
II.1
Factor Models

II.1.1 INTRODUCTION

This chapter describes the factor models that are applied by portfolio managers to analyse
the potential returns on a portfolio of risky assets, to choose the optimal allocation of their
funds to different assets and to measure portfolio risk. The theory of linear regression-based
factor models applies to most portfolios of risky assets, excluding options portfolios but
including alternative investments such as real estate, hedge funds and volatility, as well as
traditional assets such as commodities, stocks and bonds. Stocks and bonds are the major
categories of risky assets, and whilst bond portfolios could be analysed using regression-
based factor models a much more powerful factor analysis for bond portfolios is based on
principal component analysis (see Chapter II.2).

An understanding of both multiple linear regression and matrix algebra is necessary for
the analysis of multi-factor models. Therefore, we assume that readers are already familiar
with matrix theory from Chapter I.2 and the theory of linear regression from Chapter I.4.
We also assume that readers are familiar with the theory of asset pricing and the optimal
capital allocation techniques that were introduced in Chapter I.6.

Regression-based factor models are used to forecast the expected return and the risk of a
portfolio. The expected return on each asset in the portfolio is approximated as a weighted
sum of the expected returns to several market risk factors. The weights are called factor
sensitivities or, more specifically, factor betas and are estimated by regression. If the portfo-
lio only has cash positions on securities in the same country then market risk factors could
include broad market indices, industry factors, style factors (e.g. value, growth, momentum,
size), economic factors (e.g. interest rates, inflation) or statistical factors (e.g. principal com-
ponents).1 By inputting scenarios and stress tests on the expected returns and the volatilities
and correlations of these risk factors, the factor model representation allows the portfolio
manager to examine expected returns under different market scenarios.

Factor models also allow the market risk manager to quantify the systematic and specific
risk of the portfolio:

The market risk management of portfolios has traditionally focused only on the undi-
versifiable risk of a portfolio. This is the risk that cannot be reduced to zero by holding a
large and diversified portfolio. In the context of a factor model, which aims to relate the
distribution of a portfolio’s return to the distributions of its risk factor returns, we also
call the undiversifiable risk the systematic risk. A multi-factor model, i.e. a factor model
with more than one risk factor, would normally be estimated using a multiple linear
regression where the dependent variable is the return on an individual asset and the

1 But for international portfolios exchange rates also affect the returns, with a beta of one. And if the portfolio contains futures
then zero coupon rates should also be included in the market risk factors.
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independent variables are the returns on different risk factors. Then the systematic risk is
identified with the risk of the factor returns and the net portfolio sensitivities to each risk
factor.
The specific risk, also called the idiosyncratic risk or residual risk, is the risk that is
not associated with the risk factor returns. In a linear regression model of the asset
return on risk factor returns, it is the risk arising from the variance of the residuals. The
specific risk on an individual asset may be high, especially when the model has only
a few factors to explain the asset’s returns. But in a sufficiently large and diversified
portfolio the specific risk may be reduced to almost zero, since the specific risks on
a large number of assets in different sectors of the economy, or in different countries,
tend to cancel each other out.

The outline of the chapter is as follows. Section II.1.2 explains how a single-factor model
is estimated. We compare two methods for estimating factor betas and show how the total
risk of the portfolio can be decomposed into the systematic risk due to risk of the factors,
and the specific risk that may be diversified away by holding a sufficiently large portfolio.
Section II.1.3 describes the general theory of multi-factor models and explains how they are
used in style attribution analysis. We explain how multi-factor models may be applied to
different types of portfolios and to decompose the total risk into components related to broad
classes of risk factors. Then in Section II.1.4 we present an empirical example which shows
how to estimate a fundamental factor model using time series data on the portfolio returns
and the risk factor returns. We suggest a remedy for the problem of multicollinearity that
arises here and indeed plagues the estimation of most fundamental factor models in practice.

Then Section II.1.5 analyses the Barra model, which is a specific multi-factor model that
is widely used in portfolio management. Following on from the Barra model, we analyse the
way some portfolio managers use factor models to quantify active risk, i.e. the risk of a fund
relative to its benchmark. The focus here is to explain why it is a mistake to use tracking
error, i.e. the volatility of the active returns, as a measure of active risk. Tracking error is
a metric for active risk only when the portfolio is tracking the benchmark. Otherwise, an
increase in tracking error does not indicate that active risk is increased and a decrease in
tracking error does not indicate that active risk has been reduced. The active risk of actively
managed funds which by design do not track a benchmark cannot be measured by tracking
error. However, we show how it is possible to adjust the tracking error into a correct, but
basic active risk metric. Section II.1.6 summarizes and concludes.

II.1.2 SINGLE FACTOR MODELS

This section describes how single factor models are applied to analyse the expected return on
an asset, to find a portfolio of assets to suit the investor’s requirements, and to measure
the risk of an existing portfolio. We also interpret the meaning of a factor beta and derive
a fundamental result on portfolio risk decomposition.

II.1.2.1 Single Index Model

The capital asset pricing model (CAPM) was introduced in Section I.6.4. It hypothesizes the
following relationship between the expected excess return on any single risky asset and the
expected excess return on the market portfolio:

E Ri Rf βi E RM Rf
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where Ri is the return on the ith risky asset, Rf is the return on the risk free asset, RM is the
return on the market portfolio and βi is the beta of the ith risky asset. The CAPM implies
the following linear model for the relationship between ordinary returns rather than excess
returns:

E Ri i βiE RM (II.1.1)

where i 0 unless βi 1.
The single index model is based on the expected return relationship (II.1.1) where the

return X on a factor such as a broad market index is used as a proxy for the market
portfolio return RM . Thus the single index model allows one to investigate the risk and
return characteristics of assets relative to the broad market index. More generally, if the
performance of a portfolio is measured relative to a benchmark other than a broad market
index, then the benchmark return is used for the factor return X .

We can express the single index model in the form

Rit i βiX t it it i.i.d. 0 2
i (II.1.2)

Here i measures the asset’s expected return relative to the benchmark or index (a positive
value indicates an expected outperformance and a negative value indicates an expected
underperformance); βi is the risk factor sensitivity of the asset; βi X is the systematic
volatility of the asset, X being the volatility of the index returns; and i is the specific
volatility of the asset.

Consider a portfolio containing m risky assets with portfolio weights w w1

w2 wm , and suppose that each asset has a returns representation (II.1.2). Then the
portfolio return may be written

Y t βX t t t 1 T (II.1.3)

where each characteristic of the portfolio (i.e. its alpha and beta and its specific return) is a
weighted sum of the individual assets’ characteristics, i.e.

m

i 1

wi i β
m

i 1

wiβi t

m

i 1

wi it (II.1.4)

Now the portfolio’s characteristics can be estimated in two different ways:

Assume some portfolio weights w and use estimates of the alpha, beta and residuals
for each asset in (II.1.4) to infer the characteristics of this hypothetical portfolio. This
way an asset manager can compare many different portfolios for recommendation to
his investors.
A risk manager, on the other hand, will apply the weights w of an existing portfolio
that is held by an investor to construct a constant weighted artificial returns history for
the portfolio. This series is used for Y t in (II.1.3) to assess the relative performance,
the systematic risk and the specific risk of an existing portfolio.2

Thus risk managers and asset managers apply the same factor model in different ways,
because they have different objectives. Asset managers need estimates of (II.1.2) for every

2 The reconstructed ‘constant weight’ series for the portfolio returns will not be the same as the actual historical returns series for
the portfolio, unless the portfolio was rebalanced continually so as to maintain the weights constant. The reason for using current
weights is that the risk manager needs to represent the portfolio as it is now, not as it was last week or last year, and to use this
representation to forecast its risk over a future risk horizon of a few days, weeks or months.
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asset in the investor’s universe in order to forecast the performance of many different
portfolios and hence construct an optimal portfolio; by contrast, a risk manager takes an
existing portfolio and uses (II.1.3) to forecast its risk characteristics. The next section
explains how risk managers and asset managers also use different data and different statistical
techniques to estimate the factor models that they use.

II.1.2.2 Estimating Portfolio Characteristics using OLS

The main lesson to learn from this section is that risk managers and asset managers require
quite different techniques to estimate the parameters of factor models because they have
different objectives:

When asset managers employ a factor model of the form (II.1.2) they commonly use
long histories of asset prices and benchmark values, measuring returns at a weekly or
monthly frequency and assuming that the true parameters are constant. In this case,
the ordinary least squares (OLS) estimation technique is appropriate and the more data
used to estimate them the better, as the sampling error will be smaller. Three to five
years of monthly or weekly data is typical.
When risk managers employ a factor model of the form (II.1.3) they commonly use
shorter histories of portfolio and benchmark values than the asset manager, measuring
returns daily and not assuming that the true values of the parameters are constant. In
this case, a time varying estimation technique such as exponentially weighted moving
averages or generalized autoregressive conditional heteroscedasticity is appropriate.

We shall now describe how to estimate (II.1.2) and (II.1.3) using the techniques that are
appropriate for their different applications. For model (II.1.2) the OLS parameter estimates
based on a sample of size T are given by the formulae3

βi
T
t 1 X t X Rit Ri

T
t 1 X t X

2 and i Ri βiX (II.1.5)

where X denotes the sample mean of the factor returns and Ri denotes the sample mean of
the ith asset returns. The OLS estimate of the specific risk of the ith asset is the estimated
standard error of the model, given by

si
RSSi

T 2
(II.1.6)

where RSSi is the residual sum of squares in the ith regression. See Section I.4.2 for further
details. The following example illustrates the use of these formulae to estimate model (II.1.2)
for two US stocks, using the S&P 500 index as the risk factor.

Example II.1 .1 : OLS estimates of alpha and beta for two stocks

Use weekly data from 3 January 2000 until 27 August 2007 to estimate a single factor
model for the Microsoft Corporation (MSFT) stock and the National Western Life Insurance
Company (NWL) stock using the S&P 500 index as the risk factor.4

3 See Section I.4.2.2.
4 Dividend adjusted data were downloaded from Yahoo! Finance.
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(a) What do you conclude about the stocks’ characteristics?
(b) Assuming the stocks’ specific returns are uncorrelated, what are the characteris-

tics of a portfolio with 70% of its funds invested in NWL and 30% invested in
MSFT?

Solution The spreadsheet for this example computes the weekly returns on the index and
on each of the stocks and then uses the Excel regression data analysis tool as explained in
Section I.4.2.7. The results are

RNWL 0 00358
2 224

0 50596
7 129

RSPX sNWL 0 03212

RMSFT 0 00066
0 3699

1 10421
14 002

RSPX sMSFT 0 03569
(II.1.7)

where the figures in parentheses are the t ratios. We conclude the following:

Since NWL 0 00358 and this is equivalent to an average outperformance of 18.6%
per annum, NWL is a stock with a significant alpha. It also has a low systematic risk
because βNWL 0 50596, which is much less than 1. Its specific risk, expressed as an
annual volatility, is 0 03212 52 23 17%.
Since the t ratio on MSFT is very small, MSFT has no significant outperformance or
underperformance of the index. It also has a high systematic risk because the beta is
slightly greater than 1 and a specific risk of 0 03569 52 25 74%, which is greater
than the specific risk of NWL.

Now applying (II.1.4) gives a portfolio with the following characteristics:

0 7 0 00358 0 3 0 00066 0 00231
β 0 7 0 50596 0 3 1 10421 0 68543

and assuming the specific returns are uncorrelated implies that we can estimate the specific
risk of the portfolio as

s 0 72 23 172 0 32 25 742 17 96%

The next example shows that it makes no difference to the portfolio alpha and beta estimates
whether we estimate them:

from the OLS regressions for the stocks, applying the portfolio weights to the stocks
alphas and betas using (II.1.4) as we did above;
by using an OLS regression of the form (II.1.3) on the constant weighted portfolio
returns.

However, it does make a difference to our estimate of the specific risk on the portfolio!

Example II.1 .2: OLS estimates of portfolio alpha and beta

A portfolio has 60% invested in American Express (AXP) stock and 40% invested in Cisco
Systems (CSCO). Use daily data from 3 January 2000 to 31 December 2007 on the prices of
these stocks and on the S&P 100 index (OEX) to estimate the portfolio’s characteristics by:5

5 Data were downloaded from Yahoo! Finance. The reason we use log returns in this example is explained in Section I.1.4.4.
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(a) applying the same method as in Example II.1.1;
(b) regressing the constant weighted returns series 0 6 Amex Return 0 4 Cisco

Return on the index returns.

