
Part1

FUNDAMENTALS

c01.qxd 11/19/2007 3:27 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

c01.qxd 11/19/2007 3:27 PM Page 2

Software Process Dynamics. By Raymond J. Madachy 3
Copyright © 2008 the Institute of Electrical and Electronics Engineers, Inc.

1

INTRODUCTION AND
BACKGROUND

Everything is connected to everything.
—Anonymous

Software and information technology professionals, managers, executives, and busi-
ness analysts have to cope with an increasingly dynamic world. Gone are the days
when one’s software technology, hardware platforms, organizational environment, and
competitive marketplace would stay relatively stable for a few years while developing
a system. Thus, the ability to understand and reason about dynamic and complex soft-
ware development and evolution processes becomes increasingly valuable for decision
making.

Particularly valuable are automated aids built upon knowledge of the interacting
factors throughout the software life cycle that impact the cost, schedule, and quality.
Unfortunately, these effects are rarely accounted for on software projects. Knowledge
gleaned from a global perspective that considers these interactions is used in exe-
cutable simulation models that serve as a common understanding of an organization’s
processes. Systems thinking, as a way to find and bring to light the structure of the or-
ganizational system that influences its dynamic behavior, together with system dynam-
ics as a simulation methodology, provide critical skills to manage complex software
development.

System dynamics provides a rich and integrative framework for capturing myriad
process phenomena and their relationships. It was developed over 40 years ago by Jay

c01.qxd 11/19/2007 3:27 PM Page 3

Forrester at MIT to improve organizational structures and processes [Forrester 1961].
It was not applied in software engineering until Tarek Abdel-Hamid developed his dis-
sertation model, which is featured in the book Software Project Dynamics [Abdel-
Hamid, Madnick 1991].

Simulation usage is increasing in many disparate fields due to constantly improving
computer capabilities, and because other methods do not work for complex systems.
Simulations are computationally intensive, so they are much more cost-effective than
in the past. Simulation is general-purpose and can be used when analytic solutions are
extremely difficult if not impossible to apply to complex, nonlinear situations. Simula-
tion is even more powerful with improved data collection for the models. Example
areas where increased processing power combined with improved models and data in-
clude meteorology to better predict hurricane paths, environmental studies, physical
cosmology, chemistry to experiment with new molecular structures, or archaeology to
understand past and future migrations. These are practical applications but simulation
can also be used for experimentation and theory building.

The simulation process in an organization involves designing a system model and
carrying out experiments with it. The purpose of these “what if” experiments is to de-
termine how the real or proposed system performs and to predict the effect of changes
to the system as time progresses. The modeling results support decision making to im-
prove the system under study, and normally there are unintended side effects of deci-
sions to consider. The improvement cycle continues as organizational processes are
continually refined.

Simulation is an efficient communication tool to show how a process works while
stimulating creative thinking about how it can be improved. The modeling process it-
self is beneficial; it is generally acknowledged that much of the reward of modeling is
gained in the early stages to gather data, pose questions, brainstorm, understand
processes, and so on.

There are many practical benefits of performing simulation in organizations. Be-
sides individual project planning, simulation can help evaluate long-run investment
and technology strategies. Companies can use simulation for continuous process im-
provement, regardless of their current process maturity. It can support organizational
learning by making models explicit in a group setting, where all participants can con-
tribute and buy into the model. Such collaboration can go a long way to effect team-
building.

Simulation can also be used in individual training, since participants can interact
with executing models in real time to see the effects of their decisions. Simulations
are used extensively for training in aerospace, military, and other fields. Student
awareness is heightened when virtual “games” with simulations are used, particular-
ly when they participate interactively. Visual dynamic graphs or virtual rendering
provide faster and more easily remembered learning compared to the traditional lec-
ture format. Exploration is encouraged through the ability to modify and replay the
models.

Another significant motivation is that simulation can help reduce the risk of soft-
ware development. Particularly when used and cross-checked with other complemen-
tary analyses that embody different assumptions, process modeling can minimize the

4 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 4

uncertainties of development. Previously unforeseen “gotchas” will be brought to the
forefront and mitigated through careful planning.

System dynamics modeling can provide insights by investigating virtually any as-
pect of the software process at a macro or micro level. It can be used to evaluate and
compare different life-cycle processes, defect detection techniques, business cases, in-
teractions between interdisciplinary process activities (e.g. software and nonsoftware
tasks), deciding “how much is enough” in terms of rigor or testing, and so on. Organi-
zations can focus on specific aspects of development cost, schedule, product quality,
or the myriad trade-offs, depending on their concerns.

The issues of software processes are very wide-ranging, so the scope and bound-
aries of this book will be defined. The focus is not on technical fundamentals of soft-
ware programming or specific methodologies, but on the dynamics of software
processes. The second definition from Webster’s dictionary describes the prime focus
of this book, particularly the relations between forces:

Dynamics—1. The branch of mechanics dealing with the motions of material bodies un-
der the action of given forces 2. a) the various forces, physical, moral, economic, etc.
operating in any field b) the way such forces shift or change in relation to one anoth-
er c) the study of such forces.

Essentially, this book is about understanding the dynamics of software processes
with the help of simulation modeling. Software process dynamics is a more general
term than software project dynamics, which is limiting in the sense that dynamics oc-
cur outside of project boundaries such as continuous product line development, organi-
zational reuse processes contributing to many projects, or other strategic processes. A
project is also considered an execution of a process, roughly analogous to how a pro-
gramming object is an instance or execution of a class.

When simulation is used for personnel training, the term process flight simulation is
sometimes used to invoke the analogy of pilots honing their skills in simulators to re-
duce risk, with the implicit lesson that software managers and other personnel should
do the same. Use of the system dynamics method may on occasion be referred to as dy-
namic process simulation, dynamic simulation, or continuous systems simulation.

Alternative titles for this book could be The Learning Software Organization or
Software Process Systems Thinking, depending on the camp de jour. System dynamics
and, particularly, organizational learning gained wider public exposure due to Peter
Senge’s bestselling book The Fifth Discipline [Senge 1990]. Organizational learning
in the context of a software process involves translating the common “mental model”
of the process into a working simulation model that serves as a springboard for in-
creased learning and improvement. This learning can be brought about by applying
system dynamics to software process and project phenomena.

There are other excellent references on system dynamics modeling that one could
use to learn from, but why should a busy software engineer studying the software
process spend so much time with examples outside of his/her field? This book uses ex-
amples solely from the software process domain to minimize modeling skill transfer
time. Organizational learning and systems thinking are also well documented else-

INTRODUCTION AND BACKGROUND 5

c01.qxd 11/19/2007 3:27 PM Page 5

where (see the popular books by Peter Senge and collaborators [Senge 1990], [Senge
et al. 1994]).

1.1 SYSTEMS, PROCESSES, MODELS, AND SIMULATION

Important terminology for the field is defined in this section. A systems orientation is
crucial to understanding the concepts herein, so system will first be defined generally
as a subset of reality that is a focus of analysis. Technically, systems contain multiple
components that interact with each other and perform some function together that can-
not be done by individual components. In simulation literature, a system is typically
defined as “a collection of entities, e.g., people or machines, that act and interact to-
gether toward the accomplishment of some logical end” [Law, Kelton 1991]. For-
rester’s system definition is very close: “a grouping of parts that operate together for a
common purpose” [Forrester 1968].

Systems exist on many levels; one person’s system is another person’s subsystem.
Since systems are influenced by other systems, no system is isolated from external fac-
tors. How to define system boundaries for meaningful analysis is discussed later in this
book.

Systems are classified as “open” if the outputs have no influence on the inputs;
open systems are not aware of their past performance. A “closed” system is also called
a feedback system; it is influenced by its own behavior through a loop that uses past
actions to control future action. The distinction between open and closed systems is
particularly important in the context of system dynamics.

A system can be characterized by (1) parameters that are independent measures that
configure system inputs and structure, and (2) variables that depend on parameters and
other variables. Parameters in human systems are directly controllable. The collection
of variables necessary to describe a system at any point in time is called the state of the
system. Examples of state variables for a software process are the number of personnel
executing the process; the amount of software designed, coded, and tested; the current
number of defects; and so on.

Real-world systems can be classified as static or dynamic depending on whether the
state variables change over time. The state of a static system does not change over
time, whereas the state of a dynamic system does. Dynamic systems can be further
classified as continuous, discrete, or combined, based on how their variables change
over time.

Variables change continuously (without breaks or irregularities) over time in a con-
tinuous system, whereas they change instantaneously at separated time points in a dis-
crete system. A lake is an example of a continuous system since its depth changes con-
tinuously as a function of inflows and outflows, whereas a computer store queue
would be considered discrete since the number of customers changes in discrete quan-
tities. A software process arguably has continuous quantities (personnel experience,
motivation, etc.) and discrete ones (lines of code, defects, etc.)

Whether a system is seen as continuous, discrete, or combined depends on one’s
perspective. Furthermore, the choice of a continuous or discrete representation de-

6 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 6

pends on the modeling purpose, and some discrete systems can be assumed to be con-
tinuous for easy representation. For example, some would consider a software process
to be a system with discrete entities since it can be described by the number of people
working, number of units/lines/objects produced, defects originated, and so on, but
much difficulty will be avoided if each entity does not need to be traced individually.
Hence, the approach in this book and system dynamics in general is to treat the “flow”
of the software process as continuous.

A software process is a set of activities, methods, practices, and transformations
used by people to develop software. This is a general definition from the commonly
accepted Software Engineering Institute’s Capability Maturity Model (SEI CMM)
[Paulk et al. 1994]. In the context of this book, the software process is the system un-
der study.

A system must be represented in some form in order to analyze it and communicate
about it. A model in the broadest sense is a representation of reality, ranging from
physical mockups to graphical descriptions to abstract symbolic models. Software pro-
grams are themselves executable models of human knowledge. A model in the context
of this book is a logical, quantitative description of how a process (system) behaves.
The models are abstractions of real or conceptual systems used as surrogates for low
cost experimentation and study. Models allow us to understand a process by dividing it
into parts and looking at how they are related.

Dynamic process models can be discrete, continuous, or a combination of the two.
The essential difference is how the simulation time is advanced. Continuous systems
modeling methods such as system dynamics always advance time with a constant
delta. Since variables may change within any time interval in a continuous system,
the delta increment is very small and time-dependent variables are recomputed at the
end of each time increment. The variables change continuously with respect to time.
Discrete modeling normally is event based. State changes occur in discrete systems
at aperiodic times depending on the event nature, at the beginning and end of event
activities. The simulation time is advanced from one event to the next in a discrete
manner.

All classes of systems may be represented by any of the model types. A discrete
model is not always used to represent a discrete system and vice versa. The choice of
model depends on the specific objectives of a study. Models of the software processes
are either static,1 in which time plays no role, or dynamic, in which a system evolves
over time. The dynamic process models described this book are classified as symbolic,
or mathematical ones.

Models may be deterministic, with no probabilistic components, or stochastic,
with randomness in the components. Few, if any, software processes are wholly de-
terministic. Stochastic models produce output that is random and must be handled as
such with independent runs. Each output constitutes an estimate of the system char-
acteristics.

1.1 SYSTEMS, PROCESSES, MODELS, AND SIMULATION 7

1A cost model such as COCOMO II [Boehm et al. 2000] is traditionally a static model since the cost factors
are treated as constant for the project duration. However, there is a continuum between static and dynamic
versions of COCOMO. There are variations that make it possible to introduce time into the calculations.

c01.qxd 11/19/2007 3:27 PM Page 7

Simulation is the numerical evaluation of a mathematical model describing a sys-
tem of interest. Many systems are too complex for closed-form analytical solutions,
hence, simulation is used to exercise models with given inputs to see how the system
performs. Simulation can be used to explain system behavior, improve existing sys-
tems, or to design new systems too complex to be analyzed by spreadsheets or flow-
charts.

Finally, system dynamics is a simulation methodology for modeling continuous sys-
tems. Quantities are expressed as levels, rates, and information links representing feed-
back loops. Levels represent real-world accumulations and serve as the state variables
describing a system at any point in time (e.g., the amount of software developed, num-
ber of defects, number of personnel on the team, etc.) Rates are the flows over time
that affect the levels. See Table 1.3-1 for a preview description of model elements.
System dynamics is described in much more detail in Chapter 2.

A complete and rigorous reference for terms related to modeling and simulation can
be found at [DMSO 2006].

1.2 SYSTEMS THINKING

Systems thinking is a way to ferret out system structure and make inferences about the
system, and is often described as an overall paradigm that uses system dynamics prin-
ciples to realize system structure. Systems thinking is well suited to address software
process improvement in the midst of complexity. Many organizations and their models
gloss over process interactions and feedback effects, but these must be recognized to
effect greater improvements.

Systems thinking involves several interrelated concepts:

� A mindset of thinking in circles and considering interdependencies. One realizes
that cause and effect can run both ways. Straight-line thinking is replaced by
closed-loop causality.

� Seeing the system as a cause rather than effect (internal vs. external orientation).
Behavior originates within a system rather than being driven externally, so the
system itself bears responsibility. It is the structure of a system that determines
its dynamic behavior.

