

8 The ICMA Centre also hosts the MTS bond database. See http://www.mtsgroup.org/newcontent/timeseries/ and
http://www.icmacentre.ac.uk/research_and_consultancy_services/mts_time_series for further details.

° Some bonds also have quarterly payments, but these are usually floating rate notes.

10 LIBOR is usually greater than the base rate, which is the remuneration rate when banks make deposits with the central bank.
See Section III.1.2.5 for further details.

This varies according to the country: for example, the longest Italian bonds are around 10 years to expiry.

Of course, the same applies to any fixed income security: if it is held to expiry the return is locked in. This does not, however,
mean that fixed income securities have no interest rate risk! See Section III.1.8.3 for further details.

13 We also call zero coupon bonds discount bonds for obvious reasons.

12
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we are in a typical ‘chicken and egg’ situation. We could use the market interest rates to price
bonds, and then derive the market interest rates from bond prices. So which come first, the
bond prices or the market interest rates?

The prices of bonds in the secondary market are determined by supply and demand. They
are not priced using a formula. Just because we start this section with a formula that relates
the fair price of a bond to market interest rates, this does not imply that such a formula is
actually used by brokers to price bonds. Of course, brokers might use this formula if the
market is not very liquid, but in general they set their prices by supply and demand.'*

In the following we shall characterize a bond of maturity T, by a sequence of non-negative
cash flows, starting with a sequence of regularly spaced coupon payments Cr , ..., Cr _,
and finishing with a cash flow C which consists of the redemption value plus the coupon
paid at time T,. We shall price the bond assuming that the coupon payments and redemption
value are both based on a face value of 100. In other words, a coupon of 5% paid at time
t means that C, =5 and the redemption value is 100. However, coupon payments are, in
reality, based on the principal amount invested and the redemption value could be different
from the principal, for instance if bonus payments are included.

III.1.4.1 Present Value, Price and Yield

Denote the sequence of cash flows on the bond by {CT], N } Since we assume these
are based on the face value of 100 the cash flows on a fixed annual coupon bond of maturity
T, years paying a coupon of ¢ percent are:

100c, fori=1,...,n—1,
Cr, { 100(1 4c¢), fori=n. (IIL1.19)
Suppose we have a set of discretely compounded spot market interest rates, {RTI, R },
where Ry is the rate of maturity T, fori=1,...,n. That is, the maturity of each spot rate

matches exactly the maturity of each cash flow. Then we can calculate the present value
of a cash payment at time T, as the payment discounted by the discretely compounded
T,-maturity interest rate.

The present value of a bond is the sum of the discounted future cash flows. If based on a
face value of 100 it is

PV=3 Cr(1+Rp) " (I11.1.20)
i=1
More generally the present value is

PV——ZC (4R )™, (II1.1.21)
100 ;
where N is the principal amount invested.

The difference between the present value (III.1.20) and the market price, P of a bond is that
the present value is a fair or theoretical value, whereas the market price of the bond is set by
supply and demand. The market price of a bond is always quoted relative to a face value of 100.

The market interest rates on the right-hand side of (III.1.20) will not normally be the same.
There is likely to be a term structure of interest rates, i.e. where short rates are not the same
as long rates (see Figure III.1.6 below, for instance). Nevertheless, provided that all the cash

14 A similar comment applies to any liquid market. For instance, the prices of standard European calls and puts are not set by
the Black—Scholes—Merton formula. We use this formula, yes, but not to price options unless they are illiquid. And even then, we
usually adjust the formula (see Section I11.3.6.7).
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flows are positive, we can find a single discount rate that, when applied to discount every
cash payment, gives the market price of the bond. In other words, we can find y such that

P=Y (1+y) "Cr. (111.1.22)
i=1

This y is called the discretely compounded yield, or yield to redemption, on the bond. It is
a single number that represents the internal rate of return on the bond." In other words, it
is the return that an investor would get if he held the bond until expiry.

Similarly, given a set of continuously compounded interest rates {rTl’ B }, the con-
tinuously compounded yield is found by solving

Y exp(—r. T;) Cr, = exp(—yT;) Cr, (11.1.23)

i=1 i=1

assuming the bond is fairly priced.

ExAMPLE III.1.4: CALCULATING THE PRESENT VALUE AND YIELD OF FIXED COUPON BONDS

Consider two bonds that pay coupons annually. Bond 1 has coupon 5% and maturity 3 years
and bond 2 has coupon 10% and maturity 5 years. Suppose the market interest rates are as
shown in Table III.1.3. Find the present value and, assuming this present value is also the
market price, find the yield on each bond.

Table III.1.3 Market interest rates

Maturity (years) 1 2 3 4 5

Interest rate 4.0% 425% 45% 4.25% 4.20%

SorLuTtioN Table III.1.4 sets out the cash flow for each bond, which is then discounted by
the relevant interest rate to give the present values in column 4 (for bond 1) and column 6
(for bond 2). The sum of these discounted cash flows gives the price of the bond, i.e. 101.42
for bond 1 and 125.59 for bond 2. Bond prices reflect the coupon rate. For instance, if bond
2 had a coupon of only 5% then its price would be only 103.5, as readers can verify using
the spreadsheet for this example.

Table 1I1.1.4 Bond prices

Maturity  Interest rate Cash flow Present value  Cash flow  Present value

1 4.0% 5 4.81 10 9.62
2 4.25% 5 4.60 10 9.20
3 4.5% 105 92.01 10 8.76
4 4.25% 0 0 10 8.47
5 4.20% 0 0 110 89.55

Price bond 1 101.42 Price bond 2 125.59

15 Loans normally have all positive cash flows, i.e. the interest payments on the loan, but interest rate swaps do not. Hence. we
cannot define the yield on a swap, but we can define the yield on a loan.
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Although bond 2 has a much higher price than bond 1, this does not mean that investing
in bond 2 gives a lower, or higher, return than investing in bond 1. The rate of return on
a bond is given by its yield, and this is mainly determined by the interest rate at the bond
maturity because the redemption payment has the most effect on the yield.

Table III.1.5 Bond yields

Maturity ~ Yield  Cash flow  Present value  Yield Cash flow  Present value

1 4.48% 5 4.79 4.22% 10 9.60
2 4.48% 5 4.58 4.22% 10 9.21
3 4.48% 105 92.05 4.22% 10 8.83
4 4.48% 0 0 4.22% 10 8.48
5 4.48% 0 0 4.22% 110 89.48

Price bond 1 101.42 Price bond 2 125.59

Table III.1.5 takes the bond price as given in Table III.1.4 and uses an iterative method
to back out the value of the yield so that the sum of the cash payments discounted by this
single yield is equal to the bond price.'® We find that the yield on bond 1 is 4.48% and the
yield on bond 2 is 4.22%. This reinforces our comment above, that the coupon rate has little
effect on the bond yield. For instance, if bond 2 had a coupon of only 5% then its yield
would still be close to 4.2%, because this is the 5-year spot rate. In fact, it would be 4.21%),
as readers can verify using the spreadsheet.

I11.1.4.2 Relationship between Price and Yield

The price of bond 1 in Example III.1.4 is 101.42 and its yield is 4.48%. What would the
price be if its yield changed by 1%? If the yield increased to 5.48% the price would decrease
by 2.73 to 98.69; and if the yield decreased to 3.48% its price would increase by 2.83 to
104.25. The price increases when the yield decreases, and conversely, so the price and yield
have a negative relationship. And since the price does not change by the same absolute
amount when the bond yield increases and decreases, the price and yield have a non-linear
negative relationship. The price—yield curve is the set of all points (y, P) determined by the
price~yield relationship (III.1.22). In other words, it is a convex decreasing curve which
gives the price of a fixed coupon bond as a function of its yield.

ExAMPLE III.1.5: THE EFFECT OF COUPON AND MATURITY ON THE PRICE—YIELD CURVE

Plot the price—yield curve for the following annual coupon bonds:

(a) coupon 5%, maturity 3 years;
(b) coupon 10%, maturity 3 years;
(c) coupon 10%, maturity 5 years.

SoruTtioN Figure III.1.1 illustrates the price—yield curve, i.e. the relationship (III.1.22)
between the price and the yield, for each bond. It verifies the following:!?

16 In the Excel spreadsheet for this example we have done this using the RATE function in Excel. However the bond yield could
also be found using the Excel Solver.
17 These properties of the price—yield relationship may also be proved algebraically from (III.1.22).
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* An increase in coupon increases the price at each yield. For instance, fixing the yield
at 6.5%, the 3 year 5% coupon bond has price 96.03 but the 3 year 10% coupon bond
has price 109.27.

* When the yield equals the coupon the bond price is 100. And we say it is priced at par.
For instance, if the yield is 10% then both of the 10% coupon bonds have price 100.

* An increase in maturity increases the steepness and convexity of the price—yield rela-
tionship. And, comparing the curves for the 10% coupon bonds (b) and (c), the price
at a given yield increases for yields below the coupon and decreases for yields greater
than the coupon.

160

140 A

5% Coupon 3 years
120
10% Coupon 3 years
100

w1 (0% Coupon 5 years

80

Price

60

40+ '

20 - ]

0 T T T T
0% 20% 40% 60% 80% 100%

Yield

Figure III.1.1 Price—yield curves

1I1.1.4.3 Yield Curves

Now we consider the ‘chicken and egg’ situation that we referred to at the beginning of this
section. We can replicate fair bond market prices using market interest rates, but the market
interest rate of some given maturity is derived from a bond yield of the same maturity,
which in turn is derived from the bond price. But two bonds with the same maturity but
different coupons have different yields. So which bond yield should we use to derive the
market interest rate? The next example illustrates how to break this circular construction.

ExaMPLE III.1.6: COMPARISON OF YIELD CURVES FOR DIFFERENT BONDS

Consider three sets of bonds. Each set contains 20 bonds with the same coupon but different
maturities, and the maturities are 1, 2, ..., 20 years. The coupons are 0% for the first set,
5% for the second set and 10% for the third set. The market interest rates are given in
Table III.1.6.

(a) Draw a graph of the fair prices of each set of bonds, against the maturity.
(b) Draw a graph of the yields of each set of bonds, against the maturity.

Indicate the market interest rates on each graph.
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Table III.1.6 Some market interest rates

Maturity (years) 1 2 3 4 5 6 7 8 9 10

Market interest 6.00% 6.50% 7.00% 720% 7.20% 6.60% 6.00% 5.60% 5.40% 5.25%
rate

Maturity (years) 11 12 13 14 15 16 17 18 19 20

Market interest 525% 520% 520% 5.00% 5.10% 5.00% 4.90% 4.90% 4.80% 4.80%
rate

SoLuTiOoN  The spreadsheet for this example calculates the prices using (II1.1.20) and then,
given each bond price it uses the Excel RATE function to back out the yield from the
formula (I11.1.22). The resulting graphs (a) and (b) are shown in Figures III.1.2 and II1.1.3.
The market interest rates from Table III.1.6 are added to each graph and in Figure III.1.2
we use the right-hand scale for these.

Price

—— 5% Coupon
40791 e 10%Couwpon | - 2%
204 |— 0% Coupon (] L 1%
—o— Market Interest Rates
0 — T — T 0%

1 23 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20

Maturity (Years)

Figure III.1.2 Bond price versus maturity

Figure III.1.2 shows that the bonds with coupon above the market interest rate are priced
above par, and those with coupon below the market interest rate are priced below par. We
already know this from the preceding subsection. But Figure III.1.2 gives us some additional
information: the price of a bond increases with maturity if the coupon is above the market
interest rates and decreases with maturity if the coupon is below the market interest rates.

A yield curve is a graph of bond yield versus maturity, keeping the coupon fixed. Bonds
with different coupons have different yield curves, and this is illustrated by Figure III.1.3.
Here we depict three different yield curves, one for each set of bonds, i.e. the bonds with
coupons 0%, 5% and 10% and varying maturities. We also show the market interest rates,
but these are identical to the zero coupon yield curve.

It is this set of zero coupon yields that we use as the basic set of interest rates for
pricing interest rate sensitive instruments. Whenever we refer to ‘the’ yield curve, as in
the BBB yield curve, we mean the zero coupon yield curve. The zero coupon yield curve



16 Pricing, Hedging and Trading Financial Instruments

7.5%
—— 5% Coupon

170% & \ e 10% Coupon |
—— 0% Coupon

6.5% 1 fF "\ —o— Market Interest Rates |

60% ¢ RN,

Yield

55%1 NG

50% 1 Y TN

4.5%

[
w 4
~ 4
w4
o 4
3
oo 4

1 9 10 11 12 13 14 15 16 17 18 19 20

Maturity (Years)

Figure III.1.3 Bond yield versus maturity

is a term structure, i.e. a set of yields of different maturities on zero coupon bonds of the
same credit rating category (AAA, BBB, etc). For each credit rating we have a different
yield curve (i.e. a different set of market interest rates). The other two yield curves shown
in Figure III.1.3, which are derived from market prices of coupon bearing bonds, are called
par yield curves. There is one par yield curve for each coupon and for each credit rating.

Now let us return to the ‘chicken and egg’ problem. If we could observe the market price
of a zero coupon bond, then we could use this market price to derive the market interest
rate of maturity equal to the bond maturity. The price of a zero coupon bond of maturity T
is just 100 times the T period discount factor:

dr=(+yp) ", (IIL.1.24)

where y, is the discretely compounded zero coupon yield with maturity T years. So if we
observe the market price P of a zero coupon bond with maturity T we can back out the
market interest rate as y, from the formula

Pr=100(1+y.)". (I11.1.25)
That is, we simply set:
100\"/"
yr= <—> -1 (11.1.26)
Py

But we cannot observe the price of a zero coupon bond in the market for every T. Although
there are many discount (i.e. zero coupon) instruments that are traded in the money markets,
these rarely have maturity beyond 1 year, or 18 months at the most. Hardly any zero coupon
bonds are traded with maturities longer than this. Hence, to obtain a complete set of market
interest rates covering all maturities we must use a model for fitting a zero coupon yield
curve using the prices of coupon bearing instruments. These yield curve fitting models are
described in Section III.1.9.
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1I1.1.4.4 Behaviour of Market Interest Rates

We examine the time series properties of a single interest rate, and for this we choose the
US Treasury 3-month spot rate. Figure III.1.4 shows a daily time series of the 3-month US
Treasury spot rate from January 1961 to December 2006.!® After reaching a high of over
14% in the early 1980s, US dollar interest rates declined sharply. In 2003 the 3-month rate
reached an historic low, dipping below 2% for the first time since the 1950s. After this time
rates rose steadily to above 4% by mid 2006.

16

14 1

12 4

10 A

Figure III.1.4 US Treasury 3-month spot rate, 1961-2006

In continuous time we model the short rate as a mean-reverting stochastic process. But
if we use a very long term average rate then the rate of mean reversion is extremely slow,
as is evident just by looking at the time series in Figure III.1.4. To confirm this view, we
estimate a general mean-reverting stochastic process of the form'?

dr(t) = (0 — r (£))dt + or ()" AW, (IIL.1.27)

where r is the US Treasury 3-month rate. The parameter ¢ is called the rate of mean reversion
and the parameter 0 is the long term average value of r. Of course what is ‘long term’
depends on the data used to estimate the parameters. If we use the entire sample of interest
rates shown in Figure III.1.4 the long term value will be close to 6.53%, since this is the
average rate over the entire sample. And the speed of reversion to this long term average,
if indeed there is a mean reversion to this average, will be very slow indeed. There might
be a 40-year cycle in Figure III.1.4, so we are going to test for this below. Interest rates
increased from 4% in 1961 to almost 16% in 1981, then returned to 4% in 2001. Estimating
the simple one-factor model (II1.1.27) will yield parameters that reflect this single, long
cycle if it exists.

