Chapter 1

Introducing
Visual Basic for Applications

In addition to Excel's extensive list of worksheet functions and array of
calculation tools for scientific and engineering calculations, Excel contains a
programming language that allows users to create procedures, sometimes
referred to as macros, that can perform even more advanced calculations or that
can automate repetitive calculations.

Excel's first programming language, Excel 4 Macro Language (XLM) was
introduced with version 4 of Excel. It was a rather cumbersome language, but it
did provide most of the capabilities of a programming language, such as looping,
branching and so on. This first programming language was quickly superseded
by Excel's current programming language, Visual Basic for Applications,
introduced with version 5 of Excel. Visual Basic for Applications, or VBA, is a
"dialect” of Microsoft's Visual Basic programming language, a dialect that has
keywords to allow the programmer to work with Excel's workbooks, worksheets,
cells, charts, etc. At the same time, Microsoft introduced a version of Visual
Basic for Word; it was called WordBasic and had keywords for characters,
paragraphs, line breaks, etc. But even at the beginning, Microsoft's stated
intention was to have one version of Visual Basic that could work with all its
applications: Excel, Word, Access and PowerPoint. Each version of Microsoft
Office has moved closer to this goal.

The Visual Basic Editor

To create VBA code, or to examine existing code, you will need to use the
Visual Basic Editor. To access the Visual Basic Editor, choose Macro from the
Tools menu and then Visual Basic Editor from the submenu.

The Visual Basic Editor screen usually contains three important windows:
the Project Explorer window, the Properties window and the Code window, as
shown in Figure 1-1. (What you see may not look exactly like this.)

The Code window displays the active module sheet; each module sheet can
contain one or several VBA procedures. If the workbook you are using does not

2 EXCEL: NUMERICAI METHQDS

=Dl

v -3 X

e

4 Microsoft Visual Basic - Book 1 - [Modulel {Code}] o

o Fle [Edt View [Insert Format Debug Bun Jools Addns Window Help

M i-d A M 9y i aMSFEFS @ @

I(Gunerdl) :_} t!Detlﬂnﬁonsl _,:j
] Sl =

‘-';‘: & vBaProject (Book1)

=i #% Microsoft Excel Objects
B} Sheet1 (Sheet1)
! |) sheet2 (Sheet2)
| B8] Sheet3 (Sheet3)
| {%ﬂ ThisWarkbaok
| & =4 Modules
] Ny odlet |
{6 & vBAProject (PERSONALXLS)
|
1

Properti

1Modulel Module
Alphabetic ’gcmqm:ad |

mﬁﬁ@_ﬁ___ ________

EoP of

Figure 1-1. The Visual Basic Editor window.

contain any module sheets, the Code window will be empty. To insert a module
sheet, choose Module from the Insert menu. A folder icon labeled Modules
will be inserted; if you click on this icon, the module sheet Modulel will
bedisplayed. Excel gives these module sheets the default names Module1,
Module2 and so on.

Use the Project window to select a particular code module from all the
available modules in open workbooks. These are displayed in the Project
window (Figure 1-2), which is usually located on the left side of the screen. If
the Project window is not visible, choose Projeect Explorer from the View

menu, or click on the Project Explorer toolbutton & to display it. The Project

Explorer toolbutton is the fifth button from the right in the VBA toolbar.

In the Project Explorer window you will see a hierarchy tree with a node for
each open workbook. In the example illustrated in Figure 1-2, a new workbook,
Book1, has been opened. The node for Book1 has a node {a folder icon) labeled
Microsoft Excel Objects; click on the folder icon to display the nodes it contains—
an ijcon for each sheet in the workbook and an additional one labeled
Thisworkbook. If you double-click on any one of these nodes you will display the
code sheet for it. These code sheets are for special types of procedures called
automatic procedures or event-handler procedures, which are not covered in this