Solution The results are computed using an OLS regression of each stock return and of
the constant weighted portfolio returns, and the alpha and beta estimates are summarized in
Table II.1.1. Note that for the first two rows the last column is a weighted sum of the first
two. That is, the portfolio’s alpha could equally well have been calculated by just taking the
weighted sum of the stocks’ alphas, and similarly for the beta. However, if we compute the
specific risk of the portfolio using the two methods we obtain, using method (a),

sP 0 62 0 014162 0 42 0 023372 250 19 98%

But using method (b), we have

sP 0 01150 250 18 19%

The problem is that the specific risks are not uncorrelated, even though we made this
assumption when we applied method (a).

Table II.1.1 OLS alpha, beta and specific risk for two stocks and a 60:40
portfolio

Amex Cisco Portfolio

Alpha 0 00018 0 00022 0 00002
Beta 1 24001 1 76155 1 44863
Regression standard error 0 01416 0 02337 0 01150
Specific risk 22.39 % 36.96 % 18.19 %

We conclude that to estimate the specific risk of a portfolio we need to apply method
(b). That is, we need to reconstruct a constant weighted portfolio series and calculate the
specific risk from that regression. Alternatively and equivalently, we can save the residuals
from the OLS regressions for each stock return and calculate the covariance matrix of these
residuals. More details are given in Section II.1.3.3 below.

II.1.2.3 Estimating Portfolio Risk using EWMA

Whilst OLS may be adequate for asset managers, it is not appropriate to use a long price
history of monthly or weekly data for the risk management of portfolios. Market risks require
monitoring on a frequent basis – daily and even intra-daily – and the parameter estimates
given by OLS will not reflect current market conditions. They merely represent an average
value over the time period covered by the sample used in the regression model.

So, for the purpose of mapping a portfolio and assessing its risks, higher frequency data
(e.g. daily) could be used to estimate a time varying portfolio beta for the model

Y t t βtX t t (II.1.8)

where X t and Y t denote the returns on the market factor and on the stock (or portfolio),
respectively, at time t. In this model the systematic and specific risks are no longer assumed
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constant over time. The time varying beta estimates in (II.1.8) better reflect the current
risk factor sensitivity for daily risk management purposes. To estimate time varying betas
we cannot apply OLS so that it covers only the recent past. This approach will lead to
very significant problems, as demonstrated in Section II.3.6. Instead, a simple time vary-
ing model for the covariance and variance may be applied to estimate the parameters of
(II.1.8). The simplest possible time varying parameter estimates are based on an exponen-
tially weighted moving average (EWMA) model. However the EWMA model is based on
a very simple assumption, that returns are i.i.d. The EWMA beta estimates vary over time,
even though the model specifies only a constant, unconditional covariance and variance.
More advanced techniques include the class of generalized autoregressive conditional het-
eroscedasticity (GARCH) models, where we model the conditional covariance and variance
and so the true parameters as well as the parameter estimates change over time.6

A time varying beta is estimated as the covariance of the asset and factor returns divided
by the variance of the factor returns. Denoting the EWMA smoothing constant by , the
EWMA estimate of beta that is made at time t is

βt
Cov X t Y t

V X t

(II.1.9)

That is, the EWMA beta estimate is the ratio of the EWMA covariance estimate to the
EWMA variance estimate with the same smoothing constant. The modeller must choose
a value for between 0 and 1, and values are normally in the region of 0.9–0.975. The
decision about the value of is discussed in Section II.3.7.2.

We now provide an example of calculating the time varying EWMA betas for the portfolio
in Example II.1.2. Later on, in Section II.4.8.3 we shall compare this beta with the beta that
is obtained using a simple bivariate GARCH model. We assume 0 95, which corresponds
to a half-life of approximately 25 days (or 1 month, in trading days) and compare the EWMA
betas with the OLS beta of the portfolio that was derived in Example II.1.2. These are
shown in Figure II.1.1, with the OLS beta of 1.448 indicated by a horizontal grey line. The
EWMA beta, measured on the left-hand scale, is the time varying black line. The OLS beta
is the average of the EWMA betas over the sample. Also shown in the figure is the EWMA
estimate of the systematic risk of the portfolio, given by

Systematic Risk βt V X t h (II.1.10)

where h denotes the number of returns per year, assumed to be 250 in this example.
During 2001 the portfolio had a beta much greater than 1.448, and sometimes greater than

2. The opposite is the case during the latter part of the sample. But note that this remark does
depend on the choice of : the greater the value of the smoother the resulting series, and
when 1 the EWMA estimate coincides with the OLS estimate. However, when < 1
the single value of beta, equal to 1.448, that is obtained using OLS does not reflect the
day-to-day variation in the portfolio’s beta as measured by the EWMA estimate.

A time varying estimate of the systematic risk is also shown in Figure II.1.1. The portfolio’s
systematic risk is depicted in the figure as an annualized percentage, measured on the right-
hand scale. There are two components of the systematic risk, the beta and the volatility of
the market factor, and the systematic risk is the product of these. Hence the systematic risk
was relatively low, at around 10% for most of the latter part of the sample even though the

6 EWMA and GARCH models are explained in detail in Chapters II.3 and II.4.
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Figure II.1.1 EWMA beta and systematic risk of the two-stock portfolio

portfolio’s beta was greater than 1, because the S&P 100 index had a very low volatility
during this period. On the other hand, in August and October 2002 the portfolio had a
high systematic risk, not because it had a high beta but because the market was particularly
volatile then. By contrast, the OLS estimate of systematic risk is unable to reflect such time
variation. The average volatility of the S&P 100 over the entire sample was 18.3% and so
OLS produces the single estimate of 18 3% 1 448 26 6% for systematic risk. This figure
represents only an average of the systematic risk over the sample period.

II.1.2.4 Relationship between Beta, Correlation and Relative Volatility

In the single index model the beta, market correlation and relative volatility of an asset or a
portfolio with return Y when the market return is X are defined as

β
Cov X Y

V X

Cov X Y

V X V Y

V Y

V X
(II.1.11)

Hence,

β (II.1.12)

i.e. the equity beta is the product of the market correlation and the relative volatility of
the portfolio with respect to the index or benchmark.

The correlation is bounded above and below by 1 and 1 and the relative volatility
is always positive. So the portfolio beta can be very large and negative if the portfolio is
negatively correlated with the market, which happens especially when short positions are
held. On the other hand, very high values of beta can be experienced for portfolios containing
many risky stocks that are also highly correlated with the market.

In Figures II.1.2 and II.1.3 we show the daily EWMA estimates of beta, relative volatil-
ity and correlation (on the right-hand scale) of the Amex and Cisco stocks between
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Figure II.1.2 EWMA beta, relative volatility and correlation of Amex ( 0 95)
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Figure II.1.3 EWMA beta, relative volatility and correlation of Cisco ( 0 95)

January 2001 and December 2007.7 The same scales are used in both graphs, and it is clear
that Cisco has a greater systematic risk than Amex. The average market correlation of both
stocks is higher for Amex (0.713 for Amex and 0.658 for Cisco) but Cisco is much more
volatile than Amex, relative to the market. Hence, EWMA correlation is more unstable and
its EWMA beta is usually considerably higher than the beta on Amex.

7 As before, 0 95.
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II.1.2.5 Risk Decomposition in a Single Factor Model

The principle of portfolio diversification implies that asset managers can reduce the specific
risk of their portfolio by diversifying their investments into a large number of assets that have
low correlation – and/or by holding long and short positions on highly correlated assets. This
way the portfolio’s specific risk can become insignificant. Passive managers, traditionally
seeking only to track the market index, should aim for a net 0 and a net portfolio
β 1 whilst simultaneously reducing the portfolio’s specific risk as much as possible. Active
managers, on the other hand, may have betas that are somewhat greater than 1 if they are
willing to accept an increased systematic risk for an incremental return above the index.

Taking the expectation and variance of (II.1.3) gives

E Y βE X (II.1.13)

If we assume Cov X 0,

V Y β2V X V (II.1.14)

It is very important to recognize that the total portfolio variance (II.1.14) represents the
variance of portfolio returns around the expected return (II.1.13). It does not represent the
variance about any other value! This is a common mistake and so I stress it here: it is
statistical nonsense to measure the portfolio variance using a factor model and then to assume
this figure represents the dispersion of portfolio returns around a mean that is anything other
than (II.1.13). For example, the variance of a portfolio that is estimated from a factor model
does not represent the variance about the target returns, except in the unlikely case that the
expected return that is estimated by the model is equal to this target return.

The first term in (II.1.14) represents the systematic risk of the portfolio and the second
represents the specific risk. When risk is measured as standard deviation the systematic
risk component is β V X and the specific risk component is V . These are normally
quoted as an annualized percentage, as in the estimates given in the examples above.

From (II.1.14) we see that the volatility of the portfolio return – about the expected return
given by the factor model – can be decomposed into three sources:

the sensitivity to the market factor beta,
the volatility of the market factor, and
the specific risk.

One of the limitations of the equity beta as a risk measure is that it ignores the other two
sources of risk: it says nothing about the risk of the market factor itself or about the specific
risk of the portfolio.

We may express (II.1.14) in words as

Total Variance Systematic Variance Specific Variance (II.1.15)

or, since risk is normally identified with standard deviation (or annualized standard deviation,
i.e. volatility),

Total Risk Systematic Risk2 Specific Risk2 1/ 2 (II.1.16)

Thus the components of risk are not additive. Only variance is additive, and then only under
the assumption that the covariance between each risk factor’s return and the specific return
is 0.
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II.1.3 MULTI-FACTOR MODELS

The risk decomposition (II.1.14) rests on an assumption that the benchmark or index is
uncorrelated with the specific returns on a portfolio. That is, we assumed in the above
that Cov X 0. But this is a very strong assumption that would not hold if there were
important risk factors for the portfolio, other than the benchmark or index, that have some
correlation with the benchmark or index. For this reason single factor models are usually
generalized to include more than one risk factor, as assumed in the arbitrage pricing theory
developed by Ross (1976). By generalizing the single factor model to include many risk
factors, it becomes more reasonable to assume that the specific return is not correlated with
the risk factors and hence the risk decomposition (II.1.16) is more likely to hold.

The success of multi-factor models in predicting returns in financial asset markets and
analysing risk depends on both the choice of risk factors and the method for estimating
factor sensitivities. Factors may be chosen according to fundamentals (price–earning ratios,
dividend yields, style factors, etc.), economics (interest rates, inflation, gross domestic
product, etc.), finance (such as market indices, yield curves and exchange rates) or statistics
(e.g. principal component analysis or factor analysis). The factor sensitivity estimates for
fundamental factor models are sometimes based on cross-sectional regression; economic or
financial factor model betas are usually estimated via time series regression; and statistical
factor betas are estimated using statistical techniques based on the analysis of the eigenvectors
and eigenvalues of the asset returns covariance or correlation matrix. These specific types of
multi-factor models are discussed in Sections II.1.4–II.1.6 below. In this section we present
the general theory of multi-factor models and provide several empirical examples.

II.1.3.1 Multi-factor Models of Asset or Portfolio Returns

Consider a set of k risk factors with returns X 1, , Xk and let us express the systematic
return of the asset or the portfolio as a weighted sum of these. In a multi-factor model for
an asset return or a portfolio return, the return Y is expressed as a sum of the systematic
component and an idiosyncratic or specific component that is not captured by the risk
factors. In other words, a multi-factor model is a multiple regression model of the form8

Y t β1X 1t βkX kt t (II.1.17)

In the above we have used a subscript t to denote the time at which an observation is made.
However, some multi-factor models are estimated using cross-sectional data, in which case
the subscript i would be used instead.

Matrix Form

It is convenient to express (II.1.17) using matrix notation, but here we use a slightly different
notation from that which we introduced for multivariate regression in Section I.4.4.2. For
reasons that will become clear later, and in particular when we analyse the Barra model, it
helps to isolate the constant term alpha in the matrix notation. Thus we write

y Xβ t i.i.d. 0 2 (II.1.18)

8 In this chapter, since we are dealing with alpha models, it is convenient to separate the constant term alpha from the other
coefficients. Hence we depart from the notation used for multiple regression models in Chapter I.4. There the total number of
coefficients including the constant is denoted k, but here we have k 1 coefficients in the model.
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where the data may be cross-sectional or time series, y is the column of data on the asset
or portfolio return, X is a matrix containing the data on the risk factor returns, is the
vector 1, where 1 1 1 , β is the vector β1 βk of the asset or portfolio betas
with respect to each risk factor, and is the vector of the asset’s or portfolio’s specific
returns.

