CHAPTER 1

REVIEW OF ELEMENTARY PROBABILITY
THEORY

This book assumes some familiarity with elementary probability theory. Good introductory
texts are [63, 192]. We will begin by briefly reviewing some of these concepts in order
to introduce notation and for future reference. We will also introduce basic notions of
statistics that are particularly useful. See [106] for additional discussion of related material
in a computer systems context.

1.1 SAMPLE SPACE, EVENTS, AND PROBABILITIES

Consider a random experiment resulting in an putcome (or "sample") represented by w. For
example, the experiment could be a pair of dice thrown onto a table and the outcome could
be the exact orientation of the dice and their position on the table when they stop moving,
The abstract space of all outcomes {called the sample space) is normally denoted by €1, t.e.,
w el

An event is merely 4 subset of £2. Forexample, in a dice throwing experiment, an event is
"both dice land in a specific region of the table” or "the sum of the dots on the upward facing
surfaces of the dice is 7." Clearty, many different individual outcomes w belong to these
cvents. We say that an event A has sccurred if the outcome w of the random experiment
belongs to A, i.e., w € A, where A C {). Now consider two events 4 and 3. We therefore
say that 4 and B occur if the outcome o € 4 N B, Also, we say that A or B occur if the
outcome w € AU B.
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Figure 1.1 A partition of 7).

A pmb&bi.’iry measure P maps each event A C §2 to a real number between zero and
one inclusive, i.e., P{A) € [0,1]. A probability measure has certain properties such as
P({2) = ] and

P(4) = 1-P(4),

where 4 = {w € 2 |w & A} is the complement of A. Also, if the events {14}, are
disjoint (1.e., A, N A; = B forall i # §), then

P (O Ae) = iP(A-i},
i1 1

t.e., P is finitely additive. Formally, a probability measure is defined to be couniably
additive, Also, (A} is defined only for events A C (2 that belong to a o-field (sigma-field)
or a-algebra of events. These details are bevond the scope of this bock.

The probability of an event A conditioned on (or "given that") another event B3 has

occurred is
PiAR D
P(AID) = —m_(P( ))

where P(B) > 0 is assumed. Now suppose the events Ay, As, ..., A, form a partition of
0, 1.c.,

A; =80 and A,nA; =0 foralli # ;.

>

L

A

Assuming that P(4;) > 0 for ali %, the law of total probability states that, for any event
B:

P(B) = Z P(BIA)P(A:). a.n
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Note that the events A; M B form a partition of B ¢ Q. See Figure 1.1, where B =
(BNAgjU(BN Az)and BN A; =@ fori=1.2,

A group of evenis 4, Az, ..., 4, are said to be musually independent (or just "indepen-
dent"y if’

P (ﬂ A.z-) =1]Pa)
T €2
forallsubsetsT C {1,2, ..., n}. Note thatif events Aand Bare independentand P(73) = 0,
then P{A|B) = P{A): therefore, knowledge that the event B has occurred has no bearing
on the probability that the event A has occurred as well.

In the lollowing, a comma between events will represent an intersection symbol, for
example, the probability that A and I occur is

P(A,B) = PANB).

1.2 RANDOM VARIABLES

A random variable X is a real-valued function with domain £2, That is, for each oulcome
w, X ({w) is a real number representing some feature of the outcome. For example, in a
dice-throwing expertment, X {«} could be defined as the sum of the dots on the upward-
facing surfaces of outcome w. Formally, random variables are defined to be meusurable in
the sense that the event X~ 1(B) = {w € 1| X(w} € B} is an event (a member of the
er-field on §2) for all events B ¢ R (belonging to the Borel o-field of subsets of ). In this
way, the quantity P(X € B3} is well defined for any set I that is of interest. Again, the
details ot this measurahility condition are beyond the scope of this book. [n the following,
all functions are implicitly assumed to be measurable.
The strict range of X is defined to be the smallest subset Ky of R such that

P(X €Rx) = 1,

where P(X € Ry} is short for P({w € 2 | X{w) € Rx}).

Note thal a {Borcl-measurable) function g of a random variable X, ¢(X). is also a
random variable.

A group of random variables X4, X2, ..., X, are said to be mutually independent (or just
"independent") if. for any collection {3;}, of subsets of !, the events { X, & [3;}1L | are
independent; see Section 1.9,

1.3 CUMULATIVE DISTRIBUTION FUNCTIONS, EXPECTATION, AND
MOMENT GENERATING FUNCTIONS

The probability distribution of a random variable X connotes the information P(X € B)
for all events B € R. We need only stipulate

PIX <2) = P(X € (—x,z)
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for all z € I to completely specify the distribution of X ; see Equation (1.4). This leads us
to define the cumulative distribution function {CDF) Fx of a random variable X as

Fx(z) =P(X <) (1.2)

for z € R, where P{X < &) is, again, short for P({w € 2 | X{w} < z}). Clearly, a CDF
Fyx takes values in {0, 1], is nondecreasing on R, Fx (x) — 1as ¢ — oo, and Fx{z} — 0
as & — —o0.

The expectation of a random variable is simply its average (or "mean") value. We can
define the expectation of a function g of a random variable X as

eaxn = [ " () dFx (). (13

—

where we have used a Stieltjes integral [133] that will be explained via explicit examples
in the following. Note here that the expectation (when it exists) is simply a real number or
Foc. Also note that expectation is a linear operation over random variables. That is, for
any two random variables X and ¥ and any two real constants « and b,

E(aX +bY) = aEX + BEY.

B EXAMPLE 1.1

Suppose g is an indicator function, i.e., for someevent B C R

g(X(w)) = YX{w)e B}
- {1 if X{w)e B,
o D eise.
In this case,
Eg(X) = P(XeB)= /de(a:), (1.4)
JB

where the notation refers to integration over the set B,

The nth moment of X is E{X™) and the variance of X is
c% = var(X)=E(X —EX)?,

i.e., the variance is the second centered moment. The standard deviation of X is the square
root of the variance, oy > 0. The moment generating function (MGF) of X is

mx(8) = Ee?X,

where 8 is a real number. The moment generating function can also be used to completely
describe the distribution of a random variable.
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1.4 DISCRETELY DISTRIBUTED RANDOM VARIABLES

For a discretely distributed (or just "discrete”) random variable X, there is a sel of countably
many real numbers {a; }3° such that

ip(}( =a;) = L.
=1

Assuming P{X = ;) > 0 for all i. the countable set {a;}7¢ is the strict range of X,
ie., Rx ={e;}2,. So, a discrete random variable has a piecewise constanl CDF with a
countable number of jump discontinuities occurring at the a;'s. That is, if the ¢, are defined
s0 as to be an increasing sequence, F is constant on each openinterval (a;. ¢, 14 ), Flz} =0
forz < aq, and

Fla;) = ZP(X =ay) = ZP{‘-’LJ):

where p is the probability mass function (PMF) of the discrete random variable X, ie,,
pla)) = P(X =a;).