� Thinking dynamically in terms of ongoing relationships rather than statically.

� Having an operational vs. a correlational orientation; looking at how effects hap-
pen. Statistical correlation can often be misleading. A high correlation coeffi-
cient between two factors does not prove that one variable has an impact on the
other.

Systems thinking is, therefore, a conceptual framework with a body of knowledge and
tools to identify wide-perspective interactions, feedback, and recurring structures. In-
stead of focusing on open-loop, event-level explanations and assuming cause and ef-
fect are closely related in space and time, it recognizes the world really consists of
multiple closed-loop feedbacks, delays, and nonlinear effects.

8 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 8

1.2.1 The Fifth Discipline and Common Models

Senge discusses five disciplines essential for organizational learning in [Senge 1990]:
personal mastery, mental models, shared vision, team learning, and systems thinking.
Systems thinking is the “fifth” discipline that integrates all the other disciplines and
makes organizational learning work. Improvement through organizational learning
takes place via shared mental models.

Mental models are used in everyday life for translating personal or organizational
goals into issues, questions, and measures. They provide context for interpreting and
acting on data, but seldom are stated explicitly. Mental models become more concrete
and evolve as they are made progressively explicit. The power of models increases
dramatically as they become more explicit and commonly understood by people;
hence, process modeling is ideally suited for organizational improvement.

For organizational processes, mental models must be made explicit to frame con-
cerns and share knowledge among other people on a team. Everyone then has the same
picture of the process and its issues. Senge and Roberts provide examples of team
techniques to elicit and formulate explicit representations of mental models in [Senge
et al. 1994]. Collective knowledge is put into the models as the team learns. Elaborated
representations in the form of simulation models become the bases for process im-
provement.

1.2.2 Systems Thinking Compared to System Dynamics

Systems thinking has been an overloaded term in the last 15 years with many definitions.
Virtually any comparison with system dynamics is bound to be controversial due to se-
mantic and philosophical issues. Barry Richmond addressed the differences between
systems thinking and system dynamics mindsets in detail in [Richmond 1994a]. His ma-
jor critique about “the historical emphasis of system dynamics” is that the focus has been
on product rather than transferring the process (of model building). Only a privileged
few developed models and presented them to the world as “the way” as opposed to edu-
cating others to model and letting them go at it.2 His prescription is a systems thinking
philosophy of providing skills rather than models per se. Relevant aphorisms include
“Give a fish, eat for a day; teach to fish, eat for a lifetime,” or “power to the people.”

His definition of systems thinking is “the art and science of making reliable infer-
ences about behavior by developing an increasingly deep understanding of underlying
structure.” It is both a paradigm and a learning method. The paradigm is a vantage point
supplemented with thinking skills and the learning method is a process, language, and
technology. The paradigm and learning method form a synergistic whole. System dy-
namics inherently fits in as the way to understand system structure. Thus, system dy-
namics is a methodology to implement systems thinking and leverage learning efforts.

We prefer not to make any hard distinctions between camps because it is a semantic
issue. However, this book is architected in the spirit of systems thinking from the per-
spective of transferring the process. The goal is to teach people how to model and give

1.2 SYSTEMS THINKING 9

2It should be noted encouragingly that the system dynamics pioneer Jay Forrester and others at MIT are in-
volved in teaching how to model with system dynamics in K–12 grades.

c01.qxd 11/19/2007 3:27 PM Page 9

them tools to use for themselves, rather than say “here is the model for you to use.”
This is a major difference between Software Project Dynamics and this book. Abdel-
Hamid and Madnick present a specific model with no guidance on how to develop a
system dynamics model, though very few organizations are content to use the model
as-is. Their work is still a seminal contribution and it helped make this book possible.

1.2.3 Weinberg’s Systems Thinking

Gerry Weinberg writes about systems thinking applied to software engineering in
Quality Software Management, Volume 1: Systems Thinking [Weinberg 1992]. It is an
insightful book dealing with feedback control and has a close kinship with this book,
even though it is almost exclusively qualitative and heuristic. Some academic courses
may choose his book as a companion to this one. It provides valuable management in-
sights and important feedback situations to be modeled in more detail.

Weinberg’s main ideas focus around management thinking correctly about devel-
oping complex software systems—having the right “system model” for the project and
its personnel. In a restatement of Brooks’s dictum that lack of schedule time has
doomed more projects than anything else, Weinberg writes in [Weinberg 1992], “Most
software projects have gone awry from management’s taking action based on incorrect
system models than for all other causes combined.”

One reason management action contributes to a runaway condition is the tendency
to respond too late to deviations, which then forces management to take big actions,
which themselves have nonlinear consequences. In order to stay in control of the soft-
ware process, Weinberg advises to “act early, act small.” Managers need to continual-
ly plan, observe the results, and then act to bring the actuals closer to planned. This is
the prototypical feedback loop for management.

Weinberg was working on his book at the same time that Abdel-Hamid and Mad-
nick were working on theirs, unknown to each other. The day after Weinberg submit-
ted his work to the publisher, he met Abdel-Hamid and realized they were working on
parallel and complementary paths for years. Weinberg describes the relationship be-
tween the two perspectives as follows. He starts from the low end, so projects get sta-
ble enough so that the more precise, high-end modeling exemplified by system dynam-
ics can be even more useful.

Much of Weinberg’s book discusses quality, on-the-job pressures, culture, feedback
effects, dynamics of size and fault resolution, and more. He proceeds to describe the
low-level interactions of software engineering, which are the underlying mechanics for
many of the dynamic effects addressed by various process models described in this
book. His work is referenced later and provides fodder for some exercises.

1.3 BASIC FEEDBACK SYSTEMS CONCEPTS APPLIED TO THE
SOFTWARE PROCESS

Continuous systems modeling has a strong cybernetic thread. The word cybernetic de-
rives from “to control or steer,” and cybernetics is the field of science concerned with

10 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 10

processes of communication and control (especially the comparison of these processes
in biological and artificial systems) [Weiner 1961]. Cybernetic principles are relevant
to many types of systems including moving vehicles (ground, air, water, or space), bi-
ological systems, individuals, groups of individuals, and species.

We are all familiar with internal real-time control processes, such as when driving
down a road. We constantly monitor our car’s position with respect to the lane and
make small adjustments as the road curves or obstacles arise. The process of monitor-
ing actual position against desired position and making steering adjustments is similar
to tracking and controlling a software project. The same mathematics apply, so system
dynamics can be used to model the control aspects of either human driving or project
management.

Control systems theory provides a rigorous framework for analyzing complex feed-
back systems. This section will introduce some basic system notations and concepts,
and apply to them to our system of study—the software process. The purpose is to re-
alize a high-level analogy of control principles to our domain, and we will forego
mathematical formulae and more sophisticated feedback notations.3 System dynamics
is our chosen method for modeling feedback systems in a continuous-time fashion, as
used in the rest of this book.

Figure 1.1 shows the most basic representation of an open system, whereby a black-
box system transforms input to output per its internal processing functions. Input and
output signals are treated as fluxes over time. It is open because the outputs have no
system influence (frequently, it is also called an open-loop system despite the absence
of any explicit loops). Figure 1.2 shows the closed-loop version with a controller im-
plementing feedback. A decomposition of the controller shows two major elements: a
sensor and a control device, shown in Figure 1.3.

The borrowing of these standard depictions from control systems theory can lead to
misinterpretation about the “system” of interest for software processes. In both Figures
1.2 and 1.3, the controller is also of major concern; it should not be thought of as being
“outside” the system. One reason for problems in software process improvement is
that management is often considered outside the system to be improved. Therefore, the
boundary for a software process system including management should encompass all
the elements shown, including the controller.

Applying these elements to the software process, inputs traditionally represent re-
quirement specifications (or capabilities or change requests), the system is the software
development (and evolution) process with the management controller function, and the
outputs are the software product artifacts (including defects). The sensor could be any
means of measuring the output (e.g., analyzing software metrics), and the control de-
vice is the management action used to align actual process results with intended. This
notation can represent either a one-time project or a continual software evolution
process.

If we consider all types of inputs to the software process, the vector includes re-
sources and process standards as well as requirements. Resources include people and

1.3 BASIC FEEDBACK SYSTEMS CONCEPTS APPLIED TO THE SOFTWARE PROCESS 11

3We are not covering signal polarities, integrators, summers, transfer functions, Laplace transforms, cascad-
ed systems, state space representation, and so on.

c01.qxd 11/19/2007 3:27 PM Page 11

machines used to develop and evolve the software. Process standards include methods,
policies, procedures, and so on. Even the process life-cycle model used for the project
can be included (see Section 1.3.2). Requirements include functional requirements,
project constraints like budget and schedule, support environment requirements, evo-
lution requirements, and more. Process control actions that management takes based
on measurements may affect any of these inputs.

Substituting software process elements into the generic system description pro-
duces Figures 1.4, keeping the controller aggregated at the top level representing inter-
nal process management.

However, the management controller only represents endogenous process mecha-
nisms local to the development team. These are self-initiated control mechanisms. In
reality, there are external, or exogenous feedback forces from the operational environ-

12 INTRODUCTION AND BACKGROUND

System
Output Input

Figure 1.1. Open system.

System
Output Input

Controller

Figure 1.2. Closed system with controller.

System
Output Input

Controller

Control

device

Sensor

Figure 1.3. Closed system with controller elements.

c01.qxd 11/19/2007 3:27 PM Page 12

ment of the software—global feedback. The feedback can be user change requests
from the field, other stakeholder change mandates, market forces, or virtually any ex-
ternal source of requirements evolution or volatility. The exogenous feedback is a very
important effect to understand and try to control. An enhanced picture showing the two
sources of feedback is in Figure 1.5.

The outer, global feedback loop is an entire area of study in itself. Of particular note
is the work of Manny Lehman and colleagues on software evolution, which is high-
lighted in Chapter 5 and referenced in several other places (also see their entries in Ap-
pendix B).

These feedback mechanisms shown with control systems notation are implemented
in various ways in the system dynamics models shown later. Feedback is represented
as information connections to flow rates (representing policies) or other parameters
that effect changes in the systems through connected flow rates.

1.3.1 Using Simulation Models for Project Feedback

Projects can proactively use simulation models to adapt to change, thereby taking ad-
vantage of feedback to improve through models. This is one way to implement opera-
tional control through simulation. A simulation model can be used for metrics-based
feedback during project execution since its input parameters represent project objec-

1.3 BASIC FEEDBACK SYSTEMS CONCEPTS APPLIED TO THE SOFTWARE PROCESS 13

Software

Process
Software Artifacts Requirements, resources, standards

Management

Figure 1.4. Software process control system with management controller.

Software

Process
Software Artifacts Requirements, resources etc.

internal project feedback

external feedback from operational environment

Software Development or Evolution Project

Figure 1.5. Software process control system with internal and external feedback.

c01.qxd 11/19/2007 3:27 PM Page 13

tives, priorities, available components, or personnel. It serves as a framework for pro-
ject rescoping and line management to reassess risks continuously and support replan-
ning.

Figure 1.6 shows a project rescoping framework utilizing metrics feedback and
simulation. By inputting parameters representing changed conditions, one can assess
whether the currently estimated cost and schedule are satisfactory and if action should
be taken. Either rescoping takes places or the project executes to another feedback
milestone, where the model is updated with actuals to date and the cycle repeats.

1.3.2 System Dynamics Introductory Example

Table 1.1 is a heads-up preview of system dynamics model elements used throughout
this book. The capsule summary may help to interpret the following two examples be-
fore more details are provided in Chapter 2 (this table is a shortened version of one in
Chapter 2). We are jumping ahead a bit in order to introduce a simple Brooks’s Law
model. Novices may also want to consult the system dynamics introduction in Chapter
2 to better understand the model elements.

Throughout this text and in other references, levels are synonymous with “stocks”
and rates are also called “flows.” Thus, a stock and flow representation means an elab-
orated model consisting of levels and rates.

A simple demonstration example of modeling process feedback is shown in the Fig-
ure 1.7 system diagram. In this model, the software production rate depends on the
number of personnel, and the number of people working on the project is controlled
via a feedback loop. The linear software production rate is expressed as

software production rate = individual productivity · personnel

14 INTRODUCTION AND BACKGROUND

Ok?

Rescope

Software

Process Model

Corporate parameters:

tools, processes, reuse

System objectives:

functionality,

performance, quality

Execute

project

to next

Milestone

Ok?

Done?

End

Revise

Milestones,

Plans,

Resources

No

Revised

Expectations

Milestone

Results

Yes

Yes

Milestone expectations

No

Yes

Cost,

Schedule,

Risks

No

Milestone plans,

resources

Project parameters:

personnel, team, platform

Figure 1.6. Project rescoping framework.

c01.qxd 11/19/2007 3:27 PM Page 14

The management decision that utilizes feedback from the actual work accomplished
is the following equation for personnel allocation:

personnel allocation rate = if (completed software < planned completion) then 1 else 0

This highly oversimplified feedback decision says to add a person whenever actual
progress is less than planned. If actual progress meets or exceeds the planned progress,
than no changes are made to the staff (zero people are added). Presumably, this man-
agement policy would keep a project on track, assuming a productivity increase when

1.3 BASIC FEEDBACK SYSTEMS CONCEPTS APPLIED TO THE SOFTWARE PROCESS 15

Table 1.1. System dynamics model elements (capsule summary)

Element Notation Description

Level A level is an accumulation over time, also called
a stock or state variable. They are functions of
past accumulation of flow rates. Examples in-
clude software tasks of different forms, defect
levels, or personnel levels.