OLS Estimation

We remark that (II.1.18) is equivalent to

y Xβ i.i.d. 0 2I (II.1.19)

where I is the identity matrix and

X 1 X and β β

To write down an expression for the OLS estimates of the portfolio alpha and betas, it is easier
to use (II.1.19) than (II.1.18). Since (II.1.19) is the same matrix form as in Section I.4.4.2,
the OLS estimator formula is

β X X
1
X y (II.1.20)

Expected Return and V ariance Decomposition

Applying the expectation and variance operators to (II.1.18) and assuming that the idiosyn-
cratic return is uncorrelated with each of the risk factor returns, we have

E Y β E X (II.1.21)

and

V Y β β V (II.1.22)

where E X is the vector of expected returns to each risk factor and is the covariance
matrix of the risk factor returns. When OLS is used to estimate and β, then E X is the
vector of sample averages of each of the risk factor returns, and is the equally weighted
covariance matrix.

Again I stress that the portfolio variance (II.1.22) represents the dispersion of asset or
portfolio returns about the expected return (II.1.21); it does not represent dispersion about
any other centre for the distribution.

Example II.1 .3: Systematic and speci c risk

Suppose the total volatility of returns on a stock is 25%. A linear model with two risk
factors indicates that the stock has betas of 0.8 and 1.2 on the two risk factors. The factors
have volatility 15% and 20% respectively and a correlation of 0 5. How much of the
stock’s volatility can be attributed to the risk factors, and how large is the stock’s specific
risk?

Solution The risk factor’s annual covariance matrix is

0 0225 0 015
0 015 0 04
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and the stock’s variance due to the risk factors is

β β 0 8 1 2
0 0225 0 015
0 015 0 04

0 8
1 2

0 0432

The volatility due to the risk factors is the square root of 0.0432, i.e. 20.78%. Now assuming
that the covariance between the specific return and the systematic return is 0 and applying
(II.1.15), we decompose the total variance of 0 252 0 0625 as

0 0625 0 0432 0 0193

Hence, the specific volatility of the stock is 0 0193 13 89%.
In summary, the stock’s volatility of 25% can be decomposed into two portions, 20.78%

due to the risk factors and 13.89% of idiosyncratic volatility (specific risk). Note that

25% 20 78%2 13 89%2 1/ 2

in accordance with (II.1.16).

The example above illustrates some important facts:

When the correlation between the specific return and the systematic return is zero, the
variances are additive, not the volatilities.
When the correlation between the specific return and the systematic return is non-zero,
not even the variances are additive.
The asset or portfolio’s alpha does not affect the risk decomposition. The alpha does,
however, have an important effect on the asset or portfolio’s expected return.

II.1.3.2 Style Attribution Analysis

In 1988 the Nobel Prize winner William F. Sharpe introduced a multi-factor regression
of a portfolio’s returns on the returns to standard factors as a method for attributing fund
managers’ investment decisions to different styles.9 For equity portfolios these standard
factors, which are called style factors, are constructed to reflect value stocks and growth
stocks, and are further divided into large, small or medium cap stocks.10

A value stock is one that trades at a lower price than the firm’s financial situation
would merit. That is, the asset value per share is high relative to the stock price and the
price–earnings ratioof the stock will be lower than the market average. Value stocks are
attractive investments because they appear to be undervalued according to traditional
equity analysis.11

A growth stock is one with a lower than average price–earnings–growth ratio, i.e. the
rate of growth of the firm’s earnings is high relative to its price–earnings ratio. Hence
growth stocks appear attractive due to potential growth in the firm assets.

The aim of style analysis is to identify the styles that can be associated with the major
risk factors in a portfolio. This allows the market risk analyst to determine whether a fund
manager’s performance is attributed to investing in a certain asset class, and within this class

9 See Sharpe (1988, 1992).
10 Cap is short for capitalization of the stock, being the total value of the firm’s equity that is issued to the public. It is the market
value of all outstanding shares and is computed by multiplying the market price per share by the number of shares outstanding.
11 The price–earnings ratio is the ratio of the stock’s price to the firm’s annual earnings per share.
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investing in the best performing style, or whether his success or failure was mainly due to
market timing or stock picking. It also allows the analyst to select an appropriate benchmark
against which to assess the fund manager’s performance. Furthermore, investors seeking a
fully diversified portfolio can use style analysis to ensure their investments are spread over
both growth and value investments in both large and small cap funds.

Style Indices

A large number of value and growth style indices based on stocks of different market caps
are available, including the value and growth indices from the S&P 500, Russell 1000,
Russell 2000 and Wilshire 5000 indices. As the number of stocks in the index increases,
their average market cap decreases. Hence, the S&P 500 value index contains value stocks
with an average market cap that is much larger then the average market cap of the stock in
the Wilshire 5000 value index. The criterion used to select the stocks in any index depends
on their performance according to certain value and growth indicators. Value indicators may
include the book-to-price ratio and the dividend yield, and growth indicators may include the
growth in earnings per share and the return on equity.12

W ho Needs Style Analysis?

Whilst style analysis can be applied to any portfolio, hedge funds are a main candidate
for this analysis because their investment styles may be obscure. Information about hedge
funds is often hard to come by and difficult to evaluate. Because of the diverse investment
strategies used by hedge funds, style indices for hedge funds include factors such as option
prices, volatility, credit spreads, or indices of hedge funds in a particular category or strategy.

How to Attribute Investment Styles to a Portfolio

Denote by y the vector of historical returns on the fund being analysed, and denote by X the
matrix of historical data on the returns to the style factors that have been chosen. The selection
of the set of style indices used in the analysis is very important. We should include enough
indices to represent the basic asset classes which are relevant to the portfolio being analysed
and are of interest to the investor; otherwise the results will be misleading. However, the
risk–return characteristics for the selected indices should be significantly different, because
including too many indices often results in severe multicollinearity.13

Style attribution analysis is based on a multiple regression of the form (II.1.18), but with
some important constraints imposed. If we are to fully attribute the fund’s returns to the
styles then the constant must be 0, and the regression coefficients β must be non-negative
and sum to 1. Assuming the residuals are i.i.d., the usual OLS regression objective applies,
and we may express the estimation procedure in the form of the following constrained least
squares problem:

min
β

y Xβ 2 such that
k

i 1

βi 1 and βi 0 i 1 k (II.1.23)

12 Up-to-date data on a large number of style indices are free to download from Kenneth French’s homepage on http://mba.
tuck.dartmouth.edu/pages/faculty/Ken.french/data_library.html. Daily returns since the 1960’s and monthly and annual returns since
the 1920’s are available on nearly 30 US benchmark portfolios.
13 Multicollinearity was introduced in Section I.4.4.8 and discussed further in Section II.1.3.6.
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This is a quadratic programming problem that can be solved using specialist software.
For illustrative purposes only we now implement a style analysis using the Excel Solver.

However, it should be emphasized that the optimizer for (II.1.23) should be carefully designed
and using the Solver is not recommended in practice. See the excellent paper by Kim et al.
(2005) for further details on estimating style attribution models.

Example II.1 .4: Style attribution

Perform a style analysis on the following mutual funds:

VIT – the Vanguard Index Trust 500 Index;
FAA – the Fidelity Advisor Aggressive Fund;
FID – the Fidelity Main Mutual Fund.

Use the following style factors:14

Russell 1000 value: mid cap, value factor;
Russell 1000 growth: mid cap, growth factor;
Russell 2000 value: small cap, value factor;
Russell 2000 growth: small cap, growth factor.

Solution Daily price data adjusted for dividends are downloaded from Yahoo! Finance
from January 2003 to December 2006, and the results of the Excel Solver’s optimization
on (II.1.23) are reported in Table II.1.2, first for 2003–2004 and then for 2005–2006. This
methodology allows one to compare the style differences between funds and to assess how
the styles of a given fund evolve through time.

Table II.1.2 Results of style analysis for Vanguard and Fidelity mutual funds

2003–2004 R1000V R1000G R2000V R2000G

VIT 92 2% 0 0% 0 0% 7 8%
FAA 43 7% 5 0% 0 0% 51 3%
FID 94 1% 0 0% 0 0% 5 9%

2005–2006 R1000V R1000G R2000V R2000G
VIT 90 7% 1 7% 0 0% 7 6%
FAA 22 5% 7 0% 0 0% 70 5%
FID 76 8% 3 9% 0 0% 19 3%

For example, during the period 2003–2004 the FAA appears to be a fairly balanced fund
between value and growth and small and mid cap stocks. Its returns could be attributed
43.7% to mid cap value stocks, 5% to mid cap growth stocks and 51.3% to small cap growth
stocks. However, during the period 2005–2006 the balance shifted significantly toward small
cap growth stocks, because only 22.5% of its returns were attributed to mid cap value stocks,
and 7% to mid cap growth stocks, whereas 70.5% of its returns were attributed to small cap
growth stocks.

14 To reflect cash positions in the portfolio Treasury bills should be added to the list of style factors, but since our aim is simply
to illustrate the methodology, we have omitted them.
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II.1.3.3 General Formulation of Multi-factor Model

We start with the assumption of a multi-factor model of the form (II.1.18) for each asset in
the investment universe. Each asset is assumed to have the same set of risk factors in the
theoretical model, although in the estimated models it is typical that only a few of the risk
factors will be significant for any single asset. Thus we have a linear factor model,

Y jt j βj1X 1t βjkX kt jt jt i.i.d. 0 2
j (II.1.24)

for each asset j 1 m. The equivalent matrix form of (II.1.24) is

yj j Xβj j j i.i.d. 0 2
j I (II.1.25)

where T is the number of observations in the estimation sample; yj is the T 1 vector of
data on the asset returns; X is the same as in (II.1.18), i.e. a T k matrix containing the
data on the risk factor returns; j is the T 1 vector j j ; βj is the k 1 vector
βj1 βjk of the asset’s betas with respect to each risk factor; and j is the vector of the

asset’s specific returns.
We can even put all the models (II.1.25) into one big matrix model, although some care

is needed with notation here so that we do not lose track!15 Placing the stock returns into a
T m matrix Y, where each column represents data on one stock return, we can write

Y A XB 0 (II.1.26)

where X is the same as above, A is the T m matrix whose jth column is the vector j, and
B is the k mmatrix whose jth column is the vector βj. In other words, B is the matrix whose
i jth element is the sensitivity of the jth asset to the ith risk factor, is the T m matrix
of errors whose jth column is the vector j, and is the covariance matrix of the
errors, i.e.

V

2
1 12 1m

m1 m2
2
m

where ij denotes the covariance between i and j.
Now consider a portfolio with m 1 weights vector w w1 wm . The portfolio

return at time t as a weighted sum of asset returns, i.e.

Y t

m

j 1

wjY jt

In other words, the T 1 vector of data on the ‘current weighted’ portfolio returns is

y Yw

Hence, by (II.1.26),

y Aw XBw w (II.1.27)

15 We only provide an intuitive representation here. The correct approach uses stacked variables and derives the covariance matrix
of the errors as a Kronecker product of with the T T identity matrix. See, for example, Greene (2007) or Gross (2003) for
further details.
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But, of course, (II.1.27) must be identical to the model (II.1.18). Thus:

the portfolio alpha vector is Aw;
the beta on the jth risk factor is the weighted sum of the asset betas on that risk factor,
i.e. the portfolio beta vector is β Bw;
the portfolio’s specific returns are w, i.e. the specific return at time t is the
weighted sum of the assets’ specific returns at time t.

We remark that the expression of the portfolio’s specific return in the form w makes it
clear that we must account for the correlation between asset specific returns when estimating
the specific risk of the portfolio.

The above shows that, theoretically, we can estimate the portfolio’s characteristics (alpha
and beta and specific return) in two equivalent ways:

find the portfolio weighted sum of the characteristics of each asset, or
estimate the portfolio characteristics directly using the model (II.1.18).

However, whilst this is true for the theoretical model it will not be true for the estimated
model unless there is only one factor. The reason is that because of the sampling error,
weighting and summing the estimated asset characteristics as in (II.1.27) gives different
results from those obtained by forming a current weighted historical series for the portfolio
return and estimating the model (II.1.18).

Applying the variance operator to (II.1.27) and assuming that each asset’s specific return
is uncorrelated with each risk factor, gives an alternative to (II.1.22) in a form that makes
the portfolio weights explicit, viz.

V Y β β w w (II.1.28)

where is the covariance matrix of the assets’ specific returns. So as in (II.1.14) one can
again distinguish three sources of risk:

the risks that are represented by the portfolio’s factor sensitivities β;
the risks of the factors themselves, represented by the risk factor covariance matrix ;
the idiosyncratic risks of the assets in the portfolio, represented by the variance of
residual returns, w w.