Note that we have dropped the subscript "X" on the PMF and CDF for notational conve-
nience. Moreover. for any B C R and any real-valued funciion g over R,

PiXeB = Z pley)
a; E B

and

ow)

Eg(X) = D glaples) = > glalpla).

i=1 as Ry
To see the connection between this expression and (1.3), note that

AF(z) = F{x)de
= Zp(a.&)é(:x — ”-i) dir,
i=1

where § is the Dirac delea function [164]. That is, & is the unit impulse satisfying §(¢} = 0

for all £ # 0 and
[ diyar = 1.

o)

1.4.1 The Bernoulii distribution

A rundom variable X thatis Bernowlli distributed has strict range consisting of two elements,
typically Ry = {0,1}. So, there is a real parameter ¢ < (0, 1) suchthatg = P{X =1} =
1 — P{X = 0). Also,

Eg(X) = (1 —q)-9(0) +¢-g({1)
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with EX = g in particular.

1.4.2 The geometric distribution

A random variable X that is geometrically distributed has a single parameter A > 0 and its
strict range is the nonnegative integers, i.e.,

Rx = Z' = {0,1,2,..}.
The parameter A satisfies 0 < A < 1. The CDF of X is piecewise constant with
F(i) = 1-x+!

foralli € Z*. The PMF of X is p(i) = (1 — A)A® for4 € Z*. To compute EX, we rely
on a little trick involving a derivative:

EX = D ip(i)

i={

= (A=A ixt
=1

d <
= (1= (ZA)

i=

- o ()

1
A

1-X

Similarly, the moment generating function is

o0

m{g) = (1—X) }:(ef")«)"
LT
1 — e

foreA < 1,ie,8 < —logA.

1.4.3 The binomial distribution

A random variable Y is binomially distributed with parameters n and gif Ry = {0,1, ..., n}
and, for k € Ry,

P =) = () -,
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wheren € Z7. 0 < ¢ < 1. and

ny 7! (1.5)
k)T kl{n—1)" T

That is, (:) is "n choose k," see Example 1.4, 1tis easy to see that, by the binomial theorem,
v P(Y = k) =1, 1e,

Z(E)q*‘(l—q}“"“ = g+ —a)" =1

k=0
Also,

mil) = Z (:) g5 (1 — )" re®

W EXAMPLE 1.2

i we are given n independent Bernoulli distributed random variables, X ;, each having
the same parameter ¢, then Y = 3", X, is binomially distributed with parameters
n and g. Thatis, fork € {0.1,2,...,n}. the event {Y = &} can be written as a union
on disjoint component events, where & of the X, equal | and nn — k of the X; equal 0.
Each such component event occurs with probability p{1 — p)*~*. The number of
such events, 1.e,, the number of ways the random vector (X', X5, ..., X,,) has exactly

k ones, is
nl _ n
Elin — BN o k'

where n! is the number of permutations {(ordered arrangements) of » different objects
and the factors k! and {(n — A&)! in the denominator account for the & ones being
indistinguishable and the 2 — k zeros being indistinguishable.

1.4.4 The Poisson distribution

A random variable X is Poisson distributed with parameter A > 0 if Ry = Z1 and the
PMF is

i

plt) = =

—e~
3!

fori € Zt. We can check that EX = A as in the geometric case. The MGF is
=) 9 A.?l N
e — T -
m{d) = Z e Fe
iz

: 7!
=}

= exp((e? — 1)A)
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1.4.5 The discrete uniform distribution

A discrete random variable X is uniformly distributed on a finite range

Rx ¢ R

1

PX=2) = Exl

for all x € Ry, where |Ry| is the size of (the number of elements in} Ry. Clearly,
therefore, forany A C Ry,

Al

P(XcAd) = T

i.., to compute this probability, one needs to couns the number of elements in A and Ry,

B EXAMPLE 1.3

Suppose that a random experiment consists of tossing two different six-sided dice on
the floor. Consider the events consisting of all outcomes having the same numbers
{1, d2) on the upturned faces of the dice. Note that there are 6 x 6 = 36 such events.
Assume that the probability of each such event is 31—6, i.e., the dice are "fair.” This
implies that the random variables d; are independent and uniformly distributed on
their state space {1,2,3,4,5,6}.

Suppose that we are interested in P{(X € {7 11}), where the random variable

X = dy+ds
That is, we are interested in the event
(di. d2) € {{1,6),(2,5),(3,4).(4,3),(5.2),(6,1),(5,6), (6,5)}

with eight members. So, P(X € {7,11}) = 55.

M EXAMPLE 1.4

Suppose that five cards {a poker hand) are drawn, without replacement, from a stan-
dard deck of 52 different playing cards. The random variable X enumerates each
combinaiion (not considering the order in which the individual cards were drawn) of
poker hands beginning with 1 and ending with the total number of different poker
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hands possible, (%), where (} is givenin (1.5). Thatis, |#x{ = (°7). Assumc X
is uniformly distributed (i.e., a fair hand is drawn) and suppose we mxh to lind the
probability that a flush is drawn, i.e., P(X € flushes). As there are four suits each
having 13 cards, the number of poker hands that are flushes is 4(153). So,

: (9)
P(X € flushes) = —2-.
(5)
Similarly, the probability of a drawing a poker hand with a pair of aces from a fair
deck is

where the term (;) = 6 is the number of ways to form a pair of aces and term (1:) is
the number of ways to form the balance of the hand (i.e.. 3 more cards) without using
HACES.

B EXAMPLE 1.5

Consider the context of the previous example but now suppose that we care about
the prder in which the cards were drawn, again without replacement. To compute
the number of different hands, we count the number of ways we can permitte 5 cards
chosen from a deck of 52 without replacement. This quantity is

52 % 51 x50 x 49 x 48 = 52
Note thal a single combination of 5 different cards will have 5! = 120 different

{ordered) permutations.

On the other hand, if the cards are drawn with replacement (i.c., each card is
restored to the deck after it is drawn) and we continue to care about the order in which
the cards are drawn, the number of possible hands is simply 527, Note that in this
case, a hand may consist of several copies of the same card.

A group of example discrete distributions is given in Figure 1.2,

1.5 CONTINUOQUSLY DISTRIBUTED RANDOM VARIABLES
The CDF of a continuously distributed (or just "continuous”) random variable X has a

piecewise-continuous and bounded derivative. The derivative f == F' (i.c., dF{u) =
f{x)dx) is known as the probability density function (PDF} of X. We clearly have

Flz) = /w F(z)dz.
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Figure 1.2 Example discrete distributions.

