
&PART 1

THEORY OF MODERN HEURISTIC
OPTIMIZATION

CO
PYRIG

HTED
 M

ATERIA
L

&CHAPTER 1

Introduction to Evolutionary
Computation

DAVID B. FOGEL

1.1 INTRODUCTION

Darwinian evolution is intrinsically a robust search and optimization mechanism.
Living organisms demonstrate optimized complex behavior at every level: the
cell, the organ, the individual, and the population. The problems that biological
species have solved are typified by chaos, chance, temporality, and nonlinear inter-
activities. These are also characteristics of problems that have proved to be
especially intractable to classic methods of optimization and appear routinely in
the area of power systems. The evolutionary process can be applied to these
problems, where heuristic solutions are not available or generally lead to unsatisfac-
tory results. As a result, evolutionary algorithms have recently received increased
interest, particularly with regard to the manner in which they may be applied for
practical problem solving.

Evolutionary computation, the term now used to describe the field of investi-
gation that concerns all evolutionary algorithms, offers practical advantages to the
researcher facing difficult optimization problems. These advantages are multifold,
including the simplicity of the approach, its robust response to changing circum-
stance, its flexibility, and many other facets. This chapter summarizes some of
these advantages, offers a brief review of some parts of evolutionary computation
theory, and introduces a new optimization technique that models swarming behavior
in insects or schooling in fish. The reader who wants to further review the basic
concepts of evolutionary algorithms is referred to Fogel [1–3], Bäck [4], and
Michalewicz [5].

Modern Heuristic Optimization Techniques. Edited by K. Y. Lee and M. A. El-Sharkawi
Copyright # 2008 the Institute of Electrical and Electronics Engineers, Inc.

3

1.2 ADVANTAGES OF EVOLUTIONARY COMPUTATION

1.2.1 Conceptual Simplicity

A primary advantage of evolutionary computation is that it is conceptually simple.
The main flowchart that describes every evolutionary algorithm applied for function
optimization is depicted in Fig. 1.1. The algorithm consists of initialization, which
may be a purely random sampling of possible solutions, followed by iterative vari-
ation and selection in light of a performance index. This figure of merit must
assign a numeric value to any possible solution such that two competing solutions
can be rank ordered. Finer granularity is not required. Thus, the criterion need not
be specified with the precision that is required of some other methods. In particular,
no gradient information needs to be presented to the algorithm. Over iterations of

FIGURE 1.1 The main flowchart of the vast majority of evolutionary algorithms. A popu-
lation of candidate solutions to a problem at hand is initialized. This often is accomplished
by randomly sampling from the space of possible solutions. New solutions are created by ran-
domly varying existing solutions. This random variation may include mutation and/or recom-
bination. Competing solutions are evaluated in light of a performance index describing their
“fitness” (or equivalently, their error). Selection is then applied to determine which solutions
will be maintained into the next generation, and with what frequency. These new “parents”
are then subjected to random variation, and the process iterates.

4 INTRODUCTION TO EVOLUTIONARY COMPUTATION

random variation and selection, the population can be made to converge
asymptotically to optimal solutions (Fogel [6], Rudolph [7], and others).

The evolutionary search is similar to the view offered by Wright [8] involving
“adaptive landscapes.” A response surface describes the fitness assigned to alternative
genotypes as they interact in an environment (Fig. 1.2). Each peak corresponds with
an optimized collection of behaviors (phenotypes), and thus one or more sets of opti-
mized genotypes. Evolution probabilistically proceeds up the slopes of the topogra-
phy toward peaks as selection culls inappropriate phenotypic variants. Others (Atmar
[9], Raven and Johnson [10], pp. 400–401) have suggested that it is more appropriate
to view the adaptive landscape from an inverted position. The peaks become troughs,
or “minimized prediction error entropy wells” (Atmar [9]). Such a viewpoint is intui-
tively appealing. Searching for peaks depicts evolution as a slowly advancing,
tedious, and uncertain process. Moreover, there appears to be a certain fragility to
an evolving phyletic line; an optimized population might be expected to quickly
fall off the peak under slight perturbations. The inverted topography leaves an
altogether different impression. Populations advance rapidly, falling down the
walls of the error troughs until their cohesive set of interrelated behaviors is opti-
mized. The topography is generally in flux, as a function of environmental erosion

FIGURE 1.2 Evolution on an inverted adaptive topography. A landscape is abstracted to
represent the fitness of alternative phenotypes and, as a consequence, alternative genotypes.
Rather than viewing the individuals or populations as maximizing fitness and thereby climbing
peaks on the landscape, a more intuitive perspective may be obtained by inverting the topogra-
phy. Populations proceed down the slopes of the topography toward valleys of minimal predic-
tive error.

1.2 ADVANTAGES OF EVOLUTIONARY COMPUTATION 5

and variation, as well as other evolving organisms, and stagnation may never set in.
Regardless of which perspective is taken, maximizing or minimizing, the basic evol-
utionary algorithm is the same: a search for the extrema of a functional describing the
objective worth of alternative candidate solutions to the problem at hand.