CHAPTER 1

INTRODUCING VISUAL BASIC FOR AFPLICATIONS 3

Project - YBAProje: A

&% CHEM.xls (CHEM.xla)
B8 funcres (FUNCRES.XLA)
=-&% vBAProject (Book1)

&

125§ Microsoft Excel Objects
) Sheet1 (Sheet1)
.8 Sheet2 (Sheet2)
--EH] Sheet3 (Sheet3)

: @ ThisWorkbook

—_

Z- ‘“"y Modules

2 [

5 @ ¥BAProject (PERSONAL.XLS)

Figure 1-2. The VBE Project Explorer window.

book. Do not use any of these sheets to create the VBA procedures described in
this book. The hierarchy tree in Figure 1-2 also shows a Modules folder,
containing one module sheet, Module1.

The Properties window will be discussed later. Right now, you can press the
Close button to get rid of it if you wish.

Properties - Sheek

b
ISheetl Worksheet _v_]

Alphabetic l_(:ategnrized i

[(Name) - |
DisplayPageBreaks False
DisplayRightToLeft False
EnableautoFilter False
EnableCalculation True
EnableOutlining False
EnablePivotTable False
EnableSelection 0 - xINoRestrictions

Name Sheet1

Scrollarea

Standardwidth 8.43

Yisible -1 - xISheetVisible

Figure 1-3. The Properties window.

4 EXCEL: NUMERICAL METHODS

Visual Basic Procedures

VBA macros are usually referred to as procedures. They are written or
recorded on a module sheet. A single module sheet can contain many
procedures.

There Are Two Kinds of Macros

There are two different kinds of procedures: Sub procedures, called
command macros in the older XLM macro language, and Function procedures,
called function macros in the XLM macro language and often referred to as
custom functions or user-defined functions.

Although these procedures can use many of the same set of VBA commands,
they are distinctly different. Sub procedures can antomate any Excel action. For
example, a Sub procedure might be used to create a report by opening a new
worksheet, copying selected ranges of cells from other worksheets and pasting
them into the new worksheet, formatting the data in the new worksheet,
providing headings, and printing the new worksheet. Sub procedures are usually
"run" by selecting Macro from the Tools menu, They can also be run by means
of an assigned shortcut key, by being called from another procedure, or in
several other ways.

Function procedures augment Excel's library of built-in functions by adding
user-defined functions. A custom or user-defined function is used in a
worksheet in the same way as a built-in function like, for example, Excel's SQRT
function. Tt is entered in a formula in a worksheet cell, performs a calculation,
and returns a result to the cell in which it is located. For example, a custom
function named FtoC could be used to convert Fahrenheit temperatures to
Celsius.

Custom functions can't incorporate any of VBA's "action" commands. No
experienced user of Excel would try to use the SQRT function in a worksheet
cell to calculate the square root of a number and also open a new workbook and
insert the result there; custom functions are no different.

However, both kinds of macro can incorporate decision-making, branching,
looping, subroutines and many other aspects of programming languages.

The Structure of a Sub Procedure

The structure of a Sub procedure is shown in Figure 1-4, The procedure
begins with the keyword Sub and ends with End Sub. It has a ProcedureName, a
unique identifier that you assign to it. The name should indicate the purpose of
the function. The name can be long, since after you type it once you will
probably not have to type it again. A Sub procedure has the possibility of using
one or more arguments, Argumenti, etc, but for now we will not create Sub

CHAPTER | INTRODUCING VISUAL BASIC FOR APPLICATIONS 5

procedures with arguments. Empty parentheses are still required even if a Sub
procedure uses no arguments.

Sub ProcedureName{Argumentt, ...}
VBA statements
End Sub

Figure 1- 4. Structure of a Sub procedure.

The Structure of a Function Procedure

The structure of a Function procedure is shown in Figure 1-5. The
procedure begins with the keyword Function and ends with End Function, Tt
has a FunctionName, a unique identifier that you assign to it. The name should be
long enough to indicate the purpose of the function, but not too long, since you
will probably be typing it in your worksheet formulas. A Function procedure
usually takes one or more arguments; the names of the arguments should also be
descriptive. Empty parentheses are required even if a Function procedure takes
no arguments.

