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Introduction: Consequences
of Numerical Inaccuracy

1.1 IMPORTANCE OF UNDERSTANDING
COMPUTATIONAL STATISTICS

How much pollution is bad for you? Well-known research conducted from 1987 to
1994 linked small-particle air pollution to health problems in 90 U.S. cities. These
findings were considered reliable and were influential in shaping public policy.
Recently, when the same scientists attempted to replicate their own findings,
they produced different results with the same data—results that showed a much
weaker link between air pollution and health problems. “[The researchers] re-
examined the original figures and found that the problem lay with how they used
off-the-shelf statistical software to identify telltale patterns that are somewhat
akin to ripples from a particular rock tossed into a wavy sea. Instead of adjusting
the program to the circumstances that they were studying, they used standard
default settings for some calculations. That move apparently introduced a bias in
the results, the team says in the papers on the Web” (Revkin, 2002).

Problems with numerical applications are practically as old as computers: In
1962, the Mariner I spacecraft, intended as the first probe to visit another planet,
was destroyed as a result of the incorrect coding of a mathematical formula (Neu-
mann 1995), and five years later, Longley (1967) reported on pervasive errors in the
accuracy of statistical programs’ implementation of linear regression. Unreliable
software is sometimes even expected and tolerated by experienced researchers.
Consider this report on the investigation of a high-profile incident of academic
fraud, involving the falsification of data purporting to support the discovery of
the world’s heaviest element at Lawrence Berkeley lab: “The initial suspect was
the analysis software, nicknamed Goosy, a somewhat temperamental computer
program known on occasion to randomly corrupt data. Over the years, users had
developed tricks for dealing with Goosy’s irregularities, as one might correct a
wobbling image on a TV set by slapping the side of the cabinet” (Johnson 2002).

In recent years, many of the most widely publicized examples of scientific
application failures related to software have been in the fields of space exploration
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2 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

and rocket technology. Rounding errors in numerical calculations were blamed
for the failure of the Patriot missile defense to protect an army barracks in
Dhahran from a Scud missile attack in 1991 during Operation Desert Storm
(Higham 2002). The next year, the space shuttle had difficulties in an attempted
rendezvous with Intelsat 6 because of a round-off error in the routines that
the shuttle computers used to compute distance (Neumann 1995). In 1999, two
Mars-bound spacecraft were lost, due (at least in part) to software errors—one
involving failure to check the units as navigational inputs (Carreau 2000). Numer-
ical software bugs have even affected our understanding of the basic structure
of the universe: highly publicized findings suggesting the existence of unknown
forms of matter in the universe, in violation of the “standard model,” were later
traced to numerical errors, such as failure to treat properly the sign of certain
calculations (Glanz 2002; Hayakawa and Kinoshita 2001).

The other sciences, and the social sciences in particular, have had their share of
less publicized numerical problems: Krug et al. (1988) retracted a study analyz-
ing suicide rates following natural disasters that was originally published in the
Journal of the American Medical Association, one of the world’s most prestigious
medical journals, because their software erroneously counted some deaths twice,
undermining their conclusions (see Powell et al. 1999). Leimer and Lesnoy
(1982) trace Feldstein’s (1974) erroneous conclusion that the introduction of
Social Security reduced personal savings by 50% to the existence of a sim-
ple software bug. Dewald et al. (1986), in replicating noted empirical results
appearing in the Journal of Money, Credit and Banking, discovered a number of
serious bugs in the original authors’ analyses programs. Our research and that of
others has exposed errors in articles recently published in political and social sci-
ence journals that can be traced to numerical inaccuracies in statistical software
(Altman and McDonald 2003; McCullough and Vinod 2003; Stokes 2003).

Unfortunately, numerical errors in published social science analyses can be
revealed only through replication of the research. Given the difficulty and rarity
of replication in the social sciences (Dewald et al. 1986; Feigenbaum and Levy
1993), the numerical problems reported earlier are probably the tip of the iceberg.
One is forced to wonder how much of the critical and foundational findings in a
number of fields are actually based on suspect statistical computing.

