
Chapter 1 

Introduction 

1.1 MOTIVATION 

Computer scientists and engineers need powerful techniques to analyze algo­
rithms and computer systems. Similarly, networking engineers need methods 
to analyze the behavior of protocols, routing algorithms, and congestion in 
networks. Computer systems and networks are subject to failure, and hence 
methods for their reliability and availability are needed. Many of the tools 
necessary for these analyses have their foundations in probability theory. For 
example, in the analysis of algorithm execution times, it is common to draw a 
distinction between the worst-case and the average-case behavior of an algo­
rithm. The distinction is based on the fact that for certain problems, while an 
algorithm may require an inordinately long time to solve the least favorable 
instance of the problem, the average solution time is considerably shorter. 
When many instances of a problem have to be solved, the probabilistic (or 
average-case) analysis of the algorithm is likely to be more useful. Such an 
analysis accounts for the fact that the performance of an algorithm is depen­
dent on the distributions of input data items. Of course, we have to specify 
the relevant probability distributions before the analysis can be carried out. 
Thus, for instance, while analyzing a sorting algorithm, a common assumption 
is that every permutation of the input sequence is equally likely to occur. 

Similarly, if the storage is dynamically allocated, a probabilistic analysis 
of the storage requirement is more appropriate than a worst-case analysis. In 
a like fashion, a worst-case analysis of the accumulation of roundoff errors in 
a numerical algorithm tends to be rather pessimistic; a probabilistic analysis, 
although harder, is more useful. 

When we consider the analysis of a Web server serving a large number of 
users, several types of random phenomena need to be accounted for. First, 
the arrival pattern of requests is subject to randomness due to a large pop­
ulation of diverse users. Second, the resource requirements of requests will 
likely fluctuate from request to request as well as during the execution of a 
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2 INTRODUCTION 

single request. Finally, the resources of the Web server are subject to random 
failures due to environmental conditions and aging phenomena. The theory of 
stochastic (random) processes is very useful in evaluating various measures of 
system effectiveness such as throughput, response time, reliability, and avail­
ability. 

Before an algorithm (or protocol) or a system can be analyzed, various 
probability distributions have to be specified. Where do the distributions 
come from? We may collect data during the actual operation of the sys­
tem (or the algorithm). These measurements can be performed by hardware 
monitors, software monitors, or both. Such data must be analyzed and com­
pressed to obtain the necessary distributions that drive the analytical models 
discussed above. Mathematical statistics provides us with techniques for this 
purpose, such as the design of experiments, hypothesis testing, esti­
mation, analysis of variance, and linear and nonlinear regression. 

1.2 PROBABILITY MODELS 

Probability theory is concerned with the study of random (or chance) phenom­
ena. Such phenomena are characterized by the fact that their future behavior 
is not predictable in a deterministic fashion. Nevertheless, such phenomena 
are usually capable of mathematical descriptions due to certain statistical reg­
ularities. This can be accomplished by constructing an idealized probabilistic 
model of the real-world situation. Such a model consists of a list of all possible 
outcomes and an assignment of their respective probabilities. The theory of 
probability then allows us to predict or deduce patterns of future outcomes. 

Since a model is an abstraction of the real-world problem, predictions 
based on the model must be validated against actual measurements collected 
from the real phenomena. A poor validation may suggest modifications to the 
original model. The theory of statistics facilitates the process of validation. 
Statistics is concerned with the inductive process of drawing inferences about 
the model and its parameters based on the limited information contained in 
real data. 

The role of probability theory is to analyze the behavior of a system or an 
algorithm assuming the given probability assignments and distributions. The 
results of this analysis are as good as the underlying assumptions. Statistics 
helps us in choosing these probability assignments and in the process of val­
idating model assumptions. The behavior of the system (or the algorithm) 
is observed, and an attempt is made to draw inferences about the underly­
ing unknown distributions of random variables that describe system activity. 
Methods of statistics, in turn, make heavy use of probability theory. 

Consider the problem of predicting the number of request arrivals to a 
Web server in a fixed time interval (O,t]. A common model of this situation is 
to assume that the number of arrivals in this period has a particular distribu­
tion , such as the Poisson distribution (see Chapter 2). Thus we have replaced 
a complex physical situation by a simple model with a single unknown param-
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eter, namely, the average arrival rate A. With the help of probability theory 
we can then deduce the pattern of future arrivals. On the other hand, statis­
tical techniques help us estimate the unknown parameter A based on actual 
observations of past arrival patterns. Statistical techniques also allow us to 
test the validity of the Poisson model. 

As another example, consider a fault-tolerant computer system with au­
tomatic error recovery capability. Model this situation as follows. The prob­
ability of successful recovery is c and probability of an abortive error is 1 - c. 
The uncertainty of the physical situation is once again reduced to a simple 
probability model with a single unknown parameter c. In order to estimate 
parameter c in this model, we observe N errors out of which n are successfully 
recovered. A reasonable estimate of c is the relative frequencyn/ N, since we 
expect this ratio to converge to c in the limit N ~ 00. Note that this limit is 
a limit in a probabilistic sense: 

J~p (I ~ - cl > E) = O. 

Axiomatic approaches to probability allow us to define such limits in a math­
ematically consistent fashion (e.g. , see the law of large numbers in Chapter 4) 
and hence allow us to use relative frequencies as estimates of probabilities. 

1.3 SAMPLE SPACE 

Probability theory is rooted in the real-life situation where a person performs 
an experiment the outcome of which may not be certain. Such an experiment 
is called a random experiment. Thus, an experiment may consist of the 
simple process of noting whether a component is functioning properly or has 
failed; it may consist of determining the execution time of a program; or it 
may consist of determining the response time of a server request. The result of 
any such observations, whether they are simple "yes" or "no" answers, meter 
readings, or whatever, are called outcomes of the experiment. 

Definition (Sample Space). The totality of the possible outcomes of 
a random experiment is called the sample space of the experiment and it 
will be denoted by the letter S. 

We point out that the sample space is not determined completely by the 
experiment. It is partially determined by the purpose for which the exper­
iment is carried out. If the status of two components is observed, for some 
purposes it is sufficient to consider only three possible outcomes: two func­
tioning, two malfunctioning, one functioning and one malfunctioning. These 
three outcomes constitute the sample space S. On the other hand, we might 
be interested in exactly which of the components has failed, if any has failed. 
In this case the sample space S must be considered as four possible outcomes 
where the earlier single outcome of one failed, one functioning is split into two 
outcomes: first failed , second functioning and first functioning, second failed. 
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Figure 1.1. A one-dimensional sample space 

Many other sample 'spaces can be defined if we take into account such things 
as type of failure and so on. 

Frequently, we use a larger sample space than is strictly necessary because 
it is easier to use; specifically, it is always easier to discard excess information 
than to recover lost information. For instance, in the preceding illustration, 
the first sample space might be denoted Sl = {O, 1, 2} (where each number 
indicates how many components are functioning) and the second sample space 
might be denoted S2 = {(O, 0), (0, 1) , (1,0), (1, I)} (where 0 = failed, 1 = func­
tioning). Given a selection from S2, we can always add the two components 
to determine the corresponding choice from Sl; but, given a choice from Sl 
(in particular 1), we cannot necessarily recover the corresponding choice from 
S2· 

It is useful to think of the outcomes of an experiment, the elements of the 
sample space, as points in a space of one or more dimensions. For example, if 
an experiment consists of examining the state of a single component, it may 
be functioning properly (denoted by the number 1), or it may have failed 
(denoted by the number 0). The sample space is one-dimensional, as shown 
in Figure 1.1. If a system consists of two components there are four possible 
outcomes, as shown in the two-dimensional sample space of Figure 1.2. Here 
each coordinate is 0 or 1 depending on whether the corresponding component 
is functioning properly or has failed. In general, if a system has n components, 
there are 2n possible outcomes each of which can be regarded as a point in an 
n-dimensional sample space. It should be noted that the sample space used 
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Figure 1.2. A two-dimensional sample space 
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Figure 1.3. A one-dimensional sample space 

here in connection with the observation of the status of components could also 
serve to describe the results of other experiments; for example, the experiment 
of observing n successive executions of an if statement, with 1 denoting the 
execution of the then clause and 0 denoting the execution of the else clause. 

The geometric configuration that is used to represent the outcomes of an 
experiment (e.g., Figure. 1.2) is not necessarily unique. For example, we could 
have regarded the outcomes of the experiment of observing the two-component 
system to be the total number functioning, and the outcomes would be 0,1,2, 
as depicted in the one-dimensional sample space of Figure 1.3. Note that point 
1 in Figure 1.3 corresponds to points (0,1) and (1,0) in Figure 1.2. It is often 
easier to use sample spaces whose elements cannot be further "subdivided"; 
that is, the individual elements of a sample space should not represent two or 
more outcomes that are distinguishable in some fashion. Thus, sample spaces 
like those of Figures 1.1 and 1.2 should be used in preference to sample spaces 
like the one in Figure 1.3. 

It is convenient to classify sample spaces according to the number of ele­
ments they contain. If the set of all possible outcomes of the experiment is 
finite, then the associated sample space is a finite sample space. Thus , the 
sample spaces of Figures 1.1- 1.3 are finite sample spaces. 

To consider an example where a finite sample space does not suffice, sup­
pose we inspect components coming out of an assembly line and that we are 
interested in the number inspected before we observe the first defective com­
ponent. It could be the first, the second, ... , the hundredth, . .. , and, for all 
we know, we might have to inspect a billion or more before we find a defec­
tive component. Since the number of components to be inspected before the 
first defective one is found is not known in advance, it is appropriate to take 
the sample space to be the set of natural numbers. The same sample space 
results for the experiment of tossing a coin until a head is observed. A sample 
space such as this, where the set of all outcomes can be put into a one-to-one 
correspondence with the natural numbers, is said to be countably infinite. 
Usually it is not necessary to distinguish between finite and countably infi­
nite sample spaces. Therefore, if a sample space is either finite or countably 
infinite, we say that it is a countable or a discrete sample space. 

Measurement of the time until failure of a component would have an entire 
interval of real numbers as possible values. Since the interval of real numbers 
cannot be enumerated- that is, they cannot be put into one-to-one correspon­
dence with natural numbers- such a sample space is said to be uncountable 
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or nondenumerable. If the elements (points) of a sample space constitute 
a continuum, such as all the points on a line, all the points on a line segment 
or all the points in a plane, the sample space is said to be continuous. Cer­
tainly, no real experiment conducted using real measuring devices can ever 
yield such a continuum of outcomes, since there is a limit to the fineness to 
which any instrument can measure. However, such a sample space can often 
be taken as an idealization of, an approximation to, or a model of a real world 
situation, which may be easier to analyze than a more exact model. 

Problems 

1. Describe a possible sample space for each of the following experiments: 

(a) A large lot of RAM (random access memory) chips is known to contain a 
small number of ROM (read-only memory) chips. Three chips are chosen 
at random from this lot and each is checked to see whether it is a ROM or 
a RAM. 

(b) A box of 10 chips is known to contain one defective and nine good chips. 
Three chips are chosen at random from the box and tested . 

(c) An if . .. then . . . else .. . statement is executed 4 tir:nes. 

1.4 EVENTS 

An event is simply a collection of certain sample points, that is, a subset of 
the sample space. Equivalently, any statement of conditions that defines this 
subset is called an event. Intuitively, an event is defined as a statement whose 
truth or falsity is determined after the experiment. The set of all experimental 
outcomes (sample points) for which the statement is true defines the subset 
of the sample space corresponding to the event. A single performance of the 
experiment is known as a trial. Let E be an event defined on a sample space 
S; that is, E is a subset of S. Let the outcome of a specific trial be denoted by 
s, an element of S. If s is an element of E, then we say that the event E has 
occurred. Only one outcome s in S can occur on any trial. However, every 
event that includes s will occur. 

Consider the experiment of observing a two-component system and the cor­
responding sample space of Figure 1.2. Let event Al be described by the state­
ment "Exactly one component has failed." Then it corresponds to the subset 
{(O,I), (I,O)} of the sample space. We will use the term event interchangeably 
to describe the subset or the statement. There are sixteen different subsets 
of this sample space with four elements, and each of these subsets defines an 
event. In particular, the entire sample space S = {(O, 0), (0, 1) , (1,0) , (1, I)} 
is an event (called the universal event), and so is the null set 0 (called the 
null or impossible event). The event {s} consisting of a single sample point 
will be called an elementary event. 