Function FunctionName(Argument1, ...}
VBA siatements
FunctionName = result

End Function

Figure 1-5. Structure of a user-defined function.

The function's return statement directs the procedure to return the result to
the caller (usually the cell in which the function was entered). The return
statement consists of an assignment statement in which the name of the function
is equated to a value, for example,

FunctionName = result

Using the Recorder to Create a Sub Procedure

Excel provides the Recorder, a useful tool for creating command macros.
When you choose Macro from the Tools menu and Record New Macro... from
the submenu, all subsequent menu and keyboard actions will be recorded until
you press the Stop Macro button or choose Stop Recording from the Macro
submenu. The Recorder is convenient for creating simple macros that involve
only the use of menu or keyboard commands, but you can't use it to incorporate
logic, branching or looping.

The Recorder creates Visual Basic commands. You don't have to know
anything about Visual Basic to record a command macro in Visual Basic. This
provides a good way to gain some familiarity with Visuval Basic.

6 EXCEL: NUMERICAI METHODS

To illustrate the use of the Recorder, let's record the action of applying
scientific number formatting to a number in a cell. First, select a cell in a
worksheet and enter a number. Now choose Macro from the Tools menu, then
Record New Macro... from the submenu. The Record Macro dialog box
(Figure 1-6) will be displayed.

The Record Macro dialog box displays the default name that Excel has
assigned to this macro: Macrol, Macro2, etc. Change the name in the Macro
Name box to ScientificFormat (no spaces are allowed in a name). The "Store
Macro In" box should display This Workbook (the default location); if not,
choose This Workbook. Enter "e" in the box for the shortcut key, then press OK.

Record Macro '

Macro name:
Aacrol
Shortcut: key: Stare macro in:
Ctrl+r—]This Workbook _:I
Description:

Macro recorded 8/27/2000 by Billo

[o« | concet |

Figure 1-6. The Record Macro dialog box.

The Stop Recording toolbar will appear (Figure 1-7), indicating that a macro is
being recorded. If the Stop Recording toolbar doesn't appear, you can always
stop recording by vsing the Tools menu (in the Macro submenu the Record New
Macro... command will be replaced by Stop Recording).

| m ! B

Figure 1-7. The Stop Recording toofbar.

Now choose Cells... from the Format menu, choose the Number tab and
choose Scientific number format, then press OK. Finally, press the Stop
Recording button.

To examine the macro code that you have just recorded, choose Macro from
the Tools menu and Visual Basic Editor from the submenu. Click on the node
for the module in the active workbook. This will display the code module sheet
containing the Visual Basic code. The macro should look like the example
shown in Figure 1-8.

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 7

Sub ScientificFormat()

' ScientificFormat Macro
' Macro recorded 6/22/2004 by Boston College

' Keybhoard Shortcut: Cirl+e

Selection.NumberFormat = "0.00E+00"
End Sub

Figure 1-8. Macro for scientific number-formatting, recorded in VBA.

This macro consists of a single line of VBA code. You'll learn about Visual
Basic code in the chapters that follow,

To run the macro, enter a number in a cell, select the cell, then choose
Macro from the Tools menu, choose Macros... from the submenu, select the
ScientificFormat macro from the Macro Name list box, and press Run. Or you can
simply press the shortcut key combination that you designated when you
recorded the macro (CONTROL+e in the example above). The number shouid be
displayed in the cell in scientific format.

The Personal Macro Workbook

The Record Macro dialog box allows you to choose where the recorded
macro will be stored. There are three possibilities in the "Store Macro In" list
box: This Workbook, Mew Workbook and Personal Macro Workbook. The
Personal Macro Workbook (PERSONALXLS in Excel for Windows, or Personal
Macro Workbook in Excel for the Macintosh) is a workbook that is automatically
opened when you start Excel. Since only macros in open workbooks are
available for use, the Personal Macro Workbook is the ideal location for macros
that you want to have available all the time.