Source/Sink Sources and sinks indicate that flows come from
or go to somewhere external to the process.
They represent infinite supplies or repositories
that are not specified in the model. Examples in-
clude sources of requirements, delivered soft-
ware, or employee hiring sources and attrition
sinks.

Rate Rates are also called flows. They are the “ac-
tions” in a system. They effect the changes in
levels and may represent decisions or policy
statements. Examples include software produc-
tivity rate, defect generation rate, or personnel
hiring and deallocation rates.

Auxiliary Auxiliaries are converters of input to output, and
help elaborate the detail of stock and flow struc-
tures. Auxiliaries often represent “score-keep-
ing” variables and may include percent of job
completion, quantitative goals or planned val-
ues, defect density, or constants like average de-
lay times.

Information Information linkages are used to represent
Link information flow (as opposed to material flow).

Links can represent closed-path feedback loops
between elements. They link process parameters
to rates and other variables. Examples include
progress and status information for decision
making, or knowledge of defect levels to allo-
cate rework resources.

c01.qxd 11/19/2007 3:27 PM Page 15

someone is added. It does not consider other ripple effects or nonlinearities of adding
extra people, which is addressed in the next example.

1.4 BROOKS’S LAW EXAMPLE

A small motivational example of modeling Brooks’s Law is described here. In the ear-
ly software engineering classic The Mythical Man-Month (it was also updated in
1995), Fred Brooks stated, “Adding manpower to a late software project makes it lat-
er” [Brooks 1975]. His explanation for the law was the additional linear overhead
needed for training new people and the nonlinear communication overhead (a function
of the square of the number of people). These effects have been widely accepted and
observed by others. The simple model in Figure 1.8 describes the situation, and will be
used to test the law. Model equations and commentary are in Figure 1.9.4 This model is

16 INTRODUCTION AND BACKGROUND

personnel

completed software

personnel allocation rate

individual productivity

~

planned completion

software production rate

Figure 1.7. System dynamics representation of simple project feedback.

The software production flow
chain models productivity as a
linear function of the number of
personnel. The level of completed
software increases according to
the production rate flowing into it.

The personnel chain models the
personnel level rising as more
people are allocated to the project.
The allocation rate operates on the
difference between actual and
planned completion.

This variable of planned
completion over time is
used in making the
personnel allocation
decision.

4Mathematically inclined readers may appreciate differential equations to represent the levels. This represen-
tation is not necessary to understand the model. The following integrals accumulate the inflow and outflow
rates over time to calculate a level at any time t using the standard notation:

level = levelt=0 + �t

0
(inflow - outflow) dt

requirements = requirementst=0 – �t

0
(software development rate) dt

c01.qxd 11/19/2007 3:27 PM Page 16

described below assuming no background in systems dynamics. More detail on model
notations and equations are discussed in Chapter 2.

The model is conceived around the following basic assumptions:

� New personnel require training by experienced personnel to come up to speed.

� More people on a project entail more communication overhead.

� Experienced personnel are more productive than new personnel, on average.

It is built on two connected flow chains representing software development and per-
sonnel. The software development chain assumes a level of requirements that needs to

1.4 BROOKS’S LAW EXAMPLE 17

developed software

~

planned software

software development rate

new personnel experienced personnel

personnel allocation rate assimilation rate

~

communication overhead %

nominal productivity

experienced personnel

needed for training

training overhead:

% FTE experienced

requirements

Figure 1.8. Brooks’s Law model.

Requirements are developed into software
per the software development rate
(productivity)

Productivity variables
account for
communication and
training overhead, and
different productivity of
new vs. experienced
people.

New personnel are added when
the project is late through the
allocation rate, and they become
experienced per the assimilation
rate.

developed software = developed softwaret=0 + �t

0
(software development rate) dt

new personnel = new personnelt=0 – �t

0
(assimilation rate) dt

experienced personnel = experienced personnelt=0 + �t

0
(assimilation rate) dt

c01.qxd 11/19/2007 3:27 PM Page 17

Figure 1.9. Brooks’s Law model equations.

developed_software(t) = developed_software(t - dt) + (software_development_rate) * dt
INIT developed_software = 0

c01.qxd 11/19/2007 3:27 PM Page 18

be implemented (shown as the upper left box in Figure 1.8). The requirements are
transformed into developed software at the software development rate (rates are shown
as the circular pipe-valve symbols). Sometimes, this rate is called “project velocity”
(especially by practitioners of agile methods). The level of developed software repre-
sents progress made on implementing the requirements. Project completion is when
developed software equals the initial requirements. Software size is measured in func-
tion points, and the development rate is in function points/day. A function point is a
measure of software size that accounts for external inputs and outputs, user interac-
tions, external interfaces, and files used by the system [IFPUG 2004].

The software development rate is determined by the levels of personnel in the sys-
tem: new project personnel who come onto the project at the personnel allocation rate,
and experienced personnel who have been assimilated (trained) into the project at the
assimilation rate. Further variables in the system are shown as circles in the diagram.
Documentation for each model element is shown underneath its equation in Figure 1.9.
When constructing the model, the time-based level equations are automatically gener-
ated by visually laying out the levels and rates with a simulation tool.

1.4.1 Brooks’s Law Model Behavior

The model is a high-level depiction of a level-of-effort project. It allows tracking the
software development rate over time and assessing the final completion time to devel-
op the requirements under different hiring conditions. When the gap between devel-
oped software and the planned software becomes too great, people are added at the
personnel allocation rate. All parameters are set to reasonable approximations as de-
scribed below and in the equation commentary. The overall model represents a nomi-
nal case, and would require calibration to specific project environments.

As time progresses, the number of requirements decreases since this represents re-
quirements still left to implement. These requirements are processed over time at the
software development rate and become developed software, so requirements decline as
developed software rises. The software development rate is constrained by several fac-
tors: the nominal productivity of a person, the communication overhead %, and the ef-
fective number of personnel.

The effective number of personnel equals the new project personnel plus the expe-
rienced personnel minus the amount of experienced personnel needed for training the
new people. The communication overhead % is expressed as a nonlinear function of
the total number of personnel that need to communicate (0.06 · n2, where n is the num-
ber of people). This overhead formulation is described in [Abdel-Hamid, Madnick
1991]. The experienced personnel needed for training is the training overhead percent-
age as a fraction of a full-time equivalent (FTE) experienced personnel. The default of
0.25 indicates that one-quarter of an experienced person’s time is needed to train a new
person until he/she is fully assimilated.

The bottom structure of the personnel chain models the assimilation of new project
personnel at an average rate of 20 days. In essence, a new person is trained by one-
fourth of an experienced person for an average of 20 days until they become experi-
enced in the project.

1.4 BROOKS’S LAW EXAMPLE 19

c01.qxd 11/19/2007 3:27 PM Page 19

The nominal productivity is set to 0.1 function points/person-day, with the produc-
tivities of new and experienced personnel set to 0.8 · nominal productivity and 1.2 ·
nominal productivity, respectively, as a first-order approximation (the fractions rough-
ly mimic the COCOMO II cost model experience factors [Boehm et al. 2000]).

Static conditions are present in the model when no additional people are added.
These conditions are necessary to validate a model before adding perturbations (this
validation is shown as an example in Chapter 2). The default behavior of the model
shows a final completion time of 274 days to develop 500 function points with a con-
stant staff of 20 experienced personnel.

The first experiment will inject an instantaneous pulse of 5 new people when a
schedule variance of 15% is reached at about day 110. On the next run, 10 people will
be added instead. Figure 1.10 is a sensitivity plot of the corresponding software devel-
opment rates for the default condition and the two perturbation runs.

Figure 1.10 now shows some interesting effects. With an extra staff of five people
(curve #2), the development rate nosedives, then recovers after a few weeks to slightly
overtake the default rate and actually finishes sooner at 271 days. However, when 10
people are added the overall project suffers (curve #3). The initial productivity loss
takes longer to stabilize, the final productivity is lower with the larger staff, and the
schedule time elongates to 296 days. The smooth recovery seen on both are due to the
training effect. The extra staff productivity gains in the first case are greater than the
communication losses, but going from 20 to 30 people in the second case entails a
larger communication overhead compared to the potential productivity gain from hav-
ing more people.

This model of Brooks’s Law demonstrates that the law holds only under certain
conditions (Brooks did not mean to imply that the law held in all situations). There is a

20 INTRODUCTION AND BACKGROUND

0.00 75.00 150.00 225.00 300.00

Days

1:

1:

1:

0

1

2

software development rate: 1 - 2 - 3 -

1 1 1 12 2 2 2
3

3 3 3

Figure 1.10 Sensitivity of software development rate to varying personnel allocation pulses (1:
no extra hiring, 2: add 5 people on 110th day, 3: add 10 people on 110th day).

c01.qxd 11/19/2007 3:27 PM Page 20

threshold of new people that can be added until the schedule suffers, showing the
trade-off between adding staff and the time in the life cycle. Note that only schedule
time was analyzed here, and that effort increased in both cases of adding people. The
effort may also be taken into account for a true project decision (though schedule may
often be the primary performance index regardless of the cost).

There is a trade-off between the number of added people and the time in the life cy-
cle. The model can be used to experiment with different scenarios to quantify the oper-
ating region envelope of Brooks’s Law. A specific addition of people may be tolerable
if injected early enough, but not later. The project time determines how many can be
effectively added.

The model uses simplified assumptions and boundaries, and can be refined in sever-
al ways. The parameters for communication overhead, training overhead, assimilation
rate, and other formulations of personnel allocation are also important to vary for a
thorough sensitivity analysis. A myriad of different combinations can and should still
be tested. This model is analyzed in more detail in Chapter 2 to illustrate the principles
of sensitivity analysis, and Chapter 6 has an advanced exercise to extend it.

This exercise has demonstrated that a small-scale and simple model can help shed
light on process phenomena. Even though the model contains simple formulations, the
dynamic time trends would be very time-consuming for a person to manually calculate
and all but impossible to mentally figure.

Based on the insight provided, we may now clarify Brooks’s Law. Adding manpow-
er to a late software project makes it later if too much is added too late. That is when
the additional overhead is greater than productivity gains due to the extra staff, as sub-
ject to local conditions.

This model is a microcosm of the system dynamics experience. Simplifying as-
sumptions are made that coincide with the simple purpose of this model. Many aspects
of the model can be challenged further, such as the following:

� Determining the adequacy of the model before experimenting with it

� Boundary issues: where do requirements come from, and why is there no attri-
tion of people

� Accounting for new requirements coming in after the project has begun

� Varying the starting levels of new and experienced personnel

� Alternate representations to model learning by new hires

� Effects of different hiring scenarios (e.g., step or ramp inputs rather than a single
pulse)

� Different relative productivities for experienced and new personnel

� Different communication overhead relationship

� Team partitioning when more people are added

� The policy of determining schedule variance and associated actions

All of these issues will be addressed in subsequent chapters that discuss this Brooks’s
Law model and others.

1.4 BROOKS’S LAW EXAMPLE 21

c01.qxd 11/19/2007 3:27 PM Page 21

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW

Software process technology encompasses three general and overlapping areas:
process modeling, process life-cycle models, and process improvement. These areas
address highly critical issues in software engineering. A typical example of overlap is
modeling of life-cycle processes to achieve process improvement. This book involves
all three areas, but the major focus is process modeling with the given technique of
system dynamics. Lessons learned from the modeling will give insight into choosing
life-cycle models and improving processes. Background on each of these related areas
follows in the next subsections.

The term process model is overloaded and has meaning in all three contexts. A sim-
ulation process model is an executable mathematical model like a system dynamics
model, which is the default meaning for process model in this book. However, life-
cycle approaches that define the steps performed for software development are some-
times called process models, so the term life-cycle process is used here. Finally, frame-
works for process improvement such as Capability Maturity Models, Six Sigma, or
ISO 9000 described in Section 1.3.3 are sometimes called process models.

1.5.1 Software Process Modeling

A high-level overview of the software process modeling field is contained in this sec-
tion, and the remainder of the book expounds on process modeling with system dy-
namics. Process modeling is representing a process architecture, design, or definition
in the abstract. Concrete process modeling has been practiced since the early days of
software development [Benington 1956]. Abstract software process modeling started
in earnest after Leon Osterweil’s landmark paper titled “Software Processes are Soft-
ware Too” [Osterweil 1987]. The title of Osterweil’s statement neatly captures some
important principles. As software products are so complex and difficult to grasp,
processes to build them should be described as rigorously as possible (with the same
precision and rigor used for the software itself). “Process programming” refers to sys-
tematic techniques and formalisms used to describe software processes. These tech-
niques to produce process objects are very much the same as those used for software
artifacts. The resulting process objects are instantiated and executed on projects.
Hence, process descriptions should be considered software and process programming
should be an essential focus in software engineering.