18 Available from http://www.federalreserve.gov/releases/h15/data.htm.
19 See Sections 1.3.7 and 11.5.3.7 for more details about mean-reverting stochastic processes and see Section II1.3.8.4 for more
details about their application to short term interest rate models.
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The estimated coefficients and standard errors, based on the entire sample between 1961
and 2006, are shown in Table 1I1.1.7.%° Using the parametric form

dr(t) = (a+Br(t))dt +or(t)YdW(t), (111.1.28)
we have:

* long term interest rate, § = —a3~';
* mean reversion rate, ¢ = —[3;
e characteristic time to mean-revert, ¢~' = 371

Table III.1.7 Estimates and standard errors of one-factor interest rate model

Coefficient Est. s.e.
o 0.00262 0.0024
8 —0.00039 0.0006
Y 1.06579 1.8799
[ 0.00864 0.2141
Long term interest rate 6.76%
Mean reversion rate 0.00039
Characteristic time to mean-revert 10.30 years
Volatility 13.66%

Note that the estimate of <y is very close to 1, with a large standard error, so we may
as well set this to 1 and assume that interest rates follow a geometric process rather than
an arithmetic process. The interest rate volatility is assumed constant, and it is estimated
as 13.66%. As expected, the long term interest rate is 6.76%, which is close to the sample
average. And it takes a very long time to mean-revert. The characteristic time to mean-revert
is (0.00039) "' =2754 days. But note that the estimated standard error (s.e.) on 3 is 0.0006
so we cannot reject the null hypothesis that 3 =0, i.e. that the series is integrated.?! In short,
our estimation of the general model (III.1.27) using the entire sample leads to the conclusion
that the 3-month US Treasury rate follows a standard geometric Brownian motion and there
is no mean reversion in these interest rates!

We can try to detect other cycles in interest rates at different frequencies using a two-factor
model of the form

dr(t) =@, (0 (t) —r(t))dt + oyr (1) AW, (1),

do(t) =@, (w — 0 (t))dt + 5,0(t)> dW, (t).
In this model the level to which interest rates mean-revert is not assumed to be constant.
Instead it is a mean-reverting process itself. This way we can try to detect a shorter cycle in
interest rates if it exists. Again we estimate the models in a form that allows us to test for
the presence of mean reversion. That is, we could estimate

dr(t) = (a(t) + 8, (1)) dt + oyr(6)dW, (£),
da(t) = (A + B, a(t)) dt + oy0(£) d W (¢),

(II1.1.29)

(111.1.30)

20 Many thanks to my PhD student Stamatis Leontsinis for providing these estimates, based on a generalized methods of moments
algorithm.
217 A careful discussion on this point is given in Section I1.5.3.7.



Bonds and Swaps 19

and set

* mean reversion level of interest rate, 0(t) = —a(t)37";
e characteristic time to mean-revert, ;' = —03"';

e long term level of interest rate, w = —A3; L

e characteristic time to mean-revert, ¢;' = —(3;".

III.1.4.5 Characteristics of Spot and Forward Term Structures

We also examine the properties of a cross-section of interest rates of different maturities
(i.e. a term structure of interest rates) at a specific point in time, and for this we choose the
term structures of UK spot rates and the associated term structure of UK forward rates. Data
are provided by the Bank of England.?

Figure III.1.5 shows how the UK spot rate curve evolved between 4 January 2000 and
31 December 2007. On 4 January 2000 the 1-year rate was 6.32% and the 25-year rate was
4.28%. During the whole of 2000 and until mid 2001 the short rates were higher than the
long rates. A downward sloping yield curve indicates that the market expects interest rates to
fall. If the economy is not growing well and inflation is under control, the government may
bring down base rates to stimulate economic growth. From the end of 2001 until mid 2004
the (more usual) upward sloping term structure was evident, after which the term structure
was relatively flat until the beginning of 2006. Notice the downward sloping term structure
persisted throughout 2006, so the market was expecting interest rates to fall during all this
time. In the event it turned out that they were not cut until August 2007, when the UK
followed the US interest rate cuts that were necessitated by the sub-prime mortgage crisis.
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Figure III.1.5 UK spot rate curve, January 2000 to December 2007

22 The Bank provides daily data on the UK government and LIBOR yield curves for maturities between 6 months and
25 years, based on zero coupon gilts, and a separate short curve to use for risk free interest rates up to 5 years’ matu-
rity. The short curve is based on sterling interbank rates (LIBOR), yields on instruments linked to LIBOR, short ster-
ling futures, forward rate agreements and LIBOR-based interest rate swaps. More information and data are available from
http://www .bankofengland.co.uk/statistics/yieldcurve/index.htm
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Taking a vertical section though Figure III.1.5 on any fixed date gives the term structure
of spot interest rates on that day. As is typical of interest rate term structures, the UK spot
rates fluctuate between a downward sloping term structure, where short rates are above long
rates (e.g. during 2000-2001 and 2006-2007) and an upward sloping term structure, where
short rates are below long rates (e.g. during 2002-2003). By definition, the forward rates
will be greater than spot rates when the spot curve is upward sloping, and less than spot
rates when the spot curve is downward sloping. To illustrate this, Figure III.1.6 compares
the term structure of UK spot rates with that of 6-month forward rates on (a) 2 May 2000
and (b) 2 May 2003.

(a) May 2000 (b) May 2003
6.5 6.5
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Figure III.1.6 UK government spot and 6-month forward rates on (a) 2 May 2000 and (b) 2 May 2003

We conclude this section by referring to two chapters in Market Risk Analysis,
Volume II, with detailed analyses of the statistical properties of term structures of interest
rates. Specifically:

e the characteristics of different covariance and correlation matrices of US Treasury
interest rates are analysed in Section I1.3.5;

e the principal component analysis of the covariance and correlation matrices of UK spot
and forward rates is discussed in Section II.2.3. In each case we analyse both the short
curve of 60 different rates with monthly maturities up to 5 years, and the entire curve
with 50 different maturities from 6 months to 25 years.

The CD-ROM for Volume II contains all the data and results in Excel.

III.1.5 DURATION AND CONVEXITY

This section describes two traditional measures of a fixed coupon bond’s price sensitivity
to movements in its yield. The first order price sensitivity is called the duration, and we
introduce the two most common duration measures: the Macaulay duration and the modified
duration. The second order price sensitivity to changes in the yield is called the convexity of
the bond. We explain how duration and convexity are used in first and second order Taylor
approximations to the change in bond price when its yield changes, and how to obtain similar
approximations to the profit and loss (P&L) of a bond portfolio when the yield curve shifts
parallel.
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The Macaulay duration is the maturity weighted average of the present values of the
cash flows. It is measured in years and a zero coupon bond has Macaulay duration equal
to its maturity. Under continuous compounding we show that the Macaulay duration is
also a first order approximation to the percentage change in bond price per unit change in
yield. However, under discrete compounding the first order approximation to the percentage
change in bond price per unit change in yield is the modified duration. This is the Macaulay
duration divided by the discrete compounding factor for the yield.

Duration increases with the maturity of the bond, and for two bonds of the same maturity
the duration is higher for the bond with lower coupon, or for the bond with less frequent
coupon payments. Since the price—yield relationship is non-linear, the duration also depends
on the yield. The duration is related to the slope of the price—yield curve. In general, the
lower the yield, the higher the duration. The bond convexity is the sensitivity of duration to
changes in the bond yield. It measures the curvature of the price-yield curve. We conclude
this section by explaining how modified duration and convexity are used to immunize a
bond portfolio against interest rate changes.

III.1.5.1 Macaulay Duration

The Macaulay duration of a bond — or indeed of any sequence of positive cash flows — is
the maturity weighted average of the present values of its cash flows,

DM:%’ (II1.1.31)
where P is the price of the bond and

Pp=(14y) " Cy,. (I11.1.32)
Here y is the yield and Cr, are the coupon payments for i=1,...,n—1 and Cy is the

redemption value which consists of the face value plus the coupon payment all based on a
face value of 100.%

Thus a zero coupon bond always has Macaulay duration equal to its maturity, by definition.
In general the Macaulay duration provides a single number, measured in years, that represents
an average time over which income is received. It can be shown (see Example I11.1.8 below)
that if the yield curve shifts down the Macaulay duration represents a ‘break-even’ point in
time where the income lost through reinvestment of the coupons is just offset by the gain in
the bond’s value.

ExAmMPLE II1.1.7: MACAULAY DURATION

What is the Macaulay duration of a 4-year bond paying a coupon of 6% annually when the
interest rates at 1, 2, 3 and 4 years are as shown in Table III.1.87 What would the Macaulay
duration be if the coupon rate were 5%?

SoLuTioN The answer to the first part is also shown in Table III.1.8. The price of this
bond is 103.62 and its yield is calculated using the Excel RATE function as usual, giving
4.98%. The Macaulay duration is therefore

D), =381.27/103.62 = 3.68 years.

23 We could calculate a time weighted average present value based on discounting by market interest rates, but it is easier to use
the yield. For a bond we know the market price, and so also the yield, thus we can calculate Dy; without having to construct the
ZEero curve.
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Although this is not shown in the table, using the spreadsheet for this example the reader
can change the coupon rate to 5% and read off the Macaulay duration. When the coupon
drops from 6% to 5% the Macaulay duration increases to 372.57/100.06 = 3.72 years.

Table III.1.8 Macaulay duration of a simple bond

Year Spot rate Cash flow PV (Spot) Yield PV (Yield) PV (Yield) x
Year

1 4.5% 6 5.74 4.98% 5.72 5.72

2 4.75% 6 5.47 4.98% 5.44 10.89

3 4.85% 6 5.21 4.98% 5.19 15.56

4 5% 106 87.21 4.98% 87.28 349.10

Sum 103.62 103.62 381.27

This example has demonstrated that the duration and the coupon are inversely related. Thus
if two bonds have the same maturity, the one with the higher coupon will have the smaller
duration.

ExAMPLE II1.1.8: MACAULAY DURATION AS A RISK MEASURE

Consider a 10-year bond with a 10% coupon and with the market interest rates as in
Table II1.1.9. Find the fair value of the bond at maturity, and at h years from now for h = 9,
8,7, ..., 0 (the value at h = 0 being the present value of the bond). Now suppose that the
yield curve shifts up by 2%. Re-evaluate the future value of the bond at the same points in
time as before, and draw a graph of the bond values versus time under (a) the original yield
curve in Table III.1.9, and (b) when the yield curve shifts up by 2%. At which point do
the two value lines intersect? Does this point change if the shift in yield curve is different
from +2%?

Table IIL.1.9 A zero coupon yield curve

Maturity 1 2 3 4 5 6 7 8 9 10

Spot rate 4.00% 425% 450% 4.25% 4.20% 4.15% 4.10% 4.00% 4.00% 4.00%

SorLuTtioN In the spreadsheet for this example we calculate the bond’s maturity value and
then discount this value using the relevant forward rate. This gives the value of the bond h
years from now. We do this both for the original interest rates shown in Table III.1.9 and then
after shifting that yield curve up by 2%. The resulting graph is shown in Figure III.1.7. The
reader may change the yield curve shift in the spreadsheet from 2% to any different value
and will note that, whilst the grey line changes, the point of intersection remains constant at
approximately 7.36 years. Then we show, using the Excel Solver, that the Macaulay duration
of the bond is 7.36 years. That is, the point in time where the two lines intersect is always
equal to the Macaulay duration. If interest rates increase the value of the bond (including
all reinvested coupons) decreases, but the reinvestment income from the coupon stream
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Figure III.1.7 Future value of a bond under two different yield curves

increases.?* The Macaulay duration represents the future point in time where the loss from
the fall in the bond price is just offset by the income gained from an increased interest on the
coupon payments. This is why Macaulay duration has been used as a measure of sensitivity
to market interest rates.

II1.1.5.2 Modified Duration

The modified duration is the first order approximation to the percentage price change per unit
change in yield, multiplied by —1 so that the modified duration is positive (since the price
falls when the yield increases). For an annual bond the modified duration is the Macaulay
duration divided by 1+ y.

It can be shown that, under continuous compounding, the Macaulay duration is given by®

) 1dP
D\, =Macaulay duration = ———.
P dy
But this is only the case under continuous compounding. Under discrete compounding, we
have

1dP D
D = Modified duration = ——— = —.
Pdy 14y
Since discrete compounding is applied in the markets it is the modified duration, not the
Macaulay duration, that is used as the first order approximation to the percentage change in
bond price per unit change in yield.

(II1.1.33)

24 This analysis is based on the assumption that all realised spot rates (i.e. the spot rates at which coupons are reinvested) are equal
to the current forward rates.

25 With continuous compounding, P =} Pr, = e Cr, so % =—>_T;Pr, and 7% % = % > TPy, =Dy
T; T; T; Ti
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III.1.5.3 Convexity

The duration gives a first order approximation to the percentage change in the bond price per
unit change in yield. Thus it is related to the slope of the price—yield curve. Yet we know that
the price and yield have a non-linear relationship. Hence an additional measure of interest
rate sensitivity is often employed to capture the curvature of the price—yield relationship.
We define

C it L& (II1.1.34)
onvexity = ——. 1.
YT dy?

For instance, we can use (II1.1.34) to calculate the convexity for an annual bond of maturity T

years, with T being an integer and so coupon payments are in exactly 1,2, ... , T years. Then
d*P 2C 6C 12C T(T+1)C
= (;2; (II1.1.35)
dy*  (I+y) (I+y)" (1+y) (1+y)™

which follows on differentiating (III.1.22) twice with respect to y.

A zero coupon bond of maturity T has convexity

Zero coupon bond convexity =T(T + 1)(1 +y) % (1I1.1.36)

This can be proved by differentiating P= (14 y)~* twice and then dividing by P. For coupon
bonds the convexity increases as the coupon payments become more spread out over time.

Convexity captures the second order effect of a change in yield on the price of a bond.
The convexity of a bond is its second order price sensitivity to a change in the yield, i.e.
convexity measures the sensitivity of modified duration to an absolute change in the yield.
See Example II1.1.9 below for a numerical illustration.

III.1.5.4 Duration and Convexity of a Bond Portfolio

Modified duration measures the percentage change in bond price per unit change in yield.
Since these cannot be added, how do we measure duration when we have several bonds in
a portfolio?

The value duration of a bond is the absolute change in bond price per unit change in yield:

dpr
Value duration=D® = 7 (1I1.1.37)
Y
Similarly, the value convexity is defined in terms of absolute changes as
, s d*P
Value convexity = C” = ? (I11.1.38)

The value duration and convexity derive their names from the fact that they are measured in
the same currency unit as the bond.?® The value duration is the modified duration multiplied
by the bond price and the value convexity is the convexity multiplied by the bond price. Note
that, like ordinary duration and convexity, they can be defined for any sequence of positive cash
flows, so they can also be calculated for fixed income securities other than bonds.

It is useful to work with value duration and value convexity because they are additive.
Suppose a portfolio has positions on k different fixed income securities and that the value

26 Note that they are also commonly called the dollar duration and dollar convexity. But not all bonds are measured in dollars, so we
prefer the terms value duration and value convexity.
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durations for these positions are DS, ..., D} and their value convexities are C}, ..., C;.
Then the portfolio has value duration Di and value convexity Cﬁ given by the sum of the
value durations for each position:

Dy=Dj+... +D} (I1.1.39)
and

Ch=Ci+... +C}. (I11.1.40)

For instance, consider a long position of $2 million with value duration $400 and value
convexity $15 million, and a short position of $1.5 million with value duration $500 and
value convexity $25 million. Then the value duration of the total position is —$100 and the
value convexity is —$10 million.