Normally the Personal Macro Workbook is hidden (choose Unbhide... from
the Window menu to view it). If you don't vet have a Personal Macro
Workbook, you can create one by recording a macro as described earlier,
choosing Personal Macro Workbook from the "Store Macro In" list box.

As you begin to create more advanced Sub procedures, you'll find that the
Recorder is a useful tool to create fragments of macro code for incorporation into
your procedure. Instead of poring through a VBA reference, or searching
through the On-Line VBA Help, looking for the correct command syntax, simply
turn on the Recorder, perform the action, and look at the code produced. You
may find that the Recorder doesn't always produce exactly what you want, or
perhaps the most elegant code, but it is almost always useful.

Note that, since the Recorder only records actions, and Function procedures
can't perform actions, the Recorder won't be useful for creating Function
procedures.

8 EXCEL: NUMERICAL METHODS

Running a Sub Procedure

In the preceding example, the macro was run by using a shortcut key. There
are a number of other ways to run a macro. One way is to use the Macro dialog
box. Again, enter a number in a cell, select the cell, then choose Macro from the
Tools menu and Macros... from the submenu. The Macro dialog box will be
displayed (Figure 1-9). This dialog box lists all macros in open workbooks
(right now we only have one macro available). To run the macro, select it from
the list, then press the Run button.

Assigning a Shortcut Key to a Sub Procedure

If you didn't assign a shortcut key to the macro when you recorded it, but
would like to do so "after the fact," choose Macro from the Teols menu and
Macros... from the submenu. Highlight the name of the macro in the Macro

Name list box, and press the Options... button. You can now enter a letter for
the shortcut key: CONTROL+<key> or SHIFT+CONTROL+<key> in Excel for

o
Ix

Macro name:

I ScientificFormat 5‘..{ | Run I
:] Cancel 1

Step Into I
Edit I

1 i

:j Delete |
Macros in: I.ﬁ.ll Open Workbooks :J Options. |

Descript]’ﬂn L P S I RS AN R R R SR e o
Macro recorded 6/2212004 by Boston College

Figure 1-9. The Macro dialog box.

Windows, OPTION+COMMAND+<key> or SHIFT+OPTION+COMMAND-+<key>
in Excel for the Macintosh,

CHAPTER | INTRODUCING VISUAL BASIC FOR APPLICATIONS 9

Entering VBA Code

Of course, most of the VBA code you create will not be recorded, but
instead entered at the keyboard. As you type your VBA code, the Visunal Basic
Editor checks each line for syntax errors. A line that contains one or more errors
will be displayed in red, the default color for errors. Variables usually appear in
black. Other colors are also used; comments (see later) are usually green and
some VBA keywords (Function, Range, etc.) usually appear in blue. (These
default colors can be changed if you wish.)

If you type a long line of code, it will not automatically wrap to the next line
but will simply disappear off the screen. You need to insert a line-continuation
character (the underscore character, but you must type a space followed by the
underscore character followed by ENTER) to cause a line break in a line of VBA
code, as in the following example:

Worksheets("Sheet1"). Range{"A2:B7"}.Copy _

{(Worksheets{"Sheet2").Range("C2"))

The line-continuation character can't be used within a string, i.e., within
quotes.

I recommend that you type the module-level deciaration Option Explicit at the
top of each module sheet, before any procedures. Option Explicit forces you to
declare all variables using Dim statements; undeclared variables produce an error
at compile time.

When you type VBA code in a module, it's good programming practice to
use TAB to indent related lines for easier reading, as shown in the following
procedure.

Sub Initialize()

ForJ=1ToN
P{J))=0

Next J

End Sub

Figure 1-10. A simpie VBA Sub procedure.