There are two primary sources of potential error in numerical algorithms pro-
grammed on computers: that numbers cannot be perfectly represented within the
limited binary world of computers, and that some algorithms are not guaranteed
to produce the desired solution.

First, small computational inaccuracies occur at the precision level of all sta-
tistical software when digits beyond the storage capacity of the computer must be
rounded or truncated. Researchers may be tempted to dismiss this threat to valid-
ity because measurement error (miscoding of data, survey sampling error, etc.)
is almost certainly an order of magnitude greater for most social science appli-
cations. But these small errors may propagate and magnify in unexpected ways
in the many calculations underpinning statistical algorithms, producing wildly
erroneous results on their own, or exacerbating the effects of measurement error.
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Second, computational procedures may be subtly biased in ways that are hard
to detect and are sometimes not guaranteed to produce a correct solution. Ran-
dom number generators may be subtly biased: random numbers are generated by
computers through non-random, deterministic processes that mimic a sequence
of random numbers but are not genuinely random. Optimization algorithms, such
as maximum likelihood estimation, are not guaranteed to find the solution in the
presence of multiple local optima: Optimization algorithms are notably suscepti-
ble to numeric inaccuracies, and resulting coefficients may be far from their true
values, posing a serious threat to the internal validity of hypothesized relation-
ships linking concepts in the theoretical model.

An understanding of the limits of statistical software can help researchers
avoid estimation errors. For typical estimation, such as ordinary least squares
regression, well-designed off-the-shelf statistical software will generally produce
reliable estimates. For complex algorithms, our knowledge of model building
has outpaced our knowledge of computational statistics. We hope that researchers
contemplating complex models will find this book a valuable tool to aid in making
robust inference within the limits of computational statistics.

Awareness of the limits of computational statistics may further aid in model
testing. Social scientists are sometimes faced with iterative models that fail to
converge, software that produces nonsensical results, Hessians that cannot be
inverted, and other problems associated with estimation. Normally, this would
cause researchers to abandon the model or embark on the often difficult and
expensive process of gathering more data. An understanding of computational
issues can offer a more immediately available solution—such as use of more accu-
rate computations, changing algorithmic parameters of the software, or appropri-
ate rescaling of the data.

1.2 BRIEF HISTORY: DUHEM TO THE TWENTY-FIRST CENTURY

The reliability of scientific inference depends on one’s tools. As early as 1906,
French physicist and philosopher of science Pierre Duhem noted that every
scientific inference is conditioned implicitly on a constellation of background
hypotheses, including that the instruments are functioning correctly (Duhem 1991,
Sec. IV.2). The foremost of the instruments used by modern applied statisticians
is the computer.

In the early part of the twentieth century the definition of a computer to statis-
ticians was quite different from what it is today. In antiquated statistics journals
one can read where authors surprisingly mention “handing the problem over to
my computer.” Given the current vernacular, it is easy to miss what is going on
here. Statisticians at the time employed as “computers” people who specialized
in performing repetitive arithmetic. Many articles published in leading statistics
journals of the time addressed methods by which these calculations could be
made less drudgingly repetitious because it was noticed that as tedium increases
linearly, careless mistakes increase exponentially (or thereabouts). Another rather
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prescient development of the time given our purpose here was the attention paid
to creating self-checking procedures where “the computer” would at regular inter-
vals have a clever means to check calculations against some summary value as
a way of detecting errors (cf. Kelley and McNemar 1929). One of the reasons
that Fisher’s normal tables (and therefore the artificial 0.01 and 0.05 significance
thresholds) were used so widely was that the task of manually calculating normal
integrals was time consuming and tedious. Computation, it turns out, played an
important role in scholarship even before the task was handed over to machines.