Example II.1 .5: Systematic risk at the portfolio level

Suppose a portfolio is invested in only three assets, with weights 0 25, 0.75 and 0.5,
respectively. Each asset has a factor model representation with the same two risk factors as
in Example II.1.3 and the betas are: for asset 1, 0.2 for the first risk factor and 1.2 for the
second risk factor; for asset 2, 0.9 for the first risk factor and 0.2 for the second risk factor;
and for asset 3, 1.3 for the first risk factor and 0.7 for the second risk factor. What is the
volatility due to the risk factors (i.e. the systematic risk) for this portfolio?

Solution The net portfolio beta on each factor is given by the product Bw. We have

B
0 2 0 9 1 3
1 2 0 2 0 7

and w
0 25
0 75
0 5

so β
1 275

0 2

With the same risk factor covariance matrix as in the previous example,

β β 1 275 0 2
0 0225 0 015
0 015 0 04

1 275
0 2

0 0305

so the portfolio volatility due to the risk factors is 0 0305 17 47%.
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II.1.3.4 Multi-factor Models of International Portfolios

In this text we always use the term foreign exchange rate (or forex rate) for the domestic value
of a foreign unit of currency. International portfolios have an equivalent exposure to foreign
exchange rates; for each nominal amount invested in a foreign security the same amount of
foreign currency must be purchased. Put another way, for each country of investment the
foreign exchange rate is a risk factor and the portfolio’s sensitivity to the exchange rate risk
factor is one. In addition to the exchange rate, for each country of exposure we have the
usual (fundamental or statistical) market risk factors.

Consider an investment in a single foreign asset. The price of a foreign asset in domestic
currency is the asset price in foreign currency multiplied by the foreign exchange rate. Hence
the log return on a foreign asset in domestic currency terms is

RD RF X

where RF is the asset return in foreign currency and X is the forex return. We suppose the
systematic return on the asset in foreign currency is related to a single foreign market risk
factor, such as a broad market index, with return R and factor beta β. Then the systematic
return on the asset in domestic currency is βR X . Hence, there are two risk factors affecting
the return on the asset:

the exchange rate (with a beta of 1); and
the foreign market index (with a beta of β).

Thus the systematic variance of the asset return in domestic currency can be decomposed
into three different components:

Systematic Variance V βR X β2V R V X 2βCov R X (II.1.29)

For instance, if the asset is a stock, there are three components for systematic variance which
are labelled:

the equity variance, β2V R ;
the forex variance, V X ;
the equity–forex covariance, 2βCov R X .

A portfolio of foreign assets in the same asset class with a single foreign market risk
factor having return R has the same variance decomposition as (II.1.29), but now β denotes
the net portfolio beta with respect to the market index, i.e. β w β, where w is the vector
of portfolio weights and β is the vector of each asset’s market beta.

We can generalize (II.1.29) to a large international portfolio with exposures in k
different countries. For simplicity we assume that there is a single market risk factor
in each foreign market. Denote by R1 R2 Rk the returns on the market factors, by
β1 β2 βk the portfolio betas with respect to each market factor and by X 1 X 2 Xk

the returns on the foreign exchange rates. Assuming R1 is the domestic market factor, then
X 1 1 and there are k equity risk factors but only k 1 foreign exchange risk factors. Let
w w1 w2 wk be the country portfolio weights, i.e. wi is the proportion of the port-
folio’s value that is invested in country i. Then the systematic return on the portfolio may be
written as

w1β1R1 w2 β2R2 X 2 wk βkRk X k Bw x (II.1.30)

where x is the 2k 1 1 vector of equity and forex risk factor returns and B is the
2k 1 k matrix of risk factor betas, i.e.
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x R1 Rk X 2 Xk and B
diag β1 β2 βk
0 I k 1 k 1

Taking variances of (II.1.30) gives

Systematic Variance Bw Bw (II.1.31)

where

V R1 Cov R1 Xk

Cov R1 R2 V R2

Cov R1 Xk V X k

is the covariance matrix of, the equity and forex risk factor returns.
We may partition the matrix as

E EX

EX X
(II.1.32)

where E is the k k covariance matrix of the equity risk factor returns, X is the k 1
k 1 covariance matrix of the forex risk factor returns and EX is the k k 1 ‘quanto’

covariance matrix containing the cross covariances between the equity risk factor returns
and the forex risk factor returns. Substituting (II.1.32) into (II.1.31) gives the decomposition
of systematic variance into equity, forex and equity–forex components as

β Eβ w Xw 2β EXw (II.1.33)

where w w2 wk and

β diag β1 βk w w1β1 wkβk

Example II.1 .6: Decomposition of systematic risk into equity and forex factors

A UK investor holds £2.5 million in UK stocks with a FTSE 100 market beta of 1.5,
£1 million in US stocks with an S&P 500 market beta of 1.2, and £1.5 million in German
stocks with a DAX 30 market beta of 0.8. The volatilities and correlations of the FTSE 100,
S&P 500 and DAX 30 indices, and the USD/GBP and EUR/GBP exchange rates, are shown
in Table II.1.3. Calculate the systematic risk of the portfolio and decompose it into equity,
forex and equity–forex components.

Table II.1.3 Risk factor correlations and volatilities

Correlation FTSE 100 S&P 500 DAX 30 USD/GBP EUR/GBP

FTSE 100 1
S&P 500 0 8 1
DAX 30 0 7 0.6 1
USD/GBP 0 2 0 25 0 05 1
EUR/GBP 0 3 0 05 0 15 0 6 1

Volatilities 20% 22% 25% 10% 12%

Solution The covariance matrix of the risk factor returns is calculated from the infor-
mation in Table II.1.3 in the spreadsheet, and this is given in Table II.1.4. The upper
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Table II.1.4 Risk factor covariance matrix

FTSE 100 S&P 500 DAX 30 USD/GBP EUR/GBP

FTSE 100 0.04 0.0352 0.035 0.004 0.0072
S&P 500 0.0352 0.0484 0.033 0.0055 0.00132
DAX 30 0.035 0.033 0.0625 0.00125 0.0045
USD/GBP 0.004 0.0055 0.00125 0.01 0.0072
EUR/GBP 0.0072 0.00132 0.0045 0.0072 0.0144

left shaded 3 3 matrix is the equity risk factor returns covariance matrix E, the
lower right shaded 2 2 matrix is the forex factor returns covariance matrix X , and
the upper right unshaded 3 2 matrix is the quanto covariance matrix EX . The risk factor
beta matrix B, portfolio weights w and their product Bw are given as follows:

B

1 5 0 0
0 1 2 0
0 0 0 8
0 1 0
0 0 1

w
0 5
0 2
0 3

Bw

0 75
0 24
0 24
0 2
0 3

β
0 75
0 24
0 24

Hence, the systematic variance is

Bw Bw 0 75 0 24 0 24 0 2 0 3

0 04 0 0352 0 035 0 004 0 0072
0 0352 0 0484 0 033 0 0055 0 00132
0 035 0 033 0 0625 0 00125 0 0045
0 004 0 0055 0 00125 0 01 0 0072

0 0072 0 00132 0 0045 0 0072 0 0144

0 75
0 24
0 24
0 20
0 30

0 064096

and the systematic risk is 0 064096 25 32%.
The three terms in (II.1.33) are

Equity Variance β Eβ 0 75 0 24 0 24
0 04 0 0352 0 035

0 0352 0 0484 0 033
0 035 0 033 0 0625

0 75
0 24
0 24

0 05796

so the equity risk component is 0 05796 24 08%;

FX Variance w Xw 0 2 0 3
0 01 0 0072

0 0072 0 0144
0 2
0 3

0 00256

so the forex risk component is 0 00256 5 06%;

Quanto Covariance β EXw 0 75 0 24 0 24
0 004 0 0072

0 0055 0 00132
0 00125 0 0045

0 2
0 3

0 001787
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In accordance with (II.1.33) the three terms sum to the total systematic variance, i.e.

0 05796 0 00256 0 003574 0 064096

Taking the square root gives the total systematic risk as 25.32%, which is identical to the
result obtained by direct calculation above. The quanto covariance happened to be positive
in this example, but it could be negative. In that case the total systematic variance will be
less than the sum of the equity variance and the forex variance – and it could even be less
than both of them!

When each stock in a portfolio has returns representation (II.1.25), the risk decomposition
(II.1.28) shows how the portfolio’s systematic risk is represented using the stock’s factor
betas B and the risk factor covariance matrix . We can also decompose total risk into
systematic risk and specific risk, using techniques that are similar to those used in the simple
numerical example above.

II.1.4 CASE STUDY: ESTIMATION OF FUNDAMENTAL
FACTOR MODELS

In this section we provide an empirical case study of risk decomposition using historical
prices of two stocks (Nokia and Vodafone) and four fundamental risk factors:16

(i) a broad market index, the New York Stock Exchange (NYSE) composite index;
(ii) an industry factor, the Old Mutual communications fund;
(iii) a growth style factor, the Riverside growth fund; and
(iv) a capitalization factor, the AFBA Five Star Large Cap fund.

Figure II.1.4 shows the prices of the two stocks and the four possible risk factors, with each
series rebased to be 100 on 31 December 2000.

0

20

40

60

80

100

120

140

D
ec

-0
0

A
pr

-0
1

A
ug

-0
1

D
ec

-0
1

A
pr

-0
2

A
ug

-0
2

D
ec

-0
2

A
pr

-0
3

A
ug

-0
3

D
ec

-0
3

A
pr

-0
4

A
ug

-0
4

D
ec

-0
4

A
pr

-0
5

A
ug

-0
5

D
ec

-0
5

Nokia
Vodafone
NYSE Index
Large Cap
Growth
Communications

Figure II.1.4 Two communications stocks and four possible risk factors

16 All data were downloaded from Yahoo! Finance.
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Using regression to build a multi-factor model with these four risk factors gives rise to
some econometric problems, but these are not insurmountable as will be shown later in this
section. The main problem with this factor model is with the selection of the risk factors. In
general, the choice of risk factors to include in the regression factor model is based on the
user’s experience: there is no econometric theory to inform this choice.

II.1.4.1 Estimating Systematic Risk for a Portfolio of US Stocks

The first example in this case study uses a factor model for each stock based on all four risk
factors.

Example II.1 .7: Total risk and systematic risk

On 20 April 2006 a portfolio is currently holding $3 million of Nokia stock and $1 million
of Vodafone stock. Using the daily closing prices since 31 December 2000 that are shown
in Figure II.1.4:

(a) estimate the total risk of the portfolio volatility based on the historical returns on the
two stocks;

(b) estimate the systematic risk of the portfolio using a four-factor regression model for
each stock.

Solution

(a) A current weighted daily returns series for the portfolio is constructed by taking
0 25 return on Vodafone 0 75 return on Nokia . The standard deviation of

these returns (over the whole data period) is 0.0269, hence the estimate of the portfolio
volatility is 250 0 0269 42 5%.17

(b) An OLS regression of the daily returns for each stock on the daily returns for the
risk factors – again using the whole data period – produces the results shown in
Table II.1.5. The t statistics shown in the table are test statistics for the null hypothesis
that the true factor beta is 0 against the two-sided alternative hypothesis that it is not
equal to 0. The higher the absolute value of the t statistic, the more likely we are to
reject the null hypothesis and conclude that the factor does have a significant effect
on the stock return. The p value is the probability that the true factor beta is 0, so a
high t statistic gives a low probability value.

Table II.1.5 Factor betas from regression model

Vodafone Nokia

est. beta t stat. p value est. beta t stat. p value

Intercept 0 000 0 467 0 640 0 000 0 118 0 906
NYSE index 0 857 5 835 0 000 0 267 1 545 0 123
Communications 0 137 2 676 0 008 0 271 4 471 0 000
Growth 0 224 1 885 0 060 0 200 1 432 0 152
Large Cap 0 009 0 068 0 946 1 146 7 193 0 000

17 Nokia and Vodafone are both technology stocks, which were extremely volatile during this sample period.
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Leaving aside the problems associated with this regression until the next subsection, we
extract from this the sensitivity matrix

B

0 857 0 267
0 137 0 271
0 224 0 200
0 009 1 146

Now, given the weights vector

w
0 25
0 75

the net portfolio betas are

β

0 857
0 137
0 224
0 009

0 267
0 271
0 200
1 146

0 25
0 75

0 0136
0 2372
0 2620
0 8618

In the spreadsheet for this example we also calculate the risk factor returns covariance
matrix as

10 02 17 52 10 98 11 82
17 52 64 34 28 94 27 53
10 98 28 94 16 86 15 06
11 82 27 53 15 06 16 90

10 5

The portfolio variance attributable to the risk factors is β β and this is calculated in the
spreadsheet as 36 78 10 5. The systematic risk, expressed as an annual percentage, is the
square root of this. It is calculated in the spreadsheet as 30.3%. The reason why this is much
lower than the total risk of the portfolio that is estimated in part (a) is that the factor model
does not explain the returns very well. The R2 of the regression is the squared correlation
between the stock return and the explained part of the model (i.e. the sum of the factor
returns weighted by their betas). The correlation is 58.9% for the Vodafone regression and
67.9% for the Nokia regression. These are fairly high but not extremely high, so a significant
fraction of the variability in each of the stock’s returns is unaccounted for by the model.
This variability remains in the model’s residuals, so the specific risks of these models can
be significant.