From this identity, we see that any PDF f is a nonnegative function satisfying

/;o:o_f(z)dz = 1

Eox) = [ " 4@ (@) de

0

and, in particular, if g(X) = 1{X < B}, then this reduces to

P(XecB) = ‘/;}’f(z)dz‘

Finally, note that the range Bx = {x € R| f(z) > 0}.

Moreover,

1.5.1 The continuous uniform distribution

A random variable X is uniformly distributed over the interval [a, 5] if its PDF is

&) = —a
0 else,
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where & > a. Clearly, EX = (b + a)/2. We can similarly define a uniformly distributed
random variable X over any range Rx C R having finite total length, i.e., [Rx| < oc.

1.5.2 The exponential distribution

A random variable X is exponentially distributed with real parameter A > 0 if its PDF is

de ™ jfe >0,
fla)= { 0 else.

The CDFis #(x) = 1 —e*® forx > 0, EX = 1/}, and the MGF is
() = —— i.6
m{0) 7 (1.6}
for # < A; see Section 2.1.

1.5.3 The gamma distribution

A random variable X is gamma distributed with positive real parameters A and r if its PDF
is

)\ricr_1e_’\’”ffr ifx >0,
fle) = { 1] else,

where the normalizing gamma function I, = fom z"e7*dz. When r is a positive integer,
we can integrate by parts to show that T, = (v — 1)!; in this case, the gamma distribution
is sometimes called the Erlung distribution. Let y be the mean and o2 be the variance
associated with this distribution. We have the following identities:

2

£ H
A:‘(‘)_'—z‘ and T'Z'EE. (1.7)
Finally, the MGF is
)\ r
= —_— l¢8
(0= (525) ()

is just an exponentially distributed random variable.

1.5.4 The Gaussian {or normal} distribution

A Gaussian (or normally) distributed random variable X with mean z and variance o2 has
PDF

) = e (-2
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Fignre 1.3 Example continuous distributions.
forxz € R, The MGF is
m(#) = exp(ub + $0°6°). (1.9)

See Figure 1.3 for example continuous distributions.

1.6 SOME USEFUL INEQUALITIES

Clearly, if the event A; C A, then P{Ay) < P{4s) = P(A1) + P{Ay\ A1 ). For any
collection of events 4, 4s. ..., 4., Boole’s inequality holds:

P(O A.,-) < iP(Aa)-

Note that when the A; are disjoint, equality holds simply by the additivity property of a
probability measure P.

If two random variables X and ¥ are such that P{X > V) = 1 (ie., X = Y almost
surely), then EX = EY.
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Consider a random vartable X with E|X | < oo and a real number z > 0, Since
|X| > |X[1{|X]| > =} > 21{| X| > z} almost surely,
we arrive at Markov’s inequality:
E|lX| > Exl{|X|z22} = 2E1{|X| =z} = 2P{|X]| > z).

An alternative explanation for continucusly distributed random variables X is

E|X| /:: |z} f(z)dz = /_I(——z)f(z)dz—kfx zf(zydz

—o0 x

Av)

/_-ﬁ;cf(z)dz—}—[wxf(z)dz = 2P(X]| > a).

—

Now take x = ¢*, where ¢ > 0, and argue Markov’s inequality with (X — EX)? in place
of | X | to get Chebyshev’s inequality

var(X) = E[(X - EX)?]

AY

?P(|X —EX| = <),

P(IX —EX|>e) < & ivar(X). (1.10)

Noting that, forall § > 0, {X > «} = {X > e*} and arguing as for Markov’s inequality
gives the Chernoff (or Cramér) inequality:
Ee?Y > eP(X 2 x)
= P(X > 1) exp (—[z6 — log Ee®¥])

AN

[ A,

— max|zf — log Ee?* 111
exp( Iél;lg([.[,‘ ogEe ]), (L.11)

where we have simply sharpened the inequality by taking the maximum over the free
parameter . Note the log-MGF of X in the Chernoff bound.
The Cauchy-Schwarz inequality states that

ElXY] < VEX2VEY?)

for all random variables X and YV with the inequality strict whenever X # Y orY =0
almost surely for some constant «. This inequality is an immediate consequence of the fact
that

X v o\
E(\/E(X%_\/E(Yz)) =0

whenever X £ Oand Y # 0 almost surely. Also, note that if we take ¥ = 1 almost surely,
the Cauchy-Schwarz simpty states that the variance of a random variable X is not negative,
i.e., that

E(X*) - (EX)* > 0.
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This is also an immediate consequence of Jensen’s inequality. A real-valued function g on
R’ is said to be convex if

glpz+(1—ply} < pg(z)+ (1 - plo(y) (1.12)
for any 2,y € R and any real fraction p € [0, 1]. If the inequality is reversed in this
definition, the function ¢ would be concave. For any convex function ¢ and random variable

X, we have Jensen’s inequality:

g(EX) = E(g(X}). (1.13)

1.7 JOINT DISTRIBUTION FUNCTIONS
For the case of two random variables X and Y the joint CDF is
Ixviz,y) =P(X <2 Y <y) fore,y € R.

We can similarly define a joint CDF for more than two random variables.

1.7.1 Joint PDF

[f X and ¥ are both continuocusly distributed, we can define their joint PDF as

3?Fxy
ahy

Jxv =
For any (Borel measurable) real-valued function g over R?,
[ o) Ll o
Eg(X.Y) = / / gl y)fxy(x,y)dedy
o d —n
and, in particular, if

s =1{( 5 )eaf.

for some (Borel) A C E?, then this reduces to

P(( f ) eA) = /fo.v(ar,y)dzrdy‘



CONDITIONAL EXPECTATION 15

1.7.2 Marginalizing a joint distribution

Beginning with the joint CDF Fx y, we can obtain either marginal CDF £y or Fx by
simply taking limits:

Fx(z)= lim Fxy(z,y) and Fy(y)= lim Fxy{ry).
Yo fade ]
To see why, note that

P(X <2,Y <)

P{we Q] X(w) <z}nsl)
P(X <a),

lim Fxyiz. y)
r— o

where we used the fact that, by definition of a (real-valued) random variable, the event
¥ < o0 is the whole sample space €2, Similarly, one can recover either marginal PDF from
the joint PDF:

e = [ pxreway wa )= [ty

Marginal PMFs are similarly obtained by summation of a joint PMFE.

1.8 CONDITIONAL EXPECTATION

Consider an event A such that P(A) > 0 and a randem variable X. The conditional
expected value of X given A, denoted u{X | A), is computed by simply using the conditional
distribution of X given A:

Fxjalz) = PX <z|4),

w(X|4) = /mxdpm(m).

I the case of a discretely distributed random variable X, simply

o)

u(X|4) = Y aP(X =a,lA),

J=1

where {¢;}72; = FRx. The conditional PMF of X given A is denoted py|a, i.e.,
Pxjafe;) = P(X = a;]4) forall 5.