Since each bond in the portfolio has a different yield, the interpretation of the value
duration and value convexity is tricky. For these to represent yield sensitivities we must
assume that the yields on all the bonds in the portfolio move by the same amount. In other
words, value duration and value convexity are the first and second order price sensitivities
of the portfolio, measured in value terms, to an identical shift in the yields on all bonds in
the portfolio. This is explained in more detail in the next subsection.

III.1.5.5 Duration—-Convexity Approximations to Bond Price Change

Consider a second order Taylor approximation of the bond price with respect to its yield:?’
dpP d*pP
PHRPO)+ | w6y
y=yo Yy=Yo
Write (y —y,) = Ay and P(y) — P(y,) = AP, so AP is the change in bond price when the
yield changes by Ay. Then the second order Taylor approximation may be written

dpP d*P
AP~ —Ay+1— (Ay)’. 11.1.41
s () (IIL1.41)
So using the definitions of value duration and convexity above, we have
AP~ —D%Ay + 1C* (Ay)®. (I11.1.42)

Now suppose that we hold a bond portfolio and that we assume that all the yields on the bonds
in the portfolio change by the same amount Ay. Then we can add up the approximations
(II1.1.42) over all the bonds in the portfolio to obtain

AP~ —DjAy + 1C5 (Ay)?, (I1L.1.43)

where now AP denotes the change in portfolio value, i.e. the portfolio P&L, when all yields
change by Ay.

Bond traders’ limits are usually based on value duration and value convexity and traders
often use (III.1.43) to approximate the effect of a change in market interest rates on their
portfolio P&L. That is, they assume that all the bond yields change by the same amount when
the zero coupon yield curve shifts parallel. They must assume this, otherwise (III.1.43) would

27 See Section 1.1.6 for an introduction to Taylor approximation.
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not hold, but of course when the zero curve shifts parallel different bond yields change by
different amounts.
Another duration—convexity approximation, this time for a single bond, follows on dividing
(II1.1.41) by P, giving
AP 1dP 1 dp
SR ST Ay T ()
P Pdy 2P dy
When we compare the above with the definitions (I11.1.33) and (III.1.34) we see that we
have obtained an approximation to the percentage change in bond price for a given change
in yield. That is:

AP
- ~ —Modified Duration x Ay + % x Convexity x (Ay)2 . (II1.1.44)

Notice that the signs on modified duration and convexity are opposite. Hence, for two cash
flows with the same modified duration, the one with the higher convexity has a value that is
less sensitive to adverse interest rate movements. That is, its value decreases less if interest
rates increase and increases more if interest rates fall. Hence, a large and positive convexity
is a desirable quality.

ExAMPLE II1.1.9: DURATION—CONVEXITY APPROXIMATION

Find the modified duration and convexity of the two bonds in Example III.1.4. Hence, for
each bond, use the duration—convexity approximation to estimate the change in bond price
when the yield increases by 1%. Compare this estimate to the full valuation of each bond’s
price based on the new yield.

SoLuTioN We already know the price and the yield of the bonds from Example III.1.4.
Now, using the formulae derived above, first we obtain the Macaulay duration (as the maturity
weighted average of the present value of the cash flows) and then we divide this by 1+ y to
obtain the modified duration. For the convexity we use (III.1.35) and (III.1.34). Finally, the
approximate change in price of each bond is obtained on applying (III.1.44) with Ay =+1%.
The actual percentage price change is calculated using the exact relationship (I11.1.22) for
the original yield and the yield +1%. The solution is summarized in Table III.1.10.

Table III.1.10 Duration-convexity approximation

Bond 1 Bond 2

Macaulay duration 2.86 4.27
Modified duration 2.74 4.09
Convexity 10.31 22.24
Duration—convexity approximation

Yield change 1% 1%
Percentage price change —2.686% —3.982%
Actual percentage price change —2.687% —3.985%

III.1.5.6 Immunizing Bond Portfolios

Bond portfolio managers often have a view about interest rates. For instance, they might
believe that short rates will increase. Portfolio managers aim to balance their portfolios so
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that they can profit from the movements they expect, and will make no losses from other
common types of movements in interest rates. One of the most common movements is an
approximately parallel shift in the yield curve, i.e. all interest rates change by approximately
the same absolute amount.

Thus a portfolio manager who aims to ‘immunize’ his portfolio from such movements
will hold a portfolio that has both zero duration and zero convexity. On the other hand, if
he wants to take advantage of a positive convexity he will structure his portfolio so that the
convexity is large and positive and the duration is zero.

ExAaMPLE II1.1.10: IMMUNIZING BOND PORTFOLIOS

Consider again the two bonds in Examples III.1.4 and III.1.9. Suppose the principal amount
invested in bond 1 is $1.5 million and the principal of bond 2 is $1 million.

(a) Calculate the value duration and value convexity of each bond.?®

(b) Find the value duration and value convexity of a portfolio that is long bond 1 and
short bond 2.

(c) Immunize this portfolio using bonds 3 and 4 with characteristics in Table III.1.11.

Table III.1.11 Two bonds®

Bond 3 Bond 4
Principal ($) 1,000 10,000
Present value ($) 1,200 10,780
Value duration ($) 5 2
Value convexity ($) 20,000 100,000

SoruTioN The solution to parts (a) and (b) is given in the spreadsheet and summarized in
Table III.1.12.

Table III.1.12 Value duration and value convexity

Bond 1 Bond 2 Portfolio

Value duration ($) 416.41 514.00 —97.59
Value convexity ($) 15,687,184 27,938,173 —12,250,989

For part (c) we therefore seek (w,, w,) such that
zero duration = Sw; 4+ 2w, — 97.59 =0.
zero convexity = 20,000 w, + 100,000 w, — 12,250,989 =0.

28 Note that we have computed value durations here as the actual price change for a 1 basis point change in yield, rather than with
respect to a 1% change in yield. This is so that the value duration and the PVO1 have similar orders to magnitude, as demonstrated
by Table III.1.17.

29 Recall that the present value is the bond price times the principal amount invested divided by 100. Hence, bond 3 has price 120
and bond 4 has price 107.8.
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The solution is
w)_ [ 5 2 \'[ 9759 \ _ (-3205
w, /]~ \ 20,000 100,000 12,250,989 ) — \ 128.92 J°
which means

e selling 32.05 x $1200 = $38,459 of bond 3. Since its price is 120 this is equivalent to
selling the principal amount of $32,049 in bond 3, and

e buying 128.92 x $10,780 = $1,389,755 of bond 4. Since its price is 107.8 this is
equivalent to buying the principal amount of $1,289,198 in bond 4.

The resulting portfolio, whose value is approximately invariant to parallel shifts in the yield
curve, is summarized in Table II1.1.13.

Table III.1.13 An immunized bond portfolio

Portfolio Bond 1 Bond 2 Bond 3 Bond 4

Principal ($) 1,500,000 —1,000,000 —32,049 +1,289,198

We remark that a disadvantage of using the traditional sensitivities for hedging the risk of
a bond portfolio is that duration and convexity hedging is limited to parallel movements of
the zero coupon yield curve. More advanced bond portfolio immunization techniques based
on principal component analysis are introduced and demonstrated in Section I1.2.4.4. The
advantage of these is that we can:

¢ hedge the portfolio against the most common movements in the yield curve, based on
historical data;

e quantify how much of the historically observed variations in the yield curve we are
hedging.

Hence, these techniques provide better hedges than standard duration—convexity hedges.

III.1.6 BONDS WITH SEMI-ANNUAL AND FLOATING COUPONS

For simplicity all the numerical examples in Sections III.1.4 and III.1.5 were based on fixed
coupon annual bonds. When a bond does not have an annual coupon, the coupon is usually
paid every 6 months, and it is called a semi-annual bond. For instance, a semi-annual bond
with coupon 6% pays 3% of the principal amount invested every 6 months. The first part
of this section extends the general formulae for the price, yield, duration and convexity of a
bond to semi-annual bonds, and then we generalize the formulae to a fixed coupon quarterly
bond (i.e. coupons are paid every 3 months).

Fixed coupon quarterly bonds are rare, but floating rate notes, which are bonds that have
variable coupons, are usually semi-annual or quarterly. The characteristics of floating rate
notes, or floaters as they are commonly termed, are different from the characteristics of fixed
coupon bonds. For instance, if the coupon on a semi-annual floater, which is set six months
in advance, is just the 6-month LIBOR rate at the time the coupon is set then the duration
of the floater is very short. In fact a semi-annual floater has a duration of no more than 6
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months, as we shall demonstrate in this section. Thus by adding long or short positions in
floaters, bond traders can change the duration of their bond portfolios, for instance to stay
within their trading limits. In addition to straight floaters we have reverse floaters, capped
floaters, floored floaters and many other floaters that can have complex option-like features.

III.1.6.1 Semi-Annual and Quarterly Coupons

When dealing with semi-annual bonds the only thing to keep in mind is that the definitions
are stated in terms of the semi-annual yield, which is one-half the value of the annual yield.
In terms of the annual yield y and annual coupon ¢ percent, the price—yield relationship
(I11.1.22) for a bond with maturity T/2 years becomes:

T —t
P=Z(1+%> C.. (IIL.1.45)
t=1
where
_ J 100 x ¢/2, fort=1,...,T—1,
C.= { 100 (1+4c¢/2), fort=T. (II1.1.46)
Note that we now use t to index the cash flows. Hence t=1, ..., T, but t is not the time in
years when the cash flows are paid. These times are T, =%2, T, =1, T;=1%,...,T,=%T.

ExAMPLE III.1.11: YIELD ON SEMI-ANNUAL BOND

A 3-year semi-annual bond pays an 8% coupon and has a price of 95. Find its semi-annual
yield and its annual equivalent yield.

SoruTtioN We use the Excel RATE function to back out the semi-annual yield from the
formula (II1.1.45) with P =95, T =6 and semi-annual coupons of 4%. This gives the
semi-annual yield Y2y =4.98% so the annual equivalent yield y is 9.96%.

The duration and convexity are calculated using slight modifications of the formulae given
in Section III.1.5. For instance, the Macaulay duration on a semi-annual bond of maturity
T/2 is*

1 T
52 g tP,
Dy, == 2;1 : (I11.1.47)
where P is the price of the bond and
p = (1 + %)_ C.. (IIL.1.48)

with y the annual equivalent yield on the bond.

The modified duration of a semi-annual bond is the Macaulay duration divided by 1+ %2y.
That is, we divide the Macaulay duration by the compounding factor for the semi-annual
yield and not the annual yield on the bond. This way, the modified duration is still defined
as the percentage change in bond price for a unit change in the annual equivalent yield. Thus
for a semi-annual bond (III.1.33) becomes

1dp Dy

P dy 14 y/2

(I11.1.49)

30 We use ¢ to represent the payment number, i.e. t=1,2,..., T, but the times these payments are made are t/2=",1, ..., T/2.
Hence the factor of ¥ in the formula (II1.1.47).
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The convexity of a semi-annual bond is still defined as the second derivative of the
bond price with respect to the annual equivalent yield, so (III.1.34) still applies. Thus, for a
semi-annual bond,

C it L &P 11.1.50

0nvex1y_de2, (II1.1.50)

But when the coupons are paid semi-annually the formula (II1.1.35) for the second derivative

of the bond price with respect to a change in the annual equivalent yield y needs to be
modified to

&P CJ2 3C,/2 3¢, (T(T+1)/4)Cy
dy>  (14y/2)°  (1+y/2*  (1+y/2)° (1+y/2)T+2
T (t(t+1)/4)C,

-y

t=1

EYE (IIL.1.51)

with the semi-annual cash flows defined by (III.1.46).

ExAMPLE II1.1.12: DURATION AND CONVEXITY OF A SEMI-ANNUAL BOND

Find the Macaulay duration, modified duration and convexity of a 3-year semi-annual bond
that pays an 8% coupon and has a price of 95.

SorLuTtioN This is the bond for which we found the semi-annual yield of 4.98% in the
previous example. In (II1.1.47) and (III.1.48) we have P =95, P, =4 x (1.0498)" for
t=1,2,...,5, and Py =104 x (1.0498)‘6. The spreadsheet for this example sets out the
calculation for the Macaulay duration, and we obtain D,; =2.718. Then we find the modified
duration using (I11.1.49), so we divide Dy, by 1.0498, and this gives the modified duration
D =2.589. Finally, the spreadsheet implements (III.1.50) and (III.1.51) with T =6, giving
the convexity 8.34.

For reference, the formulae for price, duration and convexity of a fixed coupon quarterly
bond are summarized below:

T
P=)"PV,
t=1

—t
pv.=(1+3) c,

C— 100 x c/4. fort=1,..., T—1
7 1100(1 +¢/4) fort=T
T tP,) /4
Dy, = (Z‘—‘T)/ (I11.1.52)

2P I (¢(t+1)/16)C,
P (N

t=1

_1dP_ Dy
Pdy 1+yA4
1d°P
Convexity = — —

P dy2
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III.1.6.2 Floating Rate Notes

A floating rate note (FRN) or floater is a bond with a coupon that is linked to LIBOR
or some other reference interest rate such as a treasury zero coupon rate. A typical floater
pays coupons every 3 months or every 6 months, but coupon payments are sometimes also
monthly or annual.’® When a coupon payment is made the next coupon is set by the current
reference rate, and the period between the date on which the rate is set and the payment date
is referred to as the lock-out period.

Usually the maturity of the reference rate is the time between coupon payments. So, for
example, the next coupon payment on a semi-annual floater is equal to the 6-month reference
rate prevailing at the last coupon payment date plus a spread; for a quarterly floater the next
coupon payment is equal to the 3-month reference rate at the time of the last coupon plus a
spread. The spread depends on the credit quality of the borrower. For instance, since LIBOR
is rated AA any borrower with a rating less than AA will have a positive spread over LIBOR
and this spread increases as the borrower’s credit rating decreases. Also, to account for the
possible deterioration in the credit quality of the borrower over time, the spread increases
with maturity of the floater, so that a 10-year floater has a larger spread than a 2-year floater.

We now demonstrate how to price a floater. It is slightly easier to write down the
mathematics by assuming the coupons are paid annually, so we shall make that assumption
merely for simplicity; it does not alter the concepts in the argument. Suppose we are at time
zero and the next coupon, which has been fixed at ¢ on the last coupon payment date, is
paid at time t, measured in years. Also suppose there are T further annual coupon payments
until the floater expires. So the subsequent payments are at times t+ 1, t+2,...,t+ T and
the final payment at time ¢t + T includes the principal amount invested, N.

Denote the 1-year reference rate at time ¢ by R, and for simplicity assume this is also
the discount rate, i.e. the LIBOR rate. Denote the fixed spread over this rate by s. Thus the
coupon payment at time t +n is 100 (R,,,_; +s). Now the price of a floater may be written

P: = (B, —Bp) +100(14c—s) (1+tRy) ", (II1.1.53)

where P? is the price of the floater with spread s and maturity m, B?, is the price of a bond
with fixed coupon ¢ and maturity m and R, is the t-period discount rate at time O.

To prove (III.1.53) we decompose the coupon payments into two parts: the payments
based on the reference rate and the payments based on the fixed spread s over this reference
rate. First consider the fixed coupon payments of 100s on every date, including the last. What
is the discounted value of the cash flows 100 {s,s,...,s,s} at times ¢, t+1,... ,t+ T?
Let us temporarily add 100 to the final payment, recalling that the discounted value of a
cash flow of 100 at time t + T is the value of a zero coupon bond expiring at time ¢t + T.
Adding this zero bond, the cash flows become 100 {s,s,...,s, 1 +s}. These are the cash
flows on a bond with maturity t + T and fixed coupon s. Hence, discounting the cash flows
100{s,s, . ..,s,s} to time zero gives B}, . — B?+T, which is the first term in (II1.1.53).