II.1.4.2 Multicollinearity: A Problem with Fundamental Factor Models

Multicollinearity is defined in Section I.4.4.8. It refers to the correlation between the explana-
tory variables in a regression model: if one or more explanatory variables are highly corre-
lated then it is difficult to estimate their regression coefficients. We say that a model has
a high degree of multicollinearity if two or more explanatory variables are highly (positive
or negatively) correlated. Then their regression coefficients cannot be estimated with much
precision and, in technical terms, the efficiency of the OLS estimator is reduced. The multi-
collinearity problem becomes apparent when the estimated coefficients change considerably
when adding another (collinear) variable to the regression. There is no statistical test for
multicollinearity, but a useful rule of thumb is that a model will suffer from it if the square
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of the pairwise correlation between two explanatory variables is greater than the multiple R2

of the regression.
A major problem with estimating fundamental factor models using time series data is

that potential factors are very often highly correlated. In this case the factor betas cannot be
estimated with precision. To understand the effect that multicollinearity has on the estimated
factor betas, let us consider again the factor model of Example II.1.7. Table II.1.6 starts with
an OLS estimation of a single factor for each stock (the returns on the NYSE composite
index) and then adds one factor at a time. Each time we record the factor beta estimate, its
t statistic and probability value as explained in Example II.1.7. We exclude the intercept as
it is always insignificantly different from zero in these regressions, but in each case we state
the R2 of the regression.

Table II.1.6 Multicollinearity in time series factor models

Vodafone 1 Factor 2 Factors 3 Factors 4 Factors

beta t stat. p-value beta t stat. p-value beta t stat. p-value beta t stat. p-value

NYSE index 1 352 25 024 0 000 0 996 13 580 0 000 0 864 8 539 0 000 0 857 5 835 0 000
Communications 0 204 7 042 0 000 0 139 3 103 0 002 0 137 2 676 0 008
Growth 0 224 1 895 0 058 0 224 1 885 0 060
Large Cap 0 009 0 068 0 946
Multiple R 0.566 0.587 0.589 0.589

Nokia 1 Factor 2 Factors 3 Factors 4 Factors

beta t stat. p-value beta t stat. p-value beta t stat. p-value beta t stat. p-value

NYSE index 1 777 25 475 0 000 0 795 9 022 0 000 0 635 5 218 0 000 0 267 1 545 0 123
Communications 0 561 16 134 0 000 0 483 8 962 0 000 0 271 4 471 0 000
Growth 0 273 1 919 0 055 0 200 1 432 0 152
Large Cap 1 146 7 193 0 000
Multiple R 0.573 0.662 0.663 0.679

The one-factor model implies that both stocks are high risk, relative to the NYSE index:
their estimated betas are 1.352 (Vodafone) and 1.777 (Nokia) and both are significantly
greater than 1. The R2 of 56.6% (Vodafone) and 57.3% (Nokia) indicates a reasonable fit,
given there is only one factor. The two-factor model shows that the communications factor
is also able to explain the returns on both stocks, and it is especially important for Nokia,
with a t statistic of 16.134.

Notice that the addition of this factor has dramatically changed the NYSE beta estimate:
it is now below 1, for both stocks. In the three-factor model the NYSE beta estimate
becomes even lower, and so does the communications beta. Yet the growth index is only
marginally significant: it has a probability value of around 5%. The addition of the final
‘large cap’ factor in the four-factor model has little effect on Vodafone – except that the
NYSE and communications beta estimates become even less precise (their t statistics become
smaller) – and the large cap factor does not seem to be important for Vodafone. But it
is very important for Nokia: the t statistic is 7.193 so the beta of 1.146 is very highly
significantly different from 0. And now the NYSE and communications beta estimates
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change dramatically. Starting with a NYSE beta of 1.777 in the single factor model, we end
up in the four-factor model with a beta estimate of 0 267!

So, what is going on here? Which, if any, of these is the correct beta estimate? Let us
see whether multicollinearity could be affecting our results. It certainly seems to be the
case, because our betas estimates are changing considerably when we add further factors.
Table II.1.7 shows the factor correlation matrix for the sample period. All the factors are
very highly correlated. The lowest correlation, of 69%, is between the NYSE Index and the
communications factor. The square of this is lower than the multiple R2 of the regressions.
However, the other correlations shown in Table II.1.7 are very high, and their squares
are higher than the multiple R2 of the regressions. Obviously multicollinearity is causing
problems in these models. The ‘large cap’ factor is the most highly correlated with the other
factors and this explains why the model really fell apart when we added this factor.

Table II.1.7 Factor correlation matrix

NYSE Index Communications Growth Large Cap

NYSE index 1
Communications 0 690 1
Growth 0 845 0 879 1
Large Cap 0 909 0 835 0 892 1

Because of the problem with multicollinearity the only reliable factor beta estimate is one
where each factor is taken individually in its own single factor model. But no single factor
model can explain the returns on a stock very well. A large part of the stock returns variation
will be left to the residual and so the systematic risk will be low and the stock specific risk
high. We cannot take these individual beta estimates into (II.1.24) with k 4: they need to
be estimated simultaneously. So how should we proceed? The next section describes the
method that I recommend.

II.1.4.3 Estimating Fundamental Factor Models by Orthogonal Regression

The best solution to a multicollinearity problem is to apply principal component analysis to all
the potential factors and then use the principal components as explanatory variables, instead
of the original financial or economic factors. Principal component analysis was introduced
in Section I.2.6 and we summarize the important learning points about this analysis at the
beginning of the next chapter. In the context of the present case study we shall illustrate
how principal component analysis may be applied in orthogonal regression to mitigate the
multicollinearity problem in our four-factor model.

We shall apply principal component analysis to the risk factor returns covariance matrix.
Table II.1.8 displays the eigenvalues of this matrix, and the collinearity of the risk factor
returns is evident since the first eigenvalue is relatively large. It indicates that the first
principal component explains over 90% of the variation in the risk factors and hence it is
capturing a strong common trend in the four risk factors. With just two principal components
this proportion rises to 97.68%.18

18 But note that the second and higher principal components do not have an intuitive interpretation because the system is not
ordered, as it is in a term structure.
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Table II.1.8 Eigenvalues and eigenvectors of the risk factor covariance matrix

Eigenvalues 1 2 3 4

Eigenvalue 0.000976 0.000080 0.000017 0.0000078
Variation explained 90.25% 7.44% 1.60% 0.72%
Cumulative variation 90.25% 97.68% 99.28% 100%

Eigenvectors w1 w2 w3 w4

NYSE index (RF1) 0.259987 0.609012 0.103850 0.742110
Communications (RF2) 0.795271 –0.566012 0.139657 0.166342
Growth (RF3) 0.391886 0.271074 –0.845368 –0.241448
Large cap (RF4) 0.382591 0.485030 0.505039 –0.602749

Since the principal components are uncorrelated by design, a regression of the stock’s
returns on the principal components has no problem with multicollinearity – quite the
opposite in fact, because the factors are orthogonal. Then the estimated coefficients in this
regression can be used to recover the risk factor betas. To see how this is done, recall from
Section I.2.6 that the mth principal component is related to the mth eigenvector wm and the
risk factor returns as follows:

PCm w1mRF1 w4mRF4 where wm w1m w2m w3m w4m (II.1.34)

Now suppose we estimate a regression of the stock’s returns on the principal component
factors, using OLS, and the estimated regression model is

Vodafone return
k

i 1
iPCi k 4 (II.1.35)

Substituting (II.1.34) into (II.1.35) gives the representation of the stock’s return in terms of
the original factors:

Vodafone return
4

i 1

βiRFi where βi
k

j 1
jwij (II.1.36)

Hence the net betas will be a weighted sum of the regression coefficients i in (II.1.35).
Table II.1.9 shows these regression coefficients and their t statistics, first with k 4 and

then with k 2, and below this the corresponding risk factor betas obtained using (II.1.36).
Note that when all four principal components are used the risk factor betas are identical to
those shown in the last column of Table II.1.6, as is the regression R2.

However, our problem is that the four-factor model estimates were seriously affected by
multicollinearity. Of course there is no such problem in the regression of Table II.1.9, so
this does not bias the t statistics on the principal components. But we still cannot disentangle
the separate effects of the risk factors on the stock returns. The solution is to use only the
two main principal components as explanatory variables, as in the right-hand section of
Table II.1.9 which corresponds to the results when k 2. Then the regression R2 is not much
less than it is when k 4, but the net betas on each risk factor are quite different from those
shown in the right-hand column of Table II.1.6. We conclude that the estimates for the risk
factor betas shown in the right-hand column of Table II.1.9 are more reliable than those in
the right-hand column of Table II.1.6.
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Table II.1.9 Using orthogonal regression to obtain risk factor betas

Vodafone 4-Factor 2-Factor

Coefficients t stat. Coefficients t stat.
PC1 0 4230 24 8809 0 4230 24 8044
PC2 0 5090 8 5935 0 5090 8 5670
PC3 0 0762 0 5971
PC4 0 5989 3 1390

R 58.87% 58.44%

Net betas

NYSE index 0 8566 0 4200
Communications 0 1373 0 0483
Growth 0 2236 0 3038
Large Cap 0 0092 0 4087

Nokia 4-Factor 2-Factor

Coefficients t stat. Coefficients t stat.
PC1 0 6626 33 0451 0 6626 32 7808
PC2 0 2942 4 2113 0 2942 4 1776
PC3 0 4194 2 7860
PC4 0 8926 3 9669

R 67.88% 67.17%

Net betas

NYSE index 0 2674 0 3514
Communications 0 2705 0 3604
Growth 0 2003 0 3394
Large Cap 1 1461 0 3962

In Example II.1.7 we estimated the systematic risk that is due to the four risk factors as
24.7%. But there the risk factor beta matrix was affected by multicollinearity. Now we use
the orthogonal regression estimates given in the right-hand column of Table II.1.9, i.e.

B

0 4200 0 3514
0 0483 0 3604
0 3038 0 3394
0 4087 0 3962

This gives the portfolio beta vector as

β

0.3686
0.2824
0.3305
0.3993

and the systematic risk is now calculated as 30.17%, as shown in the spreadsheet for this
example.

II.1.5 ANALYSIS OF BARRA MODEL

The Barra model is a fundamental multi-factor regression model where a stock return is
modelled using market and industry risk factor returns and certain fundamental factors
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called the Barra risk indices. The risk associated with a stock return is decomposed into the
undiversifiable risk due to the market factor and two types of diversifiable risk: (a) the risk
due to fundamental factors and industry risk factors, and (b) specific risk.

Barra has developed models for specific equity markets, starting with the US market in
1975, followed by the UK market in 1982, and since then many others. In each market
Barra calculates a number of common risk indices and an industry classification to explain
the diversifiable risks associated with a given stock. In the UK equity model there are 12
common risk indices and 38 industry indices.

The purpose of the Barra model is to analyse the relationship between a portfolio’s return
and the return on its benchmark. The difference between these two returns is called the
relative return, also called the active return. A precise definition is given in Section II.1.5.2
below. The Barra model has two parts:

an optimizer (ACTIVOPS) used to construct benchmark tracking portfolios with a
required number of stocks and to design portfolios with maximum expected return
given constraints on risk and weightings;
a risk characterization tool (IPORCH) used to assess the tracking error (i.e. the standard
deviation of the active returns) given a portfolio and benchmark.

With the help of the risk indices and industry indices, the Barra model explains the active
return on a portfolio and the uncertainty about this active return in terms of:

the relative alpha of the portfolio, i.e. the difference between the alpha of the portfolio
and the benchmark alpha (note that if the benchmark is the market index then its alpha
is 0);
the relative betas of the portfolio, i.e. the difference between the beta of the portfolio
and the benchmark beta, with respect to the market, industry factors and Barra risk
indices (note that if the benchmark is the market index then its market beta is 1 and its
other betas are 0).