Since Osterweil’s argument that we should be as good at modeling the software
process as modeling applications, software process modeling has gained very high in-
terest in the community among both academic researchers and practitioners as an ap-
proach and technique for analyzing complex business and policy questions.

Process modeling can support process definition, process improvement, process
management, and automated process-driven environments. Common purposes of sim-
ulation models are to provide a basis for experimentation, to predict behavior, answer
“what if” questions, or teach about the system being modeled [Kellner et al. 1999].
Such models are usually quantitative. As a means of reasoning about software process-
es, process models provide a mechanism for recording and understanding processes,

22 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 22

and evaluating, communicating, and promoting process improvements. Thus, process
models are a vehicle for improving software engineering practice.

A software process model focuses on a particular aspect of a process as currently
implemented (as-is), or as planned for the future (to-be). A model, as an abstraction,
represents only some of the many aspects of a software process that potentially could
be modeled, in particular those aspects relevant to the process issues and questions at
hand.

Models can be used to quantitatively evaluate the software process, implement
process reengineering and benchmark process improvement since calibrated models
encapsulate organizational metrics. Organizations can experiment with changed
processes before committing project resources. A compelling reason for utilizing sim-
ulation models is when the costs, risks, or logistics of manipulating the real system of
interest are prohibitive (otherwise one would just manipulate the real system).

Process models can also be used for interactive training of software managers; this
is sometimes called “process flight simulation.” A pilot training analogy is a handy
one to understand the role of simulation. Before pilots are allowed to fly jet planes or
space vehicles, they are first required to spend thousands of hours in flight simulation,
perfecting their skills and confronting different scenarios. This effective form of risk
minimization is needed due to the extremely high risks of injury, death, and damaged
vehicles. Unfortunately, software managers are too often required to confront project
situations without really training for them (despite the very high risks). Why not use
simulation to prepare them better?

A model result variable is a primary output of a process simulation. Typical result
variables for software process simulation include effort, cycle time, defect levels,
staffing requirements over time, return on investment (ROI), throughput, productivity,
and queue lengths. Many of these variables may be reported for the entire simulation
or any portion thereof. Some result variables are best looked at as continuous functions
(e.g., staffing requirements), whereas others only make sense at the end of the process
being simulated (e.g., ROI). A more detailed overview of the what, why, and how of
software process modeling can be found in [Kellner et al. 1999].

1.5.1.1 Modeling Approaches

To support the aforementioned objectives, process models must go beyond static rep-
resentation to support process analysis. Unfortunately, there is no standard approach
for process modeling. A variety of process definition and simulation methods exist that
answer unique subsets of process questions.

Five general approaches to representing process information, as described and re-
viewed in [Curtis et al. 1992], are programming models (process programming), func-
tional models, plan-based models, Petri-net models (role interaction nets), and system
dynamics. The suitability of a modeling approach depends on the goals and objectives
for the resulting model. No current software process modeling approach fully satisfies
the diverse goals and objectives previously mentioned. Most of these approaches are
still used. Over the years, experience has shown that Petri-net models do not scale very
well for software processes [Osterweil 2005].

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 23

c01.qxd 11/19/2007 3:27 PM Page 23

An earlier technique for process modeling is the Articulator approach [Scacchi-Mi
1993]. They created a knowledge-based computing environment that uses artificial in-
telligence scheduling techniques from production systems for modeling, analyzing,
and simulating organizational processes. Classes of organizational resources are mod-
eled using an object-oriented knowledge-representation scheme. Simulation takes
place through the symbolic performance of process tasks by assigned agents using
tools and other resources.

Other simulation modeling variants that have been applied to software processes in-
clude state-based process models, general discrete event simulation, rule-based lan-
guages, scheduling approaches, queueing models, and project management (CPM and
PERT).

Process modeling languages and representations usually present one or more per-
spectives related to the process. Some of the most commonly represented perspectives
are functional, behavioral, organizational, and informational. They are analogous to
different viewpoints on an observable process. Although separate, these representa-
tions are interrelated and a major difficulty is tying them together [Curtis et al. 1992],
[Kellner 1991]. Ideally, a single approach combines process representation, guidance,
simulation, and execution capabilities.

A discrete process modeling approach that combines several language paradigms
was developed by Kellner, Raffo, and colleagues at the Software Engineering Institute
(SEI) [Kellner 1991], [Raffo 1995]. They used tools that provide state transitions with
events and triggers, systems analysis, and design diagrams and data modeling to sup-
port representation, analysis, and simulation of processes. This approach enables a
quantitative simulation that combines the functional, behavioral, and organizational
perspectives.

The two main techniques to gain favor over the last decade are system dynamics
and discrete-event simulation. A comparison of the relative strengths and weaknesses
between the two are provided in [Kellner et al. 1999], and subsequent chapters in this
book discusses their trade-offs for some applications. Recently, agent-based approach-
es have also been used, and they are expected to increase in popularity [Smith et al.
2006].

Various hybrid approaches have also been used. System dynamics and discrete-
event models were combined in a hybrid approach in [Martin-Raffo 2001], [Martin
2002]. Another hybrid two-level modeling approach in [Donzelli, Iazeolla 2001] com-
bines analytical, continuous and discrete-event methods. At the higher abstraction lev-
el, the process is modeled by a discrete-event queuing network, which models the
component activities (i.e. service stations), their interactions, and the exchanged arti-
facts. The implementation details of the introduced activities are given at the lower ab-
straction level, where the analytical and continuous methods are used.

Little-JIL is a graphical method for process programming inspired by Osterweil. It
defines processes that coordinate the activities of autonomous agents and their use of
resources during the performance of a task [Wise et al. 2000], [Wise et al. 2006]. It
uses pre-conditions, post-conditions, exception handlers and a top-down decomposi-
tion tree. Programs made with Little-JIL are executable so agents can be guided
through a process and ensure that their actions adhere to the process. It is a flexible and

24 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 24

adaptive language initially used to coordinate agents in software engineering [Wise et
al. 2000], though recently the process formalism has been applied to other domains be-
sides software demonstrating “ubiquituous process engineering” [Osterweil 2006].

1.5.1.1.1 STATIC VERSUS DYNAMIC MODELING. Traditional analysis approaches
are static and cannot capture the dynamic feedback loops that cause real-world com-
plexity. Static modeling techniques assume that time plays no role. Factors are invari-
ant over the duration of a project or other applicable time horizon. However, the dy-
namic behavior of a system is one of the complexities encountered in real systems.
Dynamic models are used when the behavior of the system changes over time and is of
particular interest or significance.

For example, static cost and schedule estimation models such as COCOMO II de-
rivatives [Boehm et al. 2000], SEER [Galorath 2005], True-S (formerly PRICE-S)
[PRICE 2005], or others provide valuable insight for understanding software project
trade-off relationships, but their static form makes it difficult to help reason about
complex dynamic project situations. These may include hybrid processes with a mix of
life cycles, agile and open-source development methods, or schedule optimization fo-
cusing on critical-path tasks. These situations may require understanding of complex
feedback processes involving such interacting phenomena as schedule pressure, com-
munication overhead, or numerous others.

1.5.1.1.2 SYSTEM DYNAMICS. The discipline of modeling software processes with
system dynamics started with Tarek Abdel-Hamid developing his seminal model of
software development for his Ph.D. at MIT. His dissertation was completed in 1984,
and he wrote some intervening articles before publishing the book Software Project
Dynamics5 with Stuart Madnick in 1991 [Abdel-Hamid, Madnick 1991]. Since then,
over 100 publications have directly dealt with software process modeling with system
dynamics (see Appendix B for an annotated bibliography of these).

System dynamics is one of the few modeling techniques that involves quantitative
representation. Feedback and control system techniques are used to model social and
industrial phenomena. Dynamic behavior, as modeled through a set of interacting
equations, is difficult to reproduce through modeling techniques that do not provide
dynamic feedback loops. The value of system dynamics models is tied to the extent
that constructs and parameters represent actual observed project states.

System dynamics addresses process improvement and management particularly
well. It also helps facilitate human understanding and communication of the process,
but does not explicitly consider automated process guidance or automated execution
support. Some system dynamicists stress that understanding of system behavior and
structure is the primary value of system dynamics as opposed to strict prediction.

As will be detailed in subsequent sections, software process modeling with system
dynamics has been used in a large number of companies, governmental agencies

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 25

5Abdel-Hamid’s model and book describe project dynamics for a single fixed process. The title of this book,
Software Process Dynamics, conveys a more general view of processes and provides assets to analyze a va-
riety of processes, including those outside of project boundaries.

c01.qxd 11/19/2007 3:27 PM Page 25

around the world, university research and teaching, and other nonprofit institutions,
and has been deployed in marketable software engineering toolsets. It has been used in
numerous areas for software processes. The reader is encouraged to read Appendix B
to understand the breadth of applications and work in this area.

1.5.1.1.2.1 Why Not Spreadsheets? Many people have tried to use spreadsheets
to build dynamic models and failed. Spreadsheets are designed to capture discrete
changes rather than a continuous view. It is extremely difficult to use them to model
time-based relationships between factors and simulate a system continuously over
time. Additionally, they are not made to easily generate different scenarios, which are
necessary to analyze risks.

Using spreadsheets for dynamic modeling is a very tedious process that requires
each time step to be modeled (e.g., four rows or columns are needed to simulate a
week using a standard time step of 0.25). Additionally, this method is actually model-
ing a difference equation, not a continuous-time model. There is much peril in this ap-
proach and it is very easy for errors to creep in with all the related time equations.
Some of the basic laws of system dynamics can innocently be violated such as requir-
ing a stock or level in each feedback loop.

But spreadsheets can be important tools for modeling and used in conjunction with
simulation tools. They can be used for a variety of purposes, most notably for analyz-
ing outputs of many simulation runs, optimizing parameters, and for generating inputs
for the models (such as a stream of random variables). Some system dynamics tools in-
clude these capabilities and some do not (a list of available tools is in Chapter 2).

1.5.1.2 Process Model Characterization

Software process modeling can be used in a wide variety of situations per the structure
of Table 1.2. The applications shown are representative examples of major models and,
thus, are only a sliver of all possible applications. The matrix structure was originated by
Marc Kellner as a framework for characterizing modeling problems and relevant mod-
eling work in terms of scope (what is covered) and purpose (why) for the annual
Software Process Simulation (ProSim) workshops. System dynamics can be used to ad-
dress virtually every category, so the table is incompletely populated (it would grow too
big if all applications in Appendix B were represented). The matrix can also be used to
place the result variables of a simulation study in the proper categorization cell.

The primary purposes of simulation models are summarized below:

� Strategic management questions address the long-term impact of current or
prospective policies and initiatives. These issues address large portfolios of pro-
jects, product-line approaches, long-term practices related to key organizational
strengths for competitive advantage, and so on.

� Planning involves the prediction of project effort, cost, schedule, quality, and so
on. These can be applied to both initial planning and subsequent replanning.
These predictions help make decisions to select, customize, and tailor the best
process for a specific project context.

26 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 26

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 27

Table 1.2. Process modeling characterization matrix and representative major models

Scope

Multiple, Long-Term
Portion of Development Concurrent Product Long-Term

Purpose Life Cycle Project Projects Evolution Organization

Strategic Global Feedback Acquisition
Management [Wernick, [Greer et al.

Lehman 1999] 2005]

Progressive and
Anti-Regressive
Work
[Ramil et al.
2005]

Value-Based
Product
[Madachy
2005]

Planning Architecting Integrated Hybrid IT Planning
[Fakharzadeh, Project Processes [Williford,
Mehta 1999] Dynamics [Madachy et Chang 1999]

[Abdel-Hamid, al. 2007]
Madnick 1991]
Reliability
[Rus 1998]

Requirements
Volatility
[Pfahl, Lebsanft
2000]
[Ferreira 2002]

Hybrid Project
Modeling
[Martin 2002]

Operational
Release Plans
[Pfahl et al.
2006]

Control and Risk Time-
Operational Management Constrained
Management [Houston Development

2000] [Powell
2001]

(continued)

c01.qxd 11/19/2007 3:27 PM Page 27

� Control and operational management involves project tracking and oversight
once a project has already started. Project actuals can be monitored and com-
pared against planned values computed by simulation, to help determine when
corrective action may be needed. Monte Carlo simulation and other statistical
techniques are useful in this context. Simulation is also used to support key oper-
ational decisions such as whether to commence major activities.

� Process improvement and technology adoption is supported by simulation both a
priori or ex post. Process alternatives can be compared by modeling the impact
of potential process changes or new technology adoption before putting them
into actual practice. The purpose is process improvement, in contrast to plan-
ning. Simulation can also be used ex post to evaluate the results of process
changes or selections already implemented.

� Training and learning simulation applications are expressly created for instruc-
tional settings. Simulations provide a way for personnel to practice or learn pro-
ject management, similar to pilots practicing on flight simulators.