The procedure may be written as the difference equation

x[t þ 1] ¼ s(v(x[t])), (1:1)

where x[t] is the population at time t under a representation x, v is a random variation
operator, and s is the selection operator (Fogel and Ghozeil [11]). There are a variety
of possible representations, variation operators, and selection methods (Bäck et al.
[12]). Not more than about 10–12 years ago, there was a general recommendation
that the best representation was a binary coding, as this provided the greatest “implicit
parallelism” (more detail is offered later in this chapter, and see also Goldberg [13]).
But this representation was often cumbersome to implement (consider encoding
the solution to a traveling salesman problem as a string of symbols from f0, 1g),
and empirical results did not support any necessity, or even benefit, to binary rep-
resentations (e.g., Davis [14], Michalewicz [15], Koza [16]). Moreover, the sugges-
tions that advantages would accrue from recombining alternative solutions through
crossover operators and amplifying solutions based on their relative fitness also did
not obtain empirical support (e.g., Fogel and Atmar [17], Bäck and Schwefel [18],
Fogel and Stayton [19], and many others). Recent mathematical results have
proved that there can be no best choice for these facets of an evolutionary algorithm
that would hold across all problems (Wolpert and Macready [20]), and even that
there is no best choice of representation for any individual problem (Fogel
and Ghozeil [21]). The effectiveness of an evolutionary algorithm depends on the
interplay between the operators s and v as applied to a chosen representation x and
initialization x[0]. This dependence provides freedom to the human operator to
tailor the evolutionary approach for their particular problem of interest.

1.2.2 Broad Applicability

Evolutionary algorithms can be applied to virtually any problem that can be formu-
lated as a function optimization task. It requires a data structure to represent solutions,
a performance index to evaluate solutions, and variation operators to generate new
solutions from old solutions (selection is also required but is less dependent on
human preferences). The state space of possible solutions can be disjoint and can
encompass infeasible regions, and the performance index can be time varying or
even a function of competing solutions extant in the population. The human designer
can choose a representation that follows his or her intuition. In this sense, the pro-
cedure is representation independent, in contrast with other numerical techniques
that might be applicable for only continuous values or other constrained sets.
Representation should allow for variation operators that maintain a behavioral link
between parent and offspring. Small changes in the structure of a parent should

6 INTRODUCTION TO EVOLUTIONARY COMPUTATION

lead to small changes in the resulting offspring, in order to facilitate an understanding
of the problem space, and likewise large changes should engender gross alterations.
A continuum of possible changes should be allowed such that the effective “step size”
of the algorithm can be tuned, perhaps online in a self-adaptive manner (discussed
later). This flexibility allows for applying essentially the same procedure to discrete
combinatorial problems, continuous-valued parameter optimization problems,
mixed-integer problems, and so forth.

1.2.3 Outperform Classic Methods on Real Problems

Real-world function optimization problems often (1) impose nonlinear constraints,
(2) require payoff functions that are not concerned with least-squared error, (3)
involve nonstationary conditions, (4) incorporate noisy observations or random
processing, or include other vagaries that do not conform well to the prerequisites
of classic optimization techniques. The response surfaces posed in real-world pro-
blems are often multimodal, and gradient-based methods converge rapidly to local
optima (or perhaps saddle points), which may yield insufficient performance. For
simpler problems, where the response surface is, say, strongly convex, evolutionary
algorithms do not perform as well as traditional optimization methods (Bäck [4]).
But this is to be expected as these traditional techniques were designed to take advan-
tage of the convex property of such surfaces. Schwefel [22] has shown in a series
of empirical comparisons that in the obverse condition of applying classic methods
to multimodal functions, evolutionary algorithms offer a significant advantage. In
addition, in the often-encountered case of applying linear programming to problems
with nonlinear constraints, this offers an almost certainly incorrect result
because the assumptions required for the technique are violated. In contrast, evol-
utionary computation can directly incorporate arbitrary linear and nonlinear con-
straints (Michalewicz [5]).

Moreover, the problem of defining the payoff function for optimization lies at the
heart of success or failure: Inappropriate descriptions of the performance index lead
to generating the right answer for the wrong problem. Within classic statistical
methods, concern is often devoted to minimizing the squared error between forecast
and actual data. But in practice, equally correct predictions are not of equal worth, and
errors of identical magnitude are not equally costly. Consider the case of correctly
predicting that a particular customer will demand 10 units of energy in a particular
time period. This is typically worth less than correctly predicting that the customer
will demand 100 units of energy, yet both predictions engender zero error and are
weighted equally in classic statistics. Further, the error of predicting the customer
will demand 10 units and having them actually demand 100 units is not of equal
cost to the energy supplier as predicting the customer will demand 100 units and
having them demand 10. One error leaves a missed opportunity cost and the other
leaves a 90-unit oversupply. Yet again, under a squared error criterion, these two situ-
ations are treated identically. In contrast, within evolutionary algorithms, any defin-
able payoff function can be used to judge the appropriateness of alternative

1.2 ADVANTAGES OF EVOLUTIONARY COMPUTATION 7

behaviors. There is no restriction that the criteria be differentiable, smooth, or
continuous.

1.2.4 Potential to Use Knowledge and Hybridize
with Other Methods

It is always reasonable to incorporate domain-specific knowledge into an algorithm
when addressing particular real-world problems. Specialized algorithms can outper-
form unspecialized algorithms on a restricted domain of interest (Wolpert and
Macready [20]). Evolutionary algorithms offer a framework such that it is comparably
easy to incorporate such knowledge. For example, specific variation operators may be
known to be useful when applied to particular representations (e.g., 2-OPT on the
traveling salesman problem). These can be applied directly as mutation or recom-
bination operations. Knowledge can also be implemented into the performance
index, in the form of known physical or chemical properties (e.g., van der Waals
interactions: Gehlhaar et al. [23]). Incorporating such information focuses the
evolutionary search, yielding a more efficient exploration of the state space of
possible solutions.

