
1
INTRODUCTION AND REVIEW

1.1 INTRODUCTION TO ULTRASHORT LASER PULSES

This book is about ultrafast laser pulses: what they are, linear and nonlinear optical effects
which they experience, methods by which they are generated and measured, and how they
can be used for measurement of ultrafast physical processes. Let us begin with a definition
of the relevant time units.

1 nanosecond (ns) = 10−9 s = 0.000000001s

1 picosecond (ps) = 10−12 s = 0.000000000001s

1 femtosecond (fs) = 10−15 s = 0.000000000000001s

1 attosecond = 10−18 s = 0.000000000000000001s

To put these very short time units in perspective, it is useful to consider their spatial equiva-
lent. If we could take a snapshot of a 1-s light pulse, this pulse would stretch over a distance of
186,000 miles (or 300,000 km), equal to the speed of light multiplied by 1s. This is roughly
three-fourths of the distance from the Earth to the moon, a distance we will consider very
slow! Now skipping over milliseconds and microseconds, we arrive at nanoseconds. One
nanosecond has a spatial extent of 30 cm (ca. 1 ft). Although still rather slow by the standards
of ultrafast optics, the nanosecond is the approximate time scale for high-speed electronic
chips and computers. The word ultrafast is usually applied to the picosecond time scale
and below. A picosecond has an extent of 0.3 mm, roughly the thickness of a business card.
Given that typical garden-variety laser beams have beam diameters on the order of a few
millimeters, we should perhaps envision pulses a picosecond and shorter not as pencils of
light but as pancakes of light! In the visible and near-infrared spectral regions, pulses as
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2 INTRODUCTION AND REVIEW

short as a few femtoseconds can now be generated. The spatial extent of even a 10-fs laser
pulse is only 3 �m, much less than the diameter of a human hair.

Pulse durations of a few femtoseconds in the visible are approaching the fundamental
pulse-width limitation of roughly one optical cycle (roughly one wavelength in spatial
extent). Research into attosecond pulse generation is also under way [1]. One key theme
in attosecond pulse generation is the use of highly nonlinear optical frequency-conversion
methods to produce radiation at much higher frequencies (much shorter wavelengths),
corresponding to extreme ultraviolet (XUV) and x-ray spectral regions. At such frequencies
the duration of a single optical cycle (and hence the attainable pulse-width limit) is reduced,
making attosecond pulses possible.

In this book we specifically focus on ultrafast optics in visible and lower-frequency
spectral bands and on time scales down to femtoseconds. Within this time scale the motions
of bound electrons that mediate important laser–matter interactions may usually be viewed
as instantaneous. Conversely, attosecond time scales and XUV and x-ray frequencies bring in
entirely new physics in which laser–matter interactions are sensitive to the noninstantaneous
dynamics of bound electron motions. Attosecond technology and science are in a stage of
rapid evolution and will undoubtedly be the subject of future books.

Ultrashort pulses have several related characteristics which make them useful for appli-
cations. These include the following:

� High time resolution. By definition, the pulse duration is in the picosecond or fem-
tosecond range (or below). This provides very high time resolution for excitation and
measurement of ultrafast physical processes in solid-state, chemical, and biological
materials.

� High spatial resolution. The spatial extent of a short light pulse is given by the pulse
duration multiplied by the speed of light. As noted above, for very short pulse durations,
the spatial pulse length can be on the order of micrometers. This makes ultrashort pulses
useful for some microscopy and imaging applications.

� High bandwidth. By the uncertainly principle, the product of the pulse-width times the
optical bandwidth must be of order unity (or larger). As the pulse duration decreases,
the bandwidth increases correspondingly. Pulses of 100 fs have bandwidths on the
order of 10 terahertz (THz), and the shortest visible laser pulses contain so much of the
visible spectrum that they appear white. This high-bandwidth feature can be important
for optical communications as well as other applications.

� Potential for high intensity. For a given pulse energy, the peak power and peak inten-
sity are inversely proportional to the pulse duration. Because the size (hence cost)
of high-power lasers usually scales with pulse energy, femtosecond pulse technology
can be used to obtain ultrahigh peak intensities at moderate energy levels. Amplified
femtosecond pulses have produced peak powers up to the petawatt level (1 petawatt =
1015 W) and peak intensities exceeding 1020 W/cm2.

The field of ultrafast optics has traditionally been a highly interdisciplinary one, with a
wide range of applications areas. To give a flavor for the nature of application areas, we
comment below on a few of the research applications.

Ultrafast Spectroscopy Time-resolved spectroscopy is a very successful and probably the
most widespread application of picosecond and femtosecond laser technology. The idea
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is that ultrashort laser pulses can be used to make “stop-action” measurements of ultra-
fast physical processes, just as high-speed (microsecond) electronic flashes have been used
starting several decades ago to make such stop-action photographs of bullets traveling
through apples and milk droplets splashing into milk bowls [2]. On the femtosecond time
scale, macroscopic objects such as bullets and milk droplets are motionless, and therefore
ultrafast spectroscopy is best applied to study microscopic processes. Examples include
investigations of femtosecond interactions of photoexcited electrons and holes with each
other and with lattice vibrations in semiconductor crystals, ultrafast laser-induced melting,
photodisassociation and ultrafast solution dynamics of chemical species, and ultrafast in-
ternal rearrangements of the large organic molecule bacteriorhodopsin as photons absorbed
in the retina initiate the first biochemical steps in the process of vision. The principles of
ultrafast spectroscopy are covered in Chapter 9 with examples.

Laser-Controlled Chemistry In a research area closely related to ultrafast spectroscopy,
researchers are using specially engineered femtosecond laser waveforms to try to influence
the course of photoinduced chemical reactions. In addition to observing ultrafast chemical
motions as in time-resolved spectroscopy, the added idea here is to control the motions that
take place. Since the intrinsic time scale for nuclear motions in chemical systems is tens
to hundreds of femtoseconds, femtosecond laser pulses are a natural tool in pursuing the
challenging goal of laser-controlled chemistry.

Frequency Metrology Ultrashort pulses are usually emitted from lasers in the form of
periodic trains, which under certain conditions can exhibit very high timing stability and
long-term coherence. The spectrum of such a periodic train is a comb of up to hundreds
of thousands of discrete spectral lines, which may be stabilized to permit precision mea-
surements of optical frequencies with sub-hertz uncertainties across the optical spectrum.
Such stabilized frequency combs are now widely adopted for high-precision frequency
metrology and for investigations of precision optical clocks. Related topics are discussed in
Section 7.5.

High-Speed Electrical Testing Testing is a key issue in the development of high-speed
electronic devices and circuits. Electronic test instrumentation based on established tech-
nology is usually slower than advanced high-speed research devices. However, since even
the very fastest electronic devices only reach into the picosecond range, ultrafast laser tech-
nology offers speed to spare. Thus femtosecond optical pulses have been applied to generate
subpicosecond electrical pulses and to measure operation of the highest-speed electronic
devices. Ultrafast electrical pulse generation and measurement are discussed in Chapter 10.

Laser–Plasma Interactions Lasers with intensities of 1013 W/cm2 and above (easily
achieved using amplified femtosecond pulses) directed onto solid targets are sufficient to
strip electrons from their nuclei, resulting in a laser-generated plasma. On the 100-fs time
scale, the resulting free electrons do not have enough time to separate from the ionized
nuclei. This provides the opportunity to study solid-density plasmas at temperatures as high
as 1 million degrees.

Short-Wavelength Generation High-intensity ultrashort pulses at visible wavelengths can
also be used to generate coherent short-wavelength radiation in the vacuum ultraviolet and
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x-ray ranges through highly nonlinear harmonic generation processes or by pumping x-ray
lasers. Coherent short-wavelength radiation may be important, for example, for imaging
microscopic structures such as DNA.