In order to produce a more compact display of a procedure, several lines of
code can be combined in one line by separating them with colons. For example,
the procedure in Figure 1-10 can be replaced by the more compact one in Figure
1-11 or even by the one in Figure 1-12.

Sub Initialize()
ForJ=1To N; P{J)=0: NextJ
End Sub

Figure 1-11. A Sub procedure with several statements combined.

10 EXCEL: NUMERICAI METHCDS

[Sub Initialize(): For J = 1 To N: P(J) = 0: Next J; End Sub]

Figure 1-12, A Sub procedure in one line.

Creating a Simple Custom Function

As a simple first example of a Function procedure, we'll create a custom
function to convert temperatures in degrees Fahrenheit to degrees Celsius.

Function procedures can't be recorded; you must type them on a module
sheet. You can have several macros on the same module sheet, so if you
recorded the ScientificFormat macro earlier in this chapter, you can type this
custom function procedure on the same module sheet. If you do not have a
module sheet available, insert one by choosing Module from the Insert menu.

Type the macro as shown in Figure i-13. DegF is the argument passed by the
function from the worksheet to the module (the Fahrenheit temperature); the
single line of VBA code evaluates the Celsius temperature and returns the result
to the caller (in this case, the worksheet cell in which the function is entered).

Function FtoC(DegF)
FtoC = (DegF -~ 32)*5/9
End Function
Figure 1-13. Fahrenheit to Celsius custom function.

A note about naming functions and arguments: function names should be
short, since you will be typing them in Excel formulas (that's why Excel's square-
root worksheet function is SQRT) but long enough to convey information about
what the function does. In confrast, command macro names can be long, since
command macros are run by choosing the name of the macro from the list of
macros in the Macro Run dialog box, for example.

Argument names can be long, since you don't type them. Longer names can
convey more information, and thus provide a bit of self-documentation. (If you
look at the arguments used in Excel's worksheet functions, you'll see that single
letters are usuaily not used as argument names.)

Using a Function Macro

A custom function is used in a worksheet formula in exactly the same way as
any of Excel's built-in functions. The workbook containing the custom function
must be open.

Figure 1-14 shows how the FtoC custom function is used. Cell A2 contains

212, the argument that the custom function will use. Cell B2 contains the
formula with the custom function. You can enter the function in cell B2 by

CHAPTER 1 INTRODUCING VISUAL BASIC FOR APPLICATIONS 11

typing it (Figure 1-14). When you press enter, the result calculated by the
function appears in the cell (Figure [-15).

:‘ e _‘,_.‘_ —— ;B:::J
| h ~
|] | T. JF TI OL;
3 I T

Figure 1-14. Entering the custom function.

1] TF T.°C

| 2 | 212 100
Figure 1-15. The function result.

You can also enter a function by using the Insert Function dialog box. Select
the worksheet cell or the point in a worksheet formula where you want to enter
the function, in this example cell B2. Choose Function... from the Insert menu
or press the Insert Function toolbutton # to display the Insert Function dialog
box. Scroll through the Function Category list and select the User Defined
category. The FtoC function will appear in the Insert Function list box (Figure
1-16).

Search for & function:

IT',-W‘ a brief description of what you want to do and then
click Go

Or select a gategory: {User Defined _'_;

Select a Function:

FtoC({deg_F)
No help avadable,

Figure 1-16. The Paste Function dialog box,

When you press OK, the Function Arguments dialog box (Figure 1-17) will be
displayed. Enter the argument, or click on the cell containing the argument to
enter the reference (cell A2 in Figure 1-14), then press the OK button.

12 EXCEL: NUMERICAL METHODS

Function Arguments e A5 e xg

I Ftoc i i SBCIN SNt s ot B B T s e A
' Deg_F ‘ jﬁ! i

Mo help available.
Deg_F

Farmula result =

Help on this function i Ok] Cancel

Figure 1-17. The Function Arguments dialog box.