Now consider the floating part of the payments. Working backwards from the final
payment, we discount to time ¢ all the floating coupon payments at t + 1, t+2,...,t+ T,
plus 100 at t + T, assuming the spread is zero. At time ¢+ T the payment of 100 (1 +R,,;_,)
is discounted to time t + T — 1 using the reference rate R, ;_;, so the discounted value is 100.

31 However, Fed funds floaters, for instance, can reset coupons daily because the reference rate is an overnight rate, while T-bill
floaters usually reset weekly following the T-bill auction.



32 Pricing, Hedging and Trading Financial Instruments

Similarly, at time t + T — 1 the coupon payment added to the discounted value of 100 of the
final payment is 100 (1 + R, ;_,). This is discounted to time ¢t 4+ T — 2 using the reference
rate R, ;_,, so the discounted value is again 100. Continuing to discount the coupon payment
plus the discounted values of future payments until we reach time ¢t gives 100. Note that this
is independent of the interest rates. Now we have a cash flow of 100 (1 +c), where c is the
coupon fixed at the previous payment date, at time ¢t. Discounting this to time zero gives the
second term in (I11.1.53).

ExAMPLE II1.1.13: PRICING A SIMPLE FLOATER

A 4-year FRN pays annual coupons of LIBOR plus 60 basis points. The 12-month LIBOR
rate is 5% and the 2-, 3- and 4-year discount rates are 4.85%, 4.65% and 4.5%, respectively.
Find its price.*

SorLuTioN To calculate the first term in (II.1.53) we need to find the price of a 4-year
bond paying annual coupons of 60 basis points and the price of a 4-year zero bond. These
are based on (III.1.20) and are found in the spreadsheet as 86 for the coupon bond and
83.866 for the zero bond. Hence, the fixed part of the floater, i.e. the first term in (II1.1.53),
is 2.144. Since we are pricing the floater on a coupon payment date, the floating part of the
floater, i.e. the second term in (II1.1.53), is 100. This is because the payment in 1 year is
discounted using the coupon rate, ¢.>* Hence the price of the floater is 102.144.

The yield on a floater is the fixed discount rate that gives the market price when all cash
flows are discounted at the same rate. Since a floater with zero spread is equivalent to an
instrument paying 100 at the next coupon date, in present value terms, we can calculate the
yield y on an annual floater using the formula®
t+T—1
P; =100 ( dos(l+y) " =(1—=s)(1 +9) " T (I 4c—s)(1 —}-y)_t) . (II1.1.54)
T=t

We can thus back out the yield from the price using a numerical algorithm such as the Excel
Solver. The Macaulay and modified durations are then calculated using the usual formulae
(II1.1.31) and (I11.1.33).

ExAMPLE II1.1.14: YIELD AND DURATION OF A SIMPLE FLOATER

Calculate the yield and the Macaulay and modified durations of the annual floater of the
previous example. How would these quantities change if the floater paid 100 basis points
over LIBOR?

SorLuTioN The Solver is set up in the spreadsheet to back out the yield from (II1.1.54)
based on a price of 102.114, found in the previous example. The result is a yield of 4.98%,
and then the usual formulae for the durations give a Macaulay duration of 1.03 years and a
modified duration of 0.981. When we change the spread to 1% in the spreadsheet and repeat
the exercise, the yield changes considerably, to 4.98%. However, the modified duration
changes very little. The Macaulay duration becomes 1.049 years but the modified duration
is 0.999, only 0.028 greater than it was for the floater with a spread of 60 basis points.

32 The solution assumes the 60bp spread is not a reflection of a lower than AA credit rating, If it is, then discounting should be not
at LIBOR but at LIBOR + 60bp and the price would simply be 100.
33 But note that the floating part would not be 100 if the floater were priced between coupon dates, because the cash flow of 100
(1 +c) would be discounted at a rate different from c, as it is in (IIL.1.53).

To avoid awkward notation here we assume t and T are measured in years, as in our examples.
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This example illustrates the fact that the duration of a floater is approximately equal to
the time to the next coupon payment, in the case 1 year because we considered an annual
floater priced on a coupon payment date. But floaters are typically monthly, quarterly or
semi-annual, and are of course priced between coupon payments. Their duration is always
approximately equal to the time to the next coupon payment. Hence, floaters have very
short duration and are therefore often used by traders to change the duration of their bond
portfolios.

The pricing formula (II1.1.53) has important implications. It means that the market risk
of a principal amount N invested in a floater has two components:

e The market risk on a portfolio where we buy a notional N of a bond with coupon s
and are short N on a zero bond. This part of the market risk is often very low because
the spread s is typically quite small. For instance, an AA borrower on a 5-year floater
might pay 20-50 basis points over LIBOR.

e The market risk on a single cash flow at the next coupon date, which is equal to
principal N plus the coupon payment on N, i.e. N(1 +c —s). As with any cash flow,
the market risk is due to fluctuations in the discount rate, because the present value of
N(1+4c—s) will fluctuate as spot rates change.

Hence, a floater has virtually no market risk beyond the first coupon payment. Clearly
floaters with longer reset periods are more vulnerable to market risks.

II1.1.6.3 Other Floaters

The simple floaters considered in the previous section were easy enough to price because the
coupon payments were based on a spread over a discount rate of the same maturity as the
time between coupons. But many floaters are not linked to a market interest rate of the same
maturity as the coupon period. For instance, a quarterly floater could have coupons linked to
a 12-month LIBOR rate. The valuation of these floaters is complex since it depends on the
volatilities and correlations between interest rates. For instance, to value a quarterly floater
with coupons linked to a 12-month LIBOR rate, we would need to estimate the volatilities
of the 3- and 12-month LIBOR rates and their correlation.

A reverse floater has a coupon equal to a fixed rate minus the reference rate. For instance,
the coupon could be 10% — LIBOR or 12.5% — 2 x LIBOR. Of course, no coupon is paid if
the reverse floater coupon formula gives a negative value and since we cannot have negative
coupons it is rather complex to price reverse floaters. The constraint that the coupon is non-
negative imposes an embedded option structure on their price. Other floaters with embedded
options are capped floaters, which have coupons that cannot rise above the level of the cap,
and floored floaters, which have coupons that cannot fall below the level of the floor. Hence,
a reverse floater is a special type of floored floater with the floor at zero.

II1.1.7  FORWARD RATE AGREEMENTS AND INTEREST RATE
SWAPS

This section introduces two related interest rate products that are very actively traded in
OTC markets: forward rate agreements (FRAs) and interest rate swaps. Since these fixed
income instruments are not exchange traded, their trading needs to be accompanied by legal
documentation. In 1992 the International Swaps and Derivatives Association (ISDA) issued
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standard terms and conditions for the trading of FRAs and swaps. Since then these markets
have grown considerably, and the ISDA Master Agreement was thoroughly revised in 2002.
The Bank for International Settlements estimate that by December 2006 the total notional
value outstanding on interest rate swaps and FRAs was about 250 trillion US dollars, with
a mark-to-market value of $4.2 trillion.*® The vast majority of this trading is on interest rate
swaps rather than FRAs.

III.1.7.1 Forward Rate Agreements

A forward rate agreement is an OTC agreement to buy or sell a forward interest rate. For
instance, a company entering into an FRA may wish to buy or sell the 3-month forward
3-month LIBOR rate, F;;. Consider an example of a company that has a loan of $100
million from bank A on which it pays a floating interest rate, with interest payments every
3 months. As each interest payment is made the next payment is fixed based on the current
3-month spot LIBOR rate plus a spread. For instance, the payment due in 6 months will be
determined by the spot rate in 3 months’ time.

If the company is concerned that interest rates could rise over the next 3 months it
may prefer to fix the payment that is due in 6 months now. This can be accomplished by
exchanging the floating rate, which is whatever the 3-month spot LIBOR rate will be in
3 months’ time, for a fixed rate which is determined when the FRA is purchased. Let us
suppose the company buys this FRA from bank B when F;; =5%.% With this FRA, in
3 months’ time the company and the bank make an exchange of interest rates. The company
pays 5% and receives R, i.e. the 3-month spot LIBOR rate in 3 months’ time. So in effect,
the company only pays 5% interest on its loan (plus the spread). In 6 months’ time, when
the interest on the loan is due, there is a single settlement to the company of

i (Ry —5%) x $100m,

which could of course be either positive or negative, depending on R;. However, this payment
is actually made in 3 months’ time, i.e. as soon as R; becomes known. So, discounted to
that date, the payment is

R —1
(1 + Z’) x 1 (Ry —5%) x $100m. (I11.1.55)

For instance, if the 3-month spot LIBOR rate R, turned out to be 5.6%, the company
would gain on the FRA, because they pay only 5% when the floating payment would have
been 5.6%. In this case the payment to the company 3 months from now would be:

1.0147" x 1 x 0.006 x $100m = 1.014" x $150, 000 = $147, 929.

Note that there is no exchange of principal. The only cash flows are the interest payments
on some notional principal amount.

35 See the Statistical Annex to the BIS Quarterly Review, available from www.BIS.org

36 Being a market rate this is quoted in annual terms, and so the equivalent interest rate over 3 months is 1.25%. Hence, the
company knows now that it will pay interest of 1.25% on its loan (plus the spread, which is not swapped in the FRA) in 6 months’
time. Also bank A and bank B could be the same bank.
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III.1.7.2 Interest Rate Swaps

Most of the interest rate swaps market is in short term interest rate swaps. Bid—ask spreads
on the swap rate are just a few basis points and swap rates serve as reference for AA fixed
rates. They are used to manage interest rate risks without inflating the balance sheet,”’ and
without creating large credit risks. They are often combined with ordinary debt instruments
to form structured products that provide a match between the specific needs of borrowers
and objectives of investors.

In a standard or vanilla interest rate swap, one party pays LIBOR and receives a fixed
rate, the swap rate, from the other party over an agreed period. When interest payments are
matching in time only one net payment is made on each payment date. There is no exchange
of principal. The swap rate is set so that the initial value of the swap is zero.

For example, a typical short-rate vanilla interest rate swap could be to

e receive a fixed rate F,

* pay a floating rate of 3-month LIBOR

e on a notional principal of $10 million

e for a duration of 1 year, with four quarterly exchanges of payments.

The fixed rate F at which the swap is struck is called the swap rate. When a swap is struck,
the swap rate is found by setting the net present value of the cash flows to zero. At each
payment date the floating rate for the next payment is fixed according to the current spot
rates. For this reason the floating leg payment dates are often called the reset or fixing dates.

This is an example of a standard fixed-for-floating interest rate swap, which is the most
common interest rate hedging instrument. We have shown in Section III.1.6.2 that floaters
have very short duration and hence very little market risk. By contrast, long bonds with
fixed coupons have significant market risks. So fixed-for-floating swaps allow investors to
alter the market risk profile of their portfolio.

In the following we show that a fixed-for-floating interest rate swap can be regarded as
a series of FRAs where net interest rate payments are made at regular intervals but without
necessarily the same periodicity on the fixed and floating legs. Financial markets are full
of idiosyncrasies that make calculations just that little bit more complex. In the case of
swaps, the fixed and floating leg payments are usually based on different frequencies and
day count conventions: the fixed leg is based on the bond market convention and the floating
leg is based on the money market convention.® To keep track of two different day count
conventions is necessary in practice, but not useful for illustrating the main concepts. We
therefore assume in the next example that all payments are at quarterly intervals.

ExAMPLE III.1.15: VALUING A SWAP

Consider a $10 million 1-year receive fixed pay floating swap with quarterly payments where
the floating rate is 3-month LIBOR. Suppose the swap rate is 6% and that we are 1 month
into the swap. The LIBOR rates are currently at 5%, 5.5%, 6% and 6.5% at the 2-, 5-, 8- and
11-month maturities, respectively. The first payment on the floating leg was fixed 1 month

3 Swaps are traded OTC and are therefore off-balance sheet instruments, in the sense that the notional does not appear on the
balance sheet. However, under the EU accountancy standards IAS 39, all derivatives are marked-to-market on the balance sheet.
38 S0 the fixed leg may have semi-annual or yearly payments, and these are based on bond market day count conventions, whilst
the floating leg is usually based on LIBOR (or some other standard short term reference rate) and may have more frequent payments
which are based on the money market day count convention.
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ago, based on the (then) current 3-month forward rate of 5.5%. Find the value of the swap
now. If we were to fix the swap rate now, what would be its fair value?

SoLuTioN  Although the floating payments are determined by the spot LIBOR at the previous
fixing date, for valuation purposes we can assume that realised spot rates are equal to current
forward rates. Consider Table III.1.14. The current spot interest rates are as given in the column
headed LIBOR, the interest payments corresponding to a swap rate of 6% are given in the
column headed ‘Receive 6%’ and their value discounted to today is given in the next column.
The present value of the fixed leg is the sum of these discounted values, $0.57852 million.

Table II1.1.14 The value of a vanilla swap

Months LIBOR Receive 6% Discounted Forward rates Pay Floating  Discounted
2 5% 0.15 0.14876 F,; 550% 0.13750 0.13636
5 5.5% 0.15 0.14664 F,; 5.79% 0.14463 0.14139
8 6% 0.15 0.14423 Fss 6.68% 0.16701 0.16058
11 6.5% 0.15 0.14157 Fgs 7.53% 0.18830 0.17771
Present value 0.58120 0.61605

The floating leg payments are shown on the right-hand side of the table. The payment
in 2 months’ time was fixed last month, at 5.5%. For the other floating leg payments we
use (I11.1.18) to obtain the relevant forward rates from the current LIBOR curve. These are
shown in the column headed ‘Forward rates’. When all the floating payments are discounted
(using the spot rates) and summed we obtain the present value of the floating leg as
$0.61605 million. Thus, based on a swap rate of 6%, the net present value of the swap is
$0.58120m — $0.61605m, i.e. —$34,851.

If we were to set the swap rate now, we would find the value of the swap rate F so that
the present value of the swap was zero. The swap rate only affects the fixed leg payments,
so using the Excel Solver (or Goal Seek) we find the fixed rate that makes the net present
value of the fixed leg equal to $0.61605 million. It turns out to be 6.36%.

III.1.7.3 Cash Flows on Vanilla Swaps

The above example considered an on-the-run swap, i.e. one with standard vertices as payment
dates. These are often used for hedging swaps portfolios because they have a liquid market.
But in a typical swaps portfolio the swaps have payment dates at various times in the future.
For this reason the cash flows need to be mapped to a fixed set of vertices. We deal with the
principles of cash flow mapping in Section III.5.3. But before we can map the cash flows
on an interest rate swap we need to know how to represent these cash flows.

A vanilla swap is a swap where the floating payments at the end of a certain period depend
only on the forward rate prevailing over that period. We now show that we can decompose
the cash flows on a vanilla swap into two series: a series of cash flows on a coupon bearing
bond and a single cash flow at the first payment date. Figure III.1.8 illustrates the cash
flows on the swap considered in Example III.1.15 with one modification: we have supposed
there is an exchange of the notional principal at maturity. This is marked in grey on the
figure. Such an exchange of principal does not actually happen in a vanilla swap, but by
assuming this hypothetical exchange it becomes easier to decompose the cash flows on the
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Figure II1.1.8 Cash flows on a vanilla swap

swap. Since there is both a positive and a negative cash flow of N when we exchange the
principal, this does not affect the value of the swap.

The fixed leg payments are shown above the line as positive cash flows and the floating
leg payments are shown below the line as negative cash flows. Note that the first floating
payment in Figure II1.1.8, denoted F,, is already fixed by the three month spot rate at the
time of the last payment, denoted R_, ; in the figure. So we use a solid arrow to depict this,
whereas the subsequent floating payments have yet to be determined, and we use dotted
arrows to depict these.