In 1943, Hotelling and others called attention to the accumulation of errors
in the solutions for inverting matrices in the method of least squares (Hotelling
1943) and other matrix manipulation (Turing 1948). Soon after development of
the mainframe computer, programmed regression algorithms were criticized for
dramatic inaccuracies (Longley 1967). Inevitably, we improve our software, and
just as inevitably we make our statistical methods more ambitious. Approximately
every 10 years thereafter, each new generation of statistical software has been
similarly faulted (e.g., Wampler 1980; Simon and LeSage 1988).

One of the most important statistical developments of the twentieth century
was the advent of simulation on computers. While the first simulations were
done manually by Buffon, Gosset, and others, it was not until the development
of machine-repeated calculations and electronic storage that simulation became
prevalent. In their pioneering postwar work, von Neumann and Ulam termed
this sort of work Monte Carlo simulation, presumably because it reminded them
of long-run observed odds that determine casino income (Metropolis and Ulam
1949; Von Neumann 1951). The work was conducted with some urgency in the
1950s because of the military advantage of simulating nuclear weapon designs.
One of the primary calculations performed by von Neumann and his colleagues
was a complex set of equations related to the speed of radiation diffusion of fissile
materials. This was a perfect application of the Monte Carlo method because it
avoided both daunting analytical work and dangerous empirical work. During
this same era, Metropolis et al. (1953) showed that a new version of Monte
Carlo simulation based on Markov chains could model the movement of atomic
particles in a box when analytical calculations are impossible.

Most statistical computing tasks today are sufficiently routinized that many
scholars pay little attention to implementation details such as default settings,
methods of randomness, and alternative estimation techniques. The vast majority
of statistical software users blissfully point-and-click their way through machine
implementations of noncomplex procedures such as least squares regression,
cross-tabulation, and distributional summaries. However, an increasing number
of social scientists regularly use more complex and more demanding comput-
ing methods, such as Monte Carlo simulation, nonlinear estimation procedures,
queueing models, Bayesian stochastic simulation, and nonparametric estimation.
Accompanying these tools is a general concern about the possibility of knowingly
or unknowingly producing invalid results.

In a startling article, McCullough and Vinod (1999) find that econometric
software packages can still produce “horrendously inaccurate” results (p. 635)
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and that inaccuracies in many of these packages have gone largely unnoticed
(pp. 635–37). Moreover, they argue that given these inaccuracies, past inferences
are in question and future work must document and archive statistical software
alongside statistical models to enable replication (pp. 660–62).

In contrast, when most social scientists write about quantitative analysis, they
tend not to discuss issues of accuracy in the implementation of statistical mod-
els and algorithms. Few of our textbooks, even those geared toward the most
sophisticated and computationally intensive techniques, mention issues of imple-
mentation accuracy and numerical stability. Acton (1996), on the other hand,
gives a frightening list of potential problems: “loss of significant digits, itera-
tive instabilities, degenerative inefficiencies in algorithms, and convergence to
extraneous roots of previously docile equations.”

When social science methodology textbooks and review articles in social sci-
ence do discuss accuracy in computer-intensive quantitative analysis, they are
relatively sanguine about the issues of accurate implementation:

• On finding maximum likelihood: “Good algorithms find the correct solution
regardless of starting values. . . . The computer programs for most stan-
dard ML estimators automatically compute good starting values.” And on
accuracy: “Since neither accuracy nor precision is sacrificed with numer-
ical methods they are sometimes used even when analytical (or partially
analytical) solutions are possible” (King 1989, pp. 72–73).

• On the error of approximation in Monte Carlo analysis: “First, one may sim-
ply run ever more trials, and approach the infinity limit ever more closely”
(Mooney 1997, p. 100).

• In the most widely assigned econometric text, Greene (2003) provides an
entire appendix on computer implementation issues but also understates
in referring to numerical optimization procedures: “Ideally, the iterative
procedure should terminate when the gradient is zero. In practice, this step
will not be possible, primarily because of accumulated rounding error in
the computation of the function and its derivatives” (p. 943).