In a similar way we can define the conditional PDF of a continucusly distributed random
variable X given the event A4,

fxjale) = %Fxm(i&'),
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and thereby compute

)

WXy = [ afgalne (1.14)

Consider now two discretely distributed random variables X and Y. We will define the
conditional expectation of X given the random variable Y denoted E{ X |Y"). The quantity
E{X|Y') is a random variabte itself. Indeed, suppose {b;}5<, = Hy and, for al/ samples

w, € {weQ|Y{w)=hh} =B
define |
EXIV )y = m(X]B).

where the conditional expected value on the right-hand side can be denoted p{ XY =
b;). That is, the conditional expectation E(X|Y ") maps all samples in the event B; to the
conditional expected value ;{ X1{B;). Therefore, the random variable E{(X|Y} is almost
surely a function of ¥.!

Now consider two random variables X and Y which are continuously distributed with
joint PDF fx v. For fy(y) > 0, we can define the conditionat densiry:

fX,Y (‘Ts y)
fr(y)

for all # £ R. Note that Facjy(-|y) is itself 2 PDF and, with this conditional density, the
following conditional expected valve can be computed

fxivlzly) =

WX =) = [ el

— o0

where, unlike (1.14), the event { V' = y} has zero probability. Again, note that (X |Y = y)
is a function of y, say A{y), and that the conditional expectation E{ X |Y) = h({Y').

When X and Y are independent, the conditional distribution of X given Y is just
the distribuiion of X and, therefore, E(X|¥Y) = EX. In other words, if X and Y are
independent, then knowledge of ¥ (i.e., given Y) does not affect the remaining uncertainty
of the random variable X .

B EXAMPLE 1.6

For the purposes of a simple graphical example, suppose that the sample space {2 =
[0,1] C R (but recall that, in general, £ can be a completely abstract space without
ordering). In Figure [.4, the previous case of jointly discrete random variables X, Y
and E( XY} are plotted as functions from {2 to B. To further simplify the graph, we
assume that these random variables are piecewise constant functions over £2 and that
the probabhility P is the (Lebesgue) measure corresponding to Euclidean length.

'Equivalendy, E(X[Y') is o (Y }-measurable, where (V') is the smallest o-algebra over £ containing the events
By In this concrete way. o(Y) quantifies the information content of ¥
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Figure 1.4 Smoothing effect of conditional expectation.

Figure 1.4 shows that E{ X|Y') is a smoothed (less "uncertain”) version of X. Also
E{X|Y) depends on Y only through the events

Bj = {Y = bj},

i.e., the extent to which the random variable ¥ discriminates the samples w € {0
That is, consider a discrete random variable Z with range Rz = {¢;}32; and define
the events

Cj = {ZZCj}

for all j. Tf the collections of events {5,152, and {C};}72, ave the same (allowing
for differences of probability zero), then E(X|Y} = E(X|Z) almost surely. Note
that By can be different from K, in which case

E(X|Y} = R(Y) = E(X|Z) = ¢(Z) almost surely,

with g Z k.
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In general, E( X |Y'} is the function of ¥ which minimizes the mean-square error (MSE),
E[(X — a(Y))],

among all (measurable) functions k. So, E(X |V} is the best approximation of X given Y.
Again, E(X|Y} and X have the same expectation in particular, i.c.,

E(E(X|Y)) = EX.

It is left as a simple exercise to check this property for the cases of jointly discrete or jointly
continnous random variables X and ¥ considered above.

1.9 INDEPENDENT RANDOM VARIABLES

A colleclion of continuously distributed random variables X5, X,. ..., X,, are said to be
mutually independent (or just "independent™) if and only if their joint PDF 15 equal to the
product of the marginal PDFs, i.e.,

forallreal @y, @9, ..., &n. This definition is consistent with that at the end of Section 1.2.
When X and Y are both discretely distributed, we can similarly define their joint PMF
px.y and there is & similar condition for independence (the joint PMF is the product of
the marginal PMFs). In general, a condition for independence is that the joint CDF is the
product of the marginal CDFs.
If the random variables {X;}?_ | are independent, then

EﬁX.a- = ﬁEX.I-. {1.15)
i=1 i=1

In particular, for . = 2, this means that if X, and X- are independent, then they are
uncorrelated, i .e., their covarianee equals zero:

0 = COV()(;,XQ) =E ((.X| — EX])(Xg — E)(—g)) = E{ArIXQ) — EX{ EX‘g

The converse is, however, not true in general; see Problem 1.4 al the end of the chapter.

1.9.1 Sums of independent random variables

In this section we will consider sums of mutually independent continzous random variables.
Our objective is to find the PDF of the sum given the PDF of the component random variables.
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To this end, consider two independent random variables X and X5 with PDFs f) and [,
respectively; s0, fx, x, = f1 f2. Thus, the CDF of the sum is

Fiz)y=PX, +Xa<2) = / / ) File) falien) dag day.

Exchanging the first integral on the right-hand side with a derivative with respect to =, the
PDFof X| + X5 is
d

f(:):E

Flz) = j Hlr O folz — i) dey forall z € R

Thus, f is the convolution of 1 and fi which is denoted f == fy * fo.
In this context, moment generating functions can be vsed to simplily calculutions. Let
the MGF of X; be

m;(f) = Ee?Y7 = / Fil)e? dir.

Note that m; is basically the (bilateral) Laplace transform | 164] of f;. The MGF of X; + X
is

m(f) = EeflhitXa) = EeXipfXa — 1 (B)ma (), {(1.16)

where the last equation holds because of the independence of X'| and X». So, convolution
of PDFs corresponds to simple multiplication of MGFs (which, in turn, corresponds 1o
addition of independent randon variables).

B EXAMPLE 1.7

As an example, suppose X and X, are indcpendent and both exponentially dis-
tributed with parameter A. The PDF of X7 + X is f, where f(2} = Ofor 2 < ) and,
for z > 0.

flz) = ]{: Al falz — o) day = Afze 22

The MGF of X'} + X 1is, by (1.6) and (1.16),

m(6) = (ﬁ)z

which is consistent with the PDF just computed. There is a one-to-one relationship
between PDFs and MGFs of nonnegative random variables.? We can therefore use
the MGF approuch 1o find the PDF of the sum of 5 independent random variables
{ X}, each having an cxponential distribution with parameter A, Indeed. the MGF
of 377 X, is casily computed as

“In this case, the MGF is a wnilateral Laplace wansform [164] m{#) = jl]" Flz)e dz,
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This is the MGF of a gamma (Erfang) distributed random variable with parameters )
and n € ZT and PDF

/\n.zn.—le—)\z

o2} ==

(1.18)

A"

for z = 0.