The floating payments at 5, 8 and 11 months, plus the principal at 11 months, all discounted
to the 2-month vertex, together have value $10 million. In other words, at the next reset
date the value of the remaining floating leg payments plus principal, discounted to this reset
date, is equal to the principal. This follows using the same logic as we used when valuing
FRNs in Section I11.1.6.2.%° This is not a special case: it is always true that the principal plus
floating payments after the first payment date, discounted to the first payment date, together
have value equal to the principal, in this case $10 million.

The implication is that there is no market risk on the floating leg payments after the first
payment date. It does not matter how interest rates change between now and the first payment
date, the discounted value of the future payments plus principal will always be equal to the
principal. Hence, the only market risk on the floating leg of a swap is the risk from a single cash
flow at the first payment date, equal to the notional N plus the first interest payment on N, i.e.
N(1+ R/4)where R is the fixed interest rate applied to the first interest payment. The market
risk on the floating leg is due only to fluctuations in the discount rate as we move towards the
next reset date, because the present value of N(1 4 R/4)will fluctuate as spot rates change.

Finally, consider the fixed leg in Figure III.1.8, where we have fixed payments determined
by the swap rate (6%) and a payment of $10 million principal at 11 months. This is equivalent
to a face value of $10 million on a hypothetical bond with coupon rate 6% paid quarterly.
We conclude that the market risk of the fixed leg of a swap can be analysed as the market
risk of a bond with coupon equal to the swap rate.

39 At 11 months the payment of $10.18830 million discounted to the 8-month vertex must have value $10 million, because it will
be discounted using the forward rate Fg ; which is exactly the same as the forward rate used to calculate the interest payment of
$0.18830 million. So we have $10.16701 million to discount from 8 months to 5 months, i.e. at the rate Fs 3 which is the same
as the rate used to calculate the interest in the first place, and so the value discounted to 5 months is $10 million. Now we have
$10.14463 million to discount to 2 months, which has value $10 million.



38 Pricing, Hedging and Trading Financial Instruments

III.1.7.4 Cross-Currency Swaps

A basis swap is an interest rate swap where two floating rates are exchanged on each payment
date. These floating rates may be of different maturities, or they may be denominated in
different currencies. In the latter case, if we add exchanges of principal, in the opposite
direction to interest rate flows initially and in the same direction at maturity, we have the
standard or vanilla cross-currency swap, also called a cross-currency basis swap. It can be
regarded as two FRNs in different currencies, as illustrated in the following example.

ExAMPLE II1.1.16: A CROSS-CURRENCY BASIS SWAP

On 6 July 2004 bank A entered into a 3-year floating basis swap with bank B based on
a notional principal of $100 million. Bank A pays 6-month US dollar LIBOR (actual/360)
and receives 6-month sterling LIBOR (actual/365). Both LIBOR rates are set 6 months in
advance. For instance, the interest rates for the payments on 6 July 2005 are fixed at the
spot 6-month LIBOR rates on 6 January 2005. It is now 7 July 2007. We can look back over
the past 3 years, recording the LIBOR rates and the exchange rate on the payment dates,
and they are as shown in Table III.1.15. Explain the mechanisms of this cross-currency basis
swap and calculate the net payments on each payment date.*’

Table I11.1.15 USD and GBP 6-month LIBOR rates and spot USD/GBP exchange rate

Date $SLIBOR £LIBOR USD/GBP
06/07/04 1.68% 4.73% 1.8399
06/01/05 2.63% 4.57% 1.8754
06/07/05 3.41% 4.39% 1.7578
06/01/06 4.39% 4.36% 1.7718
06/07/06 531% 4.60% 1.8365
08/01/07 5.13% 5.22% 1.9347
06/07/07 5.01% 5.86% 2.0131

SorLuTioN In effect, bank A is borrowing $100 million from bank B to make an investment
in sterling LIBOR. Bank A will pay the interest on the $100 million to bank B based on
USD LIBOR and will finance these payments (hoping to make a profit) from the income
it receives from its investment in sterling LIBOR. At the end of the 3-year period bank A
pays back $100 million to bank B.

The payments from the perspective of bank A are set out in Table III.1.16, where a
negative number means a payment and a positive number means money is received. Thus on
6 July 2004, bank A receives $100 million and, based on the spot exchange rate of 1.8399,
invests £100/1.8399) million = £54,350,780 at sterling 6-month LIBOR. On 6 January 2005
it makes its first payment to bank B on this loan, of:

${ 100 x 0.0168 184 = $858, 667
x 0. X360 )™= , 007/,

40 Note that 6 January 2007 was a Saturday.
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But the same day its investment in UK LIBOR pays to bank A:
184
£( 54,350,780 x 0.0473 x 365 =£1,295,961.
The spot exchange rate on 6 January 2005 was 1.8754. Hence the net sum received by

bank A on that date, in US dollars, is —858,667 + 1,295,961 x 1.8754 =1,571,778. This is
shown in the last column of Table III.1.16.

Table 1II.1.16 Payments on a cross-currency basis swap

Date Days $ LIBOR  Pay ($m) £ LIBOR Pay (fm) GBP/USD Net payment ($)

06/07/04 1.68% 100 4.73% —54.350780  1.8399 0
06/01/05 184 2.63% —0.858667 4.57% 1.295961 1.8754 1,571,778
06/07/05 181 3.41% —1.322306 4.39% 1.231708  1.7578 842,790
06/01/06 184 4.39% —1.742889 4.36% 1.202805 1.7718 388,241
06/07/06 181 531% —2.207194 4.60% 1.175109  1.8365 —49,108
08/01/07 186 5.13% —2.743500 5.22% 1.274042  1.9347 —278,611
06/07/07 179 —102.550750 55.742130  2.0131 9,663,732

We continue to calculate the payments on the $100 million loan and the receipts on the
£54,350,780 investment using the 6-month LIBOR rates that are fixed 6 months before the
payment dates, and then calculating the net dollar payment by bank A. In fact, bank A did
very well on the deal, since it only had to make a net payment on 6 July 2006 and on 8
January 2007.

It is very common that the main cash flow in a cross-currency swap arises from the change
in the exchange rate over the period of the swap. And it is indeed the case here. The US
dollar weakened considerably over the 3-year period, so bank A had an advantage holding
sterling when it came to repaying the loan on 6 July 2007. On that date, it received interest of

£<54,350,780 x 0.0522 x %) =£1,391,350

and it received its principal of £54,350,780. Based on the exchange rate of 2.0131, it
received $112,214,482. After paying back the loan of $100 million and the last interest
payment on that of:

179
${100 x 0.0513 x — ) m =$2,550,750,
360

bank A receives $112,214,482 — $102,550,750 = $9,663,732 when the swap terminates.

In a cross-currency basis swap exchanges of principal take place initially and at maturity.
The swap is therefore equivalent to an exchange of two FRNs, one in each currency. For
instance, in Example III.1.16 the cash flows corresponded to the positions

e short a $100 million 3-year floater with 6-month $LIBOR coupons and
e long a £54,350,780 three-year floater with 6-month £ LIBOR coupons.

The value of the swap is therefore equal to the difference in value of these two floaters, as
illustrated in the example above.
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Cross-currency basis swaps allow borrowers and investors to seek markets where they have
a comparative advantage, including foreign markets. For instance, multinational companies
with production costs and sales revenues in various countries might use a cross-currency basis
swap to convert these cash flows into different currencies. They do not have to be based on two
FRNSs: for instance, the cash flows could be based on fixed interest rates in either currency.*!

III.1.7.5 Other Swaps

In some interest rate swaps the floating payments at the end of a certain period are not
determined only by the forward rate prevailing over that period. For instance, the payments
could be based on a rate that has a tenor different than the time between payments. It may
also be that the reset dates are not equal to the payment dates. Since it is no longer true
that discounting the floating payments plus principal to next payment date always gives the
value of the principal, the valuation of these swaps is much more complex. The swap rate
will depend on the volatilities and correlations of the forward rates with tenor equal to the
time between payments, and the interest rates used to determine the floating payments.

Another popular type of swap is a total return swap, in which two parties exchange returns
on one asset for returns on another, including the capital gains or losses at every payment
date. Two common types of total return swaps are the contract for difference and equity
swap:

* A contract for difference is a short term total return swap on a share versus an interest
rate. Here there is a single terminal payment linked to a principal N where the price
appreciation of an investment of N in the share, plus any dividend, is swapped for the
(fixed) interest on N.

* An equity swap is a long term total return swap on a share versus an interest rate, but
now there are regular settlements. For instance, at time ¢ + 1 the equity payer pays the
total return on N, invested in a share to the rate payer, who in return pays a floating
rate plus a spread on N, where N, is the market value of the equity position at the
beginning of the time interval.

These swaps are used by institutions, such as hedge funds, that require short equity positions.
Alternatively, a fund manager may simply wish to hedge shares that he cannot sell against
a fall in price. This second application is illustrated in the following example.

ExXAMPLE II1.1.17: A SIMPLE TOTAL RETURN SWAP

A UK fund manager thinks the price of Tesco shares will drop over the next month. So he
borrows funds to buy 1 million shares in Tesco for 1 month. He uses this holding to enter a
contract for difference with a bank. Tesco is currently quoted at 330-331p per share, LIBOR
rates are flat at 4.5%, and the bank quotes 1-month LIBID at +40/— 50 basis points.*?
After a month, Tesco is quoted at 320-321p. How much did the fund manager make on the
contract?

41 In which case that leg of the swap is valued like a normal fixed coupon bond. In this case we have a cross-currency swap without
basis risk.

42 Interest payments in contracts for difference are at the London Interbank Bid Rate (LIBID) which is quoted at LIBOR plus a
spread for the buyer and minus a spread for the seller. So the UK fund manager, the seller of the contract, will receive interest of
4.5% less 50 basis points, i.e. 4.0%, in this case.
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SoruTioN The principal is based on 1 million shares at 330p, hence N = £3.3 million.
Hence the interest received over the 1-month period is £3.3 million x 0.04/12 = £ 11,000.
In return the fund manager pays the bank the total return on the shares, but since they fell
in price, the bank must pay the fund manager this negative return. Selling 1million shares
at 330p and buying back at 321p makes a profit of £90,000 for the fund manager. So far,
his total profit on the contract is £ 101,000, but we still have to subtract the funding cost
for buying 1 million shares for 1 month. Assuming borrowing at LIBOR, the funding cost
of the initial position is £3.3 million x 0.045/12 = £12,375. So the net gain to the fund
manager was £ 88,625.

Many other non-standard interest rate swaps are traded, for instance:

* constant maturity swap — between a LIBOR rate and a particular maturity swap rate;

* constant maturity treasury swap — between a LIBOR rate and a particular maturity
treasury bond yield;

e extendable/putable swaps — one party has the option to extend or terminate the swap;

* forward starting swap — interest payments are deferred to a future date;

e inflation linked swap — between LIBOR and an inflation index adjusted rate;

e LIBOR in arrears swap — LIBOR fixings are just before each interest payment;

* wvariable principal swap — principal changes during the life of the swap;

* yield curve swap — between rates for two maturities on the yield curve;

* zero coupon swap — between a fixed or floating rate and a fixed payment at maturity.

Readers are recommended to consult Flavell (2002) for further details.

III.1.8 PRESENT VALUE OF A BASIS POINT

There is no such thing as a yield on a swap. That is, it is not possible to back out a unique
discount rate which, when applied to all the cash flows, gives the present value of the swap.
A unique yield exists only when all the cash flows are positive, but the cash flows on a swap
can be negative. And since we cannot define the yield, we cannot define duration or convexity
for a swap. So what should we use instead as a measure of sensitivity to interest rates?

In this section we introduce an interest rate sensitivity called the present value of a basis
point move, or ‘PVO1’ or ‘PVBP’ for short. It is the change in the present value of a sequence
of cash flows when the yield curve shifts down by one basis point, i.e. when all zero coupon
rates are decreased by one basis point. So the PVO1 of a bond portfolio is almost, but not
quite, the same as its value duration. The importance of PVO1 is that it can be used for
any sequence of cash flows, positive or negative. After explaining how to calculate PVO1,
including useful approximations under discrete and continuous compounding of interest
rates, we end the section with a discussion on the nature of interest rate risk.

1I1.1.8.1 PV01 and Value Duration

In the case of a single bond, the PVO1 measures the absolute change in the value of the bond
for a fall of one basis point in market interest rates. More generally, we can define the PVO1
for any sequence of cash flows given an associated set of spot rates of maturities matching
these cash flows. We use the vector notation

¢=(Cr,....Cp) andr=(Ry,...,R;)
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for the cash flows and for the interest rates, respectively. Denote the present value of the
cash flows ¢ based on the discount rates r by PV(e,r). Let r~ =r —0.01% x 1 where 1 is
the vector with all elements equal to 1. That is, r~ denotes the interest rates when each rate
is shifted down by one basis point. Now we define:

PvVOl(e,r) =PV(c,r ) — PV(e,r). (II1.1.56)
For a single bond, the PVOLI is similar to the value duration, which is the absolute change in
the present value of the bond per unit absolute change in the bond yield. For a single bond,
the PVO1 and the value duration will only differ in the fifth decimal place or so. But when
a cash flow corresponds to an entire portfolio of bonds, there is a subtle difference between
value duration and the PVO1. The PVO01 is the exact cash flow sensitivity to a parallel shift in
the zero coupon yield curve, whereas value duration is the approximate cash flow sensitivity
to a parallel shift in the zero curve. The two would only coincide if a shift in the zero curve
caused the yields on all the bonds in the portfolio to change by the same amount. Clearly
this is very unlikely, so for a bond portfolio PVO1 is a more precise measure of interest rate
sensitivity than its value duration.

Moreover, value duration is not a concept that can be extended to cover all interest rate
sensitive instruments other than bonds.* By contrast, the PV01 is very easy to calculate for any
portfolio. We merely have to represent each instrument as a series of cash flows, net these cash
flows, and then we can find the PVO1 using the simple method described below. In short, PVO1
is a more accurate and more general measure of interest rate sensitivity than value duration.

0.08%
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Figure III.1.9 301 as a function of maturity

Consider a single cash flow at time T, where R, is the associated discount rate. For
simplicity we assume that T is an integral number of years, but the extension to non-integer
values of T should be obvious from our definitions in Section III.1.2.2. We define 801, the
basis point sensitivity of the discount factor, as

801 =[(14+Rp—0.01%) " — (1+Ry)"]. (111.1.57)

43 In some cases it can be extended, for instance we can define a discrete approximation called the effective duration for a convertible
bond.
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This is the change in the discount factor when its associated interest rate falls by one basis
point. Figure I11.1.9 depicts 801, as a function of T for different levels of r, in each curve
assuming the term structure of interest rates is flat. This shows that typically, 801 will be
less than 10 basis points, that 801 increases with maturity and that this increase is more
pronounced for low levels of interest rates (e.g. 2.5%) than for high levels of interest rates
(e.g. 10%).