Consider the experiment of observing the time to failure of a component. 
The sample space, in this case, may be thought of as the set of all nonnegative 
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TABLE 1.1. Sample Points 

80 = (0,0,0,0,0) 
81 = (0,0,0,0,1) 
82 = (0,0,0, 1,0) 
'83 = (0, 0, 0, 1, 1) 
84 = (0,0,1 , 0,0) 
85 = (0,0,1 , 0,1) 
86 = (0,0,1,1,0) 
87 = (0,0,1,1,1) 
88 = (0,1 , 0,0,0) 
89 = (0,1 , 0,0,1) 

810 = (0 , 1,0, 1,0) 
811 = (0,1,0, 1,1) 
812 = (0,1,1 , 0,0) 
813 = (0,1, 1, 0,1) 
814 = (0,1 , 1, 1,0) 
815 = (0,1,1 , 1, 1) 

816 = (1 ,0,0,0,0) 
817 = (1,0, 0,0, 1) 
818 = (1,0,0,1 ,0) 
819 = (1,0,0, 1, 1) 
820 = (1,0, 1, 0,0) 
821 = (1 ,0, 1,0, 1) 
822 = (1 ,0, 1,1 ,0) 
823 = (1,0,1,1 , 1) 
824 = (1 , 1,0,0,0) 
825 = (1,1,0, 0, 1) 
826 = (1 , 1,0,1,0) 
827 = (1 , 1,0,1, 1) 
828 = (1,1,1,0,0) 
829 = (1,1 , 1,0, 1) 
830 = (1 , 1, 1, 1, 0) 
831 = (1,1,1 , 1, 1) 
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real numbers, or the interval [0, 00) = {t I ° :::; t < oo}. Note that this is an 
example of a continuous sample space. Now if this component is part of a 
system that is required to carry out a mission of certain duration t, then an 
event of interest is "The component does not fail before time t." This event 
may also be denoted by the set {x I x 2: t}, or by the interval [t , 00). 

1.5 ALGEBRA OF EVENTS 

Consider an example of a wireless cell with five identical channels. One pos­
sible random experiment consists of checking the system to see how many 
channels are currently available. Each channel is in one of two states: busy 
(labeled 0) and available (labeled 1). An outcome of the experiment (a point 
in the sample space) can be denoted by a 5-tuple of Os and Is. A ° in po­
sition i of the 5-tuple indicates that channel i is busy and a 1 indicates that 
it is available. The sample space S has 25 = 32 sample points, as shown in 
Table 1.1. The event E1 described by the statement "At least four channels 
are available" is given by 

E1 {(O, 1, 1, 1, 1), (1 , 0,1,1 , 1) , (1, 1,0,1,1), (1, 1, 1,0,1 ), 
(1,1,1,1,0), (1, 1, 1, 1, I)} 

{815,823,827,829,830,831}. 

The complement of this event, denoted by E1 , is defined to be S - E 1 , 

and contains all of the sample points not contained in E 1; that is, E1 = 
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{8 E S I 8 ~ Ed· In our example, El {80 through 814 , 816 through 822, 
824 through 826,828}. El may also be described by the statement "at most 
three channels are available." Let E2 be the event "at most four channels are 
available." Then E2 = {80 through 830}. The intersection E3 of the two 
events El and E2 is denoted by E1 n E2 and is given by: 

E3 El n E2 

{8 E S I 8 is an element of both E1 and E2} 

{8 E S I 8 E El and 8 E E2} 

{815,823,827,829,830}. 

Let E4 be the event "channell is available." Then E4 = {816 through 83d . 
The union E5 of the two events El and E4 is denoted by El U E4 and is given 
by: 

E5 El U E4 

{8 E S I either 8 E El or 8 E E4 or both} 

{815 through 831} . 

Note that E1 has 6 points , E4 has 16 points, and E5 has 17 points. In general: 

IE51 lEI U E41 

< IE11 + IE41· 

Here, the notation IAI is used to denote the number of elements in the set A 
(also known as the cardinality of A). 

Two events A and B are said to be mutually exclusive events or dis­
joint events provided AnB is the null set . If A and B are mutually exclusive, 
then it is not possible for both events to occur on the same trial. For exam­
ple, let E6 be the event "channell is busy." Then E4 and E6 are mutually 
exclusive events since E4 n E6 = 0. 

Although the definitions of union and intersection are given for two events, 
we observe that they extend to any finite number of sets. However, it is 
customary to use a more compact notation. Thus we define 

n 

n 

{8 element of SI8 element of El or 8 element of E2 

or ... 8 element of En} 

{8 element of SI8 element of E1 and 8 element of E2 

and ... 8 element of En} 
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These definitions can also be extended to the union and intersection of a 
countably infinite number of sets. 

The algebra of events may be fully defined by the following five laws or 
axioms, where A, B, and Care arbitrary sets (or events), and Sis the universal 
set (or event): 

(El) Commutative laws: 

Au B = B U A, An B = B n A. 

(E2) Associative laws: 

Au (B U G) 

An (B n G) 

(E3) Distributive laws: 

Au (BnG) 

An (BUG) 

(E4) Identity laws: 

(A U B) U G, 

(A n B) n G. 

(A U B) n (A U G), 

(A n B) U (A n G). 

Au 0 = A, An S = A. 

(E5) Complementation laws: 

A U A = S, A n A = 0. 

Any relation that is valid in the algebra of events can be proved by using 
these axioms [(EI- E5)]. Some other useful relations are as follows: 

(Rl) Idempotent laws: 

A U A = A, A n A = A. 

(R2) Domination laws: 

Au S = S, An 0 = 0. 

(R3) Absorption laws: 

A n (A U B) = A, A U (A n B) = A. 

(R4) de Morgan's laws: 

(AUB)=AnB, (AnB)=AUB. 
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(R5) 

(R6) 
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(:4) = A. 

Au (:4 n B) = Au B. 

From the complementation laws, we note that A and A are mutually ex­
clusive since A n if = 0. In addition, A and if are collectively exhaustive since 
any point s (an element of S) is either in if or in A. These two notions can 
be generalized to a list of events. 

A list of events AI, A2, ... ,An is said to be composed of mutually ex­
clusive events if and only if 

{
A , if i = j, 

Ai n Aj = 0 t otherwise. 

Intuitively, a list of events is composed of mutually exclusive events if there 
is no point in the sample space that is included in more than one event in the 
list. 

A list of events AI, A2, . .. ,An is said to be collectively exhaustive if 
and only if 

Al U A2 ... U An = S . 

Given a list of events that is collectively exhaustive, each point in the sample 
space is included in at least one event in the list. An arbitrary list of events 
may be mutually exclusive, collectively exhaustive, both, or neither. For each 
point s in the sample space S, we may define an event As = {s}. The resulting 
list of events is mutually exclusive and collectively exhaustive (such a list of 
events is also called a partition of the sample space S). Thus, a sample space 
may be defined as the mutually exclusive and collectively exhaustive listing 
of all possible outcomes of an experiment. 

Problems 

1. Four components are inspected and three events are defined as follows: 

A = "all four components are found defective." 

B = "exactly two components are found to be in proper working order." 

G = "at most three components are found to be defective." 

Interpret the following events: 

(a) BuG. 
(b) B n G. 
(c) AuG. 
(d) AnG. 

2. Use axioms of the algebra of events to prove the relations: 

(a) A U A = A. 
(b) Au 5 = S. 
(c) An0=0. 
(d) An(AUB)=A. 
(e) AU(AnB)=AUB. 
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Figure 1.4. Venn diagram for sample space S and events A and B 

s 

88 
Figure 1.5. Venn diagram of disjoint events A and B 

1.6 GRAPHICAL METHODS OF REPRESENTING EVENTS 

Venn diagrams often provide a convenient means of ascertaining relations 
between events of interest. Thus, for a given sample space S and the two 
events A and B, we have the Venn diagram shown in Figure 1.4. In this 
figure, the set of all points in the sample space is symbolically denoted by the 
ones within the rectangle. The events A and B are represented by certain 
regions in S. 

The union of two events A and B is represented by the set of points lying 
in either A or B. The union of two mutually exclusive events A and B is 
represented by the shaded region in Figure 1.5. On the other hand, if A and 
B are not mutually exclusive, they might be represented by a Venn diagram 
like Figure 1.6. A U B is represented by the shaded region; a portion of this 
shaded region is A n B and is so labeled. 

For an event A, the complement if consists of all points in S that do not 
belong to A, thus if is represented by the unshaded region in Figure 1.7. The 
usefulness of Venn diagrams becomes apparent when we see that the following 

Figure 1.6. Venn diagram for two intersecting events A and B 
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laws of event algebra, discussed in the last section, are easily seen to hold true 
by reference to Figures 1.6 and 1.7: 

AnS A, 

AuS s, 
(If) A, 

(AUB) AnB, 

(An B) AuB. 

Another useful graphical device is the tree diagram. As an example, con­
sider the experiment of observing two successive executions of an if statement 
in a certain program. The outcome of the first execution of the if statement 
may be the execution of the then clause (denoted by T1 ) or the execution of 
the else clause (denoted by Ed. Similarly the outcome of the second exe­
cution is T2 or E 2 . This is an example of a sequential sample space and 
leads to the tree diagram of Figure 1.8. We picture the experiment proceeding 

. ?equentially downward from the root. The set of all leaves of the tree is the 
sample space of interest. Each sample point represents the event correspond­
ing to the intersection of all events encountered in tracing a path from the 
root to the leaf corresponding to the sample point. Note that the four sample 
points (the leaves of the tree) and their labels constitute the sample space 

E2 
o 

E I "'· E 2 

X The union of these two sample points 
corresponds to the event "then clause 
is executed exactly once" 

Figure 1.8. 'free diagram of a sequential sample space 
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of the experiment. However, when we deal with a sequential sample space, 
we normally picture the entire generating tree as well as the resulting sample 
space. 

When the outcomes of the experiment may be expressed numerically, yet 
another graphical device is a coordinate system. As an example, consider a 
system consisting of two subsystems. The first subsystem consists of four com­
ponents and the second subsystem contains three components. Assuming that 
we are concerned only with the total number of defective components in each 
subsystem (not with what particular components have failed) , the cardinality 
of the sample space is 5·4 = 20, and the corresponding two-dimensional sam­
ple space is illustrated in Figure 1.9. The three events identified in Figure 1.9 
are easily seen to be 

A ="the system has exactly one non-defective component." 

B ="the system has exactly three non-defective components." 

C = "the first subsystem has more non-defective components than the 

second subsystem." 

1. 7 PROBABILITY AXIOMS 

We have seen that the physical behavior of random experiments can be mod­
eled naturally using the concepts of events in a suitably defined sample space. 
To complete our specification of the model, we shall assign probabilities to 
the events in the sample space. The probability of an event is meant to repre­
sent the "relative likelihood" that a performance of the experiment will result 
in the occurrence of that event. P(A) will denote the probability of the event 
A in the sample space S . 
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In many engineering applications and in games of chance, the so-called rel­
ative frequency interpretation of the probability is utilized. However, such an 
approach is inadequate for many applications. We would like the mathemati­
cal construction of the probability measure to be independent of the intended 
application. This leads to an axiomatic treatment of the theory of probability. 
The theory of probability starts with the assumption that probabilities can 
be assigned so as to satisfy the following three basic axioms of probability. 
The assignment of probabilities is perhaps the most difficult aspect of con­
structing probabilistic models. Assignments are commonly based on intuition, 
experience, or experimentation. The theory of probability is neutral; it will 
make predictions regardless of these assignments. However, the results will 
be strongly affected by the choice of a particular assignment. Therefore if the 
assignments are inaccurate, the predictions of the model will be misleading 
and will not reflect the behavior of the "real world" problem being modeled. 

Let S be a sample space of a random experiment. We use the notation 
P(A) for the probability measure associated with event A. If the event A 
consists of a single sample point s then P(A) = P( {s}) will be written as 
P( s). The probability function P(·) must satisfy the following Kolmogorov's 
axioms: 

(AI) For any event A , P(A) ~ o. 

(A2) P(S) = 1. 

(A3) P(A U B) = P(A) + P(B) provided A and B are mutually exclusive 
events (i.e., when An B = 0) . 

The first axiom states that all probabilities are nonnegative real numbers. 
The second axiom attributes a probability of unity to the universal event S, 
thus providing a normalization of the probability measure (the probability of 
a certain event, an event that must happen, is equal to 1). The third axiom 
states that the probability function must be additive. These three axioms 
are easily seen to be consistent with our intuitive ideas of how probabilities 
behave. 