M EXAMPLE 1.8

Suppose that, for 2 = 1, 2, the random variable X; is Gaussian distributed with mean
i and variance ¢?. Also suppose that X7 and X, are independent. By (1.9) and
{1.16), the MGF of X; + X1 is

m{0)

exp{p18 + 20267} x exp(paf + $a36%)
exp((p1 + p2)8 + 5(0% + 03)92) \

which we recognize as a Gaussian MGF. Thus, X; + X3 is Gaussian distributed with
mean j1 + g and variance o2 + ¢2; see Problems 1.5 and 1.6.

1.10 CONDITIONAL INDEPENDENCE

If
P(A1B,C) = P(A|B), (1.19)

the events 4 and ' are said to be independent given B. This is a natural extension of
the unqualified notion of independent events, i.e., events A and ' are (unconditionally)
independent if

P(A|C) = P(A).

Note that (1.19) implies P(C' | B, A) = P(C | B).
Similarly, random variables X and ¥ are conditionally independent given Z if

P(X€cA|ZeB, YeC) = P(XcA|ZeB)

forall A, B, C < R. Conditional independence does not imply {unqualified) independence,
as we will see in the following chapter.

1.11 A LAW OF LARGE NUMBERS

In this section, we describe the basic connection between statistics and probability through
the laws of large numbers (LI Ns) [44, 62, 63]. Suppose we have an IID sequence of random
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variables X, X», X4, ... . Also suppose that the cominon distribution has finite variance,
iLe.,
0 .
ot = var{X)
E(X —EX)*
< 0o,

where X ~ X,. Finaily, suppose that the mean exists and is finite, i.e.,
o= EX < ox.

Detine the sum

for n. = 1 and note that ES,, = ng and var(5,,) = ng?. The quantity S,/ Is called the
empirical mean of X after n samples and is an unbiased estimate of 1, i.e..

E (&) = .
n

Also, because of the following weak LLN, 5, /i is suid to be a weakly consistent estimator
of i

Theorem: 1.11.1. Foralliz > 0,

hm P( 5n

¥t

Proof: By Chebyshev's inequality (1.10},

% e
Therefore,
Sn
hmP(—n—,u 28) = 0
AL i T
as dosired. O

The strong LLN assents that, il E| X | < oc, then

P ( lim J-S(-T-?'- = ,-.a.) = 1.
n—xx T

In other words, 5, /n — u almost surely. So, S, /n is said to be a stronghy consistent
estimator of p. A proof of the strong LLN, which implies the weak LLN, is given in
(44, 62).
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112 FIRST-ORDER AUTOREGRESSIVE ESTIMATORS

Given a series of samples X, at "times" n € {0,1,2, ...}, one may wish to iteratively
estimate their mean. To this end, we can define X, as the "current” estimate of the mean.
A typical problem in this context is that the underlying distribution of the samples is slowly
changing with time. For example, the Transmission Control Protocol (TCP) estimates
average packet round-trip times (RTTs) | 139] (and "absolute” variation about the estimated
average) to calibrate a time-out mechanism for acknowledgements of transmitted packets.
Also, for packet queues in Internet routers, proposed active queue management (AQM)
techniques such as [105, 165, 231] estimate packet backiogs and the number of long-term
active TCP sessions.

Since the distribution of X, is changing, one could want to more significantly weight
the recent samples X, (ie., & < n and ¥ = n) in the computation of X,,. For example,
one might use a moving average (MA) of order 2, i.e., forn > 2,

X?l = .HﬂXn‘i".BlXﬂ—l+."32X'n—2:

where 0 < J; foralliand 3, 3; = 1(e.g.,all 3; = %); clearly, no older samples X with
k < n — 2 affect the MA X ,,.
Alternatively, an order | autoregressive (AR} estimate could be used, i.e., forn > 1,

Xn = aXp 1 +(1- a)Xn,
= YR - Yﬂ.-—l = (1-oX, ~ Yﬂ.—l)} (1.20)

where 0 < o < 1 is the "forgetting factor” and Xy = Xo. Note that all past vatues of X
contribute to the current value of this autoregressive processes according to weights that
exponentially diminish:

X, = a"Xog+(1-a)e" ' X1 +a" 2Xg + .. 4+ aXn1 + X,

Also note that if 1 — « is a power of 2, then the autoregressive update (1.2Q) is simply
implemented with two additive operations and one bit-shift (the latter to multiply by 1— a).
There is a simple trade-off in the choice of cx. A small o implies that X, is more responsive
to the current samples X, but this can lead {o undesirable oscillations in the AR process x.
A large value of & means that the AR process will have diminished oscillations ("low-pass”
filter) but will be less responsive to changes in the distribution of the samples X [136, 164].

B EXAMPLE 1.9

Consider a sequence of independent random variables X,,. Initialty, the distribution
is uniform on the interval {0,1] (i.e., EX = 0.5), but for n > 20 the distribution is
uniform on the interval {3,4] (i.e., EX changes to 3.3). We see from Figure 1.5 that
for forgetting factor &« = 0.2, a sample path of the first-order AR process X responds
much more quickly to the change in mean (at » = 20) but is more oscillatory than
the corresponding sample path of the AR process using forgetting factor o = 0.8.
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Figure 1.5 Performance of first order AR estimators.

1.12 MEASURES OF SEPARATION BETWEEN DISTRIBUTIONS

Consider two cumulative distribution functions F; and F;. Suppose we wish to measure
the degree to which they are different. More formally, we wish to stipulate a kind of metric
m(F. ) € BT on the set of such distributions satisfying certain properties:

& wm(F, F3) = 0 when £ = F; and

& i increases as the amount of "separation” between F and Fi increases.
In networking, such metrics have recently been proposed (in, e.g., [67]) 1o detect anomalous
activity. That is, suppose a CDF £7 representing the nominal distribution of an attribute
of a flow of packets {e.g., of their destination port number atwibutes [41]) is known. The
CDF F; represents the corresponding distribution as measured online. When m{F|, F3)
exceeds a certain threshold, the network operator ( or some automatic intrusion detection
system (IDS) ) may decm that the packet flow is exhibiting abnormal behavior and decide

to take action (e.g., filter-out/firewall any identitied offending packets).
Some specific ways to measure the separation between two distributions include the

Kolmogorov-Smirnov distance between two CDFs:

m(Fy, F) = 1{1{1?@:&1(1?)—}’2{;{:)3.

For a parameter «x > 1, we can also define

el 1.."’0:‘
m{F, ) = (/ |Fy(z) — Fo(a)|® dar) .