Evolutionary algorithms can also be combined with more traditional optimization
techniques. This may be as simple as the use of a conjugate-gradient minimization
used after primary search with an evolutionary algorithm (e.g., Gehlhaar et al.
[23]), or it may involve simultaneous application of algorithms (e.g., the use of evol-
utionary search for the structure of a model coupled with gradient search for par-
ameter values; Harp et al. [24]). There may also be a benefit to seeding an initial
population with solutions derived from other procedures (e.g., a greedy algorithm;
Fogel and Fogel [25]). Furthermore, evolutionary computation can be used to opti-
mize the performance of neural networks (Angeline et al. [26]), fuzzy systems
(Haffner and Sebald [27]), production systems (Wilson [28]), and other program
structures (Koza [16], Angeline and Fogel [29]). In many cases, the limitations of
conventional approaches (e.g., the requirement for differentiable hidden nodes
when using back propagation to train a neural network) can be avoided.

1.2.5 Parallelism

Evolution is a highly parallel process. As distributed processing computers become
more readily available, there will be a corresponding increased potential for applying
evolutionary algorithms to more complex problems. It is often the case that individual
solutions can be evaluated independently of the evaluations assigned to competing
solutions. The evaluation of each solution can be handled in parallel, and only selec-
tion (which requires at least pairwise competition) requires some serial processing. In
effect, the running time required for an application may be inversely proportional to
the number of processors. Regardless of these future advantages, current desktop
computing machines provide sufficient computational speed to generate solutions
to difficult problems in reasonable time (e.g., the evolution of a neural network for
classifying features of breast carcinoma involving more than 5 million separate

8 INTRODUCTION TO EVOLUTIONARY COMPUTATION

function evaluations requires only about 3 hours on a 200-MHz 604e PowerPC, Fogel
et al. [30], or equivalently one third of an hour on a 2-GHz PC).

1.2.6 Robust to Dynamic Changes

Traditional methods of optimization are not robust to dynamic changes in the
environment and often require a complete restart in order to provide a solution
(e.g., dynamic programming). In contrast, evolutionary algorithms can be used to
adapt solutions to changing circumstance. The available population of evolved sol-
utions provides a basis for further improvement and in most cases it is not necessary,
nor desirable, to reinitialize the population at random. Indeed, this procedure of adapt-
ing in the face of a dynamic environment can be used to advantage. For example,
Wieland [31] used a genetic algorithm to evolve recurrent neural networks to
control a cart-pole system comprising two poles (Fig. 1.3). The degree of difficulty
depended on the relative pole lengths (i.e., the closer the poles were to each other
in length, the more difficult the control problem). Wieland [31] developed controllers
for a case of one pole of length 1.0 m and the other of 0.9 m by successively control-
ling systems where the shorter pole was started at 0.1 m and incremented sequentially
to 0.9 m. At each increment, the evolved population of networks served as the basis

FIGURE 1.3 A cart with two poles. The objective is to maintain the cart between the limits
of the track while not allowing either pole to exceed a specified maximum angle of deflection.
The only control available is a force with which to push or pull on the cart. The difficulty of the
problem is dependent on the similarity in pole lengths. Wieland [31] and Saravanan and Fogel
[32] used evolutionary algorithms to optimize neural networks to control this plant for pole
lengths of 1.0 m and 0.9 m. The evolutionary procedure required starting with poles of
1.0 m and 0.1 m and iteratively incrementing the length of the shorter pole in a series of
dynamic environments. In each case, the most recent evolved population served as the basis
for new trials, even when the pole length was altered.

1.2 ADVANTAGES OF EVOLUTIONARY COMPUTATION 9

for a new set of controllers. A similar procedure was offered in Saravanan and Fogel
[32] and Fogel [33].

The ability to adapt on the fly to changing circumstance is of critical importance to
practical problem solving. For example, suppose that a particular simulation provides
perfect fidelity to an industrial production setting. All workstations and processes are
modeled exactly, and an algorithm is used to find a “perfect” schedule to maximize
production. This perfect schedule will, however, never be implemented in practice
because by the time it is brought forward for consideration, the plant will have
changed: machines may have broken down, personnel may not have reported to
work or failed to keep adequate records of prior work in progress, other obligations
may require redirecting the utilization of equipment, and so forth. The “perfect” plan
is obsolete before it is ever implemented. Rather than spend considerable compu-
tational effort to find such perfect plans, a better prescription is to spend less compu-
tational effort to discover suitable plans that are robust to expected anomalies and can
be evolved on the fly when unexpected events occur.

1.2.7 Capability for Self-Optimization

Most classic optimization techniques require appropriate settings of exogenous vari-
ables. This is true of evolutionary algorithms as well. However, there is a long history
of using the evolutionary process itself to optimize these parameters as part of the
search for optimal solutions (Reed et al. [34], Rosenberg [35], and others). For
example, suppose a search problem requires finding the real-valued vector that mini-
mizes a particular functional f (x), where x is a vector in n dimensions. A typical evol-
utionary algorithm (Fogel [1]) would use Gaussian random variation on current
parent solutions to generate offspring:

x0i ¼ xi þ siN(0, 1), (1:2)

where the subscript indicates the ith dimension, and si is the standard deviation of a
Gaussian random variable, denoted by N(0, 1). Setting the “step size” of the search in
each dimension is critical to the success of the procedure (Fig. 1.4). This can be
accomplished in the following two-step fashion:

s0
i ¼ si exp(tN(0, 1) þ t0Ni(0, 1)) (1:3)

x0i ¼ xi þ s0
iNi(0, 1), (1:4)

where t / (2n)0.5 and t0 / (2n0.5)0.5 (Bäck and Schwefel [18]). In this manner, the
standard deviations are subject to variation and selection at a second level (i.e., the
level of how well they guide the search for optima of the functional f (x)). This
general procedure has also been found effective in addressing discrete optimization
problems (Angeline et al. [36], Chellapilla and Fogel [37], and others). Essentially,

10 INTRODUCTION TO EVOLUTIONARY COMPUTATION

the effect is much like a temperature schedule in simulated annealing; however, the
schedule is set by the algorithm as it explores the state space rather than a priori
by a human operator.