The principle of mathematical induction can be used to show [using 
axiom (A3) as the basis of induction] that for any positive integer n the 
probability of the union of n mutually exclusive events AI, A2, ... , An is equal 
to the sum of their probabilities: 

n 

P(AI U A2 U··· U An) = L P(Ai). 
i = 1 

The three axioms, (Al)- (A3), are adequate if the sample space is finite 
but to deal with problems with infinite sample spaces, we need to modify 
axiom A3: 
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(A3') For any countable sequence of events AI, A2 , .. . ,An' ... , that are mu­
tually exclusive (that is, Aj n Ak = 0 whenever j =I- k): 

00 00 

P( U An) = L P(An). 
n=l n=l 

All of conventional probability theory follows from the three axioms (AI) 
through (A3') of probability measure and the 5 axioms (El)- (E5) of the al­
gebra of events discussed earlier. These eight axioms can be used to show 
several useful relations: 

(Ra) For any event A, P(A) = 1 - P(A). 

Proof: A and A are mutually exclusive, and S = Au A. Then by axioms (A2) 
and (A3) , 1 = P(S) = P(A) + P(A), from which the assertion follows. 

(Rb) If 0 is the impossible event, then P(0) = o. 
Proof: Observe that 0 = S so that the result follows from relation (Ra) and 
axiom (A2). 

(Re) If A and B are any events, not necessarily mutually exclusive, then 
P(A U B) = P(A) + P(B) - P(A n B). 

Proof: From the Venn diagram of Figure 1.6, we note that Au B = A u (A n 
B) and B = (A n B) u (A n B), where the events on the right-hand side are 
mutually exclusive in each equation. By axiom (A3), we obtain 

P(A u B) 

P(B) 

P(A) + P(A n B) 

P(A n B) + peA n B). 

The second equation implies P(A n B) = P(B) - P(A n B), which, after 
substitution in the first equation, yields the desired assertion. 

The relation (Rc) can be generalized to a formula similar to the principle 
of inclusion and exclusion of 'combinatorial mathematics [LID 1968]: 

(Rd) If AI, A2 , . .. An are any events, then 

n 

LP(Ad- L p(AinAj ) 
I :::; i <j:::;n 

+ 
l:::;i<j <k:::;n 

where the successive sums are over all possible events, pairs of events, 
triples of events, and so on. 
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Proof: We prove this result by induction on the number of events n. The result 
(Rc) above can serve as the basis of induction. Assume inductively that (Rd) 
holds for a union of n - 1 events. Define the event B = Al U A2 U ... U An- I. 
Then 

i = 1 

Using the result (Rc) above, we get 

P(B U An) 
i=1 

P(B) + P(An) - P(B nAn). (1.1 ) 

Now 
B n An = (AI n A~ ) U (A2 nAn) U . .. U (An- 1 nAn) 

is a union of n - 1 events and hence, using the inductive hypothesis , we get 

P(A I nAn) + P(A2 nAn) + ... + P(An- 1 nAn) 

-P[(AI nAn) n (A2 nAn)] 

-P[(A I nAn) n (A3 nAn)] 

+P[(AI nAn) n (A2 nAn) n (A3 nAn)] 
+ ... - ... 
+( -It- 2 P[(A I nAn) n (A2 nAn) n ... n (An- I nAn)] 

P(A 1 nAn) + P(A2 nAn) + .. . + P(An- 1 nAn) 

-P(A I n A2 nAn) - P(AI n A3 nAn) - ... 

+P(AI n A2 n A3 nAn) + ... 

+( -It- 2 P(A 1 n A2 n A3 n· · · n An- I nAn) . (1.2) 

Also, since B = Al U A2 U· .. U An- 1 is a union of n - 1 events, the inductive 
hypothesis gives 

P(B) P(AJ) + P(A2) + ... + P(An- d 

-P(A1 n A2) - P(A1 n A3 ) - ... 

+ ... 
+( -It- 2 P(A 1 n A2 n··· nAn- d. (1.3) 

Substituting (1.2) and (1.3) into (1.1), we obtain the required result . 

The relation (Rd) is computationally expensive to use. A computationally 
simpler formula is the sum of disjoint products (SDP) formula below. 

(Re) 
n 

(1.4) 
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The SDP formula is frequently used in reliability computations [LUO 1998]. 
We leave the proof as an exercise. 

To avoid certain mathematical difficulties, we must place restrictions on 
which subsets of the sample space may be termed events to which probabilities 
can be assigned. In a given problem there will be a particular class of subsets 
of S that is "measurable" and will be called the "class of events" F. Since we 
would like to perform the standard set operations on events, it is reasonable 
to demand that F be closed under countable unions of events in F as well as 
under complementation. A collection of subsets of a given set S that is closed 
under countable unions and complementation is called a (J field of subsets of 
S. Now a probability space or probability system may be defined as a 
triple (S, F, P), where S is a set, F is a cr-field of subsets of S, and P is a 
probability measure on F assumed to satisfy axioms (Al)- (A3'). 

If the sample space is discrete (finite or countable), then every subset of S 
can be an event belonging to F. However, in the case that S is uncountable, 
this is no longer true. For example, let S be the interval [0,1] and assume 
the probability assignment P( a ~ x ~ b) = b - a for 0 ~ a ~ b ~ 1. 
Then it can be shown that not all possible subsets of S can be assigned a 
probability in a manner consistent with the three axioms of P . In such cases, 
the smallest (J field of subsets of S containing all open and closed intervals is 
usually adopted as the class of events F. 

In summary, P is a function with domain F and range [0,1]' which satisfies 
the three axioms (Al) , (A2) , and (A3') . P assigns a number between 0 and 1 
to any event in F. In general, F does not include all possible subsets of S, and 
the subsets (events) Included in F are called measurable. However, for our 
purposes, every subset of a sample space constructed here can be considered 
an event having a probability. 

We now outline the steps of a basic procedure to be followed in solving 
problems [GOOD 1977]: 

1. Identify the sample space S. The sample space S must be chosen so that 
all of its elements are mutually exclusive and collectively exhaustive, 
that is, no two elements can occur simultaneously and one element must 
occur on any trial. Many of the "trick" probability problems are based 
on some ambiguity in the problem statement or an inexact formulation 
of the model of a physical situation. The choice of an appropriate sample 
space resulting from a detailed description of the model, will do much 
to resolve common difficulties. Since many choices for the sample space 
are possible, it is advisable to use a sample space whose elements cannot 
be further "subdivided" - that is, all possible distinguishable outcomes 
of the experiment should be listed separately. 

2. Assign probabilities. Assign probabilities to the elements in S . This 
assignment must be consistent with the axioms (AI), (A2), and (A3). 
In practice, probabilities are assigned either on the basis of estimates 
obtained from past experience, or on the basis of a careful analysis of 
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conditions underlying the random experiment, or on the basis of as­
sumptions, such as the common assumption that various outcomes in a 
finite sample space are equiprobable (equally likely). 

3. Identify the events of interest. The events of interest, in a practical 
situation, will be described by statements. These need to be recast as 
subsets of the sample space. The laws of event algebra (EI)- (E5) and 
(RI )- (R6) may be used for any simplification. Pictorial devices such as 
Venn diagrams, tree diagrams, or coordinate system plots may also be 
used to advantage. 

4. Compute desired probabilities. Calculate the probabilities. of the events 
of interest using the axioms (AI), (A2), and (A3') and any derived laws 
such as (Ra), (Rb), (Rc), (Rd), and (Re). It is usually helpful to express 
the event of interest as a union of mutually exclusive points in the sample 
space and summing the probabilities of all points included in the union. 

Example 1.1 

As a simple illustration of this procedure, consider the example of the wireless cell 
with 5 channels. 

Step 1: An appropriate sample space consists of 32 points (see Table 1.1), each 
represented by a 5-tuple of Os and Is. A 0 in position i indicates that chamlel i is 
busy and a 1 indicates that it is available. 

Step 2: In the absence of detailed knowledge about the system, we assume that 
each sample point is equally likely, Since there are 32 sample points, we assign a 
probability of f2 to each, that is , P(so) = P(sI) = .. , = P(s3d = f2. It is easily 
seen that this assignment is consistent with the three probability axioms. 

Step 3: Assume that we are required to determine the probability that a call 
is not blocked, given that the conference call needs at least three channels for its 
execution. The event E of interest, then, is "three or more channels are available." 
From the definition of the sample points, we see that 

E {S7,Sl1,S13,SI4,SlS,SI9,S2I,S22,S23,S2S - -S3I} 

{sd U {Sl1} 'U {SI3} U {SI4} U {SIS} U {SI9} U {S2d U {S22} 

U{S23} U {S2S} U {S26} U {s2d U {S28} U {S29} U {S30} 

U{s3d· 

Step 4: We have already simplified E so that it is expressed as a union of 
mutually exclusive events. The probability of each of these elementary events is f2, 
Thus, a repeated application of axiom (A3') gives us 

1 1 111 1 1 1 1 
32+32+32+32+32+32+32+32+32 

1 1 1 1 111 
+ 32 + 32 + 32 + 32 + 32 + 32 + 32 
1 
2" 
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Alternatively, we could have noted that E consists of 16 sample points and since 
each 32 sample point is equally likely, P(E) = ~. 

Problems 

1. Giye the proof of the relation (Re) in this section. 

2. Consider a pool of six I/O (input/output) buffers. Assume that any buffer is just 
as likely to be available (or occupied) as any other. Compute the probabilities 
associated with the following events: 

A = "at least 2 but no more than 5 buffers occupied." 

B = "at least 3 but no more than 5 occupied." 

C = "all buffers available or an even number of buffers occupied." 

Also determine the probability that at least one of the events A , B, and C occurs. 

3. Show that if event B is contained in event A, then P(B) ~ P(A). 

1.8 COMBINATORIAL PROBLEMS 

If the sample space of an experiment consists of only a finite number n of 
sample points, or elementary events, then the computation of probabilities 
is often simple. Assume that assignment of probabilities is made such that 
for Si (an element of S), P(Si) = Pi and 

n 

Since any event E consists of a certain collection of these sample points , 
P(E) can be found, using axiom (A3'), by adding up the probabilities of the 
separate sample points that make up E (recall the wireless cell example of 
the last section) . 

Example 1.2 

Consider the following if statement in a program: 

if B then SI else S2. 

The random experiment consists of "observing" two successive executions of the if 
statement. The sample space consists of the four possible outcomes: 

S {(SI ,S I) , (SI,S2) , (S2,SI) , (S2 ,S2 )} 

{tl, t2, t3, t4}. 

Assume that on the basis of strong experimental evidence, the following probability 
assignment is justified: 

P(tI) = 0.34, P(t2) = 0.26 , P(t3) = 0.26 , P(t4) = 0.14. 
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The events of interest are given El = "at least one execution of the statement 8)" 

and E2 = "statement 82 is executed the first time." It is easy to see that 

{ ( 8 1 , 8] ) , (8] , 82) , (82 , 8 J) } 

{tl , t2, t3} , 

{(82,81), (82,82)} 

{t3, t4}, 

P(tt) + P(t2) + P(t3) = 0.86, 

P(t3) + P(t4) = 0.4. 

In the special case when S = {Sl,··· Sn} and P(Si ) = Pi = (lin) (equally 
likely sample points), the situation is even simpler. Calculation of probabilities 
is then reduced to simply counting the number of sample points in the event 
of interest. If the event E consists of k sample points, then 

P(E) 

Example 1.3 

number of points in E 
number of points in S 
favorable outcomes 

total outcomes 
k 
n 

(1.5) 

A group of four VLSI chips consists of two good chips, labeled 91 and 92, and two 
defective chips, labeled d 1 and d2. If three chips are selected at random from this 
group, what is the probability of the event E = "two of the three selected chips are 
defective" ? 

A natural sample space for this problem consists of all possible three chip se­
lections from the group of four chips: S = {9192dl,9192d2,91dld2,92dld2}. It is 
customary to interpret the phrase "selected at random" as implying equiprobable 
sample points. Since the two sample points 91dld2 and 92d 1d2 are favorable to the 
event E , and since the sample space has four points, we conclude that P(E) = ~ = 4. 

We have seen that under the equiprobability assumption, finding P(E) 
simply involves counting the number of outcomes favorable to E. However, 
counting by hand may not be feasible when the sample space is large. Stan­
dard counting methods of combinatorial analysis can often be used to avoid 
writing down the list of favorable outcomes explicitly. 



1.8 COMBINATORIAL PROBLEMS 21 

1.8.1 Ordered Samples of Size k, with Replacement 

Here we are interested in counting the number of ways we can select k objects 
from among n objects where order is important and when the same object is 
allowed to be repeated any number of times (permutations with replace­
ment). Alternatively, we are interested in the number of ordered sequences 
(Sil , Si2' ... , Sik)' where each Sir belongs to {Sl ' ... , sn}. It is not difficult to 
see that the required number is (n . n ... .. n( ktimes) ) , or n k . 