=



24 REVIEW OF ELEMENTARY PROBABILITY THEQRY

where we note that, as &« — oo, this metric converges to that of Kelmogorov-Smirnov,
Given two PMFs pq and ps on the same state space we can define their chi-sguared
separation as

5 (ola) —a(o))”
~ plx)
A similar definition exists for PDFs, i.e., for continuous distributions.
Given the means g and variances # of two distributions, the Fisher separation between
them is
1 — 2l
o} +o3
alternatively, the standard deviation could be used instead of the variance in the denominator
leading to a dimensionless Fisher separation metric. Note how the Fisher separation is
increasing in the difference of the means but decreasing in either variance. There are other
potentially significant features of a distribution besides the mean and variance, e.g., median
and mode that can be used as a basis of a measure of separation ([106], p. 183).
In [67], the entropy of a distribution was argued to be a significant feature for detection
of distributed denial-of-service (DDoS) attacks. The entropy of a PMF p with strict range
R is defined to be

Z p(z)log p(x).
rER
Thus one can consider the difference between the entropies of two distributions with the

same range I?, p; and ps, as & measure ol their separation. Another useful measure of
scparation is the Kullback-Leibler distance [49]:

Z p1{x) log 1) .

"

Again, similar definitions exist for PDFs.

1.14 STATISTICAL CONFIDENCE

Central limit theorems (CLTs} date back to Laplace and DeMoivre. They demonstrated that
scaled sums of IID random variables of rather arbitrary distribution converge in distribution
to a Gaussian. Convergence in distribution does not necessarily involve the existence of a
limiting random variable and is a notion of convergence that is weaker than that of the weak
LLN. A common use of the CLT is to evaluate the degree of "confidence” in the result of a
group of experimental trials such as those obtained from a simulation study or a poll.

1.14.1 A central limit theorem

Suppose we have an IID seguence of random variables X1, X5, X3, ... . Also, as in the case
of the weak LLN, suppose that the common distribution has finite variance, i.e.,

o = var(X) = E(X —EX)? < oc,



STATISTICAL CONFIDENCE 25

where X~ X and o > 0. Finally, suppose that the mean exists and is finite. i.c..
¢ = EX < .
Define the cumulative sum
S, = Xi+~Xot- | Xa

for n > 1 and note again that ES,, = nc and var{S,,) = no?. Thus, for all n.

S, —np .
E| ——— =
( oV ) ’

S —np
var | ——— = 1.
( o\

Theorem 1.14.1. Forall zt ¢ R,

lim P (Ll — =

P (J'\/ﬁ

and

Al
M
! i
P
d 5
e =

=
(o'
[
ry
[
i,
[
o
]

That is.
Sp —npy
a/n

converges in distribution to a standard (mean ¢ and variance 1) Gaussian, A proof for this
central limit theorem is given in Section 3.2 of {63]: see Problem 1.16 at the end of this
chapter.

1.14.2 Confidence intervals

Suppose that # identically distributed samples X, X9, X4, ..., X, have been generated
by repeated trials of some experiment. Let p and o > () be the mean and standard deviation,
respectively, of Xp. Assuming a central limit theorem for the sequence { Xy §, we have that

?(Yﬂ_ — (1.21)

is approximately distributed as a standard Gaussian random variable, where the sample
mean (or empirical mean) is

: 1o~
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Figure 1.6 PDF of a standard Gaussian random variable exp{—z2/2}/+/ 2.

The mean ¢ is taken to be an unknown guantity that is to be estimated from the samples
X, Note that the sample mean is an unbiased estimate of p, i.e.,

EX, = pn

This, in turn, allows us to assume that the quantity in (1.21) is Gaussian distributed for
relatively small » and use this to compute "error bounds” on the law of large numbers, If
Y is a standard Gaussian random variable,

PIYI<2) = 9(2)-2(-2)
2 1 2X2
/., \/Ee Z
= 0.95;

see Figure 1.6. Assuming that the standard deviation & is known, by the central limit
approximation, for all sufficiently large n,

?(Yn — p,)i < 2) =P (,u € [Yn - % Xn+ %D . (122)

So, with probability 0.95 (i.e., "19 times out of 20"}, the true mean x resides in the interval

— 20 20
Xy ——. X+ —|.
[ P Aa \/‘ﬁ}

Consequently, this interval is called the 95% confidence interval for 1.

0.95 = P(
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Typically. in practice, the standard deviation  is also not known and must also be
estimated from the samples Xj.. The sample variance is

1 Z(XR: - ‘XH'JLJQ
T
k=1
= (l fo) — (X )2
i el

The implicit assumption is that a more general form of central limit theorem holds when
the sample standard deviation,

3
O—'! 13

Tn =y, o >0,

is used instead of the true, but unknown, standard deviation ¢ above [194]. That is. the
95% confidence interval for 2 is taken to be

— 2T,
._\/ﬁ" X, 4+ ?ﬁ_] . {1.23)

1t turns ont that the sample variance defined above is a consistent but biased estimator
for &2. In fact,

n—1 .
——O’Z‘

EoZ = (1.24)

)
Thus, for a small number 7 of samples, it may prove more accurate to use

no —
/ 72
\r n—1

stead of &, in the 95% confidence interval formulation above. That is,

O
D]

o
n—1"

is both a consistent and unbiased estimator of 2. Note that this quantity and a_i are both
consistent estimators of o2, i.c., by the LLN, they both converge to 0% as n — .

When the number of available samples n is small {less than 30), the quantity in (1.21)
approximatcly tollows a Student’s # distribution [ 1(36]. Thus, instead of (1.22), the following

is used to define the confidence interval for small sample sizes:

p(%@(ﬁ—n)lgc.,k(u.w) = 0.5, (1.25)

where the function ¢, is defined by the Student’s ¢ distribution with n degrees of freedom
(samples).

Confidence intervals arc discussed in [ 155, 194}, Section 5.3 of [63], and Section 2.3 of
[74].
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1.14.3 Recursive formulas and a stopping criterion

In terms of simulation code, a simple recursive formula in the number of observed samples
for the sample mean and sample standard deviation may be convenient [194], For the
sample mean, we clearly have

— 1 —
‘X"l = E((n - 1)X'n.—-l + Xﬂ,)-

Also, the sample variance satisfies

Urzl = ghp t E (_0—2?1—1 + (Xn — Xn)z) . (].26)
Let
o —
. — 2
= 1%

be the unbiased estimate of the variance. From (1.26), one can derive the following identity;

1
n—1

1 —
a1+ —(Xn = X,.1)% (1.27)

T = Yr—1 — -
¥

Recal! that a basic assumptton in the computation of the confidence interval above was
that the sample points X; are independent. [a practice, a simulation may produce sequences
of highly dependent X;. In this case, several independent baiches of consecutive samples
may be obtainable by simulation [106]. The confidence interval is taken using the sample
mean and standard deviation of each batch; note that the "straight” sample mean fn would
equat that obtained from the batches.