However, statisticians have been sounding alarms over numerical computing
issues for some time:

• Grillenzoni worries that when confronted with the task of calculating the
gradient of a complex likelihood, software for solving nonlinear least
squares and maximum likelihood estimation, can have “serious numeri-
cal problems; often they do not converge or yield inadmissible results”
(Grillenzoni 1990, p. 504).

• Chambers notes that “even a reliable method may perform poorly if not care-
ful checked for special cases, rounding error, etc. are not made” (Chambers
1973, p. 9).

• “[M]any numerical optimization routines find local optima and may not find
global optima; optimization routines can, particularly for higher dimensions,
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‘get lost’ in subspaces or in flat spots of the function being optimized”
(Hodges 1987, p. 268).

• Beaton et al. examine the famous Longley data problem and determine:
“[T]he computationally accurate solution to this regression problem—even
when computed using 40 decimal digits of accuracy—may be a very poor
estimate of regression coefficients in the following sense: small errors
beyond the last decimal place in the data can result solutions more different
than those computed by Longley with his less preferred programs” (Beaton
et al. 1976, p. 158). Note that these concerns apply to a linear model!

• The BUGS and WinBUGS documentation puts this warning on page 1 of
the documentation: “Beware—Gibbs sampling can be dangerous!”

A clear discrepancy exists between theoreticians and applied researchers: The
extent to which one should worry about numerical issues in statistical computing
is unclear and even debatable. This is the issue we address here, bridging the
knowledge gap difference between empirically driven social scientists and more
theoretically minded computer scientists and statisticians.

1.3 MOTIVATING EXAMPLE: RARE EVENTS COUNTS MODELS

It is well known that binary rare events data are difficult to model reliably
because the results often greatly underestimate the probability of occurrence
(King and Zeng 2001a). It is true also that rare events counts data are difficult
to model because like binary response models and all other generalized linear
models (GLMs), the statistical properties of the estimations are conditional on
the mean of the outcome variable. Furthermore, the infrequently observed counts
are often not temporally distributed uniformly throughout the sample space, thus
produce clusters that need to be accounted for (Symons et al. 1983).

Considerable attention is being given to model specification for binary count
data in the presence of overdispersion (variance exceeding the mean, thus violat-
ing the Poisson assumption) in political science (King 1989; Achen 1996; King
and Signorino 1996; Amato 1996; Londregan 1996), economics (Hausman et al.
1984; Cameron and Trivedi 1986, 1990; Lee 1986, Gurmu 1991), and of course,
statistics (McCullagh and Nelder 1989). However, little has been noted about
the numerical computing and estimation problems that can occur with other rare
events counts data.

Consider the following data from the 2000 U.S. census and North Carolina
public records. Each case represents one of 100 North Carolina counties, and we
use only the following subset of the variables.

• Suicides by Children. This is (obviously) a rare event on a countywide
basis and refers almost strictly to teenage children in the United States.

• Number of Residents in Poverty. Poverty is associated directly with other
social ills and can lower the quality of education, social interaction, and
opportunity of children.
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• Number of Children Brought Before Juvenile Court. This measures the
number of first-time child offenders brought before a judge or magistrate
in a juvenile court for each of these counties.

Obviously, this problem has much greater scope as both a sociological question
and a public policy issue, but the point here is to demonstrate numerical com-
puting problems with a simple but real data problem. For replication purposes
these data are given in their entirety in Table 1.1.

For these we specified a simple Poisson generalized linear model with a log
link function:

g−1(θ)
︸ ︷︷ ︸

100×1

= g−1(Xβ) = exp[Xβ]

= exp[1β0 + POVβ1 + JUVβ2]

= E[Y] = E[SUI]

in standard GLM notation (Gill 2000). This basic approach is run on five com-
monly used statistical packages and the results are summarized in Table 1.2.
Although there is some general agreement among R, S-Plus, Gauss, and
Stata, SAS (Solaris v8) produces estimates substantively different from the
other four.1 Although we may have some confidence that the results from the
four programs in agreement are the “correct” results, we cannot know for sure,
since we are, after all, estimating unknown quantities. We are left with the trou-
bling situation that the results are dependent on the statistical program used to
generate statistical estimates.