Example 1.4 

Assume that we are interested in finding the probability that some randomly chosen 
k-digit decimal number is a valid k-digit octal number. The sample space, in this 
case, is 

S = {(Xl, X2, ···, Xk) I Xi E {O, 1,2, .. . , 9}} 

and the event of interest is 

E= {(XI, X2 ... Xk) I Xi E {O,1, 2, . .. ,7}}. 

By the above counting principle, lSI = 10k and lEI = 8k
. Now, if we assume that 

all the sample points are equally likely, then the required answer is 

1.8.2 Ordered Samples of Size k, without Replacement 

The number of ordered sequences (Sil' Si2' ... , Sik)' where each Sir belongs to 
{Sl' . .. , sn}, but repetition is not allowed (i.e., no Si can appear more than 
once in the sequence), is given by 

n! 
'n(n - 1) ... (n - k + 1) = for k = 1,2, ... ,n. 

(n - k)! 

This number is also known as the number of permutations of n distinct objects 
taken k at a time, and denoted by P( n, k). 

Example 1.5 

Suppose we wish to find the probability that a randomly chosen three-letter sequence 
will not have any repeated letters. 

Let I = {a, b, . .. , z} be the alphabet of 26 letters. Then the sample space is 
given by 

S = {(a ,{3,,) I a E I ,{3 E I " E I} 

and the event of interest is 

E = {(a,{3 ,,) I a E I ,{3 E I" E I,a =1= {3,{3 =1= "a =1= ,}. 
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By the abovementioned counting principle, lEI is simply P(26 ,3) 15,600: Fur-
thermore, lSI = 263 = 17,576. Therefore, the required answer is 

P(E) = 15,600 = 0.8875739. 
17,576 

1.8.3 Unordered Samples of Size k, without Replacement 

The number of unordered sets {SillSi2, ... ,Sik}' where Sir (r = 1, 2, . .. , k) 
are distinct elements of {81 , . . . , sn} is 

n! 
for k = 0,1 , .. . , n. 

k!{n - k)! 

This is also known as the number of combinations of n distinct objects taken 
k at a time, and is denoted by (~). 

Example 1.6 

If a box contains 75 good VLSI chips and 25 defective chips, and 12 chips are selected 
at random, find the probability that at least one chip is defective. 

By the counting principle described above, the number of unordered samples 
without replacement is (\°2°) and hence the size of the sample space is lSI = (\°2°). 
The event of interest is E = "at least one chip is defective." Here we find it easier 
to work with the complementary event E = "no chip is defective." Since there are 
75 good chips, the preceding counting principle yields lEI = G~). Then 

P(E) lEI 
TSI 
G~) 

(\°2°) 
75! . 12! . 88! 
12! . 63! . 100! 
75! · 88! 

63! . 100!· 

Now since P(E) = 1 - P(E) , the required probability is easily obtained. 

Example 1.7 

Consider a TDMA (time division multiple access) wireless system [SUN 1999], where 
the base transceiver system of each cell has n base repeaters [also called base radio 
(BR)]. Each base repeater provides m time-division-multiplexed channels. Thus, 
there are mn channels in the system. We note that normally a cell reserves one 
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or more channels for signaling transfer, which resides in one of n base repeaters. 
However, for simplicity, we do not consider signaling channels (also called control 
channels) in this example. 

A base repeater is subject to failure. In order to evaluate the impact of such a 
failure on the performability of the system, we should know the number of ongoing 
talking channels on the failed base repeater. Suppose the channels are allocated 
randomly to the users. Denote the total number of talking channels in the whole 
system as k, and the number of idle channels in the whole system as j (j + k = mn 
always holds), when the failure occurs. Then the probability, Pi' that i talking 
channels reside in the failed base repeater is given by 

(1.6) 

Clearly, the total number of possi ble combinations to have k talking chan­
nels out of mn channels is C'l:n) , namely, the size of the sample space, lSI. The 
event of interest is E = "i talking channels on the failed base repeater." Now if i 
(0 :::; i :::; min(m, k)) out of the k talking channels are on the failed base repeater, 
corresponding to a total of (7) combinations, then (k - i) talking channels are on 

the rest of the (n - 1) base repeaters, which has (m~r::..~l») combinations. Thus, 

lEI = (m~r::..~ 1»)(7) · Probability Pi can now be easily obtained as lEI/lSI· 

Problems 

1. How many even two-digit numbers can be constructed out of the digits 3, 4, 5, 
6, and 7? Assume first that you may use the same digit again . Next , answer this 
question assuming that you cannot use a digit more than once. 

2. Three couples (husbands and their wives) must sit at a round table in such a 
way that no husband is placed next to his wife. How many configurations exist? 
If seats are occupied at random, what is the probability of such a configuration? 

3. If a three-digit decimal number is chosen at random, find the probability that 
exactly k digits are ~ 5, for 0 :::; k :::; 3. 

4. A box with 15 VLSI chips contains five defective ones. If a random sample of 
three chips is drawn, what is the probability that all three are defective? 

5. In a party of five persons, compute the probability that at least two of the persons 
have the same birthday (month/day), assuming a 365-day year. 

6. * A series of n jobs arrive at a multiprocessor computer with n processors. As­
sume that each of the nn possible assignment vectors (processor for job 1, ... , 
processor for job n) is equally likely. Find the probability that exactly one pro­
cessor will not be assigned a job. 

1.9 CONDITIONAL PROBABILITY 

So far, we have assumed that the only information about the outcome of a 
trial of a given experiment, available before the trial, is that the outcome will 
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correspond to some point in the sample space S. With this assumption, we 
can compute the probability of some event A. Suppose that we are given the . 
added information that the outcome s of a trial is contained in a subset B of 
the sample space, with P(B) f. 0. Knowledge of the occurrence of the event 
B may change the probability of the occurrence of the event A. We wish 
to define the conditional probability of the event A given that the event 
B occurs, or the conditional probability of A given B, symbolically as 
P(AIB) . Given that event B has occurred, the sample point corresponding 
to the outcome of the trial must be in B and cannot be in B. To reflect this 
partial information, we define the conditional probability of a sample point s 
(an element of S) by 

{ 

P(s) 'f B 
P(sIB) = oP(B) 1 s E , 

if s E B. 

Thus the original probability assigned to a sample point in B is scaled up 
by 1/ P(B), so that the probabilities of the sample points in B will add up 
to 1. Now the conditional probability of any other event, such as A, can be 
obtained by summing over the conditional probabilities of the sample points 
included in A (noting that A = (A n B) U (A n B»: 

P(AIB) LP(sIB) 
sEA 

L P(sIB) + L P(sIB) 
s EAnB 

L P(sIB) 
sEAnB 

L P(s) 

s EAnB P(B) 

P(A n B) 
P(B) 

sE AnB 

P(B) f. O. 

This leads us to the following definition. 

Definition (Conditional Probability). The conditional probability 
of A given B is 

P(AIB) = P(A n B) 
P(B) 

if P(B) f. ° and it is undefined otherwise. 

A rearrangement of this definition yields the following multiplication 
rule (MR): 

{ 

P(B)P(AIB) if P(B) f. 0, 
P(A n B) = oP(A)P(BIA) if P(A) f. 0, 

otherwise. 
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Example 1.8 

We are given a box containing 5000 VLSI chips, 1000 of which are manufactured by 
company X and the rest by company Y. Ten percent of the chips made by company 
X are defective and 5% of the chips made by company Yare defective. If a randomly 
chosen chip is found to be defective, find the probability that it came from company 
X. 

Define the events A = "chip made by company X" and B = "chip is defective." 
Since out of 5000 chips, 1000 are made by company X, we conclude that P(A) = 
1000/5000 = 0.2. Also, out of a total of 5000 chips, 300 are defective. Therefore, 
P(B) = 300/5000 = 0.06. Now the event An B = "the chip is made by company 
X and is defective. " Out of 5000 chips, 100 chips qualify for this statement. Thus 
P(A n B) = 100/5000 = 0.02. Now the quantity of interest is 

P(AIB) = P(A n B) = 0.02 = ~ . 
P(B) 0.06 3 

Thus the knowledge of the occurrence of B has increased the probability of the 
occurrence of event A. Similarly we find that the knowledge of the occurrence of A 
has increased the chances for the occurrence of the event B , since P(BIA) = 0.1. In 
fact, note that 

P(AIB) 
P(BIA) 

1/3 0.2 
0.1 0.06 

P(A) 
P(B) . 

This interesting property of conditional properties is easily shown to hold in general 

Problems 

P(AIB) 
P(BIA) 

P(A n B)/ P(B) 
P(A n B)/ P(A) 

P(A) 
P(B)' 

1. Consider four computer firms, A , B, C, D, bidding for a certain contract . A 
survey of past bidding success of these firms on similar contracts shows the 
following probabilities of winning: 

P(A) = 0.35, P(B) = 0.15, P(C) = 0.3, P(D) = 0.2. 

Before the decision is made to award the contract, firm B withdraws its bid. 
Find the new probabilities of A, C, D winning the bid. 

1.10 INDEPENDENCE OF EVENTS 

We have seen that it is possible for the probability of an event A to decrease or 
increase given that event B has occurred. If the probability of the occurrence 
of an event A does not change regardless of whether event B has occurred, we 
are likely to conclude that the two events are independent. Thus we define 
two events A and B to be independent if and only if 

P(AIB) = P(A). 
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From the definition of conditional probability, we have [provided P(A) =1= 0 
and P( B) =1= 0]: 

P(A n B) = P(A)P(BIA) = P(B)P(AIB). 

From this we conclude that the' condition for the independence of A and B 
can also be given either as P(AIB) = P(A) or as P(A n B) = P(A)P(B). 
Note that p(AnB) = P(A)P(BIA) (if P(A) =1= 0) holds regardless of whether 
A and B are independent, but P(A n B) = P(A)P(B) holds only when A 
and B are independent. In fact this latter condition is the usual definition of 
independence. 

Definition (Independent Events). Events A and B are said to be 
independent if 

P(A n B) = P(A)P(B) . 

This equation is symmetric in A and B and shows that whenever A is 
independent of B , so is B of A. Some authors use the phrases "stochas­
tically independent events" or "statistically independent events" in place of 
just "independent events." Note that if A and B are not independent, then 
P(A n B) is computed using the multiplication rule of the last section. The 
abovementioned condition for independence can be derived in another way by 
first noting that the event A is a disjoint union of events An B and An B. 
Now the conditional probability of all the sample points in the latter event is 
zero while the conditional probability of all the sample points in the former 
event is increased by the factor 1/ P(B). Therefore, for P(AIB) = P(A) to 
hold , the decrease in probability due to points in A n B must be balanced by 
the increase in probability due to points in A n B . In other words 

p(AnB) -
P(B) - P(A n B) = P(A n B) - 0 

or 

P(A n B) =P(A B) P(A B) 
P(B) n + n 

= P(A) . 

Example 1.9 

A microcomputer system consists of a microprocessor CPU chip and a random access 
main memory chip. The CPU is selected from a lot of 100, 10 of which are defective, 
and the memory chip is selected from a lot of 300, 15 of which are defective. Define A 
to be the event "the selected CPU is defective," and let B be the event "the selected 
memory chip is defective." Then P(A) = 10/100 = 0.1 , and P(B) = 15/300 = 0.05 . 
Since the two chips are selected from different lots , we may expect the events A and 
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B to be independent. This can be checked since there are 10 . 15 ways of choosing 
both defective chips and there are 100 . 300 ways of choosing two chips. Thus 

P(A n B) 
10·15 

100 · 300 
0.005 

0.10·0.05 

P(A)P(B) . 

Several important points are worth noting about the concept of indepen­
dence: 

1. If A and B are two mutually exclusive events, then An B = 0, which 
implies P(A n B) = O. Now if they are independent as well, then either 
P(A) = 0 or P(B) = O. 

2. If an event A is independent of itself, that is, if A and A are independent, 
then P(A) = 0 or P(A) = 1, since the assumption of independence yields 
P(A n A) = P(A)P(A) or P(A) = [P(A)J2. 

3. If the events A and B are independent and the events Band Care 
independent, then events A and C need not be independent. In other 
words, the relation of independence is not a transitive relation. 

4. If the events A and B are independent , then so are events A and B , 
events A and B , and events A and B. To show the independence of 
events A and B , note that An B and An B are mutually exclusive 
events whose union is B . Therefore 

P(B) P(A n B) + P(A n B) 

P(A)P(B) + P(A n B) 

since A and B are independent. This implies that P(A n B) = P(B) -
P(A)P(B) = P(B)[l - P(A)] = P(B)P(A), which establishes the inde­
pendence of A and B. Independence of A and B, and A and B can be 
shown similarly. 

The concept of independence of two events can be naturally extended to 
a list of n events. 