Finaily, in order to arrive at a criterion to terminate a simulation, define the relative error

A/ var(X,,)
(& = e (1.28)
‘ X
Tn
= 0 (1.29)
Vil Xl
Here we have assumed ;2 # 0 and o2 < oc. A simalation may be terminated when the
relative error reaches, say, 0.1, i.e., the variance of the sample standard deviation is 10% of
the sample mean. Note that we can express the statement of the confidence interval (1.23)
a8

p (_i €1 — 2., 1+25n]) ~ 0.95, (1.30)
X
where we could use (,,(0.95), defined using the Student’s ¢ distribution in (1.25), instead of
"2"in (1.30) if the number of samples n is small. So, using the stopping criterion £, < 0.1,

the claim is then made that the sample mean X, is accurate to within 20% of the true mean
with 95% probability. Also, for a relative error of 0.1, the number of required samples is,

by (1.28),
7 2 - 2
o= 100 =—=—) = l00[—] . 1.31
" (Xn) (#) (13D
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In summary, a simulation produces 11D samples X; from which a sequence of sample
means X, and sample variances #%,, are computed. The simulation may be terminated
when the computed relative error &, reaches a predefined threshold. The accuracy of the
resulting estimate X ,, of the quantity of interest z can be interpreted in terms of a confidence
interval (implicitly invoking a central limit theerem or Student’s ¢ distribution).

B EXAMPLE 1.10

A great deal of current research activity in networking involves comparisons ol the
performance of competing mechanisms {devices, algorithms, protocols, etc.) by
simulation or through prototypical deployment on the [nternet. Suppose that n trials
are conducted for each of two mechanisms in order to compare their performance,
[eading to a dataset

{Dratic)

for mechanism & € {1.2}. Also suppose that, for all 4, the ith trial (yielding data
I ; and Do) was conducted under arguably equal environmental conditions for
both mechanisms. Let

X..?' = Dl,-i — D2|'2'

be the difference in the performance of the two mechanisms for the commuon environ-
mental conditions of trial £, That is, for each trial, an “apple-to-apple"” comparison is
made using coupled or paired cbservations.

To assess whether EX > (1 {respectively, EX = 0), we simply compute the
confidence interval according to {1.22) or (1.25) and determine whether the origin is
1o the left of it {respectively. contained by it).

Given uncoupled observations that are different in number, a procedure tor deciding
whether EX = 0 {(L.e,, a "t test”) is summarized in Section 13.4.2 of [106].

1.15 DECIDING BETWEEN TWO ALTERNATIVE CLAIMS

Suppose that a serics of measurements X; are drawn from the Internet. A problemis that the
internet may be in different "states” of operation leading to samples X; that are independent
but net identically distributed. As a great simplification, suppose that the network can be
in only one of two states indexed by § € {1,2}. Also suppose that a batch of n samples
Xio 1 < 1 < n, is 1aken while the network is in a single state but that state is not known.
Finally, suppose it is known that the probability that the network is int state 1 is p; and that

iy = E(X;|network state })
for known values g, j € {1.2}. Without loss of genecality, take p4; < fho.

We wish to infer from the sample data X; the state of the network. More specifically,
we wish 10 minimize the probability of error P, in our decision. To do this, note thut by the
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central limit theorem, given that the network is in state j, the sample mean

— 1 —
Xn = E;X*

is approximately normally distributed with mean zz; and variance Jin. An unbiased, con-
sistent estimate of this variance is

1
2 —
O’jrn =

n—14

Zn:(Xi - Yn}2<
i=1

To determine the prabability of decision error, we will condition on the state of the
network:

2
P. = Z P{error | network state &}py,., (1.32)
k=1

where po = 1 — p;. To this point, we have not described the method by which a decision
on the network state 1s made. Consider a decision based on the comparison of the sample
mean X ,, with a threshold &, where

H‘l S 9 S IJ-Z-.

s0 that the network is deemed to be in state 2 (having the higher mean) if X, > 4,
otherwise, the network is deemed to be in state 1. 8o, a more concrete expression for the
crror probability (1.32) ensues because we can approximate

P(error | network in state 2) = P(X,, < # | network in state 2)
%n)

where @ is 1 minus the CDF of a standard Gaussian distribution. Using a similar argument
when conditioning on the network being in state 1, we arvive at the tollowing expression:

- p iy
P.o= o228y 10222 g (1.33)

2 2
gl,n 02,’:1,

Thus, to determine the optimal value of 8, we need to minimize F. over #, This approach can
be easily generalized to make decisions among more than two alternative (mutuatly exclu-
sive} hypotheses. In |113], Wald’s classical framework to decide between two alternative
claims based on sequential independent observations is used on failed scan {connection
set-up attempt) data to detect the presence of Internet worms.

Problems

L1 For any two events A and B show that

P(A) < P(ANB)+P(B).
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1.2 Prove the law of total probability (1.1).
1.3 Consider iwo independent random variables X; and X,
(a) Show that they are uncorrelated, 1.e., cov( X, X2) = 0.
(b) Show that var{Xy + Xy) = var( X} + var{ X,).
1.4 Suppose that X is a continuous random variabie uniformly distributed on the interval

[-1,1) and that Y = X“. Show that X and Y are uncorrelated but that they are (clearly)
dependent.

1.5 Two random variables X and Xy are said to be jointly Gaussian distributed if their
joint PDF is

Fx, (0 2) op(—(@ - pTC @ - ), (134

1
27 det{C)

where the (symmetric) covariance matrix is

var(X;)  cov(X,X2) | EX,
cov{X, Xy)  var{Xs) » K=

and det(C) is the determinant of C. Show that if two jointly Gaussian random variabies
are uncorrelated, then they are also independent.

1.6  For jointly Gaussian X, and X7 show:

{a) For scalars nq and a2, a X1 + 02X (a "linear combination” of Gaussian random
variables) is Gaussian distributed.

by E{X|Y} is Gaussian distributed.
1.7 Show that a Bernoulli random variable X with f2x = {0, 1} can always be repre-

sented as an indicator function I 4 for some event A (express A in terms of X). Prove
Jensen’s inequality (1.13) for a Bernoulli random variable.

1.8 Prove Jensen’s inequality for any discretely distributed random variable.

1.9 Findthe MGF of a geometrically distributed random variable and verify the expression
given for the MGF corresponding to a Poisson distribution.

1.10 Cowmpute the variance of the distributions described in Sections 1.4 and 1.5,

1.11  IfP(X > 0} =1 (i.e.. X is nonnegative almost surely}, show
EX = / P(X > 2)dr.
0
1.i2  Suppose X is Cauchy distribuied with PDF

1 _
(1 + 22)

Jlz) =

*The joint PDF of n > 2 jointly Gaussian random variables has the same form as (1.34) cxcept that the 2% term
is teplaced by the more general lerm (27)72.
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forr e R
(a) Verify that E{X1{X > 0}) = oc and that E{— X 1{X < 0}} = oc
(b) Conclude that EX docs not exist. Note that the question of existence is different from

the question of finiteness.