Optical Communications The low-loss transmission window of optical fibers has a band-
width comparable to that of a 100-fs pulse, and therefore ultrashort-pulse technology may
play an important role in optical communications. Subpicosecond pulses have already been
used for laboratory experiments demonstrating fiber optic transmission of data at Tbit/s
(1012 bit/s) rates. Here ultrafast optics technology is important not only for pulse gener-
ation but also for signal processing, for data detection, and for the advanced metrology
necessary for characterizing and optimizing ultrashort-pulse transmission [3,4]. Ultrashort
pulses may also prove important in wavelength-division-multiplexing (WDM) systems in
which the fiber bandwidth is carved up into different wavelength bands or channels. For
WDM applications it is the large bandwidth of the ultrashort pulse (not the short duration)
which is useful, since a single pulse contains enough bandwidth to produce a number of
wavelength channels.

Biomedical Applications Ultrashort pulses are finding substantial applications in biomedi-
cal imaging. Attractive features include the ability to perform optical imaging within scatter-
ing media (e.g., most tissues) and to obtain high-resolution depth information. An example
of such an application is discussed in Section 3.3.3. In confocal microscopy significantly
improved spatial resolution has been demonstrated by relying on two-photon excitation. The
ability of ultrashort pulses to provide high intensity without high pulse energy is important
in the use of this technique with sensitive biological samples. In laser-assisted surgical pro-
cedures ultrashort pulses may in some cases reduce collateral tissue damage by reducing
heat deposition.

Materials Processing High-power lasers are used for a variety of industrial applications,
such as cutting and drilling. With continuous-wave or “long”-pulse (nanoseconds) lasers,
the minimum feature size and the quality of the cut are limited by thermal diffusion of
heat to areas neighboring the laser focus. With femtosecond lasers, materials processing
is possible using lower pulse energies, due to the very high peak powers, which lead to
new physical mechanisms. This reduces the heat deposited into the sample during the laser
machining process and leads to a much cleaner cutting or drilling operation.

1.2 BRIEF REVIEW OF ELECTROMAGNETICS

Since ultrashort laser pulses are made up of light, and light is a form of electromagnetic
radiation, we very briefly review Maxwell’s equations, which describe all forms of electro-
magnetic radiation, including light. We use MKS (SI) units here and throughout the book.
It is assumed that the reader is already familiar with vector calculus. For a more detailed
treatment of electromagnetics, the reader is directed to textbooks on this subject [5,6].

1.2.1 Maxwell’s Equations

Maxwell’s equations are a set of relationships between the electric field E and magnetic
field H (boldface symbols denote vectors). Inside a medium we must also consider the
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Table 1.1 Names and Units of Symbols in Maxwell’s Equations

Symbol Name Units or Numerical Value

E Electric field V m−1

D Electric flux density C m−2

H Magnetic field A m−1

B Magnetic flux density T (or V·s m−2)
P Polarization density C m−2

M Magnetization density A m−1

J Current density A m−2

ρ Charge density C m−3

ε0 Permittivity of free space 8.85 × 10−12 F m−1 (or C V−1 m−1)
μ0 Permeability of free space 4π × 10−7 H m−1 (or V s2 m−1 C−1)

charge density ρ, current density J, polarization density P, and magnetization density M,
and in order to include the effect of the fields on the matter, the electric and magnetic flux
densities, D and B, are also introduced. Units for these quantities are given in Table 1.1.
Maxwell’s equations are then written as follows:

∇ · D = ρ (1.1)

∇ · B = 0 (1.2)

∇ × E = −∂B
∂t

(1.3)

∇ × H = J + ∂D
∂t

(1.4)

The relations defining D and B are

D = ε0E + P (1.5)

B = μ0 (H + M) (1.6)

The constants ε0 and μ0 are known as the permittivity and permeability of free space,
with the numerical values and units given in Table 1.1. Note also that the symbol ρ refers
to the free charge density (i.e., any bound charge density associated with the polarization
is not included). Similarly, the current density J does not include any currents associated
with the motion of bound charges (changes in polarization). In free space we would have
ρ = J = P =M = 0.

For now we specialize to the case of a linear, isotropic, and source-free medium. By
source-free we mean that the charge and current densities are zero (ρ = 0 and J = 0). By
linear we mean that the medium response (i.e., the polarization and magnetization) is linear
in the applied fields. For the case of the electric field, we write

P = ε0χeE (1.7)
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where χe is known as the electric susceptibility (dimensionless). Inserting into eq. (1.5),
one obtains

D = ε0(1 + χe)E = εE (1.8)

The proportionality constant ε is termed the dielectric constant, with

ε = (1 + χe) ε0 (1.9)

Other common terms include the relative dielectric constant (ε/ε0) and the index of refrac-
tion n, which is commonly used in optics, where

n2 = ε

ε0
(1.10)

For the case of the magnetic field, we write

M = χmH (1.11)

where χm is the magnetic polarizability. Using eq. (1.6), we obtain

B = μ0 (1 + χm)H = μH (1.12)

In most cases in ultrafast optics, one is interested in nonmagnetic materials, for which
M = 0. In this case of zero magnetization, one has

B = μ0H (1.13)

Equations (1.7) and (1.11) are examples of constitutive laws, which specify the response
of the material to the fields. The form of these equations as written arises because we
have assumed both linear and isotropic media (for nonisotropic media, one would need
to replace the assumed scalar susceptibilities with tensors). We note that there are many
situations in ultrafast optics where these assumptions are not valid. For example, nonlinear
optical effects, which we discuss in later chapters, require by definition that P be a nonlinear
function of E.

1.2.2 The Wave Equation and Plane Waves

We now consider electromagnetic wave propagation in linear, isotropic, source-free media.
To derive the wave equation, we take the curl of eq. (1.3) and insert eq. (1.4), which, using
the stated assumptions and a well-known vector identity,1 gives the following:

∇ × ∇ ×E = ∇ (∇ ·E) − ∇2E = −με
∂2E

∂t2 (1.14)

1 The identity is ∇ × ∇ ×A = ∇(∇ ·A) − ∇2A. Note that in Cartesian coordinates ∇2 has a very simple
form, namely ∇2A = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)A.
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Since ∇ ·E = 0 also under our conditions, we obtain the wave equation

∇2E = με
∂2E

∂t2 (1.15)

One situation of special interest is the case where the field varies in only one direction,
which without loss of generality we take as the z direction. Then the wave equation becomes

∂2E

∂z2 = με
∂2E

∂t2 (1.16)

The general solution takes the form

E (z, t) = E0

(
t − z

v

)
(1.17)

whereE0 is a vector in the x–y plane [eq. (1.1) precludes E from having a z-component] and
v = 1/

√
με. The solution can be verified by plugging back into the wave equation. Equation

(1.17) is called a plane-wave solution, since the field does not vary in the transverse (x–
y) plane. It also represents a traveling wave, since the field propagates in the z direction
without changing its form. In the case of a pulsed field, E0(t) represents the pulse shape.
The propagation velocity is given by v. Note that

1√
μ0ε0

= c ∼= 2.998 × 108 m s−1 (1.18)

is the velocity of light in free space. Therefore, for the case most common in optics where
μ = μ0, the velocity of propagation within a medium is given by

v = c

n
(1.19)

where n is the refractive index according to eq. (1.10). Note also that in deriving eqs. (1.14)
to (1.17), we have assumed implicitly that the refractive index n is independent of frequency.
When n does have a frequency dependence, this can change the propagation velocity or
cause the pulse to distort during propagation. These effects are discussed in Chapter 4.

The case of a sinusoidal solution to the wave equation will be of special importance.
Then eq. (1.17) takes the form

E (z, t) = E0 cos (ωt − kz + φ) (1.20)

whereE0 is now a constant vector, ω is the angular frequency, and the propagation constant
k must satisfy the dispersion relation

k = ω
√

με (1.21)
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or again, assuming that μ = μ0,

k = ωn

c
(1.22)

The wave has a temporal oscillation period equal to 2π/ω and a spatial period or wavelength
in the medium given by λ = 2π/k. The wavelength in free space is denoted λ0 and is given
by

λ0 = 2πc

ω
(1.23)

Equation (1.20) represents the ideal case of single frequency or monochromatic laser radi-
ation. It can also be written in the equivalent form

E(z, t) = Re
{

Ẽ0ej(ωt−kz)
}

(1.24)

where Re{· · · } denotes the real part and the phase φ has been incorporated into the complex
vector Ẽ0. We refer to this form as complex notation. As we will see shortly, ultrashort light
pulses are conveniently described as superpositions of sinusoidal solutions of the form
(1.20) or (1.24) with different frequencies.