Definition (Independence of a Set of Events). A list of n events 
AI, A2 , ... , An is defined to be mutually independent if and only if for each 
set of k (2:::; k:::; n) distinct indices i l ,i2, ... , ik, which are elements of 
{I, 2, ... , n} , we have 



28 INTRODUCTION 

Given that a list of events AI, A2, . .. ,An is mutually independent, it is 
straightforward to show that for each set of distinct indices iI , i2, ... , ik, which 
are elements of {I , 2,. , . , n}: 

P(Bi1 n Bi2 n .. . n B ik ) = P(Bi l )P(Bi2 ) ... P(Bik ) (1. 7) 

where each Bik may be either Aik or Aik · In other words, if the AiS are 
independent and we replace any event by its complement, we still have inde­
pendence. 

By the probability axiom (A3), if a list of events is mutually exclusive, the 
probability of their union is the sum of their probabilities. On the other hand, 
if a list of events is mutually independent, the probability of their intersection 
is the product of their probabilities. The additive and multiplicative nature, 
respectively, of two event lists should be noted. 

Note that it is possible to have p(AnBnC) = P(A)P(B)P(C) with p(An 
B) i= P(A)P(B), p(AnC) i= P(A)P(C), and p(BnC) i= P(B)P(C). Under 
these conditions, events A, B, and C are not mutually independent. Similarly, 
the condition P(AI n A2 ... nAn) = P(AdP(A2) ... P(An) does not imply a 
similar condition for any smaller family of events, and therefore this condition 
does not imply that events AI, A2, ... , An are mutually independent. 

Example 1.10 [ASH 1970] 

Consider the experiment of rolling two dice. Let the sample space S = {( i, j) I 
1 ::; i, j ::; 6} . Also assume that each sample point is assigned a probability of :k. 
Define the events A, B, and C so that 

A = "first die results in a 1, 2, or 3." 

B = "first die results in a 3, 4, or 5." 

C = "the sum of the two faces is 9." 

Then A n B = {(3, 1), (3, 2), (3,3), (3,4), (3,5), (3, 6)}, A n C = {(3, 6)}, B n C = 
{(3, 6),(4,5),(5 , 4)}, and An B n C= {(3,6)}. Therefore 

P(A n B) ~ =I- P(A)P(B) = ~, 

P(A n C) 3
1
6 =I- P(A)P(C) = 11

8
, 

P(B n C) 112 =I- P(B)P(C) = 11
8

, 

but 

P(A n B n C) = 3
1
6 = P(A)P(B)P(C). 

If the events AI, A2, . .. ,An are such that every pair is independent, then 
such events are called pairwise independent. It does not follow that the 
list of events is mutually independent. 

Example 1.11 [ASH 1970] 

Consider the above experiment of tossing two dice. Let 
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Then 

and 

A = "first die results in a I, 2, or 3." 

B = "second die results in a 4, 5, or 6." 

C = "the sum of the two faces is 7." 

AnB = {(1,4),(1,5),(1,6),(2,4),(2, 5),(2,6),(3,4),(3,5),(3,6)} 

AnC BnC 

AnBnC 

{(1,6),(2,5) , (3, 4)} . 

Therefore 

but 

P(A n B) =~ = P(A)P(B), 

P(A n C) = 112 = P(A)P(C) , 

P(B n C) = 112 = P(B)P(C), 

P(A n B n C) = 112 i- P(A)P(B)P(C) = 214 ' 
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In this example, events A , B , and C are pairwise independent but not mutually 
independent. 

We illustrate the idea of independence by considering the problem of com­
puting reliability of so-called series- parallel systems. A series system is one 
in which all components are so interrelated that the entire system will fail if 
anyone of its components fails. On the other hand, a parallel system is 
one that will fail only if all of its components fail. We will assume that failure 
events of components in a system are mutually independent. 

First consider a series system of n components. For i = 1, 2, ... ,n, define 
events Ai = "component i is functioning properly." Let the reliability, R i , of 
component i be defined as the probability that the component is functioning 
p~operly; then Ri = P(Ad . By the assumption of series connections, the 
system reliability: 

Rs P( "the system is functioning properly") 

P(A 1 n A2 n .. . nAn) 

P(AdP(A2) . . . P(An) 
n 

(1.8) 



30 INTRODUCTION 

This simple product law of reliabilities, applicable to series systems of in­
dependent components, demonstrates how quickly system reliability degrades 
with an increase in complexity. For example, if a system consists of five com­
ponents each in series, each having a reliability of 0.970, then the system 
reliability is 0.9705 = 0.859. Now if the system complexity is increased so 
that it contained 10 similar components, its reliability would be reduced to 
0.97010 = 0.738. Consider what happens to system reliability when a large 
system like a computer system consists of tens to hundreds of thousands of 
components! 

One way to increase the reliability of a system is to use redundancy. 
The first scheme that comes to mind is to replicate components with small 
reliabilities (parallel redundancy). First consider a system consisting of n 
independent components in parallel , so that it will fail to function only if all 
n components have failed. Define event Ai = "the component i is functioning 
properly" and Ap = "the parallel system of n components is functioning prop­
erly." Also let Ri = P(Ad and Rp = P(Ap). To establish a relation between 
Ap and the Ai values, it is easier to consider the complementary events. Thus 

Therefore 

Ap "the parallel system has failed" 

"all n components have failed" 

Al n A2 n ... nAn. 

P(A1 n A2 n ... nAn) 

P(AdP(A2) ... P(An) 

by independence. Now let Fp = 1 - Rp be the unreliability of the parallel 
system and similarly let Fi = 1-Ri be the unreliability of component i. Then, 
since Ai and Ai are mutually exclusive and collectively exhaustive events, we 
have 

1 =P(S) 

=P(Ai ) + P(Ai) 

and 

Fi =P(Ai ) 

=1 - P(Ai). 

Then 

n 

i= 1 
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Figure 1.10. Reliability curve of a parallel redundant system 

and 

n 

=1- II(l - Ri)' (1.9) 
i= l 

Thus, for parallel systems of n independent components, we have a prod­
uct law of unreliabilities analogous to the product law of reliabilities of 
series systems. If we have a parallel system of five components, each with a 
reliability of 0.970, then the system reliability is increased to 

1 - (1 - 0.970)5 = 1 - (0.03)5 

= 1 - 0.0000000243 

= 0.9999999757. 

However, one should be aware of a law of diminishing returns, according 
to which the rate of increase in reliability with each additional component 
decreases rapidly as n increases. This is illustrated in Figure 1.10, where we 
have plotted Rp as a function of n. [This remark is easily formalized by noting 
that Rp is a concave function of n since R~(n) = -(1 - R)n In(l - R) > 0, 

and R~(n) = -(1 - R)n(ln(l - R))2 < 0.] 
The basic formulas (1.8) and (1.9) for the reliability computation of series 

and parallel systems can be used in combination to compute the reliability of 
a system having both series and parallel parts (series-parallel systems). 
Consider a series- parallel system of n serial stages where stage i consists of 
ni identical components in parallel. Let the reliability of each component 
at stage i be Ri . Assuming that all components are independent , system 
reliability Rsp can be computed from the formula 

n 

Rsp = II [1 - (1 - Ri)ni ]. (1.10) 
i= l 
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A series- parallel system can be graphically represented by a series- parallel re­
liability block diagram (RBD) , in which components are combined into blocks 
in series, in parallel or in the k-out-of-n configuration (which will be intro­
duced in the following sections). We use the following example to illustrate 
the use of RBD. 

Example 1.12 

Consider the system shown in Figure 1.11 , consisting of five stages , with nl = n2 = 
n5 = 1, and n3 = 3 and n 4 = 2. Also 

Then 

Rl = 0.95 , R2 = 0.99, R3 = 0.70, R 4 = 0.75 , and R 5 = 0.9. 

R s p = 0.95 . 0.99 . (1 - (1 - 0.7)3) . (1 - (1 - 0.75)2) ·0.9 

= 0.772. 

Fault trees provide another way to model system reliability [HENL 1981, 
MISR 1992, SAHN 1996]. A fault tree is a graphical representation of the 
combination of events that can cause the occurrence of system failure. An 
event is either a basic (primary) event or a logical combination of lower-level 
events. We assume that basic events are mutually independent and that 
probabilities for their occurrences are known. The occurrence of each event is 
denoted by a logic 1 at that node; otherwise the logic value of the node is O. 
Logic value 1 for a basic event denotes failure of the corresponding component. 
Each gate has several inputs and one output. The inputs to a gate are either 
basic events or the outputs of other gates. The output of an and gate is a 
logic 1, if and only if, all of its inputs are logic 1. The output of an or gate 
is a logic 1 if one or more of its inputs are logic 1. There is a single output of 
the fault tree as a whole, called the top event, representing system failure. 

Example 1.13 

Consider a reliability model of alternate routing in a telephone network [BALA 
1996]. The network is represented by a graph whose nodes denote the office locations 

Figure 1.11. A series- parallel reliability block diagram 
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of a corporation and edges of the graph represent communication links between office 
locations as shown in Figure 1.12. The measure of interest is reliability, R, a measure 
of the network's ability to maintain a given set of connections. In Figure 1.12, 
the network is up whenever node-pairs A-B and C-D are both connected, either 
directly, or by the two-link alternate routes listed. We impose the condition that 
the alternate routes of the node pair A-B should be disjoint from those of node 
pair C-D. We assume that link failures are mutually independent. The fault tree 
is shown in Figure 1.13. 

In a fault tree such as that in Figure 1.13, reliabilities of inputs to an or gate 
multiply while unreliabilities of inputs to an and gate multiply. Hence the network 
reliability is given by 

Rnetwork = [1 - (1 - Rab)(1 - RacRcb)(1 - Rad~b)(1 - RaeReb)] 

. [1 - (1 - Red)( 1 - Ree Red) ] . 

tt 
Reliability of systems with more general interconnections cannot be com­

puted with the preceding formula. In such a case, we may obtain structure 
function [MISR 1992] of the system first, then compute the reliability of the 
system. The structure function of a system is defined as follows. 

Definition (Structure Function). Let X be a state vector of a system 
with n components so that X = (Xl, X2,···, xn) where 

Xi = {~ if component i is functioning, 
if component i has failed. 

The structure function ~(X) is defined by 

~(X) = g if system is functioning, 
if system has failed. 

A 

B 

E 

Alternate routes 

For C-D: C-E-D 

C 

For A-B: A-C-B, A-D-B, A-E-B 

D 

Figure 1.12. A communication network with five nodes 
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ab ac Cb cd ce ed 

Figure 1.13. Fault tree for the communication network 

Using the definition of system structure function, the reliability of a system 
can be written as 

R = p(q,(X) = 1). 

Example 1.14 

Consider the fault tree shown in Figure 1.14. Notice that event B3 is input to two 
gates; thus, the fault tree is said to have repeated (or shared) events. Such fault 
trees can no longer be solved by the simple method used for the fault tree without 
repeated events that we encountered in Example 1.13. For the current example, we 
have 

{cf> = O} = (AI U (131 n 133 )) n (A2 U (132 n 133 )) 

= (AI n A2) U (AI n 132 n 133) U (A2 n 131 n 133 ) U (BI n 132'n 133). 

Note that these four events are not mutually exclusive. Therefore , we cannot directly 
use axiom (A3), however, we could use SDP formula, i.e. , relation (Re), to make 
them disjoint. Then, the reliability of the system is 

R = 1- P(cf> = 0) 

= 1 - P((AI n A2) U (AI n 132 n 133) U (A2 n BI n 133) U (131 n 132 n 133 )) 

= 1 - P((AI n A2) U (AI n A2 n 132 n 133) U (AI n A2 n 131 n 133) 

U (AI n A2 n 131 n 132 n 133)) 
= 1- FAIFA2 - FAJRA2FB2FB3 - RAIFA2FBJFB3 - RAJRA2FBIFB2FB3 

where Fx = 1 - Rx. 
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Figure 1.14. A fault tree 

Starting with system structure function, there are two methods to obtain 
system reliability: (1) the use of inclusion- exclusion formula (Rd) and (2) the 
use of the SDP formula illustrated above. For an efficient implementation of 
the SDP method, see Luo and Trivedi [LUO 1998]. A third, even more efficient 
approach is based on the binary decision diagrams (BDDs) [ZANC 1999]. A 
fourth method is based on the use of conditioning (also called factoring) to be 
discussed in the next section. The BDD approach and factoring approach do 
not need the structure function to begin with. Further note that reliability 
of systems with standby redundancy cannot be computed using methods dis­
cussed in this chapter, but techniques to be discussed later in this book will 
enable us to do so. 