A Shortcut to Enter a Function

You can enter a function without using Insert Function, but still receive the
benefit provided by the Function Arguments screen. This is useful if the
function takes several (perbaps unfamiliar) arguments. Simply type "="
followed by the function name, with or without the opening parenthesis, and then
press CONTROL+A to bypass the Insert Function dialog box and go directly to
the Function Arguments dialog box.

If you press CONTROLA+SHIFT+A, you bypass both the Insert Function dialog
box and the Function Arguments. The function will be displayed with its
placeholder argument(s). The first argument is highlighted so that you can enter
a value or reference (Figure 1-18).

ey T F T°C
2 | 212[=FtoC i

Figure 1-18. Entering a custom function by using CONTROL+SHIFT+A.

Unfortunately, if vou’re entering the custom function in a different
workbook than the one that contains the customn function, the function name
must be entered as an external reference (e.g., Book1.XLS!FtoC). This can make
typing the function rather cumbersome, and it means that you'll probably enter
the function by using Excel's Insert Function. But, see "Creating Add-In
Function Macros” in Chapter 2.

CHAPTER | INTRODUCING VISUAL BASIC FOR APPLICATIONS 13

Some FAQs

Here are answers to some Frequently Asked Questions about macros.

I Recorded a Command Macro. Where Did It Go? If you have
trouble locating the code module containing your macro, here's what to do "when
all else fails": choose Macro from the Tools menu and Macros... from the
submenu. Highlight the name of the macro in the Macro Name list box, and
press the Edit button. This will display the code module shect containing the
Visual Basic code.

I Can't Find My Function Macro. Where Did It Go? If you're
looking in the list of macros in the Macro Name list box, you won't find it
there. Only command macros (macros that can be Run) are listed. Function
macros are found in a different place: in the list of user-defined functions in the
Insert Function dialog box. (Choose Function... from the Insert menu and
scroll through the Function Category list and select the User Defined category.)

How Do I Rename a Macro? To rename a Sub or Function procedure,
access the Visual Basic Editor and click on the module containing the procedure.
The name of the macro is in the first line of code, immediately following the Sub
or Function keyword. Simply edit the name. Again, no spaces are allowed in the
name.

How Do I Rename a Module Sheet? You use the Properties window to
change the name of a module. The module sheet whose name you want to
change must be the active sheet. If the Properties window is not visible, choose
Properties Window from the View menu, or click on the Properties Window
toolbutton 2 to display it. The Properties Window toolbutton is the fourth

button from the right in the VBA toolbar.

Properties :
{Mndulel Module _:_I
Alphabetic lCategorized ;

(ame) Podule 1

Figure 1-19, Changing the name of a module by using the Properties window.,

14 EXCEL: NUMERICAL METHODS

When you display the Properties window, you will see the single property of
a module sheet, namely its name, displayed in the window. Simply double-click
on the name (here, Module1), edit the name, and press Enter. No spaces are
allowed in the name.

How Do I Add a Shortcut Key? If you decide to add a shortcut key to a
command macro "after the fact,” choose Tools+-Macro—-Macros.... In the
Macro Name list box, click on the name of the macro to which you want to add a
shortcut key, then press the Options button. In the Shortcut Key box, enter a
letter, either lower- or uppercase. To run the macro, use CTRL+<letter> for a
lowercase shortcut key, or CTRL+SHIFT+<letter> for uppercase.

Warning: The shortcut key will override a built-in shortcut key that uses the
same letter. For example, if you use CTRL+s for the ScientificFormat macro,
you won't be able to use CTRL+s for "Save." This will be in effect as long as the
workbook that contains the macro is open.

How Do I Save a Macro? A macro is part of a workbook, just like a
worksheet or a chart. To save the macro, you simply Save the workbook.

Are There Some Shortcut Keys for VBA? Yes, there are several. Here's
a useful one: you can toggle between the Excel spreadsheet and the VBA Editor
by pressing ALT+F11. A list of shortcut keys for VBA programming is found in
Appendix 2.