Finally, we note that similar solutions can be written for propagation in directions other
than along z, as follows:

E(r, t) = Re
{

Ẽ0ej(ωt−k·r)
}

(1.25)

Here k is the propagation vector; it points along the direction of propagation and its mag-
nitude k = |k| still satisfies the dispersion relation (1.21).

1.2.3 Poynting’s Vector and Power Flow

We also review the expressions for energy flow with electromagnetic waves. To arrive at
the required formulas, we form the dot product of eq. (1.3) with H and subtract from this
the dot product of eq. (1.4) with E. Using another vector identity,2 we find that

∇ · (E×H) +H · ∂B

∂t
+E · ∂D

∂t
+E · J = 0 (1.26)

We also make use of the divergence theorem,

∫
∇ ·A dV =

∫
A · n̂ dS (1.27)

which states that the surface integral of a vector A over a closed surface is equal to the
volume integral of ∇ ·A over the volume bounded by that surface. n̂ is the unit vector

2 The identity is ∇ ·A×B = B · ∇ ×A−A · ∇ ×B.
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normal to the surface and pointing outward. The result is

∫
(E×H) · n̂ dS +

∫
dV

{
H · ∂B

∂t
+E · ∂D

∂t
+E · J

}
= 0 (1.28)

Finally, assuming a linear medium and substituting for D and B using eqs. (1.8) and (1.12),
we obtain

∫
(E×H) · n̂ dS +

∫
dV

⎧⎨
⎩

∂
(

1
2ε |E|2

)
∂t

+
∂
(

1
2μ |H|2

)
∂t

+E · J
⎫⎬
⎭ = 0 (1.29)

Equations (1.28) and (1.29) are representations of Poynting’s theorem, which describes
conservation of energy in electromagnetic systems. We can identify specific meanings for
each of the terms. Look at eq. (1.29), for example:

�

∫
(E×H) · n̂ dS is the net rate of energy flow out of the closed surface. It has units of

power (watts). E×H is called the Poynting vector and has units of intensity (W/m2).
It gives the power density carried by an electromagnetic wave and the direction in
which power is carried.

� 1
2ε |E|2 and 1

2μ |H|2 are the local energy densities (J/m3) associated with the electric
and magnetic fields, respectively. ∂/∂t

∫ 1
2ε |E|2 dV and ∂/∂t

∫ 1
2μ |H|2 dV represent

the time rate of change of electric and magnetic field energy stored within the volume,
respectively.

�

∫
E · J dV represents power dissipation or generation within the volume (in watts).

When E · J is positive, this term represents power dissipation due, for example, to
ohmic losses. Energy is transferred out of the fields and into the medium, typically as
heat. When E · J is negative, this term represents power supplied by the currents and
fed into the electromagnetic fields.

Overall, Poynting’s theorem is a power balance equation, showing how changes in stored
energy are accounted for by power dissipation and energy flow.

It is worth specializing once more to the case of single-frequency sinusoidal fields, with
E given by eq. (1.25). The H field is obtained using eq. (1.3), with the result

H = Re

{√
ε

μ

k× Ẽ0
k

ej(ωt−k·r)
}

(1.30)

Thus H is perpendicular to both E and k, and its magnitude is equal to
√

ε/μ |E|. The factor√
μ/ε is termed the characteristic impedance of the medium, and

√
ε/μ is therefore the

admittance.
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In optics one is usually interested in the time-average power flow. This is calculated in
complex notation as follows. First consider scalar functions f (t) and g(t), where

f (t) = Re
{
f̃ ejωt

}
and g(t) = Re

{
g̃ejωt

}
(1.31)

The time average of f (t)g(t) is given by

〈fg〉 = 1

2
Re

{
f̃ g̃∗} (1.32)

Here 〈· · · 〉 denotes the time average and ∗ indicates a complex conjugate. Similarly, if
f (t),g(t), f̃, and g̃ now denote vectors, the time average of f × g is given by

〈f × g〉 = 1

2
Re

{
f̃ × g̃∗} (1.33)

Using these relations, the time-average Poynting vector for the plane waves of eqs. (1.25)
and (1.30) becomes

〈E×H〉 = 1

2

√
ε

μ

∣∣Ẽ0∣∣2 k

k
(1.34)

where we have assumed that ε and � are real. Power is carried along the direction of k.
In the case of a nonmagnetic material, we can write the magnitude of the time-average
Poynting vector, commonly called the intensity I, in the following useful form:

I = |〈E×H〉| = 1

2
ε0cn

∣∣Ẽ0∣∣2
(1.35)

1.3 REVIEW OF LASER ESSENTIALS

We will shortly discuss in some detail methods by which lasers can be made to produce
ultrashort light pulses. First, however, we give a brief and simple review of lasers in general.
More detail can be found in texts on lasers, such as [7,8].

1.3.1 Steady-State Laser Operation

Schematic drawings of two simple laser geometries are shown in Fig. 1.1. Both lasers
consist of a set of mirrors and a gain medium. The gain medium is an optical amplifier
which coherently amplifies light passing through it. The mirrors may be curved or planar
and together make up the laser cavity or resonator. The cavity is aligned so that light reflects
back and forth again and again, passing along the same path every time. If we imagine
even a very weak light intensity in the cavity (due to spontaneous emission from the gain
medium), then for sufficiently high gain, the intensity increases from one round trip through
the laser to the next, eventually resulting in an intense beam. In steady state the gain per
round trip must equal the loss. Part of the light passes through the partially transmissive
output coupler, and this forms the output laser beam, which can be used for experiments.
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Figure 1.1 Schematic of (a) a linear cavity laser and (b) a ring laser. HR, high reflector; OC, output
coupler.

In the linear or Fabry–Perot laser cavity shown in Fig. 1.1a, light passes along the same
path, traveling from left to right and right to left. The light makes two passes through the
gain medium per round trip. In the ring cavity shown in Fig. 1.1b, light passes through
the gain medium only once per round trip. In the diagram we have assumed unidirectional
operation (i.e., light is traveling around the ring in only one direction). In real ring lasers
either unidirectional or bidirectional operation is possible. Both linear and ring geometries
have been used in femtosecond laser design.

For our purposes we usually consider the gain medium as a black box. The physics of laser
gain media is usually analyzed using quantum mechanics in courses on laser fundamentals.
Here we usually stick to a classical description, although we will use the indispensable
energy-level concept, which does come from quantum mechanics. Common laser media
used for ultrafast lasers include impurity-doped crystals or glasses such as Ti:sapphire,
Nd:YAG or Nd:glass, organic dyes, doped optical fibers, and semiconductor heterojunction
diodes. Note that in thermodynamic equilibrium, materials can absorb light but cannot
amplify it. To achieve gain, power must be supplied to the medium to promote electrons
into excited-state energy levels. When the electrons are “pumped” to the excited state at a
sufficiently high rate (i.e., when enough power is supplied), a population inversion, in which
the population of electrons in an excited energy level exceeds that in a lower level, can be
achieved. A population inversion is a necessary condition to achieve optical gain. Power
can be supplied to the laser medium in many different ways. Optical pumping, in which
absorption of pump photons from a flashlamp or an external laser promotes the electrons to
the excited state, is often used in ultrashort-pulse lasers. Other pumping methods include
current injection in semiconductor diode lasers or electric discharges in gas lasers. The need
for a pump source to obtain optical gain can be likened to the need to plug in an electronic
amplifier.