1.2.8 Able to Solve Problems That Have No Known Solutions

Perhaps the greatest advantage of evolutionary algorithms comes from the ability to
address problems for which there are no human experts. Although human expertise
should be used when it is available, it often proves less than adequate for automating
problem-solving routines. Troubles with such expert systems are well-known: the
experts may not agree, may not be self-consistent, may not be qualified, or may
simply be in error. Research in artificial intelligence has fragmented into a collection
of methods and tricks for solving particular problems in restricted domains of interest.
Certainly, these methods have been successfully applied to specific problems
(e.g., the chess program Deep Blue). But most of these applications require human
expertise. They may be applied impressively to difficult problems requiring great
computational speed, but they generally do not advance our understanding of intelli-
gence. “They solve problems, but they do not solve the problem of how to solve pro-
blems” (Fogel [1]). In contrast, evolution provides a method for solving the problem
of how to solve problems even in the absence of human expertise. It is a recapitulation
of the scientific method (Fogel et al. [38]) that can be used to learn fundamental
aspects of any measurable environment.

FIGURE 1.4 When using Gaussian mutations in all dimensions (as in evolution strategies or
evolutionary programming), the contours of equal probability density for placing offspring are
depicted above (Bäck [4]). In the left panel, all standard deviations in each dimension are equal,
resulting in circular contours. In the middle panel, the standard deviations in each dimension
may vary, but the perturbation in each dimension is independent of the others (zero covari-
ance), resulting in elliptical contours. In the right panel, arbitrary covariance is applied, result-
ing in contours that are rotatable ellipses. The method of self-adaptation described in text can be
extended to adapt arbitrary covariances, thereby allowing the evolutionary algorithm to adapt to
the changes in the response surface during the search for the optimum position on the surface.
Similar procedures have been offered for self-adaptation when solving discrete combinatorial
problems.

1.2 ADVANTAGES OF EVOLUTIONARY COMPUTATION 11

1.3 CURRENT DEVELOPMENTS

As indicated above, evolutionary computation has a long history with several inde-
pendent beginnings. Each of these beginnings, whether they occurred in the simu-
lation of genetic systems (Fraser [39], Bremermann [40], Holland [41]),
engineering optimization (Rechenberg [42]), artificial intelligence (Fogel et al.
[38]), or other areas, had specific traits that were originally unique to them individu-
ally. For example, the classic genetic algorithm of Holland [41] operated on binary
strings (regardless of the problem). In contrast, the classic work of Rechenberg and
Schwefel (termed evolution strategies) relied on real-valued representations,
whereas the classic evolutionary programming work of L. Fogel used finite state
machines. These issues of different representations, as well as variation operators,
selection methods, and other particular aspects of evolutionary algorithms, have
grown to be virtually nonexistent in current evolutionary computation practice. It
now makes little sense (scientifically) to speak of these originally different
methods as being currently disparate: They are all plainly similar in the extreme,
all relying on diverse possible representations, with many choices for variation and
selection.

This similarity has grown mainly from increased communications across the
groups over the past decade, as well as a recognition that early theory in evolutionary
algorithms had many flaws. Some historical and current aspects of evolutionary
algorithm theory are offered here.

1.3.1 Review of Some Historical Theory in
Evolutionary Computation

Some early efforts (1975–1990) in evolutionary algorithm theory focused on (1) the
belief that it is possible to generate superior general problem solvers, (2) the notion
that maximizing implicit parallelism is useful, (3) a schema theorem to describe the
propagation of components of solutions in a population, and (4) an analysis of a two-
armed bandit problem that was intended to indicate an optimal sampling plan for
evolutionary algorithms. Unfortunately, the conventional wisdom regarding these
four focal points from even just a decade ago has been shown to be either incomplete
or incorrect. As a result, the foundations of evolutionary computation have been
reconsidered, and an integrated approach to the study of evolutionary computation
as a whole has been undertaken.

1.3.2 No Free Lunch Theorem

It is natural to ask if there is a best evolutionary algorithm that would always give
superior results across the possible range of problems. Is there some choice of vari-
ation operators and selection mechanisms that will always outperform all other
choices regardless of the problem? Sadly, the answer is no: There is no best evol-
utionary algorithm. In mathematical terms, let an algorithm a be represented as a
mapping from previously unvisited sets of points to a single new (i.e., previously

12 INTRODUCTION TO EVOLUTIONARY COMPUTATION

unvisited) point in the state space of all possible points (solutions). Let P(dy
mj f , m, a)

be the conditional probability of obtaining a particular sample dm when algorithm a is
iterated m times on cost function f. Given these preliminaries, Wolpert and Macready
[20] proved the so-called no free lunch theorem:

Theorem 1.1 (No Free Lunch). For any pair of algorithms a1 and a2,

X

f

P dy
mj f , m, a1

� �
¼

X

f

P dy
mj f , m, a2

� �
:

(See Appendix A of Wolpert and Macready [20] for the proof; English [43] showed
that a similar no free lunch result holds whenever the values assigned to points are
independent and identically distributed random variables.) That is, the sum of the
conditional probabilities of visiting each point dm is the same over all cost functions
f regardless of the algorithm chosen. The immediate corollary of this theorem is that
for any performance measure F(dy

m), the average over all f of P(F(dy
m)j f , m, a) is

independent of a. In other words, there is no best algorithm, whether or not that algor-
ithm is “evolutionary,” and moreover whatever an algorithm gains in performance on
one class of problems is necessarily offset by that algorithm’s performance on the
remaining problems.