II.1.5.1 Risk Indices, Descriptors and Fundamental Betas

The Barra fundamental risk factors are also called common risk indices because they reflect
common characteristics among different companies. The risk indices and their structure are
different for every country. Each risk index is built from a number of subjectively chosen
descriptors. For instance, the risk index ‘Growth’ in the UK model is given by the following
descriptors:

earnings growth over 5 years;
asset growth;
recent earnings change;
change in capital structure;
low yield indicator.

Each descriptor is standardized with respect to the stock universe: in the case of the UK
model the universe is the FT All Share index. The standardization is applied so that the FT
All Share index has zero sensitivity to each descriptor and so that the variance of descriptor
values taken over all stocks in the universe is 1.
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The factor loading on each descriptor is determined by a cross-sectional regression of all
stocks in the universe, updated every month. That is, the factor loading is the estimated
regression coefficient on the descriptor from the regression

Y i β1Di1 βMDiM i

where M is the number of descriptors, Di1 DiM are the descriptor values for stock i and
i 1 N where N is the number of stocks in the universe. Each risk index has a Barra
fundamental beta which is calculated as the sum of the factor loadings on all the descriptors
for that risk index.

The use of these descriptors allows the Barra model to analyse companies with very little
history of returns, because the relevant descriptors for a stock can be allocated qualitatively.
No history is required because the firm’s descriptors may be allocated on the basis of the
company profile, but historical data are useful for testing the judgement used. The chosen
descriptors are then grouped into risk indices, so that the important determinants of the
returns can be analysed. In the UK model the risk indices are:

earnings variability, which also measures cash-flow fluctuations;
foreign exposure, which depends on percentage of sales that are exports, and other
descriptors related to tax and world markets;
growth, which indicates the historical growth rate;
labour intensity, which estimates the importance of labour costs, relative to capital;
leverage, which depends on the debt–equity ratio and related descriptors;
non-FTA indicator, which captures the behaviour of small firms not in the FTSE All
Share index;
size, which depends on market capitalization;
success, which is related to earnings growth;
trading activity, which is relative turnover as a percentage of total capitalization;
value to price, which is determined by the ratio of book value to market price and other
related descriptors;
variability, a measure of the stock’s systematic risk; and
yield, a measure of current and historical dividend yield.

The market portfolio is the portfolio of all stocks in the universe with weights proportional
to their capitalization. In the UK model the market portfolio is taken to be the FT All Share
index. Each month descriptors are standardized so that the risk index sensitivities of the
market portfolio are 0, and so that each risk index has a variance of 1 when averaged over all
stocks in the universe. Hence, the covariance matrix of the descriptors equals the correlation
matrix. Each month the risk index correlation matrix is obtained from the correlation matrix
of the standardized descriptors for each stock in the universe.

Each stock in the universe is assigned to one or more of the industries. In the UK model
this is done according to the Financial Times classification. The Barra handbook is not
entirely clear about the method used to estimate the covariances of the industry factors and
their factor betas. My own interpretation is that they use cross-sectional analysis, just as
they do for the risk indices. Each month there are N data points for each industry factor,
where N is the number of stocks in the industry. For instance, the industry ‘Breweries’ will
have a vector such as (0, 0, 1, 1, 0, , 1) where 1 in the ith place indicates that stock i is
included in the brewery industry. This way the industry data will have the same dimension
as the descriptor and risk index data, and then the Barra model will be able to estimate,
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each month, a cross-correlation matrix between the risk indices and the industry factors, as
per the results shown in the Barra handbook. The cross-correlation matrix – which is the
same as the cross-covariance matrix because of the standardization described above – is
important because it is used in the risk decomposition of a portfolio, as explained in the next
subsection.

II.1.5.2 Model Specification and Risk Decomposition

Consider a specific portfolio P and its corresponding benchmark B. The multi-factor Barra
model applied to this portfolio and its benchmark may be written

RP P βPX
12

k 1
βF k
P RF k

38

k 1
βI kP RI k

P

RB B βBX
12

k 1
βF k
B RF k

38

k 1
βI kB RI k

B

(II.1.37)

with the following notation:

X return on the market index
RF k return on the kth (standardized) risk index;
RI k return on the kth industry index;

P portfolio alpha;

B benchmark alpha ( 0 if benchmark is market index);
βP portfolio market beta;
βB benchmark market beta ( 1 if benchmark is market index);
βF k
P portfolio fundamental beta on the kth (standardized) risk index;
βF k
B benchmark fundamental beta ( 0 if benchmark is market index);
βI iP portfolio beta on the ith industry index;
βF i
B benchmark beta on the ith industry index ( 0 if benchmark is market index);

P portfolio specific return;

B benchmark specific return ( 0 if benchmark is market index).

In more concise matrix notation the model (II.1.37) may be written

RP P βPX βF
P RF βI

P RI
P

RB B βBX βF
B RF βI

B RI
B

(II.1.38)

where βF
P βF 1

P βF 12
P and the other vector notation follows analogously.

The active return on the portfolio is then defined as19

Y RP RB P B βP βB X βF
P βF

B RF βI
P βI

B RI
P B

Now defining the relative alpha as P B and the relative betas as

β βP βB βF βF
P βF

B and βI βI
P βI

B

and setting P B we may write the model in terms of the portfolio’s active return as:

Y βX βF RF βI RI (II.1.39)

19 This definition is based on the relationship between active, portfolio and benchmark log returns. But ordinary returns are used in
the derivation of the factor model for the portfolio (because the portfolio return is the weighted sum of the stock returns, not log
returns). Hence, the relationship (II.1.39) is based on the fact that returns and log returns are approximately equal if the return is
small, even though this is the case only when returns are measured over a short time interval such as one day.
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Taking expectations of the active return and noting that the Barra fundamental risk indices
are standardized to have zero expectation gives

E Y βE X βI E RI (II.1.40)

and taking variances of the active return gives:

V Y β β V (II.1.41)

where β is the column vector of all the betas in the model and is the covariance matrix
of the market, risk index and industry factor returns.

The user of the Barra model defines a portfolio and a benchmark and then the IPORCH
risk characterization tool estimates the portfolio’s alpha and the vector of portfolio betas.
It also outputs the ex ante tracking error, which is defined as the annualized square root
of V Y in (II.1.41). It is important to note that this ex ante tracking error represents
uncertainty about the expected relative return (II.1.40) and not about any other relative
return. In particular, the tracking error does not represent dispersion about a relative return
of zero, unless the portfolio is tracking the benchmark. When a portfolio is designed to
track a benchmark, stocks are selected in such a way that the expected relative return is
zero. But in actively managed portfolios the alpha should not be zero, otherwise there is no
justification for the manager’s fees. In this case (II.1.40) will not be zero, unless by chance

βE X βI E RI 0, which is very highly unlikely.
Further discussion of this very important point about the application of the Barra model to

the measurement of active risk is given in the next section. It is important not to lose sight
of the fact that the Barra model is essentially a model for alpha management, i.e. its primary
use is to optimize active returns by designing portfolios with maximum expected return,
given constraints on risk and weightings.20 It is also useful for constructing benchmark
tracking portfolios with a required number of stocks. It may also be used for estimating and
forecasting portfolio risk but only if the user fully understands the risk that the Barra model
measures.

Unfortunately, it is a common mistake to estimate the tracking error using the model and
then to represent this figure as a measure of active risk when the expected active return is
non-zero. In the next section we explain why it is mathematical nonsense to use the tracking
error to measure active risk when the expected active return is non-zero. Using a series of
pedagogical examples, we demonstrate that it is improper practice for active fund managers
to represent the tracking error to their clients as a measure of active risk.

II.1.6 TRACKING ERROR AND ACTIVE RISK

In this section we critically examine how the classical methods for estimating and forecasting
volatility were applied to fund management during the 1990s. In the 1980s many institutional
clients were content with passive fund management that sought merely to track an index or
a benchmark. But during the 1990s more clients moved toward active fund management,
seeking returns over and above the benchmark return and being willing to accept a small

20 The advantage of using the Barra model as a risk assessment tool is that portfolio returns and risk are measured within the
same model. However, its forecasting properties are limited because the parameters are estimated using cross-sectional data. This is
especially true for short term risk forecasting over horizons of less than 1 month, because the model is only updated on a monthly
basis.
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amount of active risk in order to achieve this return. Hence the fund manager’s performance
was, and still is, assessed relative to a benchmark. This benchmark can be a traded asset
itself, but many benchmarks are not necessarily tradable, such as the London Interbank
Offered Rate (LIBOR).

Whatever the benchmark, it is standard to measure risk relative to the benchmark and
to call this risk the active risk or the relative risk of the fund. We begin this section by
demonstrating that the precise definition of active or relative risk is not at all straightforward.
In fact, even the fundamental concept of ‘measuring risk relative to a benchmark’ has led
to considerable confusion amongst risk managers of funds. The main aim of this section is
to try to dispel this confusion, and so we begin by defining our terminology very carefully.

II.1.6.1 Ex Post versus Ex Ante Measurement of Risk and Return

Ex post is Latin for ‘from after’, so ex post risk and return are measured directly from
historical observations on the past evolution of returns. Ex ante is Latin for ‘from before’.
Ex ante risk and return are forward looking and when they are forecast, these forecasts are
usually based on some model. In fund management the ex ante risk model is the same as
the ex ante returns model. This is usually a regression-based factor model that portfolio
managers use to select assets and allocate capital to these assets in an optimal manner. The
model is defined by some prior beliefs about the future evolution of the portfolio and the
benchmark. These beliefs may be, but need not be, based on historical data.

II.1.6.2 Definition of Active Returns

Active return is also commonly called the relative return. It is the difference between the
portfolio’s return and the benchmark return. Hence, if a portfolio tracks the benchmark
exactly its active returns are zero. In general, we model the active returns using a factor
model framework, for instance using the Barra model that was described in the previous
section.

The portfolio return is the change in a portfolio’s value over a certain period expressed as
a percentage of its current value. Thus if V P and V B denote the values of the portfolio and
the benchmark respectively, then the one-period ex post return on the portfolio, measured at
time t, is

RPt

V Pt V P t 1

V P t 1

(II.1.42)

and the one-period ex post return on the benchmark, measured at time t, is

RBt

V Bt V B t 1

V B t 1

(II.1.43)

The one-period ex post active return measured at time t, denoted Rt, is defined by the
relationship

1 Rt 1 RBt 1 RPt (II.1.44)

A portfolio manager’s performance is usually assessed over a period of several months,
so for performance measurement it is not really appropriate to use the log approximation to
returns. However, in an ex ante risk model it may be necessary to assess risks over a short
horizon, in which case we may use the log return. The one-period ex post log returns are

rPt ln
V Pt

V P t 1

rBt ln
V Bt

V B t 1

(II.1.45)
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and the ex ante log returns are

rPt ln
V P t 1

V Pt

rBt ln
V B t 1

V Bt

(II.1.46)

Now, either ex post or ex ante,

rt rPt rBt (II.1.47)

That is, the active log return is the portfolio’s log return minus the benchmark’s log return.
Note that to measure the ex ante active returns we need a value for both the portfolio and

the benchmark at time t 1. For this it is necessary to use a model, such as the Barra model,
that aims to forecast future values of all the assets in the investment universe.

II.1.6.3 Definition of Active Weights

In Section I.1.4 we proved that

RP

k

i 1

wiRi (II.1.48)

where RP is the return on a portfolio, Ri is the one-period return on asset i, k is the number
of assets in the portfolio and wi is the portfolio weight on asset i at the beginning of the
period, defined as the value of the portfolio’s holding in asset i at time t divided by the total
value of the portfolio at time t.

Log returns are very convenient analytically and, over short time periods the log return is
approximately equal to the return, as shown in Section I.1.4. Using this approximation, the
log return on the portfolio and the benchmark may also be written as a weighted sum of the
asset log returns:

rPt
k

i 1

wPitrit rBt
k

i 1

wBitrit (II.1.49)

where rit is the log return on asset i at time t, wPit is the portfolio’s weight on asset i at
time t, and wBit is the benchmark’s weight on asset i at time t. From (II.1.47) and (II.1.49)
we have

rt
k

i 1

wPit wBit rit
k

i 1

witrit (II.1.50)

and wit wPit wBit is called the portfolio’s active weight on asset i at time t.
That is, the active weight on an asset in the benchmark is just the difference between the

portfolio’s weight and the benchmark’s weight on that asset.