To achieve steady-state laser operation, the electric field must repeat itself after a round
trip through the laser cavity. Therefore, let us now consider a single round trip of a monochro-
matic field through a cavity. To be specific, we consider the linear cavity of Fig. 1.1a. The
optical path length between mirrors is denoted l; the total optical path length is therefore 2l.
The electric field amplitude of a monochromatic plane wave propagating the +z direction
can be written

E(z, t) = Re
{

E0e
j(ωt−kz)

}
(1.36)
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where the field is now taken as a scalar for convenience. E0 is the field amplitude just to the
right of the high reflector at z = 0, ω is the angular frequency, k = ωn/c is the propagation
constant, and n = n′ + jn′′ is the complex refractive index (n′ and n′′ are both real numbers).
The field just before the output coupler is written

E = Re
{

E0e
(ω/c)n′′lgejωte−j(ω/c)(n′lg+la)

}
(1.37)

In eq. (1.37) n′ and n′′ refer to the gain medium; the regions outside the gain medium are
taken as air, with n = 1. lg and la are the physical lengths of the gain medium and air region,
respectively. We can now identify l = n′lg + la as the optical path length. We also see that
for n′′ > 0, the field has been amplified.

The field at z = 0, corresponding to a round-trip path through the resonator, is obtained
by reflecting off the output coupler with amplitude r2, passing back through the cavity, and
then reflecting off the high reflector with amplitude r1. Although ideally we would have
r1 = 100%, we keep the variable r1 in our expressions to account for any imperfections of
the high reflector as well as any other losses in the laser cavity besides those arising from
the output coupler. The resulting expression for the field is as follows:

E = Re
{

r1r2e
2(ω/c)n′′lgE0e

jωte−j(2ω/c)l
}

(1.38)

To satisfy the steady-state requirement, eq. (1.38) must be equal to the initial field,
eq. (1.36), evaluated at z = 0: E = Re

[
E0e

jωt
]
. This leads to two conditions: the gain

condition and the phase condition. The gain condition,

r1r2e
(2ω/c)n′′lg = 1 (1.39)

states that the round-trip gain exactly balances the round-trip loss. The phase condition,

2ωl

c
= 2mπ (1.40)

requires that the the round-trip phase shift is equal to an integer m times 2π. This means
that the laser is only allowed to oscillate at certain discrete angular frequencies, given by

ωm = mπc

l
(1.41)

These frequencies are known as the longitudinal modes of the cavity. In terms of the fre-
quency f = ω/2π, the mode frequencies are

fm = mc

2l
(1.42)

and the mode spacing (taking n′ as frequency independent) is


f = fm − fm−1 = c

2l
(1.43)
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f c

Figure 1.2 Laser gain and cavity loss spectra, longitudinal mode locations, and laser output for
multimode laser operation.

A frequency-domain view of basic laser operation is pictured schematically in Fig. 1.2.
A comparison of the gain vs. loss is shown at the top, with the locations of the longitudinal
modes shown below. The resonator loss is taken as frequency independent, while the gain
is assumed to have a bandpass spectral response. Laser oscillation occurs only for those
modes where the gain lies above the loss line. In the situation shown, gain exceeds loss for
several longitudinal modes, and multiple output frequencies appear simultaneously. This is
called multimode operation.

Small-signal gain

f c

Figure 1.3 Gain and loss spectra, longitudinal mode locations, and output of a homogeneously
broadened laser under single-mode operation.
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To obtain monochromatic or single-mode laser radiation, it is usually necessary to insert
a frequency-dependent loss element (a filter) to ensure that gain exceeds loss for only a
single longitudinal mode. This situation is sketched in Fig. 1.3. Note, however, that the
steady-state laser gain condition [eq. (1.39)] requires that the gain exactly equal rather
than exceed the loss. For this reason we now distinguish between small-signal gain and
saturated gain. Small-signal gain is gain available under conditions of zero or at least very
weak light intensity and depends only on the properties of the laser medium and the pump
level. For weak spontaneous emission to build up to produce a significant laser intensity,
the small-signal gain must indeed exceed the loss. However, as the intracavity intensity
increases, the small-signal condition is violated. As laser photons are amplified in the laser
medium through stimulated emission, at the same time electrons in the excited energy state
are stimulated back down to the lower-energy state. The intracavity field extracts energy
that was stored in the gain medium by the pump and reduces the number of excited-state
electrons available for amplification. As a result, the gain is reduced. The actual gain that
results, known as the saturated gain, depends on the properties of the laser medium, the
pump level, and the intracavity laser intensity. Note that saturation phenomena are quite
familiar in the context of electronic amplifiers, where the full amplifier gain is available
only for input signals below a certain voltage level; for higher voltage levels the output may
appear to be clipped.

To clarify the role of gain saturation in lasers, let us imagine that the pump intensity is
increased slowly from zero in a single-mode laser cavity. As long as the small-signal gain
remains below the loss, the laser intensity is zero. When the pump intensity is sufficient to
raise the small-signal gain to equal the loss exactly, the laser reaches threshold. The laser
power is still zero at this point. When the pump is increased above threshold, the laser power
increases, and this saturates the gain. For a given pump level, the laser intensity builds up
just enough to maintain the saturated gain at exactly the loss level, as pictured in Fig. 1.3.
Thus, pump power above the threshold value is converted into stimulated emission. As a
result, the laser intensity increases linearly with pump power above threshold.

In our discussion we have implicitly assumed that the gain medium is broadened ho-
mogeneously. This means that all the excited-state electrons have identical gain spectra, so
that the overall gain is simply the gain spectrum per electron times the population differ-
ence between upper and lower laser states. Gain saturation in a homogeneously broadened
medium results from a decrease in this population difference, and therefore the saturated
gain has the same spectral shape as the small-signal gain.

Inhomogeneously broadened media and inhomogeneously broadened lasers, in which
different excited-state electrons have different spectra, are also possible. This may result,
for example, due to the fact that different impurity ions in a glass laser experience different
local environments. As shown in Fig. 1.4a, the overall absorption or gain spectrum is then
determined by both the individual homogeneous lines (associated with electrons with identi-
cal resonance frequencies) and the inhomogeneous distribution function G(ω − �0). When
the inhomogeneous distribution is wide compared to the homogeneous linewidth, the net
absorption or gain spectrum is determined mainly by G(ω − �0) and peaks at the center of
the inhomogeneous distribution �0. As shown in Fig. 1.4b, the saturation behavior of an in-
homogeneously broadened medium interacting with a narrow-bandwidth laser field is quite
different than saturation behavior for homogeneous broadening. In particular, saturation
induces a “spectral hole” in the vicinity of the laser field, while the spectrum is essentially
unchanged for frequencies much more than a homogeneous linewidth away from the laser
frequency. Because inhomogeneously broadened lasers are not in common use for ultrashort
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(a)(a) (b)

0G

0 0

Figure 1.4 (a) Absorption or gain spectrum of a medium with an inhomogeneous distribution
G(ω − �0) of transition frequencies; (b) spectral hole burning associated with saturation of an inho-
mogeneously broadened medium by a narrowband laser field.

pulse generation, we do not discuss them further at this time. However, we return to this
topic in Chapter 9, where we discuss line-shape theory and ultrafast spectroscopy techniques
for probing physics associated with homogeneous and inhomogeneous broadening.

1.3.2 Gain and Gain Saturation in Four-Level Atoms

To provide further insight, we discuss gain saturation for the four-level atom. The four-level
atom approximation, sketched in Fig. 1.5, is commonly used to model important mode-
locking media such as Ti:sapphire or dye molecules. Here we discuss continuous-wave
(CW) saturation; saturation in response to pulses is covered in Chapter 2. Note that we do
not mean the word atom in the term four-level atom literally. Rather, this word refers to
whatever entity (molecule, impurity complex, etc.) is active in the laser gain process.

Referring to Fig. 1.5, electrons are promoted from the lowest state, denoted level 1, up
to level 2 (e.g., via optical pumping). Electrons in level 2 are usually assumed to relax
very rapidly to level 3, so that the population of electrons in level 2 remains close to zero.
Physically, this relaxation usually arises from vibronic rearrangement of the nuclei within
the crystal-impurity or molecular system, which typically occurs on a subpicosecond time
scale following the electronic transition from 1 to 2. The transition from 3 to 4 is the lasing
transition, and levels 3 and 4 are the upper and lower laser levels, respectively. Electrons
from level 3 can undergo stimulated emission down to level 4, giving up a photon to the
laser field in the process, or they can also relax spontaneously down to level 4 with rate τ−1

G ,
in which case their energy is not available to the laser field. τG is the energy storage time of
the gain medium, which may range from nanoseconds to milliseconds in materials used for
femtosecond pulse generation. Electrons in level 4 are again assumed to relax very rapidly

Figure 1.5 Energy-level structure for a four-level atom.
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back to level 1, so that the lower laser level remains nearly empty (this is the principal
advantage of four-level atoms).