Even among the four programs in agreement, there are small discrepancies
among their results that should give pause to researchers who interpret t-statistics
strictly as providing a measure of “statistical significance.” A difference in the
way Stata handles data input explains some of the small discrepancy between
Stata’s results and R and S-Plus. Unless specified, Stata reads in data
as single precision, whereas the other programs read data as double precision.
When we provide the proper commands to read in data into Stata as double
precision, the estimates from the program lie between the estimates of R and
S-Plus. This does not account for the difference in the estimates generated by
Gauss, a program that reads in data as double precision, which are in line with
Stata’s single-precision estimates.

This example highlights some of the important themes to come. Clearly, incon-
sistent results indicate that there are some sources of inaccuracy from these data.
All numerical computations have limited accuracy, and it is possible for partic-
ular characteristics of the data at hand to exacerbate these effects; this is the
focus of Chapter 2. The questions addressed there are: What are the sources of
inaccuracy associated with specific algorithmic choices? How may even a small
error propagate into a large error that changes substantive results?

1Note that SAS issued warning messages during the estimation, but the final results were not accom-
panied by any warning of failure.
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Table 1.1 North Carolina 2000 Data by Counties

Juvenile/ Juvenile/
County Suicide Poverty Court County Suicide Poverty Court

Alamance 0 14,519 47 Johnston 1 15,612 45
Alexander 0 2,856 70 Jones 0 1,754 81
Alleghany 0 1,836 26 Lee 0 6,299 87
Anson 0 4,499 49 Lenoir 0 9,900 17
Ashe 0 3,292 56 Lincoln 0 5,868 14
Avery 0 2,627 58 Macon 0 4,890 70
Beaufort 0 8,767 71 Madison 0 3,756 58
Bertie 0 4,644 26 Martin 0 3,024 74
Bladen 0 6,778 66 McDowell 1 5,170 86
Brunswick 1 9,216 19 Mecklenburg 0 63,982 1
Buncombe 0 23,522 52 Mitchell 1 2,165 50
Burke 0 9,539 33 Montgomery 0 4,131 69
Cabarrus 0 9,305 36 Moore 0 8,524 25
Caldwell 0 8,283 29 Nash 1 11,714 22
Camden 0 695 60 New Hanover 0 21,003 62
Carteret 0 6,354 13 Northampton 1 4,704 54
Caswell 0 3,384 67 Onslow 1 19,396 42
Catawba 0 12,893 51 Orange 0 16,670 6
Chatham 0 4,785 79 Pamlico 0 1,979 26
Cherokee 0 3,718 68 Pasquotank 2 6,421 74
Chowan 0 2,557 46 Pender 0 5,587 10
Clay 0 1,000 20 Perquimans 0 2,035 35
Cleveland 0 12,806 41 Person 0 4,275 82
Columbus 0 12,428 2 Pitt 0 27,161 27
Craven 1 11,978 12 Polk 0 1,851 20
Cumberland 2 38,779 73 Randolph 1 11,871 42
Currituck 0 1,946 61 Richmond 0 9,127 9
Dare 0 2,397 75 Robeson 1 28,121 64
Davidson 1 14,872 55 Rockingham 0 11,767 4
Davie 0 2,996 72 Rowan 0 13,816 44
Duplin 0 9,518 69 Rutherford 0 8,743 32
Durham 2 29,924 53 Sampson 1 10,588 71
Edgecombe 0 10,899 34 Scotland 0 7,416 18
Forsyth 1 33,667 57 Stanly 0 6,217 83
Franklin 1 5,955 84 Stokes 0 4,069 16
Gaston 0 20,750 59 Surry 0 8,831 24
Gates 0 1,788 15 Swain 1 2,373 56
Graham 0 1,559 37 Transylvania 0 2,787 78
Granville 0 5,674 85 Tyrrell 0 967 11
Greene 0 3,833 40 Union 1 10,018 38
Guilford 1 44,631 77 Vance 0 8,806 7
Halifax 1 13,711 8 Wake 5 48,972 80
Harnett 0 13,563 39 Warren 0 3,875 48
Haywood 1 6,214 21 Washington 0 2,992 43
Henderson 0 8,650 30 Watauga 0 7,642 63
Hertford 1 4,136 56 Wayne 0 15,639 42
Hoke 0 5,955 76 Wilkes 0 7,810 23
Hyde 0 897 81 Wilson 0 13,656 31
Iredell 1 10,058 28 Yadkin 2 3,635 3
Jackson 0 5,001 5 Yancey 0 2,808 65
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Table 1.2 Rare Events Counts Models in Statistical Packages