Problems 

1. Two towns are connected by a network of communication channels. The probabil­
ity of a channel's failure-free operation is R, and channel failures are independent. 
Minimal level of communication between towns can be guaranteed provided at 
least one path containing properly functioning channels exists. Given the net­
work of Figure l.P.1, determine the probability that the two towns will be able 
to communicate. Here -l f- denotes a communication channel. 

2. Given three components with respective reliabilities Rl = 0.8, R2 = 0.75 , and 
R3 = 0.98, compute the reliabilities of the three systems shown in Figure l.P.2. 

3. Determine the conditions under which an event A is independent of its subset B. 

4. General multiplication rule (GMR). Given a list of events AI , A 2 , ... ,An (not 
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Figure l.P.l. A network of communication channels 
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Figure l.P.2. Reliability block diagrams 

necessarily independent), show that 

P[A 1 1(A2 n A3 n··· nAn)] 

·P[A21(A3 n ... nAn)] 

·P[A31(A4 n . . . nAn)] 

provided all the conditional probabilities on the right-hand side are defined. 

5. Seven lamps are located as shown in Figure LP.3. Each lamp can fail with 
probability q, independently of all the others. The system is operational if no 
two adjacent lamps fail. Obtain an expression for system reliability. 

6. Consider a base repeater in a cellular communication system with two control 
channels and three voice channels. Assume that the system is up so long as at 
least one control channel and at least one voice channel is functioning . Draw 
a reliability block diagram for this problem and write down an expression for 
system reliability. Next, draw a fault tree model for this system. Note that this 
fault tree has no repeated events and hence can be solved in a way similar to 
that for a series- parallel reliability block diagram. 

7. Modify the base repeater problem above so that a control can also function as a 
voice channel. Draw a fault tree model for the modified problem. Notice that the 
fault tree has repeated events. Derive the reliability expression using the SDP 
method. 



1.11 BAYES' RULE 

Figure l.P.3. Lamp problem 
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Alternate routes 

For C-D: C-B-O 

For A-B: A-C-B 

B-C is shared. 

C 

Figure l.P.4. A modified communication network 
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8. Return to Example 1.13 but now permitting a shared link B - C as shown in Fig­
ure 1.P.4. Draw the fault tree for modeling the reliability for the communication 
network. Note that due to the shared link, the fault tree will have a shared or 
repeated event . Derive an expression for system reliability using SDP method as 
in Example 1.14. 

1.11 BAYES' RULE 

A given event B of probability P(B) partitions the sample space S into two 
disjoint subsets Band B. If we consider Sf = {B, B} and associate the 
probabilities P(B) and P(B) to the respective points in Sf, then Sf is very 
similar to a sample space, except that there is a many-to-one correspondence 
between the outcomes of the experiment and the elements of S'. A space 
such as Sf is often called an event space. In general, a list of n events 
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A 

Figure 1.15. The theorem of total probability 

B l , B2 , ... ,Bn that are collectively exhaustive and mutually exclusive form 
an event space, S' = {Bl' B 2 , .. · , Bn}. 

Returning to the event space S' = {B, B}, note that an event A is parti­
tioned into two disjoint subsets: 

Then by axiom (A3): 

P(A) 

A = (AnB)u(AnB) . 

P( A n B) + P( A n B) 

P(AIB)P(B) + P(AIB)P(B) 

by definition of conditional probability. 
This relation is analogous to Shannon's theorem in switching theory and 

can be generalized with respect to the event space S' = {Bl ' B2 , ... , Bn}: 

n 

P(A) = L P(AIBdP(Bi)' (1.11) 
i=l 

This relation is also known as the theorem of total probability, and is 
sometimes called the rule of elimination. This situation can be visual­
ized by constructing a tree diagram (or a probability tree) as shown in 
Figure 1.15, where each branch is so labeled that the product of all branch 
probabilities from the root of the tree to any node equals the probability of 
the event represented by that node . Now P(A) can be computed by summing 
probabilities associated with all the leaf nodes of the tree. In practice, after 
the experiment, a situation often arises in which the event A is known to have 
occurred, but it is not known directly which of the mutually exclusive and 
collectively exhaustive events Bll B2 , .. . ,Bn has occurred. In this situation,' 
we may be interested in evaluating P(BjIA), the conditional probability that 
one of these events B j occurs, given that A occurs. By applying the definition 
of conditional probability followed by the use of theorem of total probability, 
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we find that 

P(BjIA) 
P(Bj n A) 

P(A) 

P(AIBj )P(Bj ) 
Li P(AIBi )P(Bi ) . 
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(1.12) 

This relation is known as Bayes' rule and is useful in many applications. This 
rule also forms the basis of a statistical method called Bayesian procedure. 
P(Bj IA) is sometimes called an a posteriori probability. 

Example 1.15 

Measurements at the North Carolina Super Computing Center (NCSC) on a certain 
day, indicated that the source of incoming jobs is 15% from Duke, 35% from Uni­
versity of North Carolina (UNC), and 50% from North Carolina State (NC State). 
Suppose that the probabilities that a job initiated from these universities is a mul­
titasking job are 0.01, 0.05, and 0.02, respectively. Find the probability that a job 
chosen at random at NCSC is a multitasking job. Also find the probability that a 
randomly chosen job comes from the University of North Carolina, given that it is 
a multitasking job. 

Define the events Bi = "job is from university i" (i = 1,2, 3 for Duke, UNC, and 
NC State, respectively), and A = "job uses multitasking." Then, by the theorem of 
total probability, we obtain 

P(A) P(AIBI)P(BI) + P(AIB2)P(B2) + P(AIB3) P(B3) 

(0.01) . (0 .15) + (0.05) . (0.35) + (0.02) . (0.5) 

0.029. 

Now the second event of interest is [B2/AJ, and from Bayes ' rule: 

P(AIB2)P(B2) 
P(A) 

0.05 · 0.35 
0.029 

0.603. 

Note that the knowledge that the job uses multitasking increases the chance that it 
came from UNC from 35% to about 60%. 

Example 1.16 

A binary communication channel carries data as one of two types of signals denoted 
by 0 and 1. As a result of noise, a transmitted 0 is sometimes received as a 1 and a 
transmitted 1 is sometimes received as a O. For a given channel, assume a probability 
of 0.94 that a transmitted zero is correctly received as a zero and a probability of 
0.91 that a transmitted one is received as a one. Further assume a probability of 
0.45 of transmitting a O. If a signal is sent, determine the 
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P(R1IT1) 

Figure 1.16. A channel diagram 

1. Probability that a 1 is received. 

2. Probability that a 0 is received. 

3. Probability that a 1 was transmitted given that a 1 was received. 

4. Probability that a 0 was transmitted given that a 0 was received. 

5. Probability of an error. 

Define events To = "a 0 is transmitted" and event Ro = "a 0 is received." Then let 
Tl = To = "a 1 is transmitted" and Rl = Ro = "a 1 is received." Then the events 
of interest under items 1, 2, 3, and 4 are respectively given by R 1, Ro, [T1/RI), and 
[To/RoJ . An error in the transmitted signal is the union of the two disjoint events 
[Tl n RoJ and [To n Rd. The operation of a binary communication channel may be 
visualized by a channel diagram shown in Figure 1.16. In the given problem, we 
have P(Ro/To) = 0.94, P(R1/Tt) = 0.91, and P(To) = 0.45. From these we get 

P~Rl/To) = POlo/To) = 1 - P(Ro/To) = 0.06, 

P(Ro/Tt) = P(R1/TJ) = 1 - P(R1/TI) = 0.09, 

P(TI) = P(To) = 1 - P(To) = 0.55. 

Now from the theorem of total probability: 

P(Ro) =P(Ro/To)P(To) + P(Ro/TI)P(Tt} 

=(0.94) . (0.45) + (0.09) . (0.55) 

=0.423 + 0.0495 

=0.4725, 

P(Rt} =P(Ro) 

=1 - P(Ro) 

=1 - 0.4725 

= 0.5275 . 
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Using Bayes' rule, we have 

Now: 

and 

P(R1IT1 )P(T1) 
P(R1 ) 

0.91 ·0.55 
0.5275 

=0.9488, 

P(~ IR ) = P(RoITo)P(To) 
o 0 P(Ro) 

0.94·0.45 
0.4725 

=0.8952. 

P(TIIRo) =P(ToIRo) 

=1 - P(ToIRo) 

= 0.1048, 

P(Tol~d =1 - P(T1IRI) 

=0.0512 

P( "error") =P(TI n Ro) + P(To n R 1 ) 

=P(T1IRo)P(Ro) + P(ToIRI)P(Rr) 

= 0.1048 · 0.4725 + 0.0512·0.5275 

=0.0765. 

Alternately, the error probability can be evaluated by 

P( "error") =P(T1 n Ro) + P(To n R1) 

=P(RoITI)P(Tr) + P(R1ITo)P(To) 

=0.09 . 0.55 + 0.06 . 0.45 = 0.0765 . 

[Quiz: Construct an appropriate sample space for this problem.] 

Example 1.17 
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A given lot of VLSI chips contains 2% defective chips. Each chip is tested before 
delivery. The tester itself is not totally reliable so that 

P("tester says chip is good" I "chip is actually good") 0.95 , 

P( "tester says chip is defective" I "chip is actually defective") 0.94. 
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If a tested device is indicated to be defective, what is the probability that it is 
actually defective? 

By Bayes' rule, we have 

P( "chip is defective" I "tester says it is defective") 

P( "tester says defective" I "chip defective" )P( "chip defective") 

P( "tester says defective" I "chip defective" )P( "chip defective") 
+P("tester says defective"I"chip is good")P("chip is good") 

0.94 · 0.02 
0.94·0.02 + 0.05 · 0.98 

0.0188 
0.0188 + 0.049 
0.0188 
0.0678 
0.2772861. 

Example 1.18 

We have seen earlier how to compute the reliability of series- parallel systems. How­
ever, many systems in practice do not conform to a series- parallel structure. As an 
example, consider evaluating the reliability R of the five-component system shown in 
Figure 1.17. The system is said to be functioning properly only if all the components 
on at least one path from point A to point B are functioning properly. 

Define for i = 1,2, ... ,5 event Xi = "component i is functioning properly," and 
let Ri = reliability of component i = P(Xd. Let X = "system functioning properly" 
and let R = "system reliability" = P(X). It is clear that X is union of four events: 

(1.13) 

These four events are not mutually exclusive. Therefore, we cannot directly use 
axiom (A3) . Note, however, that we could use relation (Rd), which does apply 
to a union of intersecting events. But this method is computationally tedious for 
a relatively long list of events. We could use the sum of disjoint products (SDP) 

A 0---.-...... --1 -0 8 

Figure 1.17. A non-series- parallel system 
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method (Relation Re) in this case. We illustrate the use of yet another method 
known as factoring or conditioning in this case. Observe that using the theorem of 
total probability, we have 

P(X) P(XIX2)P(X2) + P(XIX 2)P(X 2) 

P(XIX2)R2 + P(XIX2)(1 - R2). (1.14) 

Now to compute P(XIX2), we observe that since component C2 is functioning, the 
status of components C 1 and C3 are irrelevant. Thus, under this condition, the 
system is equivalent to two components C4 and C5 in parallel. Therefore using 
formula (1.9) we get 

(1.15) 

To compute P(XIX2), we observe that since component C2 is known to have mal­
functioned, the resulting equivalent system is a series- parallel one whose reliability 
is easily computed: 

(1.16) 

Combining equations (1.14)-(1.16) , we have 

R [1- (1- R4)(I - R5)]R2 + [1- (1- RIR4)(I- R3R5)](1- R2) 

1 - R2(1 - R4)(1 - R5) - (1 - R2)(1 - RIR4)(1 - R3R5). 

Problems 

1. A technique for fault-tolerant software, suggested by Randell [RAND 1978], con­
sists of a primary and an alternate module for each critical task, together with 
a test for determining whether a module performed its function correctly. Such 
a construct is called a recovery block. Define the following events: 

A = "primary module functions correctly." 

B = "alternate module functions correctly." 

D = "detection test following the execution of the primary 

performs its task correctly." 

Assume that event pairs A and D as well as Band D are independent but events 
A and B are dependent . Derive an expression fo.r the failure probability of a 
recovery block [HECH 1976]. (Hint: Use a tree diagram.) 

2. Consider the non-series- parallel system of four independent components shown 
in Figure l.P.5 . The system is considered to be functioning properly if all com­
ponents along at least one path from input to output are functioning properly. 
Determine an expression for system reliability as a function of component relia­
bilities. AI:;;o draw an equivalent fault tree model for the reliability block diagram 
described above. 
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3. A lot of components contains 0.6% defectives. Each component is subjected 
to a test that correctly identifies a defective, but about 2 in every 100 good 
components is also indicated defective. Given that a randomly chosen component 
is declared defective by the tester, compute the probability that it is actually 
defective. 