Mathematically, we denote the total density of atoms (in m−3) as NG, and the number
density in each of the four levels as N1, N2, N3, and N4, respectively. Naturally, we have

N1 + N2 + N3 + N4 = NG (1.44)

The level populations are described by the following rate equations:

N
.

1 = −W(N1 − N2) + N4

τ41
(1.45)

N
.

2 = W(N1 − N2) − N2

τ23
(1.46)

N
.

3 = −S(N3 − N4) − N3

τG

+ N2

τ23
(1.47)

N
.

4 = S(N3 − N4) − N4

τ41
+ N3

τG

(1.48)

Here W is the pumping rate per atom (in s−1) from level 1 to 2, and its strength is controlled
via the external excitation of the laser medium. For example, in the case of optical pumping,
W is proportional to the intensity of the pump laser. S is the stimulated emission rate per
atom (in s−1), which is proportional to intensity and given in physical units by

S = σ34I (ω34)

�ω34
(1.49)

Here σ34 is the “cross section” of the laser transition, which characterizes the strength of the
laser–matter interaction, I (ω34) is the laser intensity inside the resonator, and �ω34 gives the
photon energy of the 3 → 4 transition. In the case of optical pumping, a similar expression
applies for W . τ23 and τ41 are the 2 → 3 and 4 → 1 relaxation times, respectively. The gain
is proportional to the population difference between the laser levels:

g = σ34

2
(N3 − N4) lg (1.50)

The factor of 1/2 arises because we have written the gain coefficient for the field in eq.
(1.50); this factor is not present when writing the gain coefficient for the intensity. In steady
state all the time derivatives in the rate equations are set to zero. Furthermore, since the
relaxation from levels 2 and 4 is very fast, we can also approximate N1 − N2 = N1 and
N3 − N4 = N3 in eqs. (1.45 to 1.48). Solving for the upper-laser-level population under
these conditions yields the following expression for the gain:

g =
(

1

2

)
σ34WNGτGlg

1 + (W + S) τG

(1.51)
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The gain is a function of both W and S. In the small-signal regime (S = 0), the small-signal
gain g0 is given by

g0 =
(

1

2

)
σ34WNGτGlg

1 + WτG

(1.52)

g0 starts at zero, then increases linearly with pump rate W at first but saturates for large
W when N3 approaches NG. In the large-signal regime (S is finite), the gain can be
rewritten

g = g0

1 + S/Ssat
(1.53)

where

Ssat = W + 1

τG

(1.54)

is a saturation parameter. Within a laser, the gain first increases with increasing pump until
threshold is reached. Above threshold the small-signal gain g0 continues to increase as W

increases, but the actual gain g is clamped or saturated at the value needed for threshold,
which we denote gth. The laser intensity (inside the laser) is found by setting eq. (1.53) to
gth, with the result

S = Ssat

(
g0

gth
− 1

)
(1.55)

Lasing can occur in three-level systems as well as in the four-level systems discussed
above. For further discussion, see standard laser texts.

1.3.3 Gaussian Beams and Transverse Laser Modes

Real laser beams have a finite transverse extent; they are not plane waves. In most cases
of interest to us, however, laser beams may be considered paraxial. This means that they
are made up of a superposition of plane waves with propagation vectors close to a single
direction (which we take as z). Equivalently, the variation of the field in the transverse (x–y)
direction must be much weaker than in the z direction. Under these conditions the electric
field vector still lies mainly in the x–y plane. In the following we give a brief summary of
paraxial laser beams and the related transverse mode structure of lasers. More detail can be
found in most texts on lasers (e.g., [7–9]).

For a monochromatic, paraxial wave it is useful to write

E(z, t) = Re
{

Ẽ0u(x, y, z)ej(ωt−kz)
}

(1.56)

where k is given by eq. (1.22) and E refers to a single transverse polarization component.
In this form the most rapid wavelength-scale variation of the field is carried by the e−jkz
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term; u(x, y, z) is a slowly varying envelope. Substitution into the wave equation, eq. (1.15),
yields

∇2
T u + ∂2u

∂z2 − 2jk
∂u

∂z
= 0 (1.57)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2. Since u is assumed to be slowly varying,

∣∣∂2u/∂z2
∣∣ 


2k |∂u/∂z|, and therefore ∂2u/∂z2 can be neglected. The resulting paraxial wave equation
is

∇2
T u − 2jk

∂u

∂z
= 0 (1.58)

The paraxial wave equation has Gaussian beam solutions that provide a good description
of laser beams both inside and outside the laser cavity. A particularly useful solution is
written as follows:

u00(x, y, z) = w0

w(z)
e−(x2+y2)/w2(z)e−jk(x2+y2)/2R(z)ejφ(z) (1.59)

where we define

w2(z) = w2
0

[
1 +

(
z

z0

)2
]

(1.60a)

1

R(z)
= z

z2 + z2
0

(1.60b)

φ(z) = tan−1
(

z

z0

)
(1.60c)

z0 = πw2
0n

λ
(1.60d)

This solution, sketched in Fig. 1.6, describes a beam that comes to a focus at z = 0 with a
radius w0 (measured at 1/e of the on-axis field). The beam radius w(z) changes only slowly
within the region |z| < z0; far outside this region the beam spreads with a half angle equal
to λ/πw0n. The depth b over which the beam radius remains less than

√
2 w0 is given by

b = 2z0, where b is termed the depth of focus or the confocal parameter. R(z) is the radius of
curvature of the phase fronts. R = ∞ at the beam waist (z = 0), corresponding to a planar
phase front; for |z| � z0, the phase fronts become spherical with a center of curvature at
z = 0. Equation (1.60c) indicates a phase shift that accompanies propagation through the
focal region. This Gaussian beam solution describes both laser beam propagation in free
space as well as the spatial behavior of the fundamental transverse modes that are allowed
inside a laser resonator with flat or spherical mirrors. The particular transverse mode of this
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Figure 1.6 Gaussian beam solution of the paraxial wave equation, showing evolution of the beam
radius and representative phase front.

type allowed within a given laser resonator is selected by the requirement that R(z) must
match the radii of curvature of the mirrors within the laser, which determines the location
of the beam waist and the value of w0; for free propagation outside a laser, any solution of
this type is allowed.

It is useful to know the power P carried by a Gaussian beam, which is obtained by
integrating the intensity over its cross-sectional area. The result is

P =
∫

dA
ε0nc

2

∣∣Ẽ0
∣∣2 |u|2 = ε0nc

2

∣∣Ẽ0
∣∣2 w2

0

w2(z)

∫ ∞

0
2πr dr e−2r2/w2(z)

= 1

2
ε0nc

∣∣Ẽ0
∣∣2 πw2

0

2
(1.61)

The power is equal to the on-axis intensity at the focus, multiplied by the area of a circle of
radius w0/

√
2, which is the radius of the intensity at the e−1 point.

Equation (1.59) is the lowest-order member of an entire family of Hermite–Gaussian
solutions to the paraxial wave equation, given by

umn(x, y, z) ∼ 1

w(z)
Hm

(√
2 x

w(z)

)
Hn

(√
2 y

w(z)

)

× e−(x2+y2)/w2(z)e−jk(x2+y2)/2R(z)ej(m+n+1)φ(z) (1.62)

The Hν(ξ) with ν a nonnegative integer are Hermite polynomials [10], where for example,
H0(ξ) = 1, H1(ξ) = 2ξ, and H2(ξ) = 4ξ2 − 2. In general, the Hν are polynomials of order
ν, which become wider and exhibit a greater number of zero crossings as ν increases. The
expressions for w(z), R(z), and φ(z) are still as given above. Although the fundamental
Gaussian beam is by far the most important in most ultrafast optics applications, the higher
order (m /= 0 or n /= 0) Hermite–Gaussian solutions will be relevant in our study for sev-
eral reasons. For example, all the umn in eq. (1.62) are allowed transverse modes of laser
resonators, termed TEMmn modes, although the fundamental TEM00 mode usually has the
lower loss and is therefore favored. We shall see however that higher-order modes were sig-
nificant in the discovery of the important Kerr lens mode-locking technique for short pulse
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generation with solid-state lasers. Additionally, the Hermite–Gaussians form a complete
orthogonal basis set, which means that an arbitrary spatial beam profile can be decomposed
into a superposition of these functions.