The original taxonomy also had a purpose category for “understanding” [Kellner et

28 INTRODUCTION AND BACKGROUND

Table 1.2. Continued

Scope

Multiple, Long-Term
Portion of Development Concurrent Product Long-Term

Purpose Life Cycle Project Projects Evolution Organization

Process Sociological Inspections Organiza-
Improvement Factors in [Madachy tional
and Requirements 1994b] Improvement
Technology Development [Tvedt 1996] [Rubin et al.
Adoption [Christie, 1994]

Staley 2000] [Burke 1996]
[Stallinger
2000]
[Pfahl et al.
2004]
[Ruiz et al.
2004]

Training and Project
Learning Management

[Collofello
2000]
[Pfahl et al.
2001]
[Barros et al.
2006]

c01.qxd 11/19/2007 3:27 PM Page 28

al. 1999]. That designation is not used here because all models fit in that category. All
simulation models promote understanding in some way or another (training and learn-
ing are also particularly close semantically). Though some applications may be more
dedicated to “theory building” than actual process or project applications (notably the
work of Manny Lehman and colleagues on software evolution theory), those efforts
are mapped to their potential application areas. More details on the specific categoriza-
tions can be found in [Kellner et al. 1999].

The questions and issues being addressed by a study largely determine the choice of
result variables, much like choosing a modeling approach. For example, technology
adoption questions often suggest an economic measure such as ROI; operational man-
agement issues often focus on the traditional project management concerns of effort,
cycle time, and defect levels. It is common to produce multiple result variables from a
single simulation model.

1.5.2 Process Life-Cycle Models

Broadly speaking, a process life-cycle model determines the steps taken and order of
the stages involved in software development or evolution, and establishes the transi-
tion criteria between stages. Note that a life-cycle model can address portfolios of pro-
jects such as in product-line development, not just single projects. An often perplexing
problem is choosing an appropriate process for individual situations. Should a water-
fall or iterative process be used? Is an agile process a good fit for the project con-
straints and goals? What about incremental development, spiral risk-driven processes,
the personal software process, specific peer review methods, and so on? Should the
software be developed new or should one buy COTS or use open-source components?
Dynamic simulation models can enable strategic planners and managers to assess the
cost, schedule, or quality consequences of alternative life-cycle process strategies.

The most commonly used life-cycle models are described in the following subsec-
tions. Knowing about the alternative processes is important background to better under-
stand process behavior and trade-offs in the field. From a pragmatic modeling perspec-
tive, it also helps to understand the different life cycles in order to have a good modeling
process for given situations. Chapter 2 describes the modeling process as being iterative
in general, but aspects from other life cycles may also be important to consider. The spi-
ral process in particular is a good fit for modeling projects (also see Chapter 2).

The proliferation of process models provides flexibility for organizations to deal
with the wide variety of software project situations, cultures, and environments, but it
weakens their defenses against some common sources of project failure, and leaves
them with no common anchor points around which to plan and control. In the iterative
development section, milestones are identified that can serve as common anchor points
in many different process models.

1.5.2.1 Waterfall Process

The conventional waterfall process is a single-pass, sequential approach that progress-
es through requirements analysis, design, coding, testing, and integration. Theoretical-

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 29

c01.qxd 11/19/2007 3:27 PM Page 29

ly, each phase must be completed before the next one starts. Variations of the waterfall
model normally contain the essential activities of specification, design, code, test, and,
frequently, operations/maintenance. Figure 1.11 shows the commonly accepted water-
fall process model.

The first publication of a software process life-cycle model was by Winston Royce
[Royce 1970]. In this original version of the waterfall, he offered two primary en-
hancements to existing practices at the time: (1) feedback loops between stages and (2)
a “build-it-twice” step parallel with requirements analysis, akin to prototyping (see
next section). The irony is that the life-cycle model was largely practiced and interpret-
ed without the feedback and “build-it-twice” concept. Since organizations historically
implement the waterfall sequentially, the standard waterfall definition does not include
Royce’s improvements.6

The waterfall was further popularized in a version that contained verification, vali-
dation, or test activity at the end of each phase to ensure that the objectives of the
phase were satisfied [Boehm 1976]. The phases are sequential, none can be skipped,
and baselines are produced throughout the phases. No changes to baselines are made
unless all interested parties agree. The economic rationale for the model is that to
achieve a successful product, all of the subgoals within each phase must be met and
that a different ordering of the phases will produce a less successful product.

However, the waterfall model implies a sequential, document-driven approach to
product development, which is often impractical due to shifting requirements. Some
other critiques of the waterfall model include: a lack of user involvement, ineffective-
ness in the requirements phase, inflexibility to accommodate prototypes, unrealistic
separation of specification from design, gold plating, inflexible point solutions, inabil-
ity to accommodate reuse, and various maintenance-related problems.

Some of the difficulties of the waterfall life-cycle model have been addressed by
extending it for incremental development, parallel development, evolutionary change,
automatic code generation, and other refinements. Many of these respond to the inade-
quacies of the waterfall by delivering executable objects early to the user and increas-
ing the role of automation. The following sections describe selected enhancements and
alternatives to the waterfall model. Note that process models can be synthesized into
hybrid approaches when appropriate.

1.5.2.2 Incremental Development

The incremental approach is an offshoot of the waterfall model that develops a system
in separate increments versus a single-cycle approach. All requirements are deter-
mined up front and subsets of requirements are allocated to individual increments or
releases. The increments are developed in sequential cycles, with each incremental re-
lease adding functionality. The incremental approach reduces overall effort and pro-
vides an initial system earlier to the customer. The effort phase distributions are differ-
ent and the overall schedule may lengthen somewhat. Typically, there is more effort in
requirements analysis and design, and less for coding and integration.

30 INTRODUCTION AND BACKGROUND

6His son, Walker Royce, has modernized life-cycle concepts in [Royce 1998], but also defends the original
waterfall model and describes how practitioners implemented it in wrong ways that led to failures.

c01.qxd 11/19/2007 3:27 PM Page 30

The incremental process is sometimes called staged delivery, since software is pro-
vided in successively refined stages. Requirements analysis and preliminary architec-
tural design is done once up front for all increments. Once the design is complete, the
system can be implemented and delivered in stages. Some advantages of staged deliv-
ery include: (1) it allows useful functionality to be put into the hands of the customer
much earlier than if the entire product were delivered at the end, (2) with careful plan-
ning it may be possible to deliver the most important functionality earliest, and (3) it
provides tangible signs of progress early in the project. Almost all large projects use
some form of incremental development.

1.5.2.3 Evolutionary Development

Evolutionary life-cycle models were developed to address deficiencies in the waterfall
model, often related to the unrealistic expectation of having fully elaborated specifica-
tions. The stages in an evolutionary model are expanding increments of an operational
product, with evolution being determined by operational experience. Evolutionary ap-
proaches develop software in increments, except that requirements are only defined for
the next release. Such a model helps deliver an initial operational capability and pro-
vides a real-world operational basis for evolution; however, the lack of long-range
planning often leads to trouble with the operational system not being flexible enough
to handle unplanned paths of evolution.

With evolutionary prototyping, development is begun on the most visible aspects of
the system. That part of the system is demonstrated, and then development continues
on the prototype based on the feedback received. This process is useful when require-
ments are changing rapidly, when the customer is reluctant to commit to a set of re-
quirements, or when neither the developer nor the customer understands the applica-
tion. Developers find the model useful when they are unsure of the optimal
architecture or algorithm to use. The model has the advantage of producing steady vis-
ible signs of progress, which can be especially useful when there is a strong demand
for development speed.

The main disadvantage of the model is that it is not known at the beginning of the
project how long it will take to create an acceptable product. The developer will not
know how many iterations will be necessary. Another disadvantage is that the ap-
proach lends itself to becoming a code-and-fix development.

In evolutionary delivery, a version of the product is developed; it is shown to the
customer, and the product is refined based on customer feedback. This model draws
from the control obtained with staged delivery and the flexibility afforded by evolu-
tionary prototyping. With evolutionary delivery, the developer’s initial emphasis is on

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 31

Requirements

Analysis

Detailed

Design
Code and

Unit Test

System

Testing

Preliminary
Design

Figure 1.11. Conventional waterfall process.

c01.qxd 11/19/2007 3:27 PM Page 31

the visible aspects of the system and its core, which consists of lower-level system
functions that are unlikely to be changed by customer feedback. Plugging holes in the
system’s foundation occurs later on.

1.5.2.4 Iterative Development

An iterative process uses multiple development cycles to produce software in small,
usable pieces that build upon each other. It is often thought that iterative develop-
ment is a modern concept; however, it was first documented in 1975 [Basili, Turner
1975]. Development proceeds as a series of short evolutionary iterations instead of a
longer single-pass, sequential waterfall process for fixed requirements. The differ-
ence with incremental development is that iterative approaches do not lay out all the
requirements in advance for each cycle. Each iteration may resemble a very short wa-
terfall, and prototyping is an essential aspect for the vast majority of applications
containing a user interface. The first iteration usually implements a core capability
with an emphasis on addressing high-risk areas, stabilizing an architecture, and re-
fining the requirements. The capabilities and architecture are built upon in successive
iterations.

Iterative development helps to ensure that applications meet user needs. It uses a
demonstration-based approach in order to refine the user interface and address risky
areas [Royce 1998]. Programming starts early and feedback from real end users is inte-
gral to the evolution of a successful application. For example, working slices of the
software architecture will be assessed early for areas of high risk (e.g. security,
throughput, response time).

When defining the user interface for a new application, the project team will gather
requirements and translate them quickly into an initial prototype. Next, the team will
step through the prototype to validate the results and make changes. By rapidly iterat-
ing and refining “live” code, the final application is ensured to meet the needs and ex-
pectations of the users. This approach is how we successively developed user-inten-
sive e-commerce systems at C-Bridge Internet Solutions [Madachy 2001].

Some implementation examples of an iterative process include the Rational Unified
Process (RUP) [Kruchten 1998], the USC Model-Based Architecting and Software En-
gineering (MBASE) framework (see Section 1.5.2.5.2), and most forms of agile meth-
ods. A typical profile of activities in iterative development is shown in Figure 1.12,
adapted from RUP documentation. The milestone acronyms at the top stand for Life-
Cycle Objectives (LCO), Life-Cycle Architecture (LCA), and Initial Operating Capa-
bility (IOC). The milestones and their criteria are described in [Boehm 1996] and
[Royce 1998].

This life-cycle process reduces the entropy and large breakage associated with the
waterfall. An overall functionality is delivered in multiple iterative pieces with the
highest payback features first, and the overall scope is delivered in a shorter time
frame compared to using the waterfall. Incremental application releases allow early re-
turn on investment and ease the burden of change management in the user’s environ-
ment. The project loops through multiple development cycles until the overall scope of
the application is achieved.

32 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 32

Business trends continue to place more emphasis on being first to market. Iterative
software development processes are well suited for schedule-driven projects, and pro-
vide users with working systems earlier than waterfall processes.

1.5.2.5 Spiral Model

The spiral model is a risk-driven variation of evolutionary development that can func-
tion as a superset process model. It can accommodate other models as special cases
and provides guidance to determine which combination of models best fits a given sit-
uation [Boehm 1988]. It is called risk-driven because it identifies areas of uncertainties
that are sources of project risk and structures activities based on the risks. The devel-
opment proceeds in repeating cycles of determining objectives, evaluating alternatives,
prototyping and developing, and then planning the next cycle. Each cycle involves a
progression that addresses the same sequence of steps for each portion of the product
and for each level of elaboration. Development builds on top of the results of previous
spirals.

A major distinction of the spiral model is having risk-based transition criteria be-
tween stages in contrast to the single-shot waterfall model in which documents are

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 33

Preliminary Iter. Iter. Iter. Iter. Iter.

Inception Elaboration Construction Transition

LCALCO LOC

Stage

Process Activities
Business Case
Development
Requirements

Design

Implementation

Assessment

Deployment

Supporting A ctivities
Management

Environment

Training

Iter. Iter.

Figure 1.12. Activity profiles for typical iterative processes.

c01.qxd 11/19/2007 3:27 PM Page 33

the criteria for advancing to subsequent development stages. The spiral model pre-
scribes an evolutionary process, but explicitly incorporates long-range architectural
and usage considerations in contrast to the basic evolutionary model. The original
version of the spiral model is shown in Figure 1.13. The process begins at the center,
and repeatedly progresses clockwise. Elapsed calendar time increases radially with
additional cycles.

A typical cycle of the spiral model starts with identification of objectives (for the
portion of the product being elaborated), alternative means of implementing the por-
tion of the product (e.g., design A, design B, buy) and constraints imposed on the ap-
plication of the alternatives such as cost or schedule budgets. Next is an evaluation of
the alternatives relative to the objectives and constraints. Areas of uncertainty are iden-
tified that are significant sources of risk, and the risks are evaluated by prototyping,
simulation, benchmarking, or other means.

What comes next is determined by the remaining relative risks. Each level of soft-
ware specification and development is followed by a validation step. Each cycle is
completed by the preparation of plans for the next cycle and a review involving the pri-
mary people or organizations concerned with the product. The review’s major objec-
tive is to ensure that all concerned parties are mutually committed to the approach for
the next phase.

34 INTRODUCTION AND BACKGROUND

Plan next phase
(Manage & Plan Next Iteration)

Determine objectives,
alternatives,
constraints
(Understand Context)

Evaluate alternatives,
identify, resolve risks

(Analyze Risks & Plan Development)

Develop and
verify the next-level
product.