II.1.6.4 Ex Post Tracking Error

Suppose that we measure risk ex post, using a time series of T active returns. Denote the
active return at time t by Rt and the average active return over the sample by R. Then the
ex post tracking error (TE) is estimated as

TE
1

T 1

T

t 1

Rt R
2

(II.1.51)
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Thus the tracking error is the standard deviation of active returns. It is usually quoted in
annual terms, like volatility.

Example II.1 .8: Tracking error of an underperforming fund

An ex post tracking error is estimated from a sample of monthly returns on the fund and the
benchmark. The fund returns exactly 1% less than the benchmark during every month in the
sample. More precisely, the active return on the fund is exactly 1% each month. What is
the tracking error on this fund?

Solution Since the active return is constant, it has zero standard deviation. Hence the
tracking error is zero.

The above example is extreme, but illustrative. A zero tracking error would also result if we
assumed that the active return was exactly 1% each month. More generally, the tracking
error of an underperforming fund – or indeed an overperforming fund – can be very small
when the performance is stable. But the fund need not be tracking the benchmark: it may be
very far from the benchmark. The following example illustrates this point in a more realistic
framework, where the fund does not have a constant active return. Instead we just assume
that the fund consistently underperforms the benchmark.

Example II.1 .9: Why tracking error only applies to tracking funds

A fund’s values and its benchmark values between 1990 and 2006 are shown in Table II.1.10.
The data cover a period of 16 years and for comparison the value of the benchmark and of
the funds are set to 100 at the beginning of the period. What is the ex post tracking error of
the fund measured from these data? How risky is this fund?

Table II.1.10 Values of a fund and a benchmarka

Date 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Benchmark 100 120 138 145 159 159 175 210 200 210 262 249 249 299 284 290 319
Fund 100 115 129 128 135 129 136 155 144 147 178 161 156 179 162 157 164

a The prices shown have been rounded – see the spreadsheet for this example for the precise figures.

Solution The spreadsheet for this example shows how the ex post TE is calculated. In
fact the prices of the fund and benchmark were rounded in Table II.1.10 and using their
exact values we obtain TE 1%. But this is not at all representative of the risk of the fund.
The fund’s value in 2006 was half the value of the benchmark! Figure II.1.5 illustrates the
values of the fund and the benchmark to emphasize this point.

We see that the only thing that affects the ex post tracking error is the variability of the
active returns. It does not matter what the level of the mean active return is because this
mean is taken out of the calculation: only the mean deviations of the active returns are
used.

These examples show that there is a real problem with ex post tracking error if risk
managers try to apply this metric to active funds, or indeed any fund that has a non-zero
mean active return. Tracking error only measures the ‘risk of relative returns’. It does not
measure the risk of the fund relative to the benchmark. Indeed, the benchmark is irrelevant
to the calculation of ex post tracking error, as the next example shows.
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Figure II.1.5 A fund with ex post tracking error of only 1%

Example II.1 .1 0: Irrelevance of the benchmark for tracking error

Consider one fund and two possible benchmarks, whose values are shown in Table II.1.11.
What is the ex post tracking error of the fund measured relative to each benchmark based
on these data?

Table II.1.11 Values of a fund and two benchmarksa

Date 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Benchmark 1 100 90 104 124 161 186 204 235 258 271 339 254 216 216 238 262 275
Benchmark 2 100 93 110 136 182 216 245 291 330 357 460 355 311 321 364 413 447
Fund 100 91 104 127 167 190 206 234 260 271 346 256 221 223 243 262 273

a The prices shown have been rounded – see the spreadsheet for this example for the precise figures.

Solution The spreadsheet calculates the ex post TE relative to each benchmark and it is
1.38% relative to both benchmarks. But the fund is tracking benchmark 1 and substantially
underperforming benchmark 2 as we can see from the time series of their values illustrated
in Figure II.1.6. The fund has the same tracking error relative to both benchmarks. But
surely, if the risk is being measured relative to the benchmark then the result should be
different depending on the benchmark. Indeed, given the past performance shown above,
the fund has a very high risk relative to benchmark 2 but a very small risk relative to
benchmark 1.

In summary, the name ‘tracking error’ derives from the fact that tracking funds may use
(II.1.51) as a risk metric. However, we have demonstrated why ex post tracking error is not
a suitable risk metric for actively managed funds. It is only when a fund tracks a benchmark
closely that ex post tracking error is a suitable choice of risk metric.
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Figure II.1.6 Irrelevance of the benchmark for tracking error

II.1.6.5 Ex Post Mean-Adjusted Tracking Error

We call the square root of the average squared active return the ex post mean-adjusted
tracking error, i.e.

MATE
1

T

T

t 1

R2
t (II.1.52)

Straightforward calculations show that

MATE 2 T 1

T
TE2 R

2
(II.1.53)

Hence, the mean-adjusted tracking error will be larger than the tracking error when the mean
active return is quite different from zero:

TE MATE if R 0 and, for large T TE< MATE whenR 0

Earlier we saw that when volatility is estimated from a set of historical daily returns it
is standard to assume that the mean return is very close to zero. In fact, we have assumed
this throughout the chapter. However, in active fund management it should not be assumed
that the mean active return is zero for two reasons. Firstly, returns are often measured at
the monthly, not the daily frequency, and over a period of 1 month an assumption of zero
mean is not usually justified for any market. Secondly, we are dealing with an active return
here, not just an ordinary return, and since the fund manager’s mandate is to outperform the
benchmark their client would be very disappointed if R 0. It is only in a passive fund,
which aims merely to track a benchmark, that the average active return should be very close
to zero.
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Example II.1 .1 1 : Interpretation of Mean-Adjusted Tracking Error

Calculate the ex post mean-adjusted tracking error for:

(a) the fund in Example II.1.9 relative to its benchmark; and
(b) the fund in Example II.1.10 relative to both benchmarks.

What can you infer from your results?

Solution The mean-adjusted tracking error can be calculated directly on the squared active
returns using (II.1.52) and this is done in the spreadsheet for this example. Alternatively,
since we already know the ex post TE, we may calculate the mean active return and use
(II.1.53).

(a) For the fund in Example II.1.9 we have T 16, TE 1% and R 4 06%. Hence,

MATE 0 012
15

16
0 04062 4 18%

The MATE is much greater than TE because it captures the fact that the fund deviated
considerably from the benchmark.

(b) For the fund in Example II.1.10 we again have T 16, and,

relative to benchmark 1, TE 1 38% and R 0 04%

relative to benchmark 2, TE 1 38% and R 3 04%

Hence, using (II.1.53) we have,

relative to benchmark 1, MATE 0 01382
15

16
0 00042 1 34%

relative to benchmark 2, MATE 0 01382
15

16
0 03042 3 32%

Relative to benchmark 1, where the mean active return is very near zero, the mean-
adjusted tracking error is approximately the same as the tracking error. In fact MATE
is less than TE, which is only possible when both T and R are relatively small.
Relative to benchmark 2, the mean active return is far from zero and the mean-adjusted
tracking error is much larger than the tracking error.

We have already observed that the fund’s risk should be much higher relative to
benchmark 2, because it substantially underperformed that benchmark, yet the tracking
error could not distinguish between the risks relative to either benchmark. However,
the mean-adjusted tracking error does capture the difference in mean active returns:
it is substantially higher relative to benchmark 2 than benchmark 1.

Example II.1 .1 2: Comparison of TE and MATE

Figure II.1.7 shows a benchmark and two funds whose risk is assessed relative to that
benchmark. Fund A is a passive fund that tracks the benchmark closely, and fund B is an
active fund that has been allowed to deviate substantially from the benchmark allocations.
As a result of poor investment decisions it has underperformed the benchmark disastrously.
Which fund has more risk relative to the benchmark?
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Figure II.1.7 Which fund has an ex post tracking error of zero?

Solution Fund B has a lower tracking error than fund A. In fact, the tracking error of
fund B (the underperforming fund) is zero! So according to TE fund A has more risk!
However the real difference between the two funds is in their average active return: it is 0
for fund A but 5% for fund B.

Table II.1.12 shows the annual returns on the benchmark and on both of the funds, and the
active return on each fund in each year, calculated using (II.1.44). From the active returns, their
mean and their squares, formulae (II.1.51) and (II.1.53) have been used to calculate the TE and
MATE for each fund. Only the MATE identifies that fund B is more risky than fund A.

Table II.1.12 TE and MATE for the funds in Figure II.1.7

Year Benchmark Fund A Fund B Active A Active B

1990 5% 9% 0% 3 81% 5 00%
1991 5% 9% 10% 4 21% 5 00%
1992 10% 12% 4% 1 82% 5 00%
1993 20% 18% 14% 1 67% 5 00%
1994 5% 10% 0% 4 76% 5 00%
1995 0% 3% 5% 3 00% 5 00%
1996 5% 5% 0% 0 00% 5 00%
1997 10% 8% 4% 1 82% 5 00%
1998 12% 11% 6% 0 89% 5 00%
1999 15% 15% 9% 0 06% 5 00%
2000 25% 26% 29% 1 33% 5 00%
2001 15% 14% 19% 1 18% 5 00%
2002 0% 0% 5% 0 00% 5 00%
2003 10% 8% 4% 1 82% 5 00%
2004 10% 8% 4% 1 82% 5 00%
2005 5% 4% 0% 0 95% 5 00%

Average 0 00% 5 00%
TE 2 38% 0 00%

MATE 2 30% 5 00%
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To summarize the lessons learned from the above examples, the ex post tracking error
does not measure the risk of a fund deviating from a benchmark; it only measures the
variability of active returns. The level of the benchmark is irrelevant to tracking error – only
the variability in benchmark returns and the variability in the fund’s returns matter for the
tracking error. In short, a fund with a stable active return will always have a low tracking
error, irrespective of the level of active returns. However, the mean-adjusted tracking error
includes a measure of the fund’s deviation from the benchmark as well as a measure of the
variability in active returns. Here it is not only the stability of active returns that matters for
the risk metric; their general level is also taken into account.

II.1.6.6 Ex Ante Tracking Error

For the definition of an ex ante forecast of TE and of MATE we need to use a model for
expected returns, and the most usual type of model to employ for this is regression based
on a factor model. In Section II.1.3.1 we wrote the general multi-factor regression model in
matrix form as

y Xβ (II.1.54)

and hence we derived the following expression for the expected return:

E Y β E X (II.1.55)

where E X is the vector of expected returns to each risk factor. Similarly, the variance of
the return about this expected value is

V Y β β V (II.1.56)

where is the covariance matrix of the factor returns.
To define the ex ante tracking error we suppose that Y represents not the ordinary return

but the active return on a fund. Likewise, the alpha and betas above are the relative alpha
and relative betas of the fund. These are the difference between the fund’s ordinary alpha
and factor betas and the benchmark’s alpha and factor betas. Now, given the relative alpha
and betas in (II.1.54), then (II.1.55) yields the expected active return in terms of the relative
alpha and betas and E X , the vector of expected returns to each risk factor. Similarly,
(II.1.56) gives the variance of active returns in terms of β and , the covariance matrix of
the factor returns.

The ex ante tracking error is the square root of the variance of active returns given by
(II.1.56), quoted in annualized terms. If the covariance matrix contains forecasts of the
volatilities and correlations of the risk factor returns then (II.1.56) represents a forecast of
the risk of active returns, i.e. the standard deviation of active returns. In other words, the ex
ante tracking error measures variance about the expected active return (II.1.55).

It is very important to stress that (II.1.56) is a variance about (II.1.55), i.e. the expected
active return that is estimated by the factor model and only about this expected active return.
Thus the square root of (II.1.56), i.e. the tracking error, is a measure of risk relative to the
expected active return (II.1.55).

Suppose we target an active return that is different from (II.1.55). For instance, we
might target an outperformance of the benchmark by 2% per annum. Then it would be
mathematically incorrect to represent the square root of (II.1.56), i.e. the tracking error, as
the risk relative to the target active return of 2%. However, during the 1990s it was standard
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practice, at least by some leading fund managers, to forecast a tracking error in a factor
model framework and then, somehow, to interpret this tracking error as representing the
potential for a fund to deviate from its target active return. Suppose the target active return
is 2% per annum and the expected active return based on their risk model is also 2% per
annum. Then there is nothing incorrect about this interpretation. But if the expected active
return based on their risk model is not 2%, then it is misleading to interpret the ex ante
tracking error as the potential deviation from the target return.