To calculate the propagation of Gaussian beams through linear optical systems, it is
convenient to introduce a complex q parameter, such that

1

q(z)
= 1

R(z)
− jλ

πw2(z)n
(1.63)

The effect of the optical system can then be characterized by a bilinear transformation of
q: namely,

qout = Aqin + B

Cqin + D
(1.64)

The coefficients appearing in eq. (1.64) are usually written in matrix form. The matrices for
a few common systems are as follows:

� A length d of a homogeneous medium:

(
A B

C D

)
=

(
1 d

0 1

)
(1.65a)

� A lens with focal length f (this matrix also applies to a spherical mirror of radius R if
we set f = R/2):

(
A B

C D

)
=

(
1 0

−1/f 1

)
(1.65b)

� A planar interface, perpendicular to the propagation direction, from a medium with
index n1 to a medium with index n2:

(
A B

C D

)
=

(
1 0

0 n1/n2

)
(1.65c)

An important property of such matrices is that the effect of cascaded systems is computed via
matrix multiplication. If M1, M2, . . . , MN represent the matrices for N cascaded systems,
with the beam entering system 1 first and system N last, the effect of the cascaded system
is given by MN · · · M2M1. For example, the matrix for a homogeneous slab of thickness d

and index n and surrounded on either side by free space is

(
A B

C D

)
=

(
1 0

0 n

) (
1 d

0 1

) (
1 0

0 1/n

)
=

(
1 d/n

0 1

)
(1.66)
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The matrices given above are also useful in the ray optics description of optical systems.
Here one writes (

xout

x′
out

)
=

(
A B

C D

) (
xin

x′
in

)
(1.67)

where xin and x′
in are the position and slope of the incoming ray, respectively, and similarly

for the outgoing ray. For a given optical system, the matrixes for the ray optics description
and the Gaussian beam (q parameter) description are identical. The ray optics description
is sometimes helpful in identifying or interpreting the ABCD matrices. For example, the
matrix in eq. (1.66) says that the slab of physical thickness d has an effective thickness of
d/n. From the ray optics description, it is clear that this occurs due to bending of the rays
toward the normal as they enter the medium.

The q parameter and the ABCD matrices are useful in solving for the transverse mode
of laser resonators. Assume that we have calculated the matrix for one complete round trip
through the resonator, starting, for example, at a particular mirror M. Then one condition
for an acceptable transverse mode is that the field pattern must exactly reproduce itself after
one round trip, which can be formulated as

q = Aq + B

Cq + D
(1.68)

A further condition is that for a stable mode, the beam radius must be finite, which means
that q must have a nonzero imaginary part. From the ray optics perspective, this stability
condition means that incoming rays remain confined after many passes through the system.
Multiplying through by the denominator in eq. (1.68) yields a quadratic polynomial equation
for q. The root of this equation with a negative imaginary part gives q at mirror M, and
q in turn yields the mode size within the laser resonator. Not all resonators have stable
solutions. A well-known and important example is the simple two-mirror cavity (Fig. 1.7),
consisting of mirrors with radii of curvature R1 and R2 which are separated by distance d.
After calculating the round-trip ABCD matrix and requiring that the roots of eq. (1.68) have
nonzero imaginary part, one obtains the stability relation

0 <

(
1 − d

R1

) (
1 − d

R2

)
< 1 (1.69a)

or simply

0 < g1g2 < 1 (1.69b)

d

RR

Figure 1.7 Simple two-mirror optical resonator.
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where g1 = 1 − d/R1 and g2 = 1 − d/R2 are symbols often used to express the stability
condition succinctly. We make use of this stability condition when we discuss Kerr lens
mode-locking in Chapter 2.

1.4 INTRODUCTION TO ULTRASHORT PULSE GENERATION
THROUGH MODE-LOCKING

The single-mode laser discussed in Section 1.3 can have a very narrow optical frequency
spectrum. This results in the well-known monochromaticity property of lasers. However,
short pulse generation requires a broad optical bandwidth and hence multiple longitudinal
mode operation. Even with the bandwidth-limiting filter removed, however, the saturated
gain in a homogeneously broadened laser is below the loss level except for those modes
near the peak of the gain spectrum, and this also limits the number of oscillating modes.
Methods for forcing a great number of modes to oscillate to obtain broad bandwidths and
ultrashort pulses are covered in detail later. In the following we analyze the time-domain
characteristics of a laser which we assume already has multimode operation.

For a multimode laser we can write the electric field as follows:

e(z, t) = Re

{∑
m

Emej(ωmt−kmz+φm)

}
(1.70a)

where

ωm = ω0 + m 
ω = ω0 + 2mπc

L
(1.70b)

and

km = ωm

c
(1.70c)

Henceforth we use lowercase letters [e.g., e(z, t)] for the time-domain representation of the
field and capital letters (e.g., Em) to refer to the frequency domain. Equation (1.70a) most
accurately models a unidirectional ring laser, where the z coordinate refers to travel around
the ring in the direction of laser oscillation, although the same essential results will also hold
for a linear (Fabry–Perot) laser. The round-trip distance around the ring is denoted L (for a
Fabry–Perot laser we would use L = 2l, where l is the Fabry–Perot mirror separation). In
this formulation we are assuming that the laser is oscillating in a single transverse mode,
so that the spatial profile may be dropped.

Equation (1.70a) can be rewritten as follows:

e(z, t) = Re

{
ejω0(t−z/c)

∑
m

Emej[m
ω(t−z/c)+φm]
}

(1.71a)

= Re
{

a
(
t − z

c

)
ejω0(t−z/c)

}
(1.71b)
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where

a
(
t − z

c

)
=

∑
m

Emej[m
ω(t−z/c)+φm] (1.71c)

Thus, the electric field is the product of a complex envelope function a (t − z/c) with the
optical carrier ejω0(t−z/c).

This terminology is convenient because in many cases the carrier term, which oscillates
with a period of just a few femtoseconds (for visible wavelengths), varies much more rapidly
than the envelope function. (However, for the shortest pulses available today, comprising
just a few optical cycles, this distinction is blurred.) Both carrier and envelope functions
travel around the laser cavity at the speed of light. Furthermore, for a specific location in
the cavity (z fixed), the envelope function is periodic with period

T = 2π


ω
= 2l

c
= L

c
(1.72)

This corresponds to the time required for light to make one round trip around the resonator.
If we are to say anything further about the shape of the envelope function, we need to

specify the mode amplitudes Em and phases φm. If we assume that there are N oscillating
modes all with equal amplitudes E0 and with the phases identically zero, eq. (1.71a) becomes
easy to evaluate. The process (discussed later) by which the modes are held with fixed
relative phases is known as mode-locking, and as we shall see, having all the phases equal
is a particularly useful form of mode-locking. Equation (1.71a) now becomes

e(z, t) = Re

⎧⎨
⎩E0e

jω0(t−z/c)
(N−1)/2∑

−(N−1)/2

ej[m
ω(t−z/c)]

⎫⎬
⎭ (1.73)

To evaluate this we substitute m′ = m + (N − 1)/2 and use the summation formula

q−1∑
m=0

am = 1 − aq

1 − a
(1.74)

Upon some further simplification, the result is

e(z, t) = Re

{
E0e

jω0(t−z/c) sin (N 
ω/2)(t − z/c)

sin (
ω/2)(t − z/c)

}
(1.75)

The laser intensity (I), averaged over an optical cycle, is proportional to |e(z, t)|2. At a
specific cavity location, say z = 0, we have

I(t) ∼ |E0|2 sin2 (N 
ωt/2)

sin2 (
ωt/2)
. (1.76)
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Figure 1.8 (a) Mode-locked laser output with constant mode phase; (b) laser output with randomly
phased modes.