1.13  The linear least square error (LLSE) estimator of a random variable X given a
random variable Y is a linear function #{Y") = oY + & which minimizes the MSE

E[(X - R(Y))%;

i.e., for the LLSE estimator, the constants o and & are chosen so as to minimize the MSE.
Show that the LLSE estimator is the conditional expeciation E(X|Y") when the random
variables X and ¥ are jointly Gaussian with var(¥'} = 0 (so, in this case, the best estimator
is a linear one).

1.14 For the ganuna distribution, verify (1.7} and (1.8) and show that
r, = f(r—1}!
whenr € ZT.

1.15  Use MGFs to prove that the binomial disiribution with parameters n and g converges
to the Poisson distribution with parameter A as ¢ — 0 and n — oc in such a way that
ng — A. This is Poisson’s theorem (sometimes called the law of small numbers). Hint:
(1 +2)/* —easz | 0.

1.16 Consider a random variable Y, that is Poisson distributed with parameter A, 1e.,
EYy = A

(a) Show that var(Y)) = A too.
{b} Using MGFs, show that, as A — oc, the distribution of
/'A _ /\
NSy

converges to a standard {mean ¢ and variance 1) Gaussian distribution,

This is akind of CLT for Poisson processes; see Chapter 2. The CLT has been generatized to
many other contexts, including lunctional CLTs on the convergence of stochastic processes
1o Brownian motion, see [21].

1.17 Prove (1.24).
118 Prove(1.26Yand (1.27).

1.19 If I is a continuous random variable that is uniformly distributed over [0, 1], show
that F~1{I7) has COF F, where

F 'Yy = iof{e]| #(z) =u)

1.20 Suppose a group of (distinct) persons each has an independent birthday among the
365 possible ones. Determine the minimuwm number . of such persons required so that the
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probability that at feast two share a birthday is greater than or equal to 0.5.

Hints: Compute the probability of the complementary event and the answer is between 20
and 25.

The surprisingly small result is known as the birthday paradox.

1.21 Suppose a hacker wishes to have a domain name server (DNS) associate the domain
name www.kesidis.com with one of his own 32-bit Internet Protocol {IP} addresses so that
he can intercept some of the critically important correspondences that are directed to this
site. The hacker simultaneousty transmits ¢ identical queries for www.kesidis.com to the
targeted DNS. Further suppose that the targeted DNS naively forwards each query to an
authoritative DNS using IID transaction identifiers (used to authenticate the authoritative
DNS’s response) which are 16 bits long and not known to the hacker. Shortly thereafter,
and before the authoritative DNS can reply, the hacker also transmits 5 responses to the
targeted DNS spoofing those of the authoritative DNS, where each such response associates
www.kesidis.com with the hacker’s chosen IP address and contains a guess at onc of the
transaction identifiers generated by the targeted DNS. Assuming

§ = = n,

find the value of 7 so that the probability that a forwarded query and spoofed response have
the same transaction identifier is 0.5, i.e., the probability that the hacker guesses correctly
and thereby poisons the targeted DNS's cache.

1.22 In an idealized network using ALOHA medium access contrel, each of # nodes
atternpts to transmit a packet in a time slot with probability p, after the initial packet
transmission failed due to interference from another host. Such retransmission decisions
are independent. Suppose all hosts are synchronized to common time slot boundaries and
that they are always in "retransmission” mode (with a packet to transmit).

{a) Find the probability that a packet is successfully transmitted in a given time slot by
a given node.

(b) Find the probability that a packet is successfully transmitied in a given time slot by
any node.

{c) Find the expected number of successfully transmitted packets per time slot by the
group of nodes, i.e., the network’s throughput.

{d} Show that the throughput is maximized by the choice of p = 1/ and that, as n — o0,
the throughput converges to 1/e = (.37 packets per time slot.

(d) Show that the maximum throughput of unslotted ALOHA is 1/(2¢).

1.23  Show that the minimizing value of the decision threshold # in (1.33)is (fay -+ pi2)/2

when the sample variances are equal, i.e., 0%, = a3 .

1.24 Consider a link carrying packets to a Web server. Suppose that, under normal
operating conditions, the link will subject the Web server to a data rate of 4 Mbps. However,
when the Web server is under a DDoS attack, the link will carry an average of 6 Mbps 1o the
server. AnIDS samples the link's datarate and determines whether the server is under attack.

Assume known standard deviaticons in the data rate of 1 Mbps under normal conditions and
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of 1.5 Mbps under attack conditions. Finally, assume attack conditions exist 25% of the
time. Find the value of the optimal decision threshold # (compared against the sample
mean} that minimizes the probability of decision error.

1.25 In the previous problem, instead of minimizing the probability of decision error,
suppose the probability that it was decided that the network is under attack when, in fact, it
was not can be no more than 0.10, i.e.,

P..(6) = P(decision error | no attack) < 0.10.

Again, this decision is based on the sample mean. Note that this event is called a faise
positive or type IT error. Such false positives can be caused by legitimate "flash crowds” of
temporary but excessive demand. Subject to this bound we wish to minimize the probability
of missed detection ("type I" error) of an actual attack:

P.(8) = P(decision error | attack).
That is, find

ar min P.{6).
ga| P (#)<0.10 al0)

This is called a Neyman-Pearson test [174] (of the sample mean with the computed value
of &),

1.26 Consider a simplc binary symmetric channel model wherein a single bit X € {0, 1}
is transmitted and a single bit Y is received such that the transmission error probabilities
are equal, ie., P(Y = )X = 0) = P(Y = 0|X = 1) = ¢.. Fori ¢ {0,1}, find
P(X = {|Y = i) (i.e., the probability that bit 7 was transmitted given bit 7 was received) in
terms of ¢. and sq = P{X = 0.

1.27  Suppose that the reported outcome of a poll regarding a presidential race is, "Candi-
date X wilt collect 48% of the vote with an error of £2% 19 times out of 20." Explain this
outcome in the terms previously used to deseribe statistical confidence based on the CLT.
Also, what are the basic underlying assumptions about which specific individuals, among
the entire voting population, were polled for this statement to hold?

1.28 Inthecontextof Example 1.10, suppose that we have compiled only the separate em-
pirical distributions py and ps, respectively, based onthe datasets { Dy ; }72, and {Dg; Fi,,
but sot the empirical distribution of X = Dy — £ on a trial-by-trial basis. Given p; and
P ‘

(a) Can we obtain the empirical mean X of X7

{(b) Can we obtain the empirical variance of X"