4. A certain firm has plants A, B, and C producing respectively 35%, 15%, and 50%, 
of the total output. The probabilities of a nondefective product are, respectively, 
0.75, 0.95, and 0.85. A · customer receives a defective product. What is the 
probability that it came from plant c? 

5. Consider a trinary communication channel [STAR 1979] whose channel diagram 
is shown in Figure 1.P.6. For i = 1, 2,3 let Ti denote the event "digit i is 
transmitted" and let Ri denote the event "digit i is received." Assume that a 3 
is transmitted 3 times more f~equently than aI, and a 2 is sent twice as often 
as 1. If a 1 has been received, what is the expression for the probability that a 
1 was sent? Derive an expression for the probability of a transmission error. 

6. Of all the graduate students in a university, 70% are women and 30% are men. 
Suppose that 20% and 25% of the female and male population, respectively, 
smoke cigarettes. What is the probability that a randomly selected graduate 
student is 

(a) A woman who smokes? 

(b) A man who smokes? 

(c) A smoker? 

7. Compute the reliability of the system discussed in Example 1.18 (Figure 1.17) , 
starting from equation (1.13), first using the inclusion-exclusion formula (Rd) 
and then using the SDP formula (Re). Also draw the fault tree model of this 
system. 

8. Yet another method of evaluating the reliability of the system such as that dis­
cussed in Example 1.16 is to use the methods of switching theory. Noting that 
Xl, X2, X3 , X 4 , X5 are Boolean variables and X is a switching function of these 
variables, we can draw a truth table with 25 = 32 rows. Rows of the truth table 
represent a collection of mutually independent and collectively exhaustive events. 
Each row represents an elementary event that is an intersection of independent 

Input 0- - ----0 Output 

.-~-

Figure l.P.5. Another non-series- parallel system 
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~~ __________ ~ __ ~~IT~1_)_=_I-_a ________ ~R1 

T3 ~-----------------I--Y---------"'tl R3 

Figure l.P.6. A trinary communication channel: channel diagram 

events and hence its probability can be computed. For example, the elementary 
event Xl nX2nX3nX4nXS is assigned the probability (I-RdR2(1-R3)R4Rs . 
Computing P(X) now reduces to adding up probabilities of rows of the truth 
table with Is in the function column. Use this method to compute the reliability 
of the system in Figure 1.17. This method is called the state enumeration 
method or the Boolean truth table method. 

1.12 BERNOULLI TRIALS 

Consider a random experiment that has two possible outcomes, "success" and 
"failure" (or "hit" and "miss," or "good" and "defective," or "digit received 
correctly" and "digit received incorrectiy") or the like. Let the probabilities 
of the two outcomes be p and q, respectively, with p+ q = 1. Now consider the 
compound experiment consisting of a sequence of n independent repetitions 
of this experiment. Such a sequence is known as a sequence of Bernoulli 
trials. This abstract sequence models many physical situations of interest to 
us: 

1. Observe n consecutive executions of an if statement, with success 
"then clause is executed" and failure = "else clause is executed." 

2. Examine components produced on an assembly line, with success 
"acceptable" and failure = "defective." 

3. Transmit binary digits through a communication channel, with success 
= "digit received correctly" and failure = "digit received incorrectly." 

4. Consider a computer system that allocates a finite quantum (or time 
slice) to a job scheduled for processor service, in an attempt to give fast 
service to requests for trivial processing. Observe n time slice termi­
nations, with success = "job has completed processing" and failure = 
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Job arrival Job completion 

Ready queue 

Figure 1.18. A CPU queue with time slicing 

"job still requires processing and joins the tail end of the ready queue 
of processes." This situation may be depicted as in Figure l.18. 

Let 0 denote failure and 1 denote success. Let Sn be the sample space of an 
experiment involving n Bernoulli trials, defined by 

S1 {O, I} , 

S2 {(O,O) , (0,,1) , (1 , 0), (I, I)} , 

Sn {2n n-tuples of Os and Is}. 

The probability assignment over the sample space SI is already specified: 
P(o) = q ~ 0, P(I) = p ~ 0, and p + q = 1. We wish to assign probabilities 
to the points in Sn . 

Let Ai = Hsuccess on trial i" and Ai = "failure on trial i," then P(Ai) = P 
and P(Ai) = q. Now consider s an element of Sn such that s = (1,1, ... ,1,0,0, 
.. . ,0) (k Is and (n - k) Os). Then the elementary event {s} can be written as 

and 

P(s) P(A1 n A 2 · ·· n Ak n A k+1 n··· nAn) 
P(AdP(A 2 )· · · P(Ak)P(Ak+d··· P(An) 

by independence. Therefore 

( l.17) 

Similarly, any sample point with k Is and (n - k) Os is assigned probability 
pkqn-k. Noting that there are (~) such sample points, the probability of 
obtaining exactly k successes in n trials is 

(1.18) 
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We may verify that (1.18) is a legitimate probability assignment over the 
sample space Sn since 

1 

by the binomial theorem. 
Consider the set of events {Bo , BI, ... ' Bn} where Bk = {s E Sn such that 

S has exactly k Is and (n - k) Os} . It is clear that this is a mutually exclusive 
and collectively exhaustive family of events. Furthermore 

Therefore, this collection of events is an everit space with (n + 1) events. 
Compare this with 2n sample points in Sn. Thus, when in a physical situation, 
if we are concerned not with the actual sequence of successes and failures but 
merely with the number of successes and the number of failures , it is profitable 
to use the event space rather than the original sample space. 

Example 1.19 

Consider a binary communication channel transmitting coded words of n bits each. 
Assume that the probability of successful transmission of a single bit is p (and the 
probability of an error is q = 1 - p) , and that the code is capable of correcting up 
to e (where e ~ 0) errors. For example, if no coding or parity checking is used, then 
e = O. If a single error correcting Hamming code is used then e = 1. For more details 
on this topic, see Hamming [HAMM 1980] . If we assume that the transmission of 
successive bits is independent, then the probability of successful word transmission 
is 

Pw P("e or fewer errors in n trials") 

Example 1.20 

In connection with reliability computation, we have considered series and parallel 
systems. Now we consider a system with n components that requires k (~ n) or 
more components to function for the correct operation of the system. Such systems 
are often called k-out-of-n systems. If we let k = n , then we have a series system; 
if we let k = 1, then we have a system with parallel redundancy. Assume that all n 
components are statistically identical and function independently of each other. If 
we let R denote the reliability of a component (and q = 1 - R gives its unreliability), 
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then the experiment of observing the statuses of n components can be thought of 
as a sequence of n Bernoulli trials with the probability of success equal to R. Now 
the reliability of the system is . 

Rkln P("k or more components functioning properly") 
n 

P( U {"exactly i components functioning properly"}) 
i=k 

n 

L P( "exactly i components functioning properly") 
i= k 

i=k 

t. (: ) Ri(J - R)"-i 

Verify that Rll n = Rp: 

Rljn t, (:) Ri(J - R)n-i 

Verify that Rnln = R s: 

~ (:) Ri(J _ R)n-i _ (~) RO(J _ R)n 

[R + (1 - R)t - (1 - R)n 

1-(1-Rt· 

Rnln t. (:) Ri(J - R)"-i 

(~) Rn(J- R)o 

R n 

(1.19) 

U 
As another special case of formula (1.19), consider a system with triple 

modular redundancy, often known as TMR or a triplex system (see Fig­
ure 1.19). In such a system there are three components, two of which are 
required to be in working order for the system to function properly (i.e., n = 3 
and k = 2). This is achieved by feeding the outputs of the three components 
into a majority voter. Then 

t, G) Ri (J - R)(3- i) 

G) R2(J - R) + G) R3(J - R)o 

3R2(1 - R) + R3 
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Figure 1.19. A triple modular redundant system 

and thus 

Note that 

{ 

> R if R > ~, 

RTMR = = R if R = ~, 

< R if R < ~ . 
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( 1.20) 

Thus TMR increases reliability over the simplex system only if the simplex 
reliability is greater than 0.5; otherwise this type of redundancy actually de­
creases reliability. 

It should be noted that the voter output simply corresponds to the major­
ity, and therefore it is possible for two or more malfunctioning units to agree, 
producing an erroneous voter output. Additional detection logic is required 
to avoid this situation. Also, the unreliability of the voter will further degrade 
the TMR reliability. 

In the above example, we assumed that the n successive trials have the 
same probability of success. Now consider nonhomogeneous Bernoulli 
trials, where probability of success changes with each trial. In the reliability 
context, let Ri denote the reliability of the ith component for i = 1, ... , n. 
Then the calculation is a bit more complicated [SAHN 1996]: 

(1.21 ) 

where I ranges over all choices i 1 < i2 < .. . < im such that k :S m ::; n. 
Let us still consider the TMR system with n = 3 and k = 2. However, the 

individual reliabilities are not identical any longer. Then, by formula (1.21), 
we have 

R213 1 - (1 - Rd(l - R2)R3 - Rl (1 - R2)(1 - R3) 

-(1 - R1 )R2(1 - R3) - (1 - Rd(l - R2)(1 - R3) 

RIR2 + RIR3 + R2R3 - 2RIR2R3 (1.22) 
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Path 3 

Figure 1.20. BTS sector/transmitter 

o 

Figure 1.21. Reliability block diagram when 2: 1 combiner and duplexer 1 are up 

Example 1.21 [DOSS 2000] 

Consider a BTS (base transceiver system) sector/transmitter system shown in Fig­
ure 1.20. It consists of three RF (radio frequency) carriers (transceiver and power 
amplifier) on two antennas. In order for the system to be operational, at least two 
functional transmitter paths are needed. 

We use the factoring method to arrive at the reliability block diagram for the 
system. Observe that the" failure of the 2 : 1 combiner or duplexer 1 would disable 
both path 1 and path 2, which would lead to system failure. So, we condition 
on these components. When both these components are functional, the system 
reliability is given by the RBD shown in Figure 1.21. As noted before, failure of any 
one of these two components results in system failure. Hence, the overall system 
reliability is captured by the RBD shown in Figure 1.22. If we let Rx, 14, Rd, and 
Rc be the reliabilities of an XCVR, a pass-thru, a duplexer, and a combiner, then 
the reliabilities of XCVR1, XCVR2, XCVR3 with the "pass-thru" and duplexer 2, 
and the 2: 1 combiner with duplexer 1 are RI = Rx, R2 = Rx, R3 = RxRpRd, and 
R4 = RcRd, respectively. Therefore, by formula (1.22), the overall system reliability 
is given by 

R (RIR2 + RIR3 + R2R3 - 2RIR2R3)R4 

(1 + 2Rp~ - 2RxRpRd)R;RcRd 

For a detailed discussion of various SDP methods and the factoring method of 
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A 0 8 

Figure 1.22. System reliability block diagram 

reliability computation see Rai et al. [RAJ 1995J. 

Next, we consider generalized Bernoulli trials. Here we have a se­
quence of n independent trials, and on each trial the result is exactly one of 
the k possibilities b1 , b2, ... ,bk . On a given trial , let bi occur with probability 
pi'i = 1, 2, ... , k such that 

k 

Pi 2:: 0 and LPi = 1. 
i=l 

The sample space S consists of all kn n-tuples with components b1 , b2, . .. , bk. 
To a point s E S 

we assign the probability of p~l p~2 ... p~k, where l:~=l ni = n. This is 
the probability assigned to any n-tuple having ni occurrences of bi , where 
i = 1,2, ... , k. The number of such n-tuples are given by the multinomial 
coefficient [LID 1968]: 

As before, the probability that b1 will occur nl times, b2 will occur n2 times , 
... , and bk will occur nk times is given by 

and 

L p(nl' n2,"" nk) 
ni2° 

(1.23) 

1 
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P1 

o 
o 
o 

Figure 1.23. A CPU to I/O device queuing scheme 

INTRODUCTION 

(where L ni = n) by the multinomial theorem. 
If we let k = 2, then generalized Bernoulli trials reduce to ordinary 

Bernoulli trials where b1 = "success," b2 = "failure," PI = p, P2 = q = 1 - p, 
nl = k, and n2 = n - k. . 

Two situations of importance are examples of generalized Bernoulli trials: 

1. We are given that at the end of a CPU (central processing unit) burst, 
a program will request service from an I/O device i with probability Pi' 
where i = 1,2, .. . , k and LiPi = 1. If we assume that successive CPU 
bursts are independent of each other, then the observation of n CPU 
burst terminations corresponds to a sequence of generalized Bernoulli 
trials. This situation may be pictorially visualized by the queuing net­
work shown in Figure 1.23. 