The resulting intensity profile is sketched in Fig. 1.8a. Some of the key points are as
follows:

� The output consists of a periodic series of short pulses, with period T = 1/
f = L/c.
� The pulse duration is approximately 
t = 2π/N 
ω = 1/N 
f . Thus, the pulse du-

ration is equal to the periodicity divided by the number of modes. Equivalently, the
pulse width is equal to the inverse of the total laser bandwidth.

� The peak intensity is proportional to N2 |E0|2. In comparison, the average intensity
(averaged over the pulse period), given by the number of modes times the power per
mode, is proportional to N |E0|2. Thus, the peak intensity of a mode-locked pulse is
enhanced by a factor N.

A very different situation arises if we assume that the mode phases are random, as
in a garden-variety multimode laser. In this case the intensity profile takes on a random
appearance, as shown in Fig. 1.8b. Key points are as follows:

� The intensity fluctuates randomly about the average intensity value. The average in-
tensity is ∼N |E0|2, which is the same as in the mode-locked case, although the peak
intensity is a factor of N lower.

� The time scale over which the fluctuations vary (also known as the correlation time)
is still 
t ≈ 1/N 
f .

� The intensity fluctuations are still periodic with period T = 1/
f .

In addition, in the garden-variety multimode laser, the random phases are likely to vary
slowly with time as well. This introduces yet an additional degree of randomness to the
multimode laser output. To avoid such fluctuations and obtain a well-defined output, one
can either utilize single-mode lasers with narrow spectra, as in Section 1.3, or mode-locked
lasers with narrow pulses and broad spectra.

It is also worth noting that the carrier frequency ω0 is left arbitrary in this very simple
treatment. Indeed, in many mode-locked lasers, the carrier frequency is allowed to drift. On
the other hand, for some purposes it is important to stabilize and know the carrier frequency
precisely. These issues are discussed in Section 7.5.
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1.5 FOURIER SERIES AND FOURIER TRANSFORMS

We shall have many occasions where we wish to describe pulses in terms of a frequency-
domain representation. We encountered one example in Section 1.4, where we wrote a
mode-locked periodic pulse train as a summation over the longitudinal cavity modes. In this
section we briefly review Fourier series and Fourier transforms, which are the mathematical
tools used to convert between time- and frequency-domain representations. For more detail,
see texts such as [11,12]. The key point is that any time-dependent signal can be written as
a superposition or summation of sines and cosines (or complex exponentials) with different
frequencies.

1.5.1 Analytical Aspects

If a function f (t) is periodic with period T , we can write it as a Fourier series:

f (t) =
∞∑

n=−∞
Fne

jn
ωt (1.77)

where 
ω = 2π/T is the [angular] frequency. The Fn are the Fourier amplitudes or Fourier
coefficients and can be obtained from the time-domain signal f (t) as follows3:

Fn = 1

T

∫ T

0
f (t)e−jn
ωt dt (1.78)

In the case of an aperiodic time-domain function, we can consider that the period T goes
to ∞. We then have the frequency spacing 
ω → 0, and therefore we replace the discrete
variable n 
ω with a continuous variable ω. This results in the Fourier transform:

f (t) = 1

2π

∫ ∞

−∞
F (ω)ejωt dω (1.79a)

and

F (ω) =
∫ ∞

−∞
f (t)e−jωt dt (1.79b)

F (ω) is known as the Fourier transform of f (t), and f (t) is obtained by performing the
inverse Fourier transform of F (ω).

We now review a few useful properties of Fourier transforms, most of which we state
without proof. For all of the following we assume that f (t) and F (ω) are a Fourier transform
pair.

� Reality condition. If f (t) is a real function, which it will be whenever it represents an
actual physical observable, F (−ω) = F∗(ω).

3 Instead of integrating from 0 to T , one can get the same results by integrating over any other interval of duration
T (e.g., −T/2 to T/2).
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� Scaling formula:

If h(t) = f (at), then H(ω) = 1

a
F

(ω

a

)
(1.80)

� Time-delay formula:

If h(t) = f (t − τ), then H(ω) = F (ω)e−jωτ (1.81)

� Frequency-offset formula:

If h(t) = f (t)ejω0t , then H(ω) = F (ω − ω0) (1.82)

� Convolution formula. The convolution of two functions f (t) and g(t) is denoted f (t) ∗
g(t) and is defined by

f (t) ∗ g(t) =
∫

dt′ f (t′)g(t − t′)

The convolution formula states that

if h(t) = f (t) ∗ g(t) then H(ω) = F (ω)G(ω) (1.83)

� Parseval’s theorem. We know that the intensity I(t) of a pulse whose electric field
profile is f (t) is proportional to |f (t)|2 = f (t)f ∗(t). Recall that the units of intensity
are W/m2. The pulse energy is given by the time-integrated intensity integrated over
the cross-sectional area. Parseval’s theorem says that

∫
f (t)f ∗(t) dt = 1

2π

∫
F (ω)F∗(ω) dω (1.84)

Therefore, the time-integrated intensity is equal to the frequency-integrated intensity,
except for a multiplicative factor. For this reason the quantity |F (ω)|2 = F (ω)F∗(ω)
is called the power spectral density.

The use of these formulas will be illustrated as they are needed. We do provide a few
examples of the Fourier transform:

1. f (t) = δ(t), where δ(t) is the delta function or unit impulse function. Recall that
δ(t) = 0 for t /= 0, δ(t) = ∞ for t = 0, and

∫ ∞
−∞ dt δ(t) = 1. By substitution into

eq. (1.79b), we find that F (ω) = 1.

2. If f (t) = ejω0t , then F (ω) = 2πδ(ω − ω0). This is verified by plugging into
eq. (1.79a).
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3. f (t) is a Gaussian, f (t) = e−t2/t2p . Then

F (ω) =
∫

dt e−t2/t2p e−jωt =
∫

dt e
−
[

(t+jωt2p/2)2/t2p

]
e−ω2t2p/4

Using the substitution u = (t + jωt2
p/2)/tp and

∫ ∞
−∞ du e−u2 = √

π, we obtain

F (ω) = tp
√

π e−ω2t2p/4

The procedure we have used above, called completing the square, is very useful for
evaluating Fourier transforms of Gaussian functions.

Finally, we frequently write a pulse in terms of a slowly varying envelope function times
an optical carrier term:

e(t) = Re
{
a(t) ejω0t

} = 1

2

[
a(t) ejω0t + a∗(t) e−jω0t

]
(1.85)

The spectrum E(ω) is then given by

E(ω) = 1

2

[
A(ω − ω0) + A∗(−ω − ω0)

]
(1.86a)

where

A(ω) =
∫ ∞

−∞
a(t)e−jωt dt (1.86b)

is the Fourier transform of the envelope function a(t). Equation (1.86a) is sketched in
Fig. 1.9. Separating the field into envelope and carrier terms is most useful when (as in
Fig. 1.9) the bandwidth of A(ω) is much less than the carrier frequency ω0. In the time
domain, this means that the envelope is much longer than the optical cycle.

E

0 0

A A0 0

Figure 1.9 Double-sided spectrum corresponding to eq. (1.86a).
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The pulse e(t) can be obtained directly by performing the inverse Fourier transform of
the double-sided spectrum described by eq. (1.86a) or from the single-sided spectrum using
the formula

e(t) = Re

{
1

2π

∫
A(ω − ω0) ejωt dω

}
(1.87)

1.5.2 Computational Aspects

Fourier transform methods are frequently used for computations involving ultrashort pulses.
Accordingly, we introduce briefly some relevant points relating to numerical computations
of Fourier transforms. For detailed discussion, see [13].