Risk
analysis

Risk
analysis

Risk
analysis

Risk analysis Prototype
321

Final
Prototype

START

Integration
and test plan

Development
plan

Requirements
plan, Lifecycle

plan

Review/Define/Refine
Approach

Simulations,
models,

benchmarks

Product
design

Design validation &
verification

Requirements

Concept

Detailed
Design

Code

Unit Test

Integration &
Test

Acceptance
TestRelease

Commit to
Proceed

Review Context

Review Technical Product

Commit
to Plan

Commit to
Risk Aversion

Strategy

& validation

Figure 1.13: Original spiral model.

c01.qxd 11/19/2007 3:27 PM Page 34

1.5.2.5.1 WINWIN SPIRAL MODEL. The original spiral model of software develop-
ment begins each cycle by performing the next level of elaboration of the prospective
system’s objectives, constraints, and alternatives. A primary difficulty in applying the
spiral model has been the lack of explicit process guidance in determining these objec-
tives, constraints, and alternatives. The more recently developed WinWin spiral model
[Boehm et al. 1998] uses the Theory W (win–win) approach [Boehm, Ross 1989] to
converge on a system’s next-level objectives, constraints, and alternatives. This Theo-
ry W approach involves identifying the system’s stakeholders and their win condi-
tions, and using negotiation processes to determine a mutually satisfactory set of ob-
jectives, constraints, and alternatives for the stakeholders.

Figure 1.14 illustrates the WinWin spiral model. The original spiral had four sec-
tors, beginning with “Establish next-level objectives, constraints, alternatives.” The
two additional sectors in each spiral cycle, “Identify Next-Level Stakeholders” and
“Identify Stakeholders’ Win Conditions,” and the “Reconcile Win Conditions” portion
of the third sector, provide the collaborative foundation for the model. They also fill a
missing portion of the original spiral model, the means to answer, “Where do the next-
level objectives and constraints come from, and how do you know they’re the right
ones?” The refined spiral model also explicitly addresses the need for concurrent
analysis, risk resolution, definition, and elaboration of both the software product and
the software process.

An elaborated cycle of the WinWin spiral includes the following:

� Identify the system or subsystem’s key stakeholders.

� Identify the stakeholders’ win conditions for the system or subsystem.

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 35

2. Identify stakeholders’

win conditions

1. Identify next-level

stakeholders

3. Reconcile win conditions

Establish next-level

objectives, constraints and

alternatives

5. Define next level of product and

process, including partitions

6. Validate product and

process definitions

Review, commitment
4. Evaluate product and

process alternatives

Resolve risks

Figure 1.14. WinWin Spiral (additions to spiral model shown in bold).

c01.qxd 11/19/2007 3:27 PM Page 35

� Negotiate win–win reconciliations of the stakeholders’ win conditions.

� Elaborate the system or subsystem’s product and process objectives, constraints,
and alternatives.

� Evaluate the alternatives with respect to the objectives and constraints. Identify
and resolve major sources of product and process risk.

� Elaborate the definition of the product and process.

� Plan the next cycle and update the life-cycle plan, including partition of the sys-
tem into subsystems to be addressed in parallel cycles. This can include a plan to
terminate the project if it is too risky or infeasible. Secure the management’s
commitment to proceed as planned.

1.5.2.5.2 MBASE FRAMEWORK. At the USC Center for Systems and Software
Engineering we have been developing the Model-Based7 Architecting and Software
Engineering (MBASE) framework. MBASE addresses debilitating dynamics of soft-
ware development that often lead to project downfalls by embodying a risk-driven iter-
ative approach, heavily involving project stakeholders per the WinWin spiral model,
and evolving a system architecture compatible with changes and future evolution. Its
milestones can be used in many different process life-cycle models. For an iterative
process, the milestones are used to achieve stakeholder concurrence on the current pro-
ject state.

MBASE has many features in common with the RUP, and is fully compatible with
the iterative life cycle described in Walker Royce’s book Software Project Manage-
ment—A Unified Approach [Royce 1998]. Chapter 5 of this book has an application
model for the MBASE architecting process.

1.5.2.6 Prototyping

Prototyping is a process whereby the developer creates a quick initial working model
of the software to be built to support requirements definition. The objective is to clari-
fy the characteristics and operation of a system using visual representations and sam-
ple working sessions. Partial requirements gathering is done first with stakeholders.
Structured workshop techniques are good for this. A quick design is produced, focus-
ing on software aspects visible to the user, and the resulting prototype is evaluated to
refine the requirements. Prototyping produces a full-scale model and functional form
of a new system, but only the part of interest. This approach may be used when there is
only a general set of objectives, or other uncertainties exist about the desired form of
an interface or algorithmic efficiencies.

Prototyping is highly valuable to help elicit requirements by incorporating user
feedback. A phenomenon that often occurs when users have difficulty elucidating what
they want is “I’ll Know It When I See It” (IKIWISI). Not until they see some ex-
ploratory or sample screens can they point and say “that looks good, that’s what I want

36 INTRODUCTION AND BACKGROUND

7The term “Model” in the name is a general descriptor referring to a large variety of models used in software
(e.g., success models, development standards, and many others), and is not at all limited to simulation mod-
els or life-cycle models.

c01.qxd 11/19/2007 3:27 PM Page 36

now.” Prototyping is used heavily in modern user-interactive systems, and is an essen-
tial component of Rapid Application Development (RAD) and iterative development.

There are drawbacks to prototyping. Often, canned scenarios are used to demon-
strate a particular functionality, and compromises are inevitably made to accommodate
the quick development. A customer may think that the prototype is more robust than it
is in reality, and may not understand why it cannot be used in the actual system.
Prototyping has similar aspects to simulation. Neither produces the software product
per se, but they are complementary ways to address project risk. Prototyping helps
with product risks and process simulation helps with process risk.

1.5.2.7 Agile Methods

Agile methods are a set of iterative processes that have gained much favor in recent
years. They have been advocated as an appropriate “lightweight” programming para-
digm for high-speed and volatile software development [Cockburn 2001]. Some exam-
ples of agile methods include Extreme Programming (XP), SCRUM, DSDM, Adap-
tive Software Development, Crystal, Feature-Driven Development, and Pragmatic
Programming.

As opposed to more plan-driven approaches espoused by the Capability Maturity
Models (see Section 1.5.3.1), agile development is less document-oriented and more
focused on programming. The so-called “agile manifesto” [Agile 2003] identifies an
agile method as one that adopts the four value propositions and twelve principles in the
agile manifesto. All of the concepts in the value propositions below are important and
valid but, in general, agilists value the ones on the left over the right:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

The twelve principles behind the agile manifesto are:

1. Our highest priority is to satisfy the customer through early and continuous de-
livery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference for the shorter timescale.

4. Business people and developers must work together daily throughout the pro-
ject.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and with-
in a development team is face-to-face conversation.

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 37

c01.qxd 11/19/2007 3:27 PM Page 37

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The title of a relevant article characterizes agile methods as “Agile Software Devel-
opment: It’s about Feedback and Change” [Williams, Cockburn 2003]. In this sense,
agile methods go hand in hand with using system dynamics to model feedback and
adapt to change. Agile methods are a manifestation of fine-tuned process feedback
control. Agile methods have drawbacks and trade-offs like other methods, and the in-
terested reader can consult [Boehm, Turner 2004] for a balanced treatment.

1.5.2.8 Using Commercial-off-the-Shelf (COTS) Software or Open-
Source Software

Software development with third-party components has become more prevalent as ap-
plications mature. The components help provide rapid functionality and may decrease
overall costs. These components may be purchased as COTS or obtained from open-
source repositories. COTS is sold by vendors and is generally opaque, whereas open
source is from the public domain with full access to its source code. Both process
strategies pose new risks and different life-cycle activities.

COTS-based or COTS-intensive systems utilize commercial packages in software
products to varying degrees. Using COTS has unique challenges. Developers do not
have access to the source code and still have to integrate it into their systems. Develop-
ment with COTS requires assessment of the COTS offerings, COTS tailoring, and,
quite possibly, glue-code development to interface with the rest of the software.

Frequently, the capability of the COTS or open-source software determines systems
requirements, instead of the converse. Another challenge is timing the product “re-
fresh” as new releases are put out. A system with multiple COTS will have different
release schedules from different vendors. See [Abts 2003] for a comprehensive (static)
COTS cost model. Chapter 5 describes some dynamic COTS application models.
Chapter 7 discusses current and future directions of developing COTS-based systems
and open-source software development, and makes important distinctions between
their life-cycle impacts.

1.5.2.9 Reuse and Reengineering

Reuse-based development uses previously built software assets. Such assets may in-
clude requirements, architectures, code, test plans, QA reviews, documents, and so on.
Like COTS, reuse has the potential to reduce software effort and schedule. Though ex-

38 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 38

tra costs are incurred to make software reusable, experience has shown that the invest-
ment is typically recouped by about the third round of reuse. Reuse is frequently incor-
porated in other life-cycle models, and a number of process models dedicated to reuse
and reengineering have been published. Some are risk-driven and based on the spiral
model, while others are enhanced waterfall process models. A process for reusing soft-
ware assets can also improve reliability, quality, and user programmability.

Reengineering differs from reuse in that entire product architectures are used as
starting points for new systems, as opposed to bottom-up reuse of individual compo-
nents. A software process model for reuse and reengineering must provide for a variety
of activities and support the reuse of assets across the entire life cycle. It must support
tasks specific to reuse and reengineering, such as domain analysis and domain engi-
neering.

1.5.2.10 Fourth-Generation Languages and the Transform Model

Fourth-generation languages (4 GLs) and transformational approaches specify soft-
ware at a high level and employ automatic code generation. They automatically con-
vert a formal software specification into a program [Balzer et al. 1983]. Such a life-
cycle model minimizes the problems of code that has been modified many times and is
difficult to maintain. The basic steps involved in the transform process model are: (1)
formally specify the product, (2) automatically transform the specification into code
(this assumes the capability to do so), (3) iterate if necessary to improve the perfor-
mance, (4) exercise the product, and (5) iterate again by adjusting the specification
based on the operational experience. This model and its variants are often called oper-
ational specification or fourth-generation language (4GL) techniques. Chapter 5 has an
example application model for 4GLs.

1.5.2.11 Iterative Versus Waterfall Life-Cycle Comparison

A modern iterative life-cycle process, when practiced right, is advantageous to a con-
ventional waterfall life cycle for a majority of applications. It is particularly recom-
mended for user-interactive systems, where the IKIWISI principle applies. The differ-
ence between a modern iterative process versus a conventional waterfall process in
terms of project progress is idealized in Figure 1.15, which is adapted from [Royce
1998]. Progress is measured in terms of the percent of software demonstrable in target
form.

Figure 1.15 also calls out the significant contrasting dynamics experienced between
the two life-cycle processes. Notable are the larger breakages and elongated schedule
of the waterfall life cycle. No software is produced during requirements analysis, so
nothing is demonstrable until design or coding. During design, there is apparent
progress on paper and during reviews, but the system architecture is not really assessed
in an implementation environment. Not until integration starts can the system be tested
to verify the overall structure and the interfaces. Typically there is a lot of breakage
once integration starts, because that is the first time that unpredictable issues crop up
and interfaces are finally fleshed out. The late-surfacing problems stretch out the inte-
gration and testing phase and resolving them consumes many resources. Last-minute

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 39

c01.qxd 11/19/2007 3:27 PM Page 39

fixes are necessary to meet an already slipped schedule, so they are usually quick and
dirty, with no time to do things optimally.

The iterative life cycle focuses on developing an architecture first, with frequent
demonstrations that validate the system. The demonstrations may be in the form of
prototypes or working slices that validate the proposed architecture. The working
demonstrations help to mitigate risk by identifying problems earlier when there are
still options to change the architecture. Some breakage is inevitable, but the overall
life-cycle impact is small when the problems are addressed at this stage. The system
architecture is continually being integrated via the executable demonstration of impor-
tant scenarios. There is minimal risk exposure during construction since there are
many fewer unknowns, so the final integration and transition proceed smoothly.

1.5.3 Process Improvement

In order to address software development problems, the development task must be
treated as a process that can be controlled, measured, and improved [Humphrey
1989]. This requires an organization to understand the current status of their process-
es, identify desired process change, make a process improvement plan, and execute
the plan. All of these process improvement activities can be supported with simula-
tion.

Industrial initiatives to reengineer and improve software processes through metrics
is helping to motivate modeling efforts. Initially, the Software Engineering Institute
Capability Maturity Model (SEI CMM) process maturity framework was an important
driver of these efforts [Paulk et al. 1994], but it has been superseded by the CMM-Inte-
grated (CMM-I) [SEI 2003], which brings systems engineering into the process im-
provement fold among other improvements. Frameworks for process enhancements
are described next.