This simple theorem has engendered a great deal of controversy in the field of
evolutionary computation and some associated misunderstanding. There has been
considerable effort expended in finding the “best” set of parameters and operators
for evolutionary algorithms since at least the mid-1970s. These efforts have involved
the type of recombination, the probabilities for crossover and mutation, the represen-
tation, the population size, and so forth. Most of this research involved empirical trials
on benchmark functions. But the no free lunch theorem essentially dictates that the
conclusions made on the basis of such sampling are in the strict mathematical
sense limited to only those functions studied. Efforts to find the best crossover
rate, the best mutation operator, and so forth, in the absence of restricting attention
to a particular class of problems and methods are pointless.

For an algorithm to perform better than even random search (which is simply
another algorithm), it must reflect something about the structure of the problem it
faces. By consequence, it mismatches the structure of some other problem. Note
too that it is not enough to simply identify that a problem has some structure associ-
ated with it: that structure must be appropriate to the algorithm at hand. Moreover, the
structure must be specific. It is not enough to say, as is often heard, “I am concerned
only with real-world problems, not all possible problems, and therefore the no free
lunch theorem does not apply.” What is the structure of “real-world” problems?
Indeed, what is a real-world problem? The obvious vague quality of this description
is immediately problematic. What constitutes a real-world problem now might not
have been a problem at all, say, 100 years ago (e.g., what to watch on television
on a Thursday night). Regardless, simply narrowing the domain of possible problems
without identifying the correspondence between the set of problems considered and

1.3 CURRENT DEVELOPMENTS 13

the algorithm at hand does not suffice to claim any advantage for a particular method
of problem solving.

One apt example of how the match between an algorithm and the problem can be
exploited was offered in De Jong et al. [44]. For a very simple problem of finding the
two-bit vector x that maximizes the function

f (x) ¼ integer(x) þ 1,

where integer(x) returns 0 for [00], 1 for [01], 2 for [10], and 3 for [11], De Jong et al.
[44] employed an evolutionary algorithm with (1) one-point crossover at either a
probability of 1.0 or 0.0, (2) a constant mutation rate of 0.1, and (3) a population
of size 5. In this trivial example, it was possible to calculate the exact probability
that the global best vector would be contained in the population as a function of
the number of generations. In this case, the use of crossover definitely increased
the likelihood of discovering the best solution, and mutation alone was better than
random search.

In this example, the function f assigned values f1, 2, 3, 4g to the vectors f[00],
[01], [10], [11]g, respectively, but this is not the only way to assign these fitness
values to the possible strings. In fact, there are 4! ¼ 24 different permutations that
could be used. De Jong et al. [44] showed that, in this case, the performance obtained
with the 24 different permutations falls into three equivalence classes, each contain-
ing eight permutations that produce identical probability of success curves. In the
second and third equivalence classes, the use of crossover was seen to be detrimental
to the likelihood of success, and in fact random search outperformed evolutionary
search for the first 10–20 generations in the third equivalence class. In the first equiv-
alence class, crossover could combine the second- and third-best vectors to generate
the best vector. In the second and third equivalence classes, it could not usefully
combine these vectors: the structure of the problem did not match the structure of
the crossover operator. Any specific search operator can be rendered superior or
inferior simply by changing the structure of the problem.

Intrinsic to every evolutionary algorithm is a representation for manipulating can-
didate solutions to the problem at hand. The no free lunch theorem establishes that
there is no best evolutionary algorithm across all problems. The fundamental result
is twofold: (1) claims that evolutionary algorithms must rely on specific operators
to be successful (e.g., the less-often-heard but still occasional claim that crossover
is a necessary component of a successful evolutionary algorithm, as found in [13])
are not correct, and (2) efforts to make generally superior evolutionary algorithms
are misguided.

1.3.3 Computational Equivalence of Representations

Holland ([41], p. 71) suggested that alternative representations in an evolutionary
algorithm could be compared by calculating the number of schemata (subset tem-
plates, see below) processed by the algorithm. In order to maximize this intrinsic

14 INTRODUCTION TO EVOLUTIONARY COMPUTATION

parallelism, it was recommended that representations should be chosen with the
fewest “detectors with a range of many attributes.” In other words, alphabets with
low cardinality were to be favored because they generate more schemata. For
example, six elements, each with a range of 10 values, can generate 1 million distinct
representations, which is about the same as 20 elements with a range of 2 values
(220 ¼ 1,048,576). But the number of schemata processed is 116 (¼1,771,561)
versus 320 (¼3.49 � 109). This increased number of schemata was suggested to
give a “larger information flow” to reproductive plans such as genetic algorithms.
Emphasis was therefore placed on binary representations, this offering the lowest
possible cardinality and the greatest number of schemata.