Using this notation, we can express the PVO1 of a cash flow C; at time T as

PVOl, =Cy x 801,

and the total PVO1 of all the cash flows is the sum of these,

PVO1=)"Cy, x 301, (IIL1.58)

i=1
ExAMPLE III.1.18: CALCULATING THE PVO1 OF A SIMPLE BOND

Calculate the PVOI for £1 million notional in a 6% 4-year annual bond when the zero coupon
rates are 4.5%, 4.75%, 4.85% and 5% at maturities of 1, 2, 3 and 4 years, respectively.
Compare this with the value duration of the bond.**

SoruTioN  This bond was examined in Example III.1.7, where we computed its price, yield
and Macaulay duration. Table III.1.17 extends the calculations of Table III.1.8 to compute
the PVOI and the value duration of the bond. For the PV01, the present value of each cash
flow is calculated twice, first based on the zero coupon yield curve and then again based on
the same curve shifted down one basis point. The PVO1 is the difference between the two
values, i.e. £36,312.75. This tells us that if zero coupon rates were to shift down by one basis

Table II1.1.17 PVOI1 for a bond

Years to Cash flow (£m) Interest rate Present value Interest rate Present value PVO1
maturity
1 6 4.5% 5.7416 4.49% 5.7422 549.49
2 6 4.75% 5.4682 4.74% 5.4692 1,044.19
3 6 4.85% 5.2053 4.84% 5.2068 1,489.64
4 106 5% 87.2065 4.99% 87.2397  33,229.42
103.6216 103.6579  36,312.75
Years to Cash flow (£m) Bond yield Present value Bond yield Present value Value
maturity duration
1 6 4.98% 5.7154 4.97% 5.7160 544.49
2 6 4.98% 5.4443 4.97% 5.4454 1,037.37
3 6 4.98% 5.1861 4.97% 5.1876 1,482.32
4 106 4.98% 87.2757 4.97% 87.3090  33,262.41
103.6216 103.6579  36,326.59

4 Note that we have computed value durations here as the actual price change for a 1 basis point change in yield, rather than with
respect to a 1% change in yield. This is so that the value duration and the PVO1 have similar orders of magnitude, as demonstrated
by Table III.1.17.
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point the bond price would rise by 0.03631, i.e. from 103.6216 to 103.6579, and we would
make a profit of £36,312.75 per million pounds invested in the bond.

We also calculate the value duration by shifting the bond’s yield down by one basis point.
In Example II1.1.7 we found that the bond had yield 4.98% based on a price of 103.62. The
present value is calculated again, now based on a yield of 4.97%, and the value duration is
the difference between the original value and the new value, i.e. £36,326.59. This tells us
that if the bond yield were to fall by one basis point then the price of the bond would rise
by 0.03633, i.e. from 103.6216 to 103.6579, and we would make £ 36,326.59 per million
pounds invested in the bond.

This verifies that, for a single bond, the PV0O1 and the value duration are almost exactly the
same. However, for reasons made clear above, PVOLI is the preferred interest rate sensitivity
measure.

I11.1.8.2 Approximations to PV01

In this subsection we derive a first order approximation to 801 that allows one to approximate
the PVO1 very quickly. If T is an integral number of years, the discount factor is 8 =
(14+R;) T and so

dd
801~ ——L x 107 =T(1 4+ Rp) T+ x 1074,
dR
This shows that a useful approximation to the PVO1 of a cash flow C; at time T, when T
is an integral number of years, is

PVOL, ~TCy1+Rp) T x 1074, (111.1.59)

Similar first order approximations can be derived when T is not an integral number of years.
For instance, when T is less than 1 year,

op=(1+ TRT)A
and
801~ T(1+TR;) > x 107%, (I11.1.60)

This is simple enough, but the expression becomes a little more complex when T is greater
than 1 year but not an integer.

Because of the unwanted technical details associated with working with discretely com-
pounded rates it is common practice to price fixed income instruments and futures with
continuously compounded rates using the relationship between discretely and continuously
compounded rates derived in Section III.1.2.3. An approximation that is equivalent to
(II1.1.59) but that applies for continuously compounded interest rates of any maturity is
derived by differentiating the continuous discounting factor 8, =exp(—r;T) with respect to
the continuously compounded interest rate r of maturity T. Thus

dd

o801, ~ _d_T x 107" =Texp(—r;T) x 107*=T8, x 107*. (II1.1.61)
Tt

Hence, a simple approximation to the PVO1 for a cash flow at any maturity, under continuous

compounding, is

PVO1,~ T Cpexp(—r;T) x 1074 (I1.1.62)
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ExamPpLE II1.1.19: CALCULATING PVO1

Suppose a cash flow has been mapped to vertices at 1 and 2 years with €10 million mapped
to the 1-year vertex and €5 million mapped to the 2-year vertex. Suppose the 1-year zero
rate is 4% and the 2-year zero rate is 4.5%. Use the above approximation to calculate the
PVOI1 at each vertex and hence find the total PVO1 of the mapped cash flow.

SorutioN  From (II1.1.59),

PVO1, ~ 107 x 10 x 10° x (1.04) > = 1000 x (1.04) > =924.56,

PVO1,~ 107 x 2 x5 x 10° x (1.045) > = 1000 x (1.045) > =876.30,
so the total PVO1 is approximately €1800.86. For comparison we also compute the exact
solution, which is summarized in Table III.1.18. With the original interest rates the present

value of the cash flow is €14.194 million, but if interests fall by one basis point the present
value will become €14.1958 million. Hence, the exact PVO1 of the cash flow is €1801.07.

Table II1.1.18 PVO0I1 for a cash flow

Maturity Cash Interest rate d PV (€m) Interest rate d PV (€m) PVO0I(€)

(years)  flow (€m)

1 10 4.0% 0.9615 9.6154 3.99% 0.9616  9.6163 924.65

2 5 4.5% 09157  4.5786 4.49% 09159 45795  876.42
Totals 14.1940 14.1958  1801.07

In the above example the approximation error from using (III.1.59) instead of exact valuation
is only 0.01%. These approximations are clearly very accurate and they will prove useful
later when we show how to perform a PVOI invariant cash flow mapping, in Section II1.5.3.

III.1.8.3 Understanding Interest Rate Risk

Consider a cash flow of C dollars at time T. We know the present value of this cash flow
today: it is just C dollars discounted to today using the appropriate discount rate, i.e. the
spot zero coupon rate of maturity T. We also know its present value when we receive the
cash at time T, as this requires no discounting. But at any time ¢ between now and maturity,
we do not know the present value exactly. There is an uncertainty on this future discounted
value that depends on (a) how much the discount rate changes and (b) how sensitive the
value is to changes in the discount rate. How do we assess these?

(a) The standard deviation of the discount rate represents the possible changes in the
future discount rate, as seen from today. If o denotes the volatility of this forward rate
then, assuming changes in the forward rate are independent and identically distributed,
we may use the square-root-of-time rule to find the ¢t-period standard deviation of the
forward rate as o, ;_,/t.*

4 The square-root-of-time rule is explained in Section II.3.1.
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(b) The best forecast of the appropriate discount rate at time ¢ is the forward zero coupon
rate F, -, starting at time ¢ with tenor T — t. The expected discounted value at time ¢
of the cash flow at time T is C dollars discounted by this forward rate. The sensitivity
of this value at time ¢t to movements in the forward rate is measured by the PVOI
that is given (approximately) by (III.1.59) with maturity T — ¢, assuming T and t are
integers, i.e.

PVOL,  ~ 107*Cr(1+F, ) T (T —¢).

The interest rate risk of a cash flow of C; dollars at time T refers to the uncertainty about

the discounted value of this cash flow at some future time t. It can be measured by the

standard deviation of this future discounted value, which is the product of (a) and (b) above.

It is easier to express this assuming continuous compounding, since then for any values of

T and ¢:

StDev(PV,) ~ 107*0, 1_/t (T —t) Crexp(—f, r_(T — t)) . (I11.1.63)

where o, 1._, is the volatility of the continuously compounded forward rate, f, _,.

ExAMPLE II1.1.20: STANDARD DEVIATION OF FUTURE PV

The current zero-coupon forward rates, starting in m months and ending in 12 months, and
their volatilities are as shown in Table II1.1.19 form=1, 2, ..., 11. Calculate the discounted
value in m months’ time of a cash flow of £5 million received in 1 year. Also calculate the
standard deviations of these discounted values.

Table III.1.19 Forward rates and their volatilities (in basis points)

m (months) 1 2 3 4 5 6 7 8 9 10 11

Forward rate (%) 4.70 475 4.80 485 480 485 480 475 470 465 4.60
Volatility (bps) 15 18 20 25 30 35 35 35 40 40 40

SoruTioN  The expected discounted values of the cash flow in m months time are calculated
by discounting at the appropriate forward rate, given in the second row of Table III.1.19.
For instance the expected discounted value of the cash flow in 3 months’ time is 5 x
exp(—0.048 x 0.75) = £4.82 million, since there are 9 months of discounting. The corre-
sponding PVOLI is calculated using the approximation (III.1.62) and this is shown in the third
row of Table III.1.20. For instance:

PVO1 of expected value in 3 months =100 x 0.75 x 5exp(—0.048 x 0.75) = £362.

Note that we multiply by 100 because the cash flow is measured in millions and the PVO1
refers to a movement of one basis point. Now the standard deviation of the future discounted
value of the cash flow is PVO1 x o4/t where o denotes the volatility of the forward rate.
For instance:

Standard deviation of value in 3 months =362 x 20 x v0.25 = £3617.

Equivalently, to calculate the standard deviation directly we could have used (III.1.63) with
t=1, 2, ..., 12. Take care to multiply the result by 100 to obtain the correct units of
measurement, as we did for the PVO1. Either way, we obtain the standard deviations of the
future discounted values that are shown in the last row of Table III.1.20.
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Table I11.1.20 Expectation and standard deviation of future PV

Time (months) 1 2 3 4 5 6 7 8 9 10 11

Expected value (£m) 479  4.81 482 484 486 488 490 492 494 496 498
PVl (£) 439 400 362 323 284 244 204 164 124 83 42
StDev of value (£) 1901 2943 3617 4658 5492 6039 5459 4688 4280 3019 1509

In Figure II1.1.10 we use £1.96 x StDev to obtain approximate 95% confidence limits for
the value of the cash flow in the future. Note that there is no uncertainty about the discounted
values now, and when we receive the cash flow. But between now and the time that the
cash flow is received (shown on the horizontal axis) there is an uncertainty that arises from
possible changes in the discount rate that will apply in the future, when we calculate the
cash flow’s present value. This is interest rate risk.

5.00
495 §ommmmmm e A e
4.90 -mmmmmmmm T __;«fi’ 77777777777777777777777
4854 = A
480 4 ~ 77 o Expected PV of Cash Flow at Time t (Em) | |

F —— Upper 95% Confidence Limit

------- Lower 95% Confidence Limit

4.75 T T T T T
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Figure III.1.10  Uncertainty about future values of a single cash flow

In general, the interest rate risk of a fixed income portfolio is the uncertainty about the
discounted value of all the portfolio’s future cash flows, where this value is measured at
some future date — the risk horizon. The uncertainty arises from unpredictable movements
in the discount rate between now and the risk horizon, i.e. we do not know exactly what the
discounted value of the cash flows will be in the future, because we do not know what the
discount rate will be at some future point in time.

Our perception of interest rate risk depends on whether the interest is fixed or floating
and it also depends upon the accounting framework. Fixed income instruments are entered
into the trading book at their mark-to-market value. Their interest rate risk depends on the
evolution of discount rates, as explained above. But if entered into the banking book, where
accrual accounting is applied, fixed income instruments are not marked to market. Cash
flows are valued at the time of payment, so fixed income instruments have no interest rate
risk in accrual accounting. On the other hand, floating rate instruments have virtually no



48 Pricing, Hedging and Trading Financial Instruments

interest rate risk in mark-to-market accounting, as we have shown in Section III.1.6.2. But
they do have interest rate risk in accrual accounting, because the cash flow on any future
payment date is uncertain.

Hence, the perceptions of interest rate risk of fixed and floating instruments differ depend-
ing on the accounting framework. In accrual accounting floaters are risky but fixed rates are
not, whilst the opposite is true under mark-to-market accounting. It is this difference that
drives the swap market.

II1.1.9 YIELD CURVE FITTING

In this section we review the techniques that can be used to obtain a yield curve from the
market prices of fixed income instruments such as short term discount bonds, FRAs and
swaps. Section III.1.9.1 discusses the suitability of each type of instrument for yield curve
fitting, and thereafter we focus on the influence that the chosen fitting technique has on
the statistical properties of spot and forward interest rates. The simplest way to obtain a
yield curve is to use a bootstrap. Section III.1.9.2 demonstrates how securities prices can
be used to bootstrap the yield curve using a simple empirical example. The problem with
bootstrapping is that even a small amount of noise in these securities prices can result in
large spikes in the forward curve, especially at longer maturities. Therefore if the yield curve
is to be used to make inferences on the volatility and correlation structure of interest rates
it is better not to derive the yield curve using the bootstrap technique.

Sections II1.1.9.3 and III.1.9.4 describes the semi-parametric and parametric models for
yield curve fitting that are used by the Bank of England,* the European Central Bank*’
and the US Federal Reserve.*® These techniques are also applied to the LIBOR market, as
discussed in the comprehensive and excellent book by James and Webber (2000). LIBOR
rates for a number of currencies are provided on the BBA CD-ROM.* The case study in
Section II1.1.9.5 demonstrates how the volatilities and correlations of forward LIBOR rates
depend very much on whether we obtain the yield curve using natural splines, cubic splines
or a parametric yield curve model.

1I1.1.9.1 Calibration Instruments

The US government short curve is obtained from the prices of Treasury bills, FRAs, swaps
and liquid coupon bearing bonds in the AA rating category. The UK government curves are
derived from UK government bonds (also called gilts), gilt sale and repurchase transactions
(gilt repos), interbank loans, short sterling futures, FRAs and swaps. A LIBOR yield curve
is usually constructed using a combination of spot LIBOR rates, FRAs, futures and swap
rates. One would typically use the 1-month to 12-month LIBOR rates to estimate the short
end of the curve. But LIBOR rates are not available for maturities longer than 1 year so
other instruments with the same credit risk and liquidity as LIBOR rates need to be used for

4 See http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm.
47 See http://www.ecb.int/stats/money/yc/html/index.en.html.

8 See http://www.federalreserve.gov/releases/h15/update/.

4 See http://www.bba.org.uk.
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building the longer end of the LIBOR curve. To fit LIBOR rates in the medium and long
range we could use interest rate futures, FRAs and/or swaps.

There are many combinations of bonds, futures, FRAs and swaps that can be used to
construct a yield curve. Of course, if the data were perfect and markets were arbitrage free,
the choice of instruments should not matter. However, given the inevitable noise in market
data, the choice of securities does have an impact on the shape of the yield curve. We now
discuss the relative advantages and disadvantages of using futures, FRAs and swaps for yield
curve fitting.

Interest rate futures and FRAs typically cover a period up to 2 years. Both kinds of
contracts enable an investor to lock in a rate of return between two dates and therefore
provide information about the corresponding forward LIBOR rates. The main difference
between these contracts is that the settlement on an FRA occurs at the contract maturity,
while futures positions are marked to market on a daily basis, resulting in a stream of cash
flows between the parties along the whole life of the contract. Since these cash flows are a
function of the prevailing level of the LIBOR rate, futures provide biased information about
forward rates. The bias results from the fact that the short party experiences a cash outflow
in the event of an interest rate increase and a cash inflow in the event of a fall in interest
rates. Therefore the short party will systematically seek financing when interest rates rise
and invest the cash flows from marking to market as interest rates fall. The opposite is
true about the long party on the futures contract. Thus the equilibrium futures price will be
biased upward, in order to compensate the short party. The importance of the bias depends
on the length of the contract and the LIBOR rate volatility expectations. Strictly speaking,
one would need to use an interest derivative pricing model to value a futures contract. From
this perspective, the use of futures as an input to a yield curve fitting model should be
avoided.

Unlike futures, FRAs could be seen as instruments providing unbiased information about
the forward LIBOR rates. However, the liquidity of FRAs is typically lower than that of the
LIBOR rates and futures. Therefore, FRA quotes may be stale and fail to reflect the changes
in the yield curve. Consequently, neither futures nor FRAs are ideal instruments to use for
LIBOR yield curve estimation.

The information about the long end of the yield curve can be obtained from interest rate
swaps, since these are liquid instruments that extend up to 30 years. For the purposes of
yield curve fitting we decompose a swap into an exchange of a fixed coupon bond for a
floating bond paying prevailing LIBOR rates.>® At initiation the value of a swap is 0 and the
value of a floater is equal to the notional, which means that the price of the fixed rate bond
paying the swap rate must be 100 at the initiation of the swap. In other words, the swap
rate can be regarded as a coupon rate on a par-coupon bond of a corresponding maturity, as
shown in Section III.1.7.3.