R S-Plus SAS Gauss Stata

Intercept Coef. −3.13628 −3.13678 0.20650 −3.13703 −3.13703
Std. err. 0.75473 0.75844 0.49168 0.76368 0.76367
t-stat. −4.15550 −4.13585 0.41999 −4.10788 −4.10785

Poverty/1000 Coef. 0.05264 0.05263 −1.372e-04 0.05263 0.05269
Std. err. 0.00978 0.00979 1.2833-04 0.00982 0.00982
t-stat. 5.38241 5.37136 −1.06908 5.35881 5.36558

Juvenile Coef. 0.36167 0.36180 −0.09387 0.36187 0.36187
Std. err. 0.18056 0.18164 0.12841 0.18319 0.18319
t-stat. 2.00301 1.99180 −0.73108 1.97541 1.97531

In this example we used different software environments, some of which
required direct user specification of the likelihood function, the others merely
necessitating menu direction. As seen, different packages sometimes yield differ-
ent results. In this book we also demonstrate how different routines within the
same package, different version numbers, or even different parameter settings can
alter the quality and integrity of results. We do not wish to imply that researchers
who do their own programming are doing better or worse work, but that the more
responsibility one takes when model building, the more one must be aware of
issues regarding the software being used and the general numerical problems that
might occur. Accordingly, in Chapter 3 we demonstrate how proven benchmarks
can be used to assess the accuracy of particular software solutions and discuss
strategies for consumers of statistical software to help them identify and avoid
numeric inaccuracies in their software.

Part of the problem with the example just given is attributable to these data.
In Chapter 4 we investigate various data-originated problems and provide some
solutions that would help with problems, as we have just seen. One method of
evaluation that we discuss is to check results on multiple platforms, a practice
that helped us identify a programming error in the Gauss code for our example
in Table 1.2.

In Chapter 5 we discuss some numerical problems that result from implement-
ing Markov chain Monte Carlo algorithms on digital computers. These concerns
can be quite complicated, but the foundational issues are essentially like those
shown here: numerical treatment within low-level algorithmic implementation.
In Chapter 6 we look at the problem of a non-invertible Hessian matrix, a seri-
ous problem that can occur not just because of collinearity, but also because of
problems in computation or data. We propose some solutions, including a new
approach based on generalizing the inversion process followed by importance
sampling simulation.

In Chapter 7 we investigate a complicated modeling scenario with important
theoretical concerns: ecological inference, which is susceptible to numerical inac-
curacies. In Chapter 8 Bruce McCullough gives guidelines for estimating general



10 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

nonlinear models in economics. In Chapter 10 Paul Allison discusses numerical
issues in logistical regression. Many related issues are exacerbated with spatial
data, the topic of Chapter 9 by James LeSage. Finally, in Chapter 11 we pro-
vide a summary of recommendations and an extended discussion of methods for
ensuring replicable research.

1.4 PREVIEW OF FINDINGS

In this book we introduce principles of numerical computation, outline the opti-
mization process, and provide tools for assessing the sensitivity of subsequent
results to problems that exist in these data or with the model. Throughout, there
are real examples and replications of published social science research and inno-
vations in numerical methods.