To review, a schema is a template with fixed and variable symbols. Consider a
string of symbols from an alphabet A. Suppose that some of the components of
the string are held fixed while others are free to vary. Following Holland [41],
define a wild card symbol, # [A, that matches any symbol from A. A string with
fixed and/or variable symbols defines a schema, which is a set denoted by a string
over the union of f#g and the alphabet A ¼ f0, 1g. Consider the schema [01##],
which includes [0100], [0101], [0110], and [0111]. Holland ([41], pp. 64–74)
offered that every evaluated string actually offers partial information about the
expected fitness of all possible schemata in which that string resides. That is, if
string [0000] is evaluated to have some fitness, then partial information is also
received about the worth of sampling from variations in [####], [0###], [#0##],
[#00#], [#0#0], and so forth. This characteristic was termed intrinsic parallelism
(or implicit parallelism), in that through a single sample, information is gained
with respect to many schemata.

Antonisse [45] offered a different interpretation of the wild card symbol # that led
to an alternative recommendation regarding the cardinality of a chosen representation.
Rather than view the # symbol in a string as a “don’t care” character, it can be viewed
as indicating all possible subsets of symbols at the particular position. If A ¼ f0, 1,
2g, then the schema [000#] would indicate the sets f[0000] [0001]g, f[0000]
[0002]g, f[0001] [0002]g, and f[0000] [0001] [0002]g as the # symbol indicates
the possibilities of (a) 0 or 1, (b) 0 or 2, (c) 1 or 2, and (d) 0, 1, or 2. When schemata
are viewed in this manner, the greater implicit parallelism comes from the use of
more, not fewer, symbols.

Fogel and Ghozeil [21] showed that, in contrast with the arguments offered in both
Holland [41] and Antonisse [45], there can be no intrinsic advantage to any choice of
cardinality: Given some weak assumptions about the structure of the problem space
and representation, equivalent evolutionary algorithms can be generated for any
choice of cardinality. Moreover, the theorems in Ref. 21 indicate that there can be
no intrinsic advantage to using any particular two-parent search operator (e.g., a
crossover) as there always exists an alternative two-parent operator that performs
the equivalent function, regardless of the chosen representation. The proofs carry
considerable notation, and the reader is recommended to Ref. 21 to review them if
interested.

These theorems from Ref. 21 provide an extension of the result offered in Battle
and Vose [46] where it was shown that isomorphisms exist between alternative

1.3 CURRENT DEVELOPMENTS 15

instances of genetic algorithms for binary representations (i.e., the operations of
crossover and mutation on a population under a particular binary representation in
light of a fitness function can be mapped equivalently to alternative similar operators
for any other binary representation). They also extend the results of Vose and Liepins
[47] and Radcliffe [48], where it was shown that there can be no general advantage
for any particular binary representation. Although particular representations and oper-
ators may be more computationally tractable or efficient than others in certain cases,
or may appeal to the designer’s intuition, under the conditions studied in Ref. 21, no
choice of representation, or one-point or two-point variation operator, can offer a
capability not found in another choice of representation or analogous operator.

1.3.4 Schema Theorem in the Presence of Random Variation

The traditional method of selection in genetic algorithms (from, say, Holland [41])
requires solutions to be reproduced in proportion to their fitness relative to the
other solutions in the population (sometimes termed roulette wheel selection or
reproduction with emphasis). That is, if the fitness of the ith string in the population
at time t, x i

t, is denoted by f (xi
t), then the probability of selecting the ith string for

reproduction for each available slot in the population at time t þ 1 is given by

P(xtþ1
i) ¼ f (xt

i)
Pn

i¼1
f (xt

i)
, (1:5)

where there are n members of the population at time t. This procedure requires strictly
positive fitness values.

The implementation of proportional selection leads to the well-known variant of
the schema theorem (Holland [41]):

EP(H, t þ 1) ¼ P(H, t)
f (H, t)
�ft

, (1:6)

where H is a particular schema (the notation of H is used to denote the schema as a
hyperplane), P(H, t) is the proportion of strings in the population at time t that are an
instance of schema H, f (H, t) is the mean fitness of strings in the population at time t
that are an instance of H, f̄t is the mean fitness of all strings in the population at time t,
and EP(H, t þ 1) denotes the expected proportion of strings in the population at time
t þ 1 that will be instances of the schema H. Equation (1.2) does not include any
effects of recombination or mutation. It only describes the effects of proportional
selection on a population in terms of the manner in which schemata are expected
to increase or decrease over time.

The fitness associated with a schema depends on which instances of that schema
are evaluated. Moreover, in real-world practice, the evaluation of a string will
often include some random effects (e.g., observation error, time dependency,

16 INTRODUCTION TO EVOLUTIONARY COMPUTATION

uncontrollable exogenous variables). That is, the observed fitness of a schema H (or
any element of that schema) may not be described by a constant value, but rather by
a random variable with an associated probability density function. Selection operates
not on the mean of all possible samples of the schema H but only on the
fitness associated with each observed instance of the schema H in the population.
It is therefore of interest to assess the expected allocation of trials to schemata
when their observed fitness takes the form of a random variable. Fogel and
Ghozeil [49] showed that this can result in the introduction of a bias such that the
expected sampling from alternative schemata will not be in proportion to their
mean fitness.

The schema theorem of Holland [41] refers only to the specific realized values of
competing schemata in a population; it is not intended to handle the case when the
fitness of these schemata are described by random variables. The analysis in Fogel
and Ghozeil [49] (cf., Rana et al. [50], see also Gillespie [51]) indicates that the
expected proportion of a particular schema H in the population at the next time
step is not generally governed by the ratio of the mean of that schema H to the
sum of the means of schema H and schema H0 (everything that is not in H). In
general, there is no a priori reason to expect the schema theorem to adequately
describe the mean sampling of alternative schemata when the fitness evaluation of
those schemata is governed by random variation. This may occur in the form of obser-
vation noise on any particular string, random selection of individual strings from a
particular schema, or a number of other mechanisms. Under such conditions, reliably
estimating mean hyperplane performance is not sufficient to predict the expected pro-
portion of samples that will be allocated to a particular hyperplane under proportional
selection. The fundamental result is that the schema theorem of Ref. 41 cannot, in
general, be used to reliably predict the average representation of schemata in future
populations when schema fitness depends on random factors.