Usually computations involving a continuous-time function f (t) involve only samples
of f (t) at a set of discrete times tn. Let us assume that we have N evenly spaced samples
with time spacing 
, so that tn = n
. We designate the sample values as fn = f (tn) for
n = 0, 1, . . . , N − 1. The Fourier transform of f (t) is then computed numerically as

Fk =
N−1∑
n=0

fne
−2πjnk/N (1.88)

Equation (1.88) is formally called the discrete Fourier transform. The inverse discrete
Fourier transform is given by

fn = 1

N

N−1∑
k=0

Fke
2πjnk/N (1.89)

Indices n and k take on integer values in the range 0, 1, . . . , N − 1.
Discrete Fourier transform routines are widely available in numerical computing soft-

ware. Practically, it is preferred to choose the vector length N to be a power of 2. This
allows the numerical package to evaluate the discrete Fourier transform using the fast
Fourier transform (FFT) algorithm, which dramatically reduces computing time. Although
the relationship to the continuous-time Fourier transform may appear to be straightforward,
several points must be kept in mind if one is to obtain sensible computational results. These
points include the following:

� Although the fn vector contains a sequence of samples of the time-domain function
f (t), it does not explicitly provide information on the sampling times tn or the sampling
interval. Similarly, the vector of Fourier amplitudes Fk does not explicitly stipulate the
frequencies at which the spectrum is sampled. Hence, time and frequency vectors must
be tracked by the user as auxiliary information. Note, however, that time and frequency
vectors are related. If the sampling interval is known to be 
, the time vector represents
a total time span N
; the frequency vector νk represents a total frequency span 1/
,
with νk = k/N
 and spacing 1/N
 between frequency samples. Here frequency refers
to ν = ω/2π and is measured in hertz (as opposed to angular frequency ω measured
in rad/s).
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� Inspection of eqs. (1.88) and (1.89) reveals that if indices n and k were allowed to extend
beyond the stipulated range, fn and Fk would be periodic sequences with period N.
fn and Fk for n and k in the range 0, 1, . . . , N − 1 would each then represent one
period of the corresponding periodic sequences. For signals that are time-limited to
duration less than N
, or frequency-limited to bandwidth less than 1/
, meaning that
the signal is nonzero only over a range of samples of length less than N, this is of little
consequence. However, for signals that are not time- or frequency-limited in this way,
signal content appearing at the end of the time (or frequency) vector effectively wraps
around to appear at the beginning of the vector.

� Consider a continuous-time signal f (t) that is frequency-limited such that its spectrum
is zero for all frequencies outside the region −B ≤ ν ≤ B. A well-known theorem
states that all information about f (t) is retained in its sampled representation provided
that the sampling interval satisfies 
 ≤ 1/2B. This requirement, called the Nyquist
criterion, is equivalent to specifying a minimum of two samples within each period of
the highest-frequency component of the frequency-limited signal. Conversely, when
the Nyquist criterion is not satisfied, information is lost. In the context of our discussion
on the discrete Fourier transform, we note that if Fk is frequency-limited to a bandwidth
less than 1/
, we have 2B < 1/
, and the Nyquist criterion is satisfied. Accordingly,
in setting up an Fk vector for a computation, it is usually advisable to ensure that the
nonzero values of Fk fit comfortably within the length of the vector. If necessary, this
can be accomplished by zero padding the Fk vector, which is equivalent in the time
domain to decreasing the sample interval (increasing the sample rate).

� For similar reasons it is usually advisable to make sure that the nonzero values of fn

fit comfortably within the vector length as well. Again this can be accomplished by
zero padding if needed.

� Inspection of eqs. (1.88) and (1.89) also shows that time t = 0 of the physical
continuous-time function f (t) and frequency ν = 0 of the continuous-frequency func-
tion F (ω) correspond to the first point in the fn and Fk vectors, respectively (i.e.,
t0 = 0 and ν0 = 0). For a signal with spectrum centered at ν = 0, the “right” half of
the spectrum appears at the beginning of the vector; the “left” half of the spectrum
wraps around and appears at the end of the vector. A similar statement is true for a
signal centered at t = 0 in the time domain.

� If, instead, one inadvertently positions an input spectrum so that it is centered in the
frequency vector, then upon performing the inverse transform, one will notice that
the expected time-domain signal is multiplied by a mysterious (−1)n function. That
is, data points have alternating signs, which is equivalent to a π phase shift between
points. The explanation is that the discrete Fourier transform “interprets” a shift in
the positioning of the input spectrum as an actual frequency shift. Centering the input
spectrum amounts to a frequency shift of 1/2
 in real units. This corresponds to a
period of 2
 in time units, equivalent to two sample intervals.

� Similarly, if one inadvertently positions an input time-domain signal so that it is cen-
tered in the time vector, then upon performing the forward transform, one will notice
that the expected spectrum is multiplied by a (−1)k function. The explanation here is
that a time shift in the input signal gives rise to a sampled linear phase variation in
its frequency representation (Fk). For a time shift of N
/2, the linear spectral phase
amounts to a π phase shift per frequency sample.
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PROBLEMS

1.1. As a review of complex notation, prove eq. (1.32).

1.2. Derive expressions for the saturated and small-signal gain of a three-level atom. Your
analysis should parallel the analysis given in Section 1.3.2 for a four-level atom, but
with level 4 missing. Assume that stimulated emission occurs between levels 3 and 1
and that the population in level 3 relaxes spontaneously to level 1 with time constant
τG. Plot a family of curves for the saturated gain as a function of W (different curves
represent different values of S) for both three- and four-level atoms. Comment on the
main differences in gain behavior of three- and four-level atoms and on the implications
for laser operation.

1.3. Analyze the gain of a two-level atom. Now there is only one laser field, de-
noted W . What is the gain as a function of W and τG, and how does this differ
from three- and four-level atoms? Explain why lasers are never based on two-level
atoms.

1.4. In this problem we explore the steady-state laser oscillation condition by analyzing an
optical transmission resonator with gain. The setup is similar to Fig. 1.1a, but with a
plane-wave field Ein with frequency ω incident on mirror r1 from the left and with r1
allowed to take on arbitrary reflectivity. The output field emerging from mirror r2 may
be written

Eout = Eint1t2

∞∑
n=0

(r1r2)n e(2n+1)g e−(2n+1)jωl/c

where eg and l are the single-pass gain and optical path length, respectively, and
ti =

√
1 − ri2 is a field transmission coefficient.

(a) Assuming zero gain (g = 0), work out a formula for the intensity transmission
coefficient |Eout/Ein|2. [Hint: Equation (1.74) may come in handy.] Assuming
a symmetric resonator (r1 = r2), plot |Eout/Ein|2 as a function of ω for several
values of r1, ranging from 90 to 99%. Comment on key features in your plots,
including linewidths and trends with increasing r1.

(b) Repeat part (a) but now include gain in the resonator. Plot |Eout/Ein|2 vs. ω for
various values of g below the laser oscillation condition. Comment on the behavior
of your plots as the gain increases toward the oscillation condition. Also explain
how the phase condition shows up in your plots.

1.5. Verify by direction substitution that the Gaussian beam given by eq. (1.59) is a solution
of the paraxial wave equation.

1.6. A mode-locked laser generates pulses with 105 W of peak power. Spatially the laser
output is a Gaussian beam. If the beam is focused in air to a diameter of 10 �m (at
e−2 points of the intensity), give the peak intensity and the corresponding peak electric
field amplitude.
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1.7. A mode-locked laser usually has a smooth frequency spectrum. Consider a Gaussian
spectrum given by

A(ω̃) = e−ω̃2/(
�)2 ∑
m

δ(ω̃ − m 
ω) ejφm

where ω̃ = ω − ω0.

(a) Assuming constant spectral phase, φm = 0, work out the expression for the time-
domain complex envelope function a(t). (Hint: The Fourier transform of a periodic
train of evenly spaced, equal-amplitude delta functions is a periodic train of evenly
spaced, equal-amplitude delta functions. This is shown most easily using Fourier
series.)

(b) Use a computer and an FFT algorithm to evaluate the time-domain envelope func-
tion a(t) for 
�/2π = 10 GHz, 
ω/2π = 100 MHz, and φm = 0. Plot the spectral
amplitude function A(ω̃) and the temporal intensity and phase. Give the pulse du-
ration (intensity full width at half maximum). Discuss how the setup of your array
representing A(ω̃) determines the number of pulses in the time-domain plot.

(c) Now obtain the phases φm from a random number generator. Plot two examples of
the temporal intensity and phase and comment on all the key differences compared
to the uniform phase case.