II.1.6.7 Ex Ante Mean-Adjusted Tracking Error

A forecast active return is a distribution. An expected active return is just one point in
this distribution, i.e. its expected value, but the returns model also forecasts the entire
distribution, albeit often rather crudely. Indeed, any forecast from a statistical model is a
distribution. We may choose to focus on a single point forecast, usually of the expectation
of this distribution, but the model still forecasts an entire distribution and this distribution is
specific to the estimated model. If the point forecast of the expected return changes, so does
the whole distribution, and usually it does not just ‘shift’ with a different expected return;
the variance of the return about this expectation also changes! In short, there is only one
distribution of active returns in the future that is forecast by any statistical model and it is
inconsistent with the model to change one of its parameters, leaving the other parameters
unchanged. One may as well throw away the model and base forecasts entirely on subjective
beliefs.

Consider Figure II.1.8, which shows an active return forecast depicted as a normal distri-
bution where the mean of that distribution – the expected active return E Y – is assumed
to be less than the target active return. Now, if the target active return is not equal to E Y ,
which is very often the case, then there are two sources of risk relative to the benchmark:
the risk arising from dispersion about the mean return (i.e. tracking error) and the risk that
the mean return differs from the target return. The tracking error ignores the second source
of active risk.
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Figure II.1.8 Forecast and target active returns
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However, the mean-adjusted ex ante tracking error does take account of model predictions
for active returns that may differ from the target active return. We define

MATE V Y E Y Y 2 (II.1.57)

where Y is the target active return and E Y and V Y are forecast by the risk model.

Example II.1 .1 3: Which fund is more risky (1 )?

A risk model is used to forecast the ex ante tracking errors for two funds. Both funds have
the same ex ante tracking error of 4%. However, the model gives different predictions for
the expected active return on each fund: it is 0% for fund A and 1% for fund B. The target
active return is 2%. Which fund is more risky relative to this target?

Solution Since both funds have the same tracking error (TE), they have the same risk
according to the TE metric. But TE does not measure risk relative to the target active return.
The mean-adjusted tracking error (MATE) is 4.47% for fund A and 4.12% for fund B.
Hence, according to the MATE metric, fund A is more risky. This is intuitive, since the
expected active return on fund A is further from the target active return than the expected
active return on fund B.

This example has shown that if two index tracking funds have the same tracking error, the
fund that has the highest absolute value for expected active return will have the greatest
mean-adjusted tracking error.

Example II.1 .1 4: Which fund is more risky (2)?

A risk model is used to forecast the ex ante tracking error for two funds. The predictions
are TE 2% for fund A and TE 5% for fund B. The funds have the same expected active
return. Which fund is more risky?

Solution Fund B has a larger ex ante tracking error than fund A and so is more risky
than fund A according to this risk metric. It does not matter what the target active return
is, because this has no effect on the ex ante tracking error. Fund B also has the larger
mean-adjusted tracking error, because the funds have the same expected active return. For
instance, if the expected active return is either 1% or 1% then MATE 2 24% for fund
A and MATE 5 10% for fund B.

Hence both the TE and the mean-adjusted TE agree that fund B is more risky. If two
funds have the same expected active return then the fund that has the highest tracking error
will have the greatest mean-adjusted tracking error.

But this is not the whole story about active risk. Figure II.1.9 depicts the ordinary returns
distributions for the two funds considered in Example II.1.14. Now we make the further
assumption that the predicted returns are normally distributed, and that the two funds have
the same expected return of 1%. Two different target returns, of 0% and 2%, are depicted
on the figure using vertical dotted and solid lines, respectively. We note:

There is a 42% chance that fund B returns less than 0%, but only a 31% chance that
fund A returns less than 0%. So, fund B is more risky than fund A relative to a target
of 0%.
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There is a 69% chance that fund A returns less than 2% but only a 58% chance that
fund B returns less than 2%. So, fund A is more risky than fund B relative to a target
of 2%.
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Figure II.1.9 Returns distributions for two funds

However, both TE and MATE rank fund B as the riskier fund relative to both benchmarks.
Although MATE does capture the risk that the expected return will deviate from the target
return, it cannot capture the difference between a good forecast, where the expected return
is greater than target, and a bad forecast, where the expected return is less than target.21

MATE penalizes any deviation between the expected return and the target and it does not
matter whether the deviation is positive or negative.

This example shows that when the expected active return derived from the risk model
is different from the target return Y then the potential for the expected return to deviate
from the target return usually represents much the largest element of active risk as perceived
by the clients. Yet this part of the risk is commonly ignored by mathematically inept and
ill-informed fund managers.

Another lesson to be learned from the above example is that if E Y < Y , i.e. if the
expected active return is less than the target active return, then the worst case occurs when
the tracking error is small. In other words, if the model predicts an active return that is less
than the target it is better for the investors if the tracking error is large!

II.1.6.8 Clarification of the Definition of Active Risk

In the 1980s and early 1990s the decisions made by active fund managers were usually
controlled through strict imposition of control ranges. That is, the active weights were not
allowed to become too great. However, since then some fund managers have dropped control
ranges in favour of metrics such as tracking error that could (if used properly) provide

21 This is because their difference is squared in the formula (II.1.57) for this risk metric.



Factor Models 43

a better description of active risk. Various definitions of active risk can be found in the
literature. One of the most complete definitions is given by Wikipedia.22

Active risk refers to that segment of risk in an investment portfolio that is due to active
management decisions made by the portfolio manager. It does not include any risk (return)
that is merely a function of the market’s movement. In addition to risk (return) from spe-
cific stock selection or industry and factor ‘bets’, it can also include risk (return) from
market timing decisions.A portfolio’s activerisk, then, is definedas theannualized standard
deviation of themonthly differencebetween portfolioreturn andbenchmark return.

The last sentence makes it abundantly clear that, according to this (incorrect) definition,
‘active risk’ is measured by the tracking error. However, using our series of pedagogical
examples above, we have demonstrated that measuring active risk using this metric is
mathematically incorrect, except when the expected active return is zero, which is only the
case for passive, benchmark-tracking funds. The definition of active risk given above is
therefore contradictory, because the first sentence states that active risk is the ‘risk in an
investment portfolio that is due to active management decisions’. All risk averse clients and
fund managers would agree that the risk ‘due to active management decisions’ should include
the risk that an actively managed portfolio underperforms the benchmark. But we have
proved that tracking error, i.e. the annualized standard deviation of the monthly difference
between portfolio return and benchmark return, does not include this risk.

The Wikipedia definition is one of numerous other contradictory and confusing definitions
of active risk. A myth – that tracking error equates to active risk – is still being perpetuated.
In fact, at the time of writing (and I sincerely hope these will be corrected soon) virtually
all the definitions of active risk available on the internet that also define a way to measure it
fall into the trap of assuming tracking error is a suitable metric for active risk. Many simply
define active risk as the standard deviation of the active returns, and leave it at that!

Active risk was originally a term applied to passivemanagement where the fund manager’s
objective is to track an index as closely as possible. There is very little scope to deviate
from the index because the fund aims for a zero active return. In other words, the expected
active return is zero for a passive fund and, as shown above, it is only in this case that
tracking error is synonymous with active risk. But actively managed funds have a mandate
to outperform an index, so by definition their expected active return is not zero. Hence the
active risk of actively managed funds cannot be measured by tracking error.

If nothing else, I hope that this section has made clear to active fund managers that it is
extremely important to define one’s terms very carefully. The enormously ambiguous phrase
risk of returns relative to the benchmark, which is often used to define active risk, could
be interpreted as the risk [of returns] relative to the benchmark, i.e. the risk of deviating
from the benchmark. But it could also be interpreted as the risk of [returns relative to the
benchmark], i.e. the standard deviation of active returns, and this is different from the first
interpretation! Measuring returns relative to a benchmark does not go hand in hand with
measuring risk relative to a benchmark, unless the expected active return is zero. So the
tracking error metric is fine for funds that actually track the benchmark, i.e. for passive
funds. Indeed, it is from this that the name derives. But for funds that have a mandate not

22 See http://en.wikipedia.org/wiki/Active_risk. This is the definition at the time of going to press, but I shall be adding a discussion
to this page with a reference to this chapter when the book is in print.
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to track a benchmark, i.e. for actively managed funds, the tracking error cannot be used to
measure the active risk. It measures the risk of [returns relative to the benchmark] but says
nothing at all about the real risk that active managers take, which is the risk that the fund
will underperform the benchmark.

II.1.7 SUMMARY AND CONCLUSIONS

In this chapter we have described the use of factor models for analysing the risk and
return on portfolios of risky assets. Even though the returns distribution of a portfolio could
be modelled without using a factor model, the advantages of factor models include the
ability to:

attribute total risk to different sources, which is useful for performance analysis, bench-
mark selection and risk capital allocation; and
evaluate portfolio risk under ‘what if’ scenarios, i.e. when risk factor values are stressed
to extreme levels.

Many factor models are estimated using historical time series data. Such models may be
used to forecast the risk and expected returns of portfolios of risky assets. Basic measures
of risk may be based purely on a fund’s historical returns, but the analyst will gain further
insight into the risk characteristics of the portfolio by employing stress tests and scenario
analysis. This is the main reason for using factor models to capture portfolio risk. If all
that we wanted was a risk measurement, we could just use historical data on stock returns
to form a ‘current weighted’ portfolio and measure its volatility – this is much easier than
building a good factor model. But the factor model is a great tool for value-at-risk modelling,
especially for the stress tests and scenario analysis that form part of the day-to-day work of
a risk analyst.

Factor models are also used for style analysis, i.e. to attribute funds’ returns to value,
growth and other style factors. This helps investors to identify the sources of returns knowing
only the funds returns and no details about the fund’s strategies. Style analysis can be
used to select appropriate benchmarks against which to measure performance and as a
guide for portfolio diversification. In one of the empirical examples in this chapter we
have implemented a style analysis for a simple portfolio, and the results were based on a
constrained quadratic programming problem.

The examples developed in the Excel workbook for this chapter take the reader through
many different factor models. In some cases we have decomposed total risk into system-
atic risk and specific risk components. We also showed how the total systematic risk of
international stock portfolios may be decomposed into equity risk and foreign exchange risk
components. In other examples we estimated fundamental factor models whose risk factors
are market and style indices, estimating their betas using regression analysis. But there was
a very high correlation between the different risk factor returns, as so often happens with
these models, and this necessitated the use of orthogonal regression techniques to properly
identify the factor betas.

We also provided a detailed analysis of the Barra model, which employs time series and
cross-sectional data to analyse the return (and also the risk) on both active and passive
portfolios. For the benefit of users of the Barra model, we have carefully explained the
correct way to measure the risk of active portfolios that are optimized using this model. Then
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we provided a critical discussion of the way that active risk has been, and may continue to
be, measured by many fund managers. The definition of active risk is fraught with difficulty
and ambiguous terms. Active risk is the risk that an actively managed investment portfolio
deviates from the benchmark. Beware of other definitions, and there are many! In the 1990s
many fund managers assessed active risk using the tracking error, i.e. the volatility of the
active returns. Even nowadays many practitioners regard active risk and tracking error as
synonymous. But we have demonstrated that this is a mistake – and potentially a very costly
one! It is a common fallacy that tracking error can be used as an active risk metric. Using
many pedagogical examples, we have carefully explained why tracking error says nothing
at all about the risk relative to a benchmark. Tracking error only measures the volatility of
relative returns.

Desirable properties for a good active risk metric include:

(a) if the active risk measure falls then the fund moves closer to the benchmark; and
(b) if the fund moves closer to the benchmark then the active risk measure falls.

However, tracking error has neither of these properties. The examples in Section II.1.6 have
shown that a reduction in tracking error does not imply that the fund moves closer to the
benchmark. It only implies that the active returns have become more stable. Also, moving
closer to the benchmark does not imply that tracking error will be reduced and moving away
from the benchmark does not imply that tracking error will increase.

Tracking error is not a suitable metric for measuring active risk, either ex post or ex ante.
It is fine for passive funds, as its name suggests. In passive funds the expected future active
return is zero and the ex post mean active return is likely to be very close to zero. Then
tracking error measures the volatility around the benchmark. But more generally, tracking
error measures volatility around the expected active return in the model – not the volatility
around a zero active return, and not the volatility around the target outperformance, nor
around any other value! In active fund management the aim is to outperform a benchmark
by taking positions that may deviate markedly from those in the benchmark. Hence, the
expected active return should not be zero; it should be equal to the target outperformance
set by the client. The mean-adjusted tracking error is an active risk metric, but it is not a
very good one. It penalizes returns that are greater than the benchmark return as much as it
penalizes returns that are less than the benchmark return. That is, it is not a downside risk
metric.