1.3.5 Two-Armed Bandits and the Optimal Allocation of Trials

Recalling the idea of sampling from alternative schemata, in order to optimally allo-
cate trials to schemata, a loss function describing the worth of each trial must be for-
mulated. Holland ([41], pp. 75–83) considered and analyzed the problem of
minimizing expected losses while sampling from alternative schemata. The essence
of this problem can be modeled as a two-armed bandit (slot machine): Each arm
of the bandit is associated with a random payoff described by a mean and variance
(much like the result of sampling from a particular schema where the payoff
depends on which instance of that schema is sampled). The goal is to best allocate
trials to the alternative arms conditioned on the payoffs that have already been
observed in previous trials. Holland ([41], pp. 85–87) extended the case of two com-
peting schemata to any number of competing schemata. The results of this analysis
were used to guide the formulation of one early version of evolutionary algorithms,
so it is important to review this analysis and its consequences. This is particularly true
because the formulation has recently been shown mathematically to be flawed
(Rudolph [52]; Macready and Wolpert [53]).

1.3 CURRENT DEVELOPMENTS 17

Holland ([41], pp. 75–83) examined the two-armed bandit problem where there
are two random variables, RV1 and RV2 (representing two slot machines) from
which samples may be taken (much like schemata represent samples from a solutions
space). The two random variables are assumed to be independent and possess some
unknown means (m1, m2) and unknown variances (s1

2, s2
2). A trial is conducted by

sampling from a chosen random variable; the result of the trial is the payoff.
Suppose some number of trials has been devoted to each random variable (n1 and
n2, respectively) and that the average payoff (the sum of the individual payoffs
divided by the number of trials) from one random variable is greater than for the
other. Let RVhigh be the random variable for which the greater average payoff has
been observed (not necessarily the random variable with the greater mean), and let
RVlow be the other random variable. The objective in this problem is to allocate
trials to each random variable so as to minimize the expected loss function

L(n1, n2) ¼ [q(n1, n2)n1 þ (1 � q(n1, n2))n2] � jm1 � m2j, (1:7)

where L(n1, n2) describes the total expected loss from allocating n1 samples to RV1

and n2 samples to RV2, and

q(n1, n2) ¼ Pr(_x1 . _x2) if m1 , m2
Pr(_x1 . _x2) if m1 . m2

,

�

where x1 and x2 designate the mean payoffs (sample means) for having allocated n1

and n2 samples to RV1 and RV2, respectively. Note that specific measurements and
the number of samples yield explicit values for the sample means.

As summarized in Goldberg ([13], p. 37), Holland ([41], pp. 77–78) proved the
following (notation consistent with Holland [41]):

Theorem 1.2 Given N trials to be allocated to two random variables with means
m1 . m2 and variances s1

2 and s2
2, respectively, and the expected loss function

described in Eq. (1.7), the minimum expected loss results when the number of
trials allocated to the random variable with the lower observed average payoff is

n� ffi b2 ln
N2

8pb4 ln N2

� �
, (1:8)

where b ¼ s1/(m1 2 m2). The number of trials to be allocated to the random variable
with the higher observed average payoff is N 2 n�.

If the assumptions associated with the proof (Holland [41], pp. 75–83) held, and if
the mathematical framework were correct, the above analysis would apply equally
well to a k-armed bandit as to a two-armed bandit.

18 INTRODUCTION TO EVOLUTIONARY COMPUTATION

Unfortunately, as offered in Macready and Wolpert [53], the error in Holland
([41], pp. 77–85) stems from considering the unconditioned expected loss for allo-
cating N 2 2n trials after allocating n to each bandit, rather than the expected loss
conditioned on the information available after the 2n pulls. Macready and Wolpert
[53] showed that a simple greedy strategy that pulls the arm that maximizes the
payoff for the next pull based on a Bayesian update from prior pulls outperforms
the strategy offered in Holland ([41], p. 77). The trade-off between exploitation
(pulling the best Bayesian bandit) and exploration (pulling the other bandit in the
hopes that the current Bayesian information is misleading) offered in Holland [41]
is not optimal for the problem studied. Macready and Wolpert [53] remarked that
the algorithms proposed in Holland [41] “are based on the premise that one should
engage in exploration, yet for the very problem invoked to justify genetic exploration,
the strategy of not exploring at all performs better than n� exploring algorithms. . ..”

The ramifications of this condition are important: One of the keystones that has
differentiated genetic algorithms from other forms of evolutionary computation has
been the notion of optimal schema processing. Until recently, this was believed to
have a firm theoretical footing. It now appears, however, that the basis for claiming
that the n� sampling offered in Ref. [41] is optimal for minimizing expected losses
to competing schemata is lacking. In turn, neither is the use of proportional selection
optimal for achieving a proper allocation of trials (recall that proportional selection
was believed to achieve an exponentially increasing allocation of trials to the
observed best schemata, this in line with the mathematical analysis of the
two-armed bandit). And as yet another consequence then, the schema theorem
under proportional selection, which describes the expected allocation of trials to sche-
mata in a single generation, lacks fundamental importance (cf. [13]). It is simply a
formulation for describing one method of performing selection but not a generally
optimal method.