2. If we observe n consecutive independent executions of a switch statement 
(see below), then we have a sequence of generalized Bernoulli trials where 
Pi is the probability of executing the statement group Si on an individual 
trial. 

switch( I ) { 

case 1: 81 ; 

case 2: S2; 

case k: Sk; 

} 
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Example 1.22 

Out of every 100 jobs received at a server, 50 are of class 1, 30 of class 2, and 20 of 
class 3. A sample of 30 jobs is taken with replacement. 

1. Find the probability that the sample will contain 10 jobs of each class. 

2. Find the probability that there will be exactly 12 jobs of class 2. 

This is an example of generalized Bernoulli trials with k = 3, n = 30, PI 0.5 , 
P2 = 0.3, and P3 = 0.2. The answer to part (1) is 

p(lO, 10, 10) 30! .0.510 . 0.310 . 0.210 
10! . 10! . 1O! 
0.003278. 

The answer to part (2) is obtained more easily if we collapse class 1 and class 3 
together and consider this as an example of an ordinary Bernoulli trial with P = 0.3 
(success corresponds to a class 2 job) , q = 1 - P = 0.7 (failure corresponds to a class 
1 or class 3 job) . Then the required answer is as follows: 

p(12) 

Example 1.23 

(
30) . 0312 . 0718 
12 . . 

~ .0.312 . 0.718 
12! . 18! 
0.07485. 

So far , we have assumed that a component is either functioning properly or it has 
malfunctioned. Sometimes it is useful to consider more than two states. For ex­
ample, a diode functions properly with probability P l , develops a short circuit 
with probability P2 ' and develops an open circuit with probability P3 such that 
PI + P2 + P3 = 1. Thus there are two types of malfunctions, an open circuit and a 
closed circuit. In order to protect against such malfunctions, we investigate three 
types of redundancy schemes (refer to Figure 1.24) : (a) a series connection, (b) a 
parallel connection , and (c) a 'series- parallel configuration. 

First we analyze the series configuration . Let 81, 82 , and 83 respectively denote 
the probabilities of correct functioning , a short circuit, and an open circuit for the 
series configuration as a whole. The experiment of observing n diodes corresponds to 
a sequence of n generalized Bernoulli trials. Let nl diodes be functioning properly, 
n2 diodes be short-circuited, and n3 diodes be open-circuited. Then the event "the 
series configuration is functioning prqperly" is described by "none of the diodes is 
open-circuited and at least one of the diodes is functioning properly. " This event 
consists of the sample points {(nl,n2 , n3)lnl ~ 1,n2 ~ 0,n3 = O, nl +n2 = n}. 
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(a) Series cofiguration 

~~ ~ 
• D2 • . 
~ 

Dn 
(b) Parallel configuration 

~:::: .... !r 
DJ D2 D3 Dn 

(c) Series-parallel configuration 

Figure 1.24. (a) Series configuration; (b) parallel configuration; (c) series- parallel 
configuration 

Therefore 

81 I: p(nl,n2,O) 
nl ? l 
n2?O 

nl+n2 = n 

~ n! nl n-nl 

L nl!(n _ nJ)!PI P2 
nl ? l 

~ (n) nl n-nl n! 0 n 
L n1 PI P2 - O!n!PI P2 

nl = O 

(PI + P2)n - P2 n 

(1 - P3 t - P2 n . 

Note that (1 - P3)n is the probability that none of the diodes is open and P2 n is the 
probability that all diodes are short-circuited. Similarly 

82 P( "Series combination is short-circuited") 

P( "All diodes are short-circuited") 

P({(nl,n2 , n3)ln2 = n}) 

P2
n

. 
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Also 

83 P( "Series combination is open-circuited") 

P( "At least one diode is open-circuited") 

p({(nl,n2,n3)ln3 2:: 1,nl +n2 +n3 = n}) 

1- P({(nl,n2,n3)ln3 = O,nl + n2 = n}) 

1 - 2:= ( n ) PI n i P2 n2 
nl +n2=n nl, n2 

1 - (Pl + P2t 

1 - (1 - P3)n 

1 - P( "no diodes are open-circuited") . 

Check that 81 + 82 + 83 = 1. 
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Next, consider the parallel configuration , with Pi (i = 1,2,3) respectively de­
noting the probabilities of properly functioning, short-circuit , and open-circuit sit- . 
uations. Then, 

PI P( "parallel combination working properly") 

P( "at least one diode functioning and none of them short-circuited") 

P({(nl,n2,n3)lnl 2:: l,n2 = O, nl + n3 = n}) 

(1 - P2t - P3 n 

P("no diodes short-circuited") - P("all diodes are open-circuited"), 

P2 P({(n1,n2,n3)ln2 2:: l,nl +n2 +n3 = n}) 

1 - (1 - P2t, 

P3 P({(n1,n2,n3)ln3 = n}) 

P3
n 

To analyze the series- parallel configuration, we first reduce each one of the series 
configurations to an "equivalent" diode with respective probabilities 81 , 82, and 83. 

The total configuration is then a parallel combination of two "equivalent" diodes. 
Thus the probability that series- parallel diode configuration functions properly is 
given by 

Rl (1- 82)2 - 83
2 

81
2 + 281 8 3 

81 (81 + 283) 

[(1 - P3t - P2 nJ[(1 - P3)n - P2 n + 2 - 2(1 - P3tJ 

[(1 - P3t - P2 nJ[2 - (1 - P3t - P2 nJ. 

For an example of use of this technique in the context of availability analysis 
of VAXcluster systems, see Ibe et al. [IBE 1989]. For further study of multi­
state components (as opposed to two-state or binary components) and their 
reliability analysis, see Zang et al. [ZANG 1999]. 
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Problems 

1. Consider the following program segment: 

if B then 
repeat 81 until Bl 

else 
repeat 82 until B2 

Assume that P(B = true) = p, P(B1 = true) = ~, and P(B2 = true) = ~. 
Exactly one statement is common to statement groups 81 and 82 : write ("good 
day"). After many repeated executions of the preceding program segment, it 
has been estimated that the probability of printing exactly three "good day" 
messages is 15. Derive the value of p. 

2. Given that the probability of error in transmitting a bit over a communication 
channel is 8 x 10-4

, compute the probability of error in transmitting a block 
of 1024 bits. Note that this model assumes that bit errors occur at random, 
but in practice errors tend to occur in bursts. Actual block error rate will be 
considerably lower than that estimated here. 

3. In order to increase the probability of correct transmission of a message over 
a noisy channel, a repetition code is often used. Assume that the "message" 
consists of a single bit, and that the probability of a correct transmission on a 
single trial is p. With a repetition code of rate lin, the message is transmitted 
a fixed number (n) of times and a majority voter at the receiving end is used for 
decoding. Assuming n = 2k + 1, k = 0,1,2 ... , determine the error probability 
Pe of a repetition code as a function of k . 

4. An application requires that at least two processors in a multiprocessor system 
be available with more than 95% probability. The cost of a processor with 60% 
reliability is $1000, and each 10% increase in reliability will cost $800. Determine 
the number of processors (n) and the reliability (p) of each processor (assume 
that all processors have the same reliability) that minimizes the total system 
cost . 

5. Show that the number of terms in the multinomial expansion: 

Note that the required answer is the number of unordered sets of size n chosen 
from a set of k distinct objects with repetition allowed [LIV 1968]. 

6. A communication channel receives independent pulses at the rate of 12 pulses 
per microsecond (12 J-LS -

1 
). The probability of a transmission error is 0.001 for 

each pulse. Compute the probabilities of 

(a) No errors per microsecond 

(b) One error per microsecond 

(c) At least one error per microsecond 

(d) Exactly two errors per microsecond 
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7. Plot the reliabilities of a k out of n system as a function of the simplex reliability 
R (0 ~ R ~ 1) using n = 3 and k = 1,2,3 [parallel redundancy, TMR (triple 
modular redundancy), and a series system, respectively]. 

8. Determine the conditions under which diode configurations in Figures 1.24(a)­
(c) will improve reliability over that of a single diode. Use n = 2 to simplify the 
problem. 

9. Consider a system with n capacitors in parallel. For the system to function prop­
erly, at least k-out-of-n capacitors should be functioning properly. A capacitor 
can fail in two modes: open and short (circuit). If a capacitor develops an open 
circuit, and the number of remaining working capacitors is greater than or equal 
to k, then the system still functions properly. If anyone capacitor develops a 
short circuit then the system fails immediately. Given the probability of a capaci­
tor functioning properly Pl =0.3, the probability of a capacitor developing a short 
circuit P2=0.4, the probability of a capacitor developing an open circuit P3=0.3, 
n=10 and k=7, calculate the probability of the system functioning properly. 

10. Consider an example of n nonhomogeneous Bernoulli trials where a failure can 
occur on each trial independently, with a probability 1 - e-o:

i for the ith trial 
[KOVA 2000]. Prove that over n trials, 

(a) P("no failure occurs") = e - [n(n+l)/2)o: 

(b) P("no more than one failure occurs") = e-[n(n+l)/2]o: [e"-l~:~l)" - n + 1]. 

Review Problems 

1. In the computation of TMR reliability, we assumed that when two units have 
failed they will both produce incorrect results and, hence after voting, the wrong 
answer will be produced by the TMR configuration. In the case that the two 
faulty units produce the opposite answers (one correct and the other incorrect) 
the overall result will be correct. Assuming that the probability of such a com­
pensating error is c, derive the reliability expression for the TMR configuration. 

2. See Ramamoorthy and Han [RAMA 1975]. In order to use parallel redundancy 
in digital logic, we have to associate an online detector with each unit giving 
us detector- redundant systems. However, a detector may itself fail. Compare 
the reliability of a three-unit detector-redundant system with a TMR system 
(without online detectors). Assume the reliability of a simplex unit is r, the 
reliability of a detector is d and the reliability of a voter is v. A detector redundant 
system is said to have failed when all unit- detector pairs have failed and a unit­
detector pair is a series combination of the unit and its associated detector. 

3. In manufacturing a certain component, two types of defects are likely to oc­
cur with respective probabilities 0.05 and 0.1. What is the probability that a 
randomly chosen component 

(a) does not have both kinds of defects? 

(b) is defective? 

(c) has only one kind of defect given that it is found to be defective? 
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4. Assume that the probability of successful transmission of a single bit over a 
binary communication channel is p. We desire to transmit a 4-bit word over the 
channel. To increase the probability of successful word transmission, we may use 
7-bit Hamming code (4 data bits + 3 check bits). Such a code is known to be able 
to correct single-bit errors [HAMM 1980J. Derive the probabilities of successful 
word transmission under the two schemes and derive the condition under which 
the use of Hamming code will improve performance. 

5. We want to compare two different schemes of increasing reliability of a system 
using redundancy. Suppose that the system needs s ident ical components in 
series for proper operation. Further suppose that we are given m . s components. 
Out of t he two schemes shown in Figure 1.P.7, which one will provide a higher 
reliability? Given that the reliability of an individual component is r, derive 
the expressions for the reliabilities of two configurations. For m = 3 and s = 2l 
compare the two expressions. 

1 

• Parallel • • m chains 

2~ 

.~ _. 1 ---~--- 2 ~ 

-.- .- .-. -. -.----....-- Ss ] ~ 

....... ~ 

Scheme I: Redundancy at the system level 

r 
I 1 

[ :: 
s -- -l 

m co~~~nenIS I --~-- - .. -~ 

i __ s 

Scheme II: Redundancy at the subsystem level 

Figure l.P.7. Comparison of two redundancy schemes 

6. In t hree boxes there are capacitors as shown in the following table: 

Capacitance N umber in box 
(in pF) 1 2 3 

1.0 10 90 25 
0.1 50 30 80 

0.01 70 90 120 

An experiment consists of first randomly selecting a box (assume that each box 
has the same probability of selection) and then randomly selecting a capacitor 
from the chosen box. 
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Figure 1. P.8. A fault tree 

(a) What is the probability of selecting a 0.1 J1F capacitor, given that box 3 is 
chosen? 

(b) If a 0.1 J1F capacitor is chosen, what is the probability that it came from 
box 1? 

(c) List all nine conditional probabilities of capacitor selections, given certain 
box selections. 

7. For the fault tree shown in Figure 1.P.8 

(1) Write down the structure function . 

(2) Derive reliability expressions by 

(a) State enumeration method 

(b) Method of inclusion-exclusion 

(c) Sum of disjoint products method 

(d) Conditioning on the shared event E'2 

8. For the BTS sector/transmitter of Example 1.21, draw the equivalent fault 
tree, and derive reliability expressions by means of state enumeration, inclusion­
exclusion, and SDP methods. 
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