40 INTRODUCTION AND BACKGROUND

100%

D
ev

el
o
p
m

en
t

P
ro

g
re

ss
 (

%
 c

o
d
ed

)

Project Schedule

Design

Requirements

Construction

Elaboration

Inception

Coding

Integration and Testing

 Modern iterative life cycle

 Conventional waterfall

small breakage since

architecture problems

fixed earlier

early design breakage

found by demonstrations

architecture

development and

demonstrations

apparent progress on design

(no demonstrable validation

of system architecture)

breakage and integration

problems due to unforeseen

implementation issues and

interface ambiguities

late non-optimal fixes

to meet schedule

start of demonstrable

design or code

Figure 1.15. Progress dynamics for iterative life cycle versus waterfall life cycle (adapted from
Walker Royce).

c01.qxd 11/19/2007 3:27 PM Page 40

1.5.3.1 Capability Maturity Models

The Software Capability Maturity Model (CMM or SW-CMM) was developed by the
Software Engineering Institute (SEI) to improve software engineering practices [Paulk
et al. 1994]. The more recent CMMI (“I” stands for integration) is a broader frame-
work based on experience with the SW-CMM that includes systems engineering prac-
tices [SEI 2003]. They are both models of how organizations can mature their process-
es and continually improve to better meet their cost, schedule, and quality goals. They
are frameworks of management, engineering, and support best practices organized into
process areas. Capabilities in the process areas can be improved through generic prac-
tices outlined in the frameworks.

The SEI was initially tasked by the U.S. government to develop the CMM, and it
has become a de-facto standard adopted by commercial and defense companies world-
wide. CMMI has been a collaborative effort among members of industry, government,
and the SEI. CMMI is also consistent and compatible with ISO/IEC 15504, an emerg-
ing standard on software process assessment.

The CMM framework identifies five levels of organizational maturity, where each
level lays a foundation for making process improvements at the next level. The frame-
work utilizes a set of key practices and common features. The CMM staged represen-
tation offers a road map for improvement one predetermined step at a time. Process
areas are grouped at maturity levels that provide organizations with a sound approach
for process improvement. The staged representation prescribes the order of implemen-
tation for each process area according to maturity levels.

CMMI also allows for either the traditional staged improvement or a continuous
improvement path within a specific process area. The continuous representation offers
a more flexible approach to process improvement. It is designed for organizations that
would like to choose a particular process area or set of process areas. As a process area
is implemented, the specific practices and generic practices are grouped into capability
levels.

A primary intent of CMMI is to provide an integrated approach to improving an or-
ganization’s systems engineering and software functions. CMMI covers the same ma-
terial as the SW-CMM, although some topics like risk management and measurement
and analysis are given more extensive treatment that reflects the engineering commu-
nity’s learning over the past 10 years. In CMMI, systems engineering is defined as
“The interdisciplinary approach governing the total technical and managerial effort re-
quired to transform a set of customer needs, expectations, and constraints into a prod-
uct solution and support that solution throughout the product’s life.”

Related maturity models include the Software Acquisition CMM (SA-CMM), the
People Capability Maturity Model, the FAA-iCMM, and others. Though the CMMI is
intended to supercede the SW-CMM, the SW-CMM will still be in use for a while. The
subsequent sections are predicated on the software CMM but apply just as well to
CMMI.

At level one in the maturity models, an organization is described as ad-hoc, where-
by processes are not in place and a chaotic development environment exists. The sec-
ond level is called the repeatable level. At this level, project planning and tracking is
established and processes are repeatable. The third level is termed the defined level be-

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 41

c01.qxd 11/19/2007 3:27 PM Page 41

cause processes are formally defined. Level 4 is called the managed level, whereby the
defined process is instrumented and metrics are used to set targets. Statistical quality
control can then be applied to process elements. At level 5, the optimized level, de-
tailed measurements and analysis techniques are used to guide programs of continuous
process improvement, technology innovation, and defect prevention. The CMMI key
process areas and their general categories are shown in Table 1.3.

To make the process predictable, repeatable, and manageable, an organization must
first assess the maturity of the processes in place. By knowing the maturity level, orga-
nizations can identify problem areas to concentrate on and effect process improvement
in key practice areas. The SEI has developed assessment procedures based on the ma-
turity models and standardized the assessments using ISO/IEC 15504.

Software process modeling is essential to support improvements at levels 4 and 5
through process definition and analysis. Process models can represent the variation
among processes, encapsulate potential solutions, and can be used as a baseline for
benchmarking process improvement metrics.

42 INTRODUCTION AND BACKGROUND

Table 1.3. CMMI key process areas

Process area category

Project Process
Level Engineering Management Management Support

5—Optimizing �Organizational �Causal Analysis
Innovation & and Resolution
Deployment

4—Managed � Quantitative �Organizational
Project Process
Management Performance

3—Defined � Requirements � Integrated �Organizational �Decision
Development Project Process Focus Analysis and

� Technical Management �Organizational Resolution
Solution � Risk Process �Organizational

� Product Management Definition Environment
Integration � Integrated �Organizational for Integration

� Verification Supplier Training
� Validation Management

2—Repeatable � Requirements � Project Planning �Configuration
Management � Project Monitoring Management

and Control �Process &
� Supplier Product Quality

Agreement Assurance
Management �Measurement

and Analysis

1—Ad hoc No process areas defined for this level

c01.qxd 11/19/2007 3:27 PM Page 42

Table 1.4 identifies some general uses of simulation at the different levels and the
type of data available to drive the models. Though dynamic process simulation is not
absolutely necessary at the lower levels, some process modeling capability is needed
to advance in levels 4 and 5. As maturity increases, so does the predictive power of the
organizational models. Highly mature organizations can test their improved processes
via simulation rather than through costly trial and error in the field.

The distinction between open and closed feedback systems described in Section 1.3
typifies the difference between an ad-hoc CMM Level 1 organization and higher matu-
rity organizations in which past process performance data is used to control the current
process. The essence of CMM levels 4 and 5 can be summarized as using process feed-
back. This implies that a mature organization would desire some model of that feed-
back. See Chapter 5 for an example of process maturity modeling.

1.5 SOFTWARE PROCESS TECHNOLOGY OVERVIEW 43

Table 1.4. Simulation uses at the CMM levels

CMM Level Simulation Uses Calibration Data Available

5—Optimizing � Testing new processes offline before � Continuous stream of detailed
project implementation and performing data tailored for organizational
process trade-off studies goals

� Modeling impacts of new technology � Results of previous simulations
adoption and decisions against actuals

� Comparing defect prevention techniques
� Interdepartmental collaboration and

widespread usage of simulation
� Organizational modeling
� Product line analysis
� Model change management

4—Managed � Time-based process predictions to � Finer detail and more
determine planned values consistent data

� Determination of process control limits � Specific process and product
through variance analysis measures targeted to

� More widespread usage of simulation environment
among software and managerial staff � Previous model estimates

3—Defined � Defect modeling � Phase and activity cost and
� Peer review optimization schedule data
� Training � Size, requirements, and defect
� Increased validity and confidence in data

process models allow supplanting some � Peer review data
expert judgment

2—Repeatable � Cost and schedule modeling � Project-level cost and schedule
� Earned value setting � Expert judgment
� Evaluating requirements

1—Ad hoc � Improve awareness of process dynamic behavior
� Role playing games

c01.qxd 11/19/2007 3:27 PM Page 43

1.5.3.2 Other Process Improvement and Assessment Frameworks

ISO 9000 and ISO/IEC 15504 are other process assessment frameworks. These consist
of standards and guidelines as well as supporting documents that define terminology
and required elements, such as auditing and assessment mechanisms. Neither CMM,
ISO 9000, nor ISO/IEC 15504 are product standards. They focus on processes under
the assumption that if the production and management system is right, the product or
service that it produces will also be correct. Six Sigma is a defined process for improv-
ing products and processes.

1.5.3.2.1 ISO 9000. The International Organization for Standards (ISO) pub-
lished ISO 9000 in 1987 for quality management certification [ISO 2005]. ISO 9000 is
primarily concerned with the establishment of a quality management system. The defi-
nition of quality is captured in twenty “must address” clauses and enforced by a for-
mal, internationally recognized, third-party audit and registration system. ISO 9000 re-
quires the organization to “walk the talk”: say what it does, do what it says, and be able
to demonstrate it. It requires the organization to write specific procedures defining
how each activity in their development process is conducted.

Processes and procedures must address control, adaptability, verification/valida-
tion, and process improvement. Organizations must always be able to show objective
evidence of what has been done, how it was done, and the current status of the project
and product, and it must be able to demonstrate the effectiveness of its quality system.

An accreditation schema for software, motivated by ISO 9000’s apparent lack of
applicability to the software industry, led to the TickIT method, which is limited to the
United Kingdom and Sweden. A more powerful assessment-based certification stan-
dard for software was developed under the informal name of SPICE. It was eventually
formalized as the ISO 15504 standard described next.

1.5.3.2.2 ISO/IEC 15504. The aim of the ISO/IEC 15504 standard is to perform
process assessment, process improvement, and capability determinations [SEI 2005].
ISO/IEC 15504 combines the CMM and ISO 9000 approaches into a single mecha-
nism for developing a quality system for software. It embodies the reference frame-
work of the ISO 9000 approach with the capability assessment and process maturity
features of CMM. In addition, it establishes a migration path for existing assessment
models and methods that wish to come into the 15504 domain. It intentionally does not
specify a particular assessment methodology. Its architecture is designed to permit and
encourage the development of methods and models that serve specific domains or mar-
kets. See [Stallinger 2000] for a system dynamics modeling application for ISO/IEC
15504.

1.5.3.2.3 SIX SIGMA. Six Sigma is a methodology initially used to manage
process variations that cause defects, defined as unacceptable deviation from the
mean or target, and to systematically work toward managing variation to eliminate
those defects. Six Sigma has now grown beyond defect control. The objective of Six
Sigma is to deliver high performance, reliability, and value to the end customer. See

44 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 44

[Motorola 2006] for details, but there are also many other online sources, books, and
guides.

The methodology was pioneered at Motorola in 1986 and was originally defined as
a metric for measuring defects and improving quality, and a methodology to reduce
defect levels below 3.4 defects per million opportunities. Hence, “Six Sigma” refers to
the ends of a probability distribution that correspond to these odds. The principles and
techniques of using probability distributions (see Appendix A) are important to under-
stand when implementing Six Sigma.

When deploying Six Sigma for improvement in an organization, there are clearly
defined roles for executive and project sponsors, black belts, green belts, yellow belts,
and so on (the belts correspond to levels of Six Sigma training and skill). On a project,
a common road map for developing new processes or products is Define, Measure,
Analyze, Design/Build, Verify (DMADV). The road map for improving products or
processes that already exist is known as Define, Measure, Analyze, Improve, Control
(DMAIC).

Six Sigma is a natural application for software process modeling to quantify and
forecast effects of variation on new processes and designs. Key factors that drive un-
certainty can be illuminated with simulation to better explain the effects of variation
without expensive trials.

1.6 CHALLENGES FOR THE SOFTWARE INDUSTRY

We have just scratched the surface of the potential of dynamic modeling to help im-
prove the software process. Accounting for all the dynamic factors on a software pro-
ject far outstrips the capability of the human mind. For example, Capers Jones has
identified about 250 different factors that can affect schedule, cost, quality, and user
satisfaction [Jones 2000]. Clearly, one cannot mentally calculate all the influences
from so many factors; thus, we resort to computer simulation technology.

Correspondingly, there are formidable challenges for the industry and pitfalls to
avoid. The ability to handle more phenomena and have high confidence in models will
help system dynamics make powerful impacts. Simulation models need their own ver-
ification, validation, and accreditation just like other software products. There are con-
fidence limits associated with the calibration of models, and it is harder to verify and
validate highly detailed models. Methods for model certification and ways to converge
on acceptable models must be considered. As will be described later, some possibili-
ties include the rigorous use of the Goal–Question–Metric (GQM) process, getting
user buy-in and consensus on key model drivers, model assessment techniques per
Chapter 2 and Appendix A, incremental validation, and cross-validation with other
types of models. Many of these topics are explored in more detail in Chapter 2 and
case studies in subsequent chapters. Chapter 7 discusses some automated model analy-
sis techniques.

The field is continuously getting more complex for decision makers. Software de-
velopment is becoming even more dynamic with agile methods, increasing use of
COTS, complex systems of systems, open-source development via the Internet, dis-

1.6 CHALLENGES FOR THE SOFTWARE INDUSTRY 45

c01.qxd 11/19/2007 3:27 PM Page 45

tributed 24/7 global development, new computing devices, model-driven development,
Rapid Application Development (RAD) processes, and increasingly shorter incre-
ments of development. New management techniques are needed to keep up with the
changing environment, as well as available professionals trained in new techniques.
Most of these topics are treated later in the book and Chapter 7 discusses their current
and future directions. Some present-day decision scenarios are described next to illus-
trate the wide array of decision contexts and help set the stage.

Planners and managers need to assess the consequences of alternative strategies
such as reuse and COTS, fourth-generation languages (4GLs), application generators,
architectural refactoring, rapid prototyping, incremental or iterative development, or
other process options before actual implementation. And what are the effects of inter-
actions between requirements elicitation, software implementation, testing, process
improvement initiatives, hiring practices, and training within any of these strategies?