Although we intend readers to find this book useful as a reference work and
software guide, we also present a number of new research findings. Our purpose is
not just to present a collection of recommendations from different methodological
literatures. Here we actively supplement useful and known strategies with unique
findings.

Replication and verification is not a new idea (even in the social sciences), but
this work provides the first replications of several well-known articles in polit-
ical science that show where optimization and implementation problems affect
published results. We hope that this will bolster the idea that political science
and other social sciences should seek to recertify accepted results.

Two new methodological developments in the social sciences originate with
software solutions to historically difficult problems. Markov chain Monte Carlo
has revolutionized Bayesian estimation, and a new focus on sophisticated soft-
ware solutions has similarly reinvigorated the study of ecological inference.
In this volume we give the first look at numerical accuracy of MCMC algo-
rithms from pseudo-random number generation and the first detailed evaluation
of numerical periodicity and convergence.

Benchmarks are useful tools to assess the accuracy and reliability of computer
software. We provide the first comprehensive packaged method for establishing
standard benchmarks for social science data input/output accuracy. This is a
neglected area, but it turns out that the transmission of data across applications
can degrade the quality of these data, even in a way that affects estimation. We
also introduce the first procedure for using cyclical redundancy checks to assess
the success of data input rather than merely checking file transfer. We discuss
a number of existing benchmarks to test numerical algorithms and to provide
a new set of standard benchmark tests for distributional accuracy of statistical
packages.

Although the negative of the Hessian (the matrix of second derivatives of
the posterior with respect to the parameters) must be positive definite and hence
invertible in order to compute the variance matrix, invertible Hessians do not exist
for some combinations of datasets and models, causing statistical procedures to
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fail. When a Hessian is non-invertible purely because of an interaction between
the model and the data (and not because of rounding and other numerical errors),
this means that the desired variance matrix does not exist; the likelihood func-
tion may still contain considerable information about the questions of interest.
As such, discarding data and analyses with this valuable information, even if
the information cannot be summarized as usual, is an inefficient and potentially
biased procedure. In Chapter 6 Gill and King provide a new method for apply-
ing generalized inverses to Hessian problems that can provide results even in
circumstances where it is not usually possible to invert the Hessian and obtain
coefficient standard errors.

Ecological inference, the problem of inferring individual behavior from aggre-
gate data, was (and perhaps still is) arguably once the longest-standing unsolved
problem in modern quantitative social science. When in 1997 King provided
a new method that incorporated both the statistical information in Goodman’s
regression and the deterministic information in Duncan and Davis’s bounds, he
garnered tremendous acclaim as well as persistent criticism. In this book we
report the first comparison of the numerical properties of competing approaches
to the ecological inference problem. The results illuminate the trade-offs among
correctness, complexity, and numerical sensitivity.

More important than this list of new ideas, which we hope the reader will
explore, this is the first general theoretical book on statistical computing that is
focused purely on the social sciences. As social scientists ourselves, we recognize
that our data analysis and estimation processes can differ substantially from those
described in a number of (even excellent) texts.

All too often new ideas in statistics are presented with examples from biology.
There is nothing wrong with this, and clearly the points are made more clearly
when the author actually cares about the data being used. However, we as social
scientists often do not care about the model’s implications for lizards, beetles,
bats, coal miners, anchovy larvae, alligators, rats, salmon, seeds, bones, mice,
kidneys, fruit flies, barley, pigs, fertilizers, carrots, and pine trees. These are
actual examples taken from some of our favorite statistical texts. Not that there
is anything wrong with studying lizards, beetles, bats, coal miners, anchovy
larvae, alligators, rats, salmon, seeds, bones, mice, kidneys, fruit flies, barley,
pigs, fertilizers, carrots, and pine trees, but we would rather study various aspects
of human social behavior. This is a book for those who agree.