III.1.9.2 Bootstrapping

Bootstrapping is the term we apply to an iterative coupon stripping technique, which is
illustrated in the following example.>!

0 Ag explained in Section II1.1.7.
31 See Miron and Swannell (1991) for further details.
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ExAMPLE II1.1.21: COUPON STRIPPING

Calculate zero coupon rates from the market prices of four zero coupon bonds and two
coupon bearing bonds shown in Table III.1.21.

Table III.1.21 Six bonds

Maturity 1 month 2 months 3 months 12 months 2 years 3 years
Coupon 0 0 0 0 6% 10%
Market price 99.5 99.1 98.7 95 101 112

SoLuTioN Dividing the price of a zero bond by 100 gives the discount factor and then
putting y, =n"'(3;' — 1) when n < 1, gives the zero coupon yields shown in Table II1.1.22.

Table III.1.22 Bootstrapping zero coupon yields

Maturity 1 month 2 month 3 month 12 months 2 years 3 years
Coupon 0 0 0 0 6% 10%
Price 99.5 99.1 98.7 95 101 112
Discount factor 0.995 0.991 0.987 0.95 0.90 0.85
Zero coupon yield 6.03% 5.45% 5.27% 5.26% 5.46% 5.56%

This table also shows zero coupon yields for the 2-year and 3-year maturities. These are
obtained via a bootstrapping procedure as follows:

1. The price, cash flows and discount factors on the 2-year bond are related as
101 =6 x 8, 4+ 106 x d,.

We know 8, from the 12-month zero bond, so we can obtain §,.
2. Moving on to the 3-year bond, now we have

112=10x 8, + 10 x 8, + 110 x 8,

which, knowing 8, and 9,, gives 3.
3. Once we know the discount factors we can obtain the zero coupon yields, using

ya=3""—1

We can generalize the method used in the above example to state a general algorithm for
bootstrapping a yield curve as follows:

1. Take a set of T liquid instruments.

2. Map the cash flows to a set of T standard maturities (see Section I11.5.3).

3. Denote the mapped cash flows on the kth instrument by ¢, = (C,,, ..., C,;) and let
C be the T x T matrix of cash flows, with kth column c,.

4. Take the market price of each instrument and label the T x 1 vector of market prices

p=(P,DP,, ..., Pp).
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5. Denote the discount factor at maturity i by o, and let 8=(8,, d,, ..., 8;)" be the T x 1
vector of discount factor.

6. Then p = C83 or equivalently, 8 = C~'p. Hence, the market prices and cash flows of
the instruments together determine the discount factor.

This algorithm has two shortcomings:

e [t is restricted to using the same number of instruments as maturities in the yield curve.
e We only obtain zero coupon yields at the same maturities as the instruments, so we
cannot price instruments with other maturities.

The second problem, that we only obtain discount rates at maturities for which liquid
instruments exist, can be solved by proceeding as follows:

7. Interpolate between the discount factors (e.g. using splines, as explained in the next
subsection) to obtain discount rates for every maturity.
8. Obtain the zero coupon yield of any maturity n as described above.

But still the bootstrap has tendency to overfit the yield curve so any noise in the original
data is translated into the bootstrapped forward rates. This often results in spikes in the
forward curve, especially at longer maturities, which gives a misleading indication about the
volatility and correlation structure of forward rates.

When fitting a yield curve we should take into account the market prices of all liquid
instruments having the same credit rating as the curve, and typically there will be more
than one instrument for each maturity. In practice, more instruments than maturities are
used for yield curve construction. In that case the inverse cash flow matrix C~!' cannot be
found exactly and instead of bootstrapping we must use a best fitting technique, such as
minimizing the root mean square error (RMSE) between the prices based on the fitted curve
and the market prices. We describe the two most popular yield curve fitting methods in the
following subsections.

II1.1.9.3 Splines

Spline-based yield curve techniques fit a curve to the data, and this curve is composed of
many segments that can move almost independently between the fixed knot points, save for
some constraints imposed to ensure that the overall curve is smooth. To limit the number of
parameters used it is important to use a low order polynomial to model the curve between
the knot points, hence the popularity of cubic splines which were first applied to yield
curve fitting by McCulloch (1975). Cubic spline interpolation was introduced and applied
to interpolate between interest rates of different maturities in Section 1.5.3.3.%2

Cubic splines may also be applied to fit a yield curve by fitting the corresponding discount
factors, or by fitting the market prices of all securities in the calibration set. The discount
factors are linear in the parameters and the calibration can be done by a simple regression
where the objective is to minimize the weighted squared differences between the model
prices of the securities in the calibration set and their market prices. However, the most
straightforward spline fitting method, natural cubic splines, are commonly found to be
numerically unstable.>

2 See also Lancaster and Salkauskas (1986).
33 See Anderson and Sleath (1999) for further details.
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An alternative is to use basis splines (B-splines), as in Steely (1991), where each segment
of the yield curve between the knot points {x,,...,x,} is built using a linear combination
of some fundamental curves. To define these fundamental curves, which are called basis
functions, we set:

o 1, ifxi§8<xi+|,
B:.\(®)= {0, otherwise,
fori=1, ..., m— 1. Then the nth order basis functions, forn=2, 3, ..., N, are obtained
by setting
S —x, Xipy — O
Bi,n(a) =\ Bi,n—l(a) +| — Bi+l,‘n—1(8) s (III-1-64)
Xign—1 — %; Xitn ™ Xit1

where 8 denotes the discount factor.

Clearly the order of the basis functions used to fit the curve between knot points can be
smaller when there are many knot points than when there are only a few knot points. But as
the number of knot point increases, the smoothness of the fitted yield curve will deteriorate.
Hence, there is a trade-off between using enough knot points to ensure a good fit with low
order basis functions and using so many knot points that the fitted curve is not smooth.
However, it is possible to impose a roughness penalty on the optimization algorithm,>* and
our case study below demonstrates why this is essential.

111.1.9.4 Parametric Models

Introduced by Nelson and Siegel (1987) and later extended by Svensson (1994), parametric
yield curve fitting models impose a functional form on the instantaneous forward rate curve
that captures its typical ‘humped’ shape. The Nelson and Siegel model assumes that the
instantaneous forward rate of maturity n is parameterized as

fn; By, By By ™) =By + (61 + Bz(—Z)) exp(—;) . (I11.1.65)

The curve (III.1.65) has only one ‘hump’, which reflects the typical shape of the interest
rate term structure. However, sometimes the term structure develops two humps, and in that
case the parameterization (II1.1.65) is too restrictive. The Svensson model has two additional
parameters, which allow for an additional hump, with

f(n; By, By, B2, B3, 71, 1) =By + (Bl +Bz<_$)) exp(—%)

8, <_£> exp <_1> , (I11.1.66)
T T

In both (III.1.65) and (III.1.66) the short rate is 3, + (3, and the curve is asymptotic to
By at the long end. The discount factors are non-linear in the parameters and the model
calibration requires a non-linear least squares algorithm. In the case study below we have
used the Levenberg—Marquardt algorithm, described in Section 1.5.4.1, with the objective of
minimizing the sum of the squared differences between the model and the market prices of
the instrument calibration set.

3 See Fisher et al. (1995), Waggoner (1997) and Anderson and Sleath (1999).



Bonds and Swaps 53

The Federal Reserve Board has made available to the public the entire US Treasury yield
curve from 1961.° The spot curve is estimated daily using the Svensson model, and spot
and forward rates, monthly up to 30 months, are provided. The Excel spreadsheet also gives

the Svensson parameter estimates for each day so that users can infer rates of any maturities
from the key rates at monthly maturities.

II1.1.9.5 Case Study: Statistical Properties of Forward LIBOR Rates>®

In this study we compare the applications of B-splines and the Svensson model, for calibration
of the UK LIBOR yield curve. Both yield curve fitting models were applied to 703 daily
observations on UK LIBOR rates, FRAs and swap rates between October 1999 and June
20027, For each day all the available market instruments were used to build the discount
curve and the associated spot curve. These were then used to obtain model LIBOR rates,
FRAs and swap rates. The model rates were then compared to the market data to obtain the
RMSE.

Figures III.1.11 and III.1.12 compare the yield curves calibrated using the two procedures.
There are noticeable differences between the two curves, especially at the long end and
especially when rates are volatile (for instance, during the last 6 months of 2001). At the
short end, where LIBOR rates are observed in the market, the differences are usually tiny
and of the order of 5—10 basis points, but at the very long end where the market instruments

consist of only a few long term swaps, the differences can exceed 50 basis points at times,
as shown in Figure III.1.13.
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Figure III.1.11 UK LIBOR curve (Svensson model)

3 See Gurkaynak et al. (2006) and http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
6 Many thanks to my PhD student Dmitri Lvov for providing these results.
57 The following contracts were used: 1-month to 12-month LIBOR rates; 3-month FRAs starting in 2, 3, ..., 9 months; 6-month

FRAs starting in 1, 2, ..., 6, 12 and 18 months; 9-month FRA starting in 1 month; 12-month FRAs starting in 2, 3, 6, 9 and 12
months; and swap contracts maturing in 2, 3, ..., 10 years.
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Figure III.1.13 Difference between Svensson rates and B-spline rates

Comparison of the Models’ Goodness of Fit

The average RMSE over the entire sample period were very similar: 2.59 for the B-spline
and 2.55 for the Svensson model. However, the time series plots of these RMSEs reveal
some interesting characteristics. Figure III.1.14 compares the RMSE obtained from the two
models for every day during the sample.”® The lowest errors occurred during the year

3 We tested several different B-spline and natural cubic spline procedures with different choices of knot points. When the knot
points were the same, all splines on discount factors produced virtually identical RMSE on every day during the sample. So

henceforth we present results for the B-spline on discount factors, and the optimal choice of knots had several at the medium to
long maturity.
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2000 and greater errors were experienced during the latter half of 2001, when interest rates
were unusually volatile, especially using the Svensson model. In view of this time variation
it is difficult to draw general conclusions about the relative performance of in-sample fit
from the two yield curve fitting procedures. However, further information can be obtained
from the historical volatilities and correlations of daily changes in log forward LIBOR rates,

as these differ considerably depending on the choice of the technique used to fit the yield
curve.

12

—— B-Spline —— Svensson ‘

10 e

4 1 kA A- M Y| 41\‘ l !
2 s “ | | (V‘ﬂ‘ 'l“,”' w \" ‘
LAtk !

0 T T T T T T T T T T T T T T T T
o o 2 29 2 2 9 9 = = =4 = = = o a o
D A A D A S
L - - R R - N - T T T - D T
1% 53 5] [ Q O [} & Q O [} o =
O A £ < 2 2 048 & < A2 2 0 a4 & < A&

Figure I11.1.14 RMSE errors from the model calibrations

The Influence of Yield Curve Model on Forward Rate Volatilities

In the LIBOR model forward rates are usually assumed to follow correlated geometric
processes and so we estimate historical forward rate volatilities using log returns, not changes
in forward rates.>® Figure II1.1.15 depicts the historical forward rate volatility term structures
estimated using the entire sample based on the two yield curve models.

The implied volatilities of forward rates that are backed out from cap prices often display
a hump shape, with maximum volatility usually lying somewhere between the 1- and 2-year
maturities. So the empirical evidence on historical forward rates does not appear to support
traders’ views on interest rates at all. The short maturity forward rates tend to be less
volatile than long maturity rates. However, to a large extent this is due to the presence of
measurement errors, which are greater for longer maturity rates since one observes relatively
few data points, and these measurement errors are compounded when spot rates are translated

into discrete forward rates. The net result is an increasing volatility of forward rates with
respect to maturity.

3 See Section I11.3.8.5 for further details about the LIBOR model.
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Figure III.1.15 Forward rate volatility estimates based on B-splines and Svensson

The forward rates have different volatility characteristics depending on the yield curve
fitting model used.

e The Svensson forward rate volatilities are influenced by the quality of fit of a two-hump
parametric form. Further analysis that the reader may wish to apply using the data in
the case study work book shows that the Svensson model produced highly volatile long
rates at the end of 2001, when the goodness-of-fit statistics implied that the Svensson
model was giving the worst in-sample fit.

e The B-spline forward rate volatilities are constrained to be lower at the knot points (in
order to maximize the goodness of fit, several knots were placed between the 5-year and
8-year maturities). Although the McCulloch natural spline volatilities are not shown,
they have similar characteristics to the B-spline volatilities, again being dominated by
the choice of knot points.

The Influence of Yield Curve Fitting on Forward Rate Correlations

The correlation structure of the semi-annual forward rates obtained from the Svensson
model is related to the functional form imposed on the instantaneous forward rates. The
‘hump’ shape of the Svensson forward rate curve induces correlations between short and
long maturity forward rates that can be higher than correlations between medium and long
maturity forward rates. Forward rate correlations do not necessarily decrease monotonically
with the maturity spread, nevertheless the Svensson model imposes exactly this sort of
smooth pattern on the forward rate correlations. The empirical correlations between Svensson
semi-annual forward rates of different maturities are shown in Figure I11.1.16 based on equal
weighting over the entire sample period. The empirical correlations have a less structured
pattern when the yield curve is fitted using a spline model, and the B-spline correlations
are shown in Figures III.1.17. Here, correlations are distorted and very much depend on the
knot points chosen.
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Figure III.1.16 Forward rate correlation estimates (Svensson model). (See Plate 1)
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Figure II1.1.17 Forward rate correlation estimates (B-spline model). (See Plate 2)

Comparison with Bank of England Forward Rate Curves

Daily and monthly data on UK government and commercial liability yield curves for maturi-
ties between 6 months and 25 years, and the short curve for monthly maturities from 1 month
to 5 years are available from the Bank of England.®® The curves are fitted using a cubic
B-spline algorithm with robustness penalty, as explained in Anderson and Sleath (1999).

0 See http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm
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The robustness penalty has the effect of smoothing the curve between the knot points, thus
reducing the possibility for ill-behaved volatilities and correlations such as those obtained
above from the B-spline procedure. The short forward curve, which contains 60 monthly
maturities up to 5 years, is very well behaved: the forward rate volatilities exhibit a humped
shape and the forward rate correlations are very smooth. However the entire forward curve,
containing semi-annual rates up to 25 years, still has quite a rough volatility and correlation
structure, despite the smoothing in their algorithm.
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Figure II1.1.18 Bank of England forward curve — volatilities
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Figure II1.1.19 Bank of England forward curve — correlations. (See Plate 3)
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For instance, Figures III.1.18 and II1.1.19 show the term structure of forward rate volatil-
ities and correlations respectively, based on daily log returns over the period January 2005
to September 2007. As before the volatilities and correlations are based on equally weighted
averages of returns and cross products over the entire sample. The robustness penalty does
provide some smoothing, but the irregular features in volatility and correlation that result
from the use of a B-spline are still apparent.

Conclusions

Goodness-of-fit criteria are inconclusive as to the best fitting yield curve model because this
varies over time. We have presented some empirical evidence indicating that B-splines may
fit better during volatile periods, but otherwise the Svensson model provides a very close fit.
The important learning point to take away from this study is that forward rate volatilities and
correlations inherit their structure from the yield curve fitting model: the Svensson forward
rate volatilities and correlations are the best behaved since their structure is determined by
the exponential functional form of the model; by contrast, in spline methods, volatilities and
correlations are distorted by the choice of knot points.