In projects with multiple COTS packages, one problem is synchronizing releases
from several products with different update schedules. How frequently the components
should be “refreshed” and the overall software rebuilt is a complex decision. Will dif-
ferent COTS packages integrate well with each other, or do we need to develop special
interface glue code? COTS glue code development is modeled in Chapter 5. Will the
vendors be able to support future versions and upgrades?

There are countless individual strategies to improve the software process (e.g., for-
mal inspections, object-oriented development, cleanroom engineering, automated test-
ing, iterative development, etc.). But what are the conditional effects of combined
strategies? Can they be separated out for analysis? For example, there are overlaps be-
tween methods for finding defects. What are the types of defects found by different
means and what are the reduced efficiencies of single methods when used in conjunc-
tion with others? See Chapter 5 for examples on defects.

Trying to find the right balance between process flexibility and discipline is a large
challenge. How much of a project should be performed with an agile approach and
how much should be plan-driven? See Chapter 4 for an example application. It would
also be valuable to understand the limits of scaling up agile methods to decide when
best to use them.

Companies that are looking for ways to accelerate their processes can assess vari-
ous RAD techniques through simulation. Methods are also needed, for example, to
evaluate how many people are required to maintain a software product at a specified
level of change, whether a modification to the inspection process will result in higher
defect yields, or if a process can be implemented with fewer reviews and still maintain
quality.

In today’s interconnected world, large, complex systems of systems have their own
unique dynamics. Trying to manage a globally distributed project involving many
teams and interfaces is a unique challenge. What are the best ways to accomplish this
process management in order to get successful systems out the door?

It would be useful to model the complex adaptation behavior of projects and the rip-
ple effects of decisions made. In order to salvage runaway projects, teams sometimes
incorporate more reused software and COTS software. Often, managers have to per-
form midstream corrections to “design to cost” or “design to schedule.” This could

46 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 46

mean a reduction in scope by dropping features, or finding ingenious shortcuts to
lessen the effective size, such as incorporating middleware from another source (a rip-
ple effect may be the extra time incurred to do so). These shortcuts can often be attrib-
uted to the ideas of “top people.” Such individuals are invaluable to organizations, but
they are in short supply and may cost a lot. The effects of having such people need to
be better understood to capitalize on their talents.

People are the most valuable resources in software; as such, a lot of attention should
be paid to their training and retention. Having a national or global supply of skilled
workers requires cooperation between many organizations and educational institu-
tions. Modeling can help assess different ways to achieve skill development, and to
keep people motivated to address these industry challenges (see Chapters 4 and 7 on
people resource issues).

These are just a few examples of complex decision scenarios that the software in-
dustry is currently grappling with. Things will get even more complex and dynamic as
software technology and business conditions keep changing. The rest of the book will
address how to achieve better understandings of the process interrelationships and
feedback, in order to cope with a fast-changing software world.

1.7 MAJOR REFERENCES

[Abdel-Hamid, Madnick 1991] Abdel-Hamid, T., and Madnick, S., Software Project Dynam-
ics, Englewood Cliffs, NJ: Prentice-Hall, 1991.

[Boehm et al. 1998] Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and
Madachy, R., Using the WinWin Spiral Model: A Case Study,
IEEE Computer, July 1998.

[Brooks 1975] Brooks, F., The Mythical Man-Month, Reading, MA: Addison-
Wesley 1975 (also reprinted and updated in 1995).

[Forrester 1961] Forrester, J. W., Industrial Dynamics, Cambridge, MA: MIT
Press, 1961.

[Kellner et al. 1999] Kellner, M., Madachy, R., and Raffo, D., Software Process
Simulation Modeling: Why? What? How? Journal of Systems
and Software, Spring 1999.

[Kruchten 1998] Kruchten, P., The Rational Unified Process, Reading, MA:
Addison-Wesley, 1998.

[Osterweil 1987] Osterweil, L., Software Processes are Software Too, Proceed-
ings ICSE 9, IEEE Catalog No. 87CH2432-3, pp. 2–13, March
1987.

[Paulk et al. 1994] Paulk, M., Weber, C., Curtis, B., and Chrissis, M., The Capa-
bility Maturity Model: Guidelines for Improving the Software
Process, Reading, MA: Addison-Wesley, 1994.

[Royce 1998] Royce, W., Software Project Management—A Unified Ap-
proach, Reading, MA: Addison-Wesley, 1998.

[Senge 1990] Senge, P., The Fifth Discipline, New York: Doubleday, 1990.

1.7 MAJOR REFERENCES 47

c01.qxd 11/19/2007 3:27 PM Page 47

[Weinberg 1992] Weinberg, G., Quality Software Management, Volume 1, Sys-
tems Thinking, New York: Dorset House Publishing, 1992.

CHAPTER 1 SUMMARY

Simulation is a practical and flexible technique to support many areas of software
processes to improve decision making. It can be used to model different aspects of
processes in order to assess them, so that the dynamic (and unintended) consequences
of decisions can be understood. Through simulation, one can test proposed processes
before implementation. It is effective when the real system is not practical to use or is
too expensive. Often, simulation is the only way to assess complex systems. Systems
are becoming more complex and computer capabilities continue to improve, so it is ex-
pected that the use of simulation will continue to increase over the years in software
engineering and other fields.

Systems come in a variety of types (discrete/continuous/mixed, static/dynamic),
and there are different techniques for modeling them. This book will focus on the sys-
tem dynamics technique for modeling dynamic continuous systems.

Systems thinking is an allied discipline that leverages system dynamics. Though it
may have several different meanings depending on the perspective, for this context we
consider it to be a thinking process that promotes individual and organizational learn-
ing.

The software process is a real-time process with feedback control elements. Treat-
ing it as such allows us to explicitly consider its inputs, outputs, and feedback loops in
order to better understand and control it. System dynamics is well suited for modeling
these aspects of the software process control system.

An example of modeling Brooks’s Law was introduced. The model illustrates an
important management heuristic for late projects that is frequently misunderstood, and
sheds light on some reasons why adding people to a late project can make it later.
These dynamic effects are increased communication overhead, training losses, and
lower productivity for new personnel. This modeling example will be broken down
more in Chapter 2.

Software process technology involves process modeling, life-cycle models, and
process improvement. A variety of simulation approaches and languages are available.
Continuous systems modeling (such as with system dynamics) is generally more ap-
propriate for strategic, macro-level studies. Discrete event modeling is usually better
suited for studying detailed processes. Simulation tools have been improving over the
years and often are used in a visual manner.

Software process simulation is increasingly being used for a wide variety of purpos-
es. These include strategic management, planning and control, process improvement,
and training. Process models can focus on narrow portions of the life cycle, entire pro-
jects, multiple projects, product lines, and wide organizational issues. Simulation in
software development has been used for decades to support conceptual studies, re-
quirements analysis, assess architectures, support testing, and verification and valida-
tion activities.

48 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 48

Process life-cycle models define process activities, their order and dependencies.
There are many different life-cycle models available to be used. A risk-driven ap-
proach to deciding on an appropriate process will help ensure that the process best
matches the project needs. Simulation can be used to assess candidate processes. It is
also important to understand the different life-cycle characteristics to make better
modeling process decisions (see Chapter 2 on the modeling process). In particular, the
WinWin spiral life cycle is a good fit for many modeling situations.

Process frameworks like the CMMI and ISO are important vehicles for process im-
provement that are fully compatible with simulation. They identify best practices and
provide paths for organizations to improve. Modeling and simulation support continu-
ous process improvement every step of the way.

It is an exciting time in the software industry, with many opportunities, but tech-
niques are needed to deal with the ever-increasing dynamic aspects and complexities
of software processes. Project time lines are shortening, there are an increasing number
of new processes and techniques, new technology keeps coming along, and projects
keep increasing in complexity. We also need to keep focused on people and sustain a
large enough pool of skilled workers to develop software in an efficient fashion that
meets user needs. Simulation can help us see the forest through the trees, find the right
balance of methods or people for particular project environments, and, ultimately, help
software projects make better decisions.

1.19 EXERCISES

Some of the exercises in this chapter and others ask for analysis with respect to “your
environment,” which may take on different interpretations. If you are a practitioner, it
may refer to the software process environment on your project or in your company, a
government acquisition agency, an open-source project, or any software development
you wish to study.

If you are a pure student, your assignment may be a specific project, company, or a
segment of the software industry for case study. An assignment may also be to do the
problems for more than one environment, then compare and analyze the differences.

1.1. List some benefits of using software process simulation in your environment.

1.2. Explain any impediments to using simulation for software processes in your
environment. How might these impediments be mitigated?

1.3. What are the advantages and disadvantages of using simulation as an ap-
proach to a dynamics problem versus an analytical solution?

1.4. What is the difference between open and closed systems? Can you identify
both kinds in your environment? You may use pictures to help illustrate your
answer.

1.5. Identify organizational systems that may influence the software process in
your enviroment, and especially focus on those that are not normally consid-
ered to have anything to do with software development or engineering.

EXERCISES 49

c01.qxd 11/19/2007 3:27 PM Page 49

1.6. Define the boundary of your process environment and create a comprehen-
sive list of external factors that may influence the software process.

1.7. If you have experience in an environment in which software process model-
ing has been used, what have been the results? What went right and what
went wrong? Provide lessons learned and suggest how things could have
been improved.

1.8. What are the process state variables that are tracked in your environment?

1.9. Can you name any aspects of the software process that are completely static?

1.10. Can you name any aspects of the software process that are completely deter-
ministic?

1.11. Identify some critical issues or problems in your environment that might be
addressed by simulation and place them in the process modeling characteri-
zation matrix.

1.12. What other types of models and simulations are used in software develop-
ment?

1.13. Draw a software process control system and expand/instantiate the inputs and
outputs for your environment. For example, what is the specific source(s) of
requirements, what types of resources are used, what standards are used, and
what artifacts are produced?

1.14. Draw a software process control system for your environment, paying atten-
tion to the controllers. Does the depiction help show what maturity level you
are at?

1.15. Review the table of system dynamics model elements and add more exam-
ples from the software process domain.

1.16. Trace the feedback loops in the simple project feedback model and in the
Brooks’s Law model. For each loop, outline the entire path of feedback, in-
cluding the information connections, rates, levels, and auxiliaries in the path.
Describe how the feedback loops impact the system behaviors.

1.17. In the Brooks’s Law model, what are some other ways to add people besides
an instantaneous pulse?

1.18. Write your own summary of the differences between the major life-cycle
models, and outline them in a table format.

1.19. What are some drawbacks to the life-cycle process(es) currently being used
in your environment or elsewhere?

1.20. Explain whether your environment could settle on a single life-cycle model
or whether it needs more than one.

1.21. Critically analyze the life-cycle comparison figure for the iterative versus wa-
terfall process. Does it seem reasonable and match your experience? Why or
why not?

1.22. Describe the pros and cons of using COTS software. What happens if COTS
is no longer supported by the vendor? What must be anticipated before de-
signing COTS into a system?

50 INTRODUCTION AND BACKGROUND

c01.qxd 11/19/2007 3:27 PM Page 50

Advanced Exercises

1.23. Make a comprehensive list of software process measures and assess whether
they are continuous or discrete. For those that are deemed discrete, discuss
whether they can be modeled as continuous for the purpose of understanding
process dynamics. Identify the goals and constraints for that decision.

1.24. Identify some general software development best practices and discuss how
they would apply to system dynamics model development (you may refer to
Chapter 2 if not familiar yet with the modeling process).

1.25. Identify significant issues involved in verifying and validating system dy-
namics models (you may also get some ideas from Chapter 2). Give sugges-
tions on how the issues can be dealt with and overcome so that system dy-
namics models will be accepted more readily by practitioners and
researchers.

1.26. Suggest modifications to the simple project feedback model to make it more
realistic.

1.27. Suggest modifications to the Brooks’s Law model to make it more realistic.

1.28. The Brooks’s Law model only varied the number of new personnel, but the
time of adding new people is another dimension to the problem. What other
factors might come into play in terms of optimizing the schedule finish?
Might there be more than one local maximum across the different dimen-
sions?

a) Define an experiment for future implementation to find the optimal solu-
tions in Brooks’s Law situations.

b) Sketch the multidimensional space of optimization and make conjectures
as to the shape of the optimization curves.

1.29. Do some research and write a report on quantitative software process model-
ing that occurred before Abdel-Hamid’s work. How much of it is still being
(re)used? What has been the impact? Have any good practices gone unno-
ticed?

1.30. Perform a research study on the effects of implementing CMM, CMM-I,
ISO, Six Sigma, or other process frameworks. What are the quantitative im-
pacts to the software process?

1.31. Explain any relationships between the iterative activities in Figure 1.12 and
the dynamics in Figure 1.15.

1.32. Read Software Quality Management, Volume 1, Systems Thinking by Wein-
berg and write a report on the applicability of the feedback examples in your
environment.

1.33. Read The Fifth Discipline by Peter Senge and write a report on the applica-
bility to software process improvement. Do any of the system archetypes ap-
ply to software processes? Explain.

1.34. Expand on the section regarding challenges for the software industry.

1.19 EXERCISES 51

c01.qxd 11/19/2007 3:27 PM Page 51

c01.qxd 11/19/2007 3:27 PM Page 52