Whilst implied forward rate volatilities that are backed out from the market prices of
caps often exhibit a humped shape, we have found no empirical support for hump-shaped
volatility term structures in historical forward rates, except at the very short term where the
rates are anyway observed in the market. The lack of liquid market instruments of medium
to long maturities introduces significant measurement error in calibrated forward rates,
so that historical volatilities increase with maturity whatever yield curve fitting model is
applied.

Likewise, when historical forward rate correlations are used to calibrate the lognormal
forward rate model, their correlation matrix is usually assumed to have a simple param-
eterization where correlation decreases monotonically with the maturity gap between the
futures.®! Such a parameterization is more appropriate for forward rate correlations that are
derived from the Svensson yield curves than those derived from B-spline fitting procedures,
since the choice of knot points has a marked effect on forward rate correlations when the
yield curve is fitted using spline functions.

I11.1.10 CONVERTIBLE BONDS

Convertible bonds are hybrid derivative instruments that simultaneously offer the potential
upside of equities and a limited downside, since the investor holds a bond. The pay-off to
holding a convertible bond is asymmetric, in that the increase in the bond’s value corre-
sponding to an increase in the stock price is greater than the decrease in the bond’s value
corresponding to an equivalent decrease in the stock price. Another reason why convertible
bonds offer attractive investment opportunities is their inherent diversification. A convert-
ible bond offers exposure to equity volatility as well as to equities, interest rates and credit
spreads. This diversification benefit is significant since volatility is negatively correlated with
share prices and credit spreads, especially during periods of market crisis. Thus convertible

61 See Alexander (2003).
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bonds are a growing asset class and at the time of writing the global market has an estimated
notional size of over $613 billion.®? Over half of this is in US bonds, over $150 billion is in
European bonds and $62 billion is in Japanese bonds.

II1.1.10.1 Characteristics of Convertible Bonds

The purchaser of a convertible bond has the option to convert it into shares in the same
company, usually after a certain lock-in period.®® The conversion ratio is
Face value of bond

Conversion ratio = - . . (1I1.1.67)
Conversion price of share

For instance, if the face value is $1000 and the conversion price of the share is $50 then the
conversion ratio is 20. That is, 20 shares are received for each bond redeemed. Often, but
not always, the conversion ratio is fixed at the time the bond is issued.

The decision whether to convert depends on the conversion ratio, the current prices of the
bond and the share and the credit risk of the issuer. Convertible bonds carry a significant
credit risk for two reasons. First, they are often issued by growth firms, i.e. firms that
may not have a high credit rating but whose share prices are thought likely to rise in the
future. These firms can issue a convertible bond with a relatively low coupon, thus limiting
their payments, but the conversion option still makes them attractive to investors. Secondly,
convertible bonds are frequently classed as junior or subordinated debt.

The conversion feature provides a floor for the bond price, which varies with the stock
price. For example, suppose a bond with face value $1000 may be converted at any time to
20 shares, and that the stock is currently trading at a price of $52.50. Then the value of the
bond cannot be less than $52.50 x 20 = $1050 so the price of the bond cannot fall below
105 at this time.

Most convertibles have a put feature whereby the bond holder has the right to return the
bond to the issuer at a fixed put price, which is usually well below par. This provides a fixed
floor for the price of the convertible, which does not vary over time. For instance, if the
put price of the above convertible is 85, then the price can never fall below 85 (otherwise
the bond holders would put the bond back to the issuer). Similarly, most convertibles are
also callable by the issuer on certain dates, at which times the issuer has a right to buy back
the convertible at a given call price which is usually well above par.** This price provides
a fixed cap on the bond price. For instance, if the call price is 125 then the bond price can
never exceed this, otherwise the issuer would call the bond. If a convertible is called the
bond holder is usually given a call notice period of between 15 days and several months
during which the bond holder can elect to convert at any time.

Call features are attractive to issuers for several reasons: they cap investors’ profits from
a rise in share price; they lessen the uncertainty about issuers’ future liabilities; and they
are a means to force conversion, typically when the firm can refinance at a cheaper rate.
On the other hand, call features make the bond less attractive to prospective investors. For
this reason the contract usually specifies that the bond is not callable for the first few years

02 See www.ubs.com/2/e/us_library/gis/white_papers/Benefits_of_Convertible_Bonds.pdf.
3 For instance, a 10-year convertible bond may only be convertible after 5 years. And some bonds are only convertible on
specific conversion dates.

%4 The effective call price is the clean call price, which is fixed in the bond’s covenant, plus accrued interest.
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after issue (the hard call protection period) and following this there may also be soft call
protection, where the bond can only be called if the share price exceeds a certain threshold
that is typically significantly greater than the call price. Another form of soft call protection
is a make-whole provision.®> Call protection is designed to increase the attraction of the bond
to investors.

According to Grimwood and Hodges (2002), the most common type of US convertible
bond contract in the MTS database at the ICMA Centre has a maturity of 15.0 years, pays
a 6% semi-annual coupon and is hard-callable for the first time within 3 years. Of these
contracts, 72% have a hard no-call period, and 53% have a put clause. There are many
Japanese convertibles in the database, of which 88% have a hard no-call period, 91% have
a soft no-call period, 23% have a put clause, 78% are cross-currency and 56% have a
conversion ratio re-fix clause.

III.1.10.2  Survey of Pricing Models for Convertible Bonds

The option to convert into shares creates a premium for convertibles, so that the price of
a convertible bond is never less than the equivalent straight bond price. But the price of a
convertible bond is very difficult to calculate because it depends on so many factors other
than interest rates and credit spreads. The price also depends on the conversion ratio, the
probability of default, the recovery rate, the stock price behaviour in the event of default,
and the dynamics of the stock price. Of all these highly uncertain quantities the stock price
dynamics and default behaviour are perhaps the most important.®®

With so many uncertain factors affecting the price of a convertible bond, the pricing of
these securities has been the subject of considerable academic research. Ingersoll (1977a)
derived a closed-form pricing formula for callable convertible bonds but this is based on
very simple assumptions about the evolution of the risk factors and can only be applied to
bonds having very simple features. McConnell and Schwartz (1986) observed that when the
stock price is modelled as a diffusion the discount rate must be adjusted, otherwise there
is no possibility of default. This observation inspired several blended discount approaches
to convertible bond valuation. Notably, Derman (1994) considered a stock price binomial
tree where the discount rate at each time step is a weighted average of the risky discount
rate and the risk free rate, with weight determined by the probability of conversion. In this
framework the default event is not explicitly modelled; however, compensation for credit
risk is included through a credit-adjusted discount rate.

One of the most important papers, by Tsiveriotis and Fernandes (1998), provided a rigorous
treatment of Derman’s ideas by splitting the bond value into equity and bond components,
each discounted at different rates. This approach has since been extended to include interest
rate and foreign exchange risk factors by Landskroner and Raviv (2003a, 2003b), who applied
a blended discount model to price domestic and cross-currency inflation-linked convertible
bonds.

All these papers assume that the stock price will not jump if the issuer announces that it is
bankrupt, which is of course rather unrealistic. The most recent convertible bond valuation
models developed by Davis and Lischka (1999), Takahashi et al. (2001), Ayache et al.
(2003), Bermudez and Webber (2003) and Andersen and Buffum (2004) include a stock

95 For instance, if a call is made between coupon payments then the accrued interest on the coupon will be paid to the bond holder.
% See Grimwood and Hodges (2002).
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price jump on default. Most of these models incorporate equity-linked hazard rates that are
driven by the stock price diffusion and are calibrated to the initial term structure of interest
rates, often via the Hull and White (1990) model.

Some of the most interesting research on convertible bonds seeks to explain the issuer’s
call policy after the call protection period. During the call notice period the issuer effectively
gives the investor a put on the share. Thus the optimal call price (i.e. the share price at
which it becomes optimal for the issuer to call) should be such that the conversion price is
just greater than the effective call price plus the premium on the put. However, it is quite
possible that the stock price will decline during the call notice period and the investors will
choose to receive the cash instead of converting. Since the issuer typically calls because
it wants to give out stock, it will call only when the stock is very far above the effective
call price. Thus issuers often wait until the conversion price is significantly higher than the
optimal call price before issuing the call.

Many reasons have been proposed for this delayed call phenomenon. These include stock
price uncertainty during the call notice period and the issuer’s aversion to a sharp stock price
decline (Ingersoll, 1977b; Butler, 2002; Asquith, 1995; Altintig and Butler, 2005; Grau et al.,
2003); the preferential tax treatment of coupons over dividends, which acts as an incentive to
keep the convertible bonds alive (Constantinides and Grundy, 1987; Campbell et al., 1991;
Asquith and Mullins, 1991; Asquith, 1995); signalling effects, whereby convertible bonds
calls convey adverse information to shareholders that management expects the share price
to fall (Harris and Raviv, 1985; Mikkelson, 1985); and issuers preferring to let sleeping
investors lie (Dunn and Eades, 1984; Constantinides and Grundy, 1987).

Although the stock price dynamics are more important for the bond valuation than those
of the interest rate or credit spread, relatively few papers incorporate realistic stock price
dynamics into the pricing model. Most of the literature on convertible bond valuation assumes
that equity volatility is constant. An exception is Yigitbagioglu and Alexander (2006) who
obtain arbitrage-free price bounds and hedge ratios for convertible bonds when there is
uncertainty about the long term stock volatility. Their results also explain the delayed call
feature of issuer’s call policies.

II1.1.11 SUMMARY AND CONCLUSIONS

This chapter introduces the theory and practice of pricing, hedging and trading standard
interest rate sensitive instruments. Only a basic knowledge of finance is assumed, and
although the treatment is concise several numerical examples and empirical studies have
been provided, with accompanying interactive Excel spreadsheets on the CD-ROM.

We began by introducing the fundamental concepts of discrete compounding and continuous
compounding of interest. International bond and money markets use different day count
conventions for accruing interest under discrete compounding, and so banks usually convert
all discretely compounded rates to equivalent continuously compounded rates, which are
easier to deal with mathematically. Spot interest rates are those that apply from now, and
forward interest rates apply from some time in the future. Given a curve of spot interest
rates of different maturities, we can find the corresponding forward rate curve; conversely,
given a forward rate curve and the one-period spot rate, we can find the spot rate of other
maturities. The standard reference curve for spot and forward rates is the London Interbank
Offered Rate or LIBOR curve.
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Bonds may be categorized by maturity, coupon and type of issuer. Bonds are issued
by financial institutions, governments, government agencies, municipalities and corporates.
Almost all bonds have a credit rating which corresponds to the perceived probability that
the issuer will default on its debt repayments. Bonds are further categorized by the priority
of their claim on the assets in the event of the issuer’s default, and according to the domicile
of the issuer. The majority of bonds pay a fixed coupon, but some bonds, called floating
rate notes or floaters, have a variable coupon based on a reference rate such as LIBOR. In
addition to straight floaters we have reverse floaters, capped floaters, floored floaters and
many other floaters that can have complex option-like features. Bonds are further divided
into short, medium and long term bonds and those that have less than 2 years to expiry at
issue are generally regarded as money market instruments. Most of these pay no coupons,
but are priced at a discount to their par value of 100. Very few bonds pay no coupon but
the yields on hypothetical zero coupon bonds are used as market interest rates for different
credit ratings.

The prices of liquid bonds are set by supply and demand, and their fair prices correspond
to the present value of all the cash flows on the bond when discounted using market interest
rates. Given any set of positive cash flows we can define a unique yield as the constant
discount rate that, when applied to these cash flows, gives the market price of the bond. The
price of a bond has a convex, decreasing relationship with the yield, and when the yield is
equal to the coupon the bond is priced at par.

The Macaulay duration is the time-weighted average of the present value of the cash flows
on the bond and, under continuous compounding, the Macaulay duration is also the first
order sensitivity of the bond price to a unit change in its yield. Under discrete compounding
this sensitivity is called the modified duration. We can use a second order Taylor expansion,
the duration—convexity approximation, to approximate the change in present value of the
cash flows when the yield changes by a small amount. When expressed in nominal terms
we call these sensitivities the value duration and value convexity. Value durations can be
added to obtain a single duration measure for a bond portfolio, which represents the change
in portfolio value when all the bond yields change by the same amount. Similarly, value
convexity is also additive over all bonds in the portfolio.

Floating rate notes have very short duration. Thus by adding long or short positions in
floaters, bond traders can easily adjust the duration of their bond portfolios. But the problem
with duration and convexity hedging, where a bond portfolio is constructed having zero
value duration and zero value convexity, is that it only hedges against parallel movements
of the zero coupon yield curve. It does not hedge the portfolio against the most common
movements in the yield curve, based on historical data. For this we need to base bond
portfolio immunization on principal component analysis.

A forward rate agreement is an OTC agreement to buy or sell a forward interest rate. In a
standard interest rate swap one party pays LIBOR and receives a fixed rate, the swap rate,
from the other party over an agreed period. This may be regarded as a sequence of forward
rate agreements. A vanilla swap is a swap where the floating payments at the end of a certain
period depend only on the interest rate prevailing over that period. We can decompose the
cash flows on a vanilla swap into two series: the fixed leg of a vanilla swap can be regarded
as a bond with coupon equal to the swap rate and the floating leg can be regarded as a single
cash flow at the first payment date.

A basis swap is an interest rate swap where two floating rates are exchanged on each
payment date. These floating rates may be of different maturities, or they may be denominated
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in different currencies. Unlike interest rates swaps, a cross-currency basis swap involves
exchanges of principal. It can be regarded as two floating rate notes in different currencies.
Another popular type of swap is a total return swap, in which two parties exchange returns
on one asset for returns on another, including the capital gains or losses at every payment.
Many other non-standard interest rate swaps are traded.

It is not possible to calculate the yield or duration of a swap. However, the present value
of a basis point (PVOL1) applies to all types of cash flows. The PVO1 is the sensitivity of the
present value of the cash flow to a shift of one basis point in market interest rates. That is,
the whole zero coupon yield curve shifts parallel by one basis point. The PVO1 should be
distinguished from the value duration, which measures the price sensitivity when the yields
on all the bonds in the portfolio change by the same amount. The interest rate risk of a
cash flow refers to the uncertainty about the discounted value of this cash flow at some
future time t. It can be measured by the standard deviation of this future discounted value.
This is the product of the standard deviation of the discount rate, in basis points,” and the
interest rate sensitivity of the expected discounted value of the cash flow at time ¢, which
is approximately equal to its PVO1. Hence, at time ¢ the interest rate risk of a cash flow at
time T is approximately equal to the PVOI of the cash flow times the standard deviation of
the forward rate of term ¢ and tenor T—t¢.

We have reviewed the yield curve fitting techniques that can be used to obtain a zero
coupon yield curve from the market prices of fixed income instruments. We discussed the
suitability of each type of instrument for yield curve fitting, and focused on the influence
that the chosen fitting technique has on the statistical properties of spot and forward interest
rates. A case study compared the application of basis splines with the Svensson model for
the calibration of the UK LIBOR yield curve. We showed that forward rate volatilities and
correlations inherit their structure from the yield curve fitting model: the Svensson forward
rate volatilities and correlations are the best behaved since their structure is determined by
the exponential functional form of the model; by contrast, in spline methods, volatilities
and correlations are mainly determined by the choice of knot points, even after imposing a
roughness penalty.

Convertible bonds are hybrid derivative instruments that simultaneously offer the potential
upside of equities and a limited downside since the investor holds a bond. A convertible
bond offers exposure to equity volatility as well as to equities, interest rates and credit
spreads. Most convertible bonds have call features that protect the issuer, but call protection
policies and put features increase their attraction for investors. The price of a convertible
bond is very difficult to calculate because it depends on so many factors other than interest
rates and credit spreads. Perhaps the most important risk factors for convertible bonds are
the stock price dynamics and the stock price behaviour in the event of an issuer default. We
concluded the chapter with a survey of the very considerable academic literature on pricing
models for convertible bonds.