1.4 CONCLUSIONS

Although the history of evolutionary computation dates back to the 1950s and 1960s
(Fogel [3]), only within the past decade have evolutionary algorithms become prac-
ticable for solving real-world problems on desktop computers (Bäck et al. [12]). As
computers continue to deliver accelerated performance, these applications will only
become more routine. The flexibility of evolutionary algorithms to address general
optimization problems using virtually any reasonable representation and performance
index, with variation operators that can be tailored for the problem at hand and selec-
tion mechanisms tuned for the appropriate level of stringency, gives these techniques
an advantage over classic numerical optimization procedures. Moreover, the two-step
procedure to self-adapt parameters that control the evolutionary search frees the
human operator from having to handcraft solutions, which would often be time con-
suming or simply infeasible. Evolutionary algorithms offer a set of procedures that
may be usefully applied to problems that have resisted solution by common tech-
niques and can be hybridized with such techniques when such combinations

1.4 CONCLUSIONS 19

appear beneficial. Moreover, the notion of modeling natural systems can be brought
to fruition in other forms, including particle swarm methods as indicated here, as well
as ant colony optimization and other techniques not mentioned. If this brief introduc-
tion serves to spur the imagination of the reader into finding new ways to model
natural systems, particularly as they may be applied to problems in power systems,
it will have succeeded immensely.

ACKNOWLEDGMENTS

The author would like to thank the editors for inviting this presentation, IEEE/Wiley for per-
missions to reprint sections of the author’s prior publications, and T. Bäck for permission to
reprint his figure from Bäck [4].

REFERENCES

1. Fogel DB. Evolutionary computation: Toward a new philosophy of machine intelligence.
2nd ed. Piscataway, NJ: IEEE Press; 2000.

2. Fogel DB. What is evolutionary computation? IEEE Spectrum 2000; February:26–32.

3. Fogel DB, ed. Evolutionary computation: The fossil record. Piscataway, NJ: IEEE Press;
1998.

4. Bäck T. Evolutionary algorithms in theory and practice. New York: Oxford University
Press; 1996.

5. Michalewicz Z. Genetic algorithms þ data structures ¼ evolution programs. 3rd ed.
Berlin: Springer; 1996.

6. Fogel DB. Asymptotic convergence properties of genetic algorithms and evolutionary pro-
gramming: analysis and experiments. Cybern Syst 1994; 25:389–407.

7. Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Trans Neural
Networks 1994; 5:96–101.

8. Wright S. The roles of mutation, inbreeding, crossbreeding, and selection in
evolution. Proc. 6th Int. Cong. Genetics. Vol. 1. Genetic Society of America, Ithaca.
1932. p. 356–366.

9. Atmar W. The inevitability of evolutionary invention. 1979 (unpublished manuscript).

10. Raven PH, Johnson GB. Biology. St. Louis: Times Mirror; 1986.

11. Fogel DB, Ghozeil A. Using fitness distributions to design more efficient evolutionary
computations. Proc. of 1996 IEEE Conf. on Evol. Comp. Keynote Lecture. New York:
IEEE Press; 1996. p. 11–19.

12. Bäck T, Fogel DB, Michalewicz Z. eds. Handbook of evolutionary computation.
New York: Oxford University Press; 1997.

13. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Reading,
MA: Addison-Wesley; 1989.

14. Davis L, ed. Handbook of genetic algorithms. New York: Van Nostrand Reinhold; 1991.

20 INTRODUCTION TO EVOLUTIONARY COMPUTATION

15. Michalewicz Z. Genetic algorithms þ data structures ¼ evolution programs. Berlin:
Springer; 1992.

16. Koza JR. Genetic programming. Cambridge, MA: MIT Press; 1992.

17. Fogel DB, Atmar JW. Comparing genetic operators with Gaussian mutations in simulated
evolutionary processes using linear systems. Biol Cybern 1990; 63:111–114.

18. Bäck T, Schwefel H-P. An overview of evolutionary algorithms for parameter optimiz-
ation. Evol Comp 1993; 1:1–24.

19. Fogel DB, Stayton LC. On the effectiveness of crossover in simulated evolutionary optim-
ization. BioSystems 1994; 32:171–182.

20. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol
Comp 1997; 1:67–82.

21. Fogel DB, Ghozeil A. A note on representations and variation operators. IEEE Trans Evol
Comp 1997; 1:159–161.

22. Schwefel H-P. Evolution and optimum seeking. New York: John Wiley & Sons; 1995.

23. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST.
Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally
flexible docking by evolutionary programming. Chem Biol 1995; 2:317–324.

24. Harp SA, Samad T, Guha A. Towards the genetic synthesis of neural networks. In:
Schaffer JD, ed. Proc. of the 3rd Intern. Conf. on Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann; 1989. p. 360–369.

25. Fogel DB, Fogel LJ. Using evolutionary programming to schedule tasks on a suite of
heterogeneous computers. Comp Oper Res 1996; 23:527–534.

26. Angeline PJ, Saunders GM, Pollack JB. An evolutionary algorithm that constructs recur-
rent neural networks. IEEE Trans Neural Networks 1994; 5:54–65.

27. Haffner SB, Sebald AV. Computer-aided design of fuzzy HVAC controllers using
evolutionary programming. In: Fogel DB, Atmar W, eds. Proc. of the 2nd Ann. Conf.
on Evolutionary Programming. La Jolla, CA: Evolutionary Programming Society; 1993.
p. 98–107.

28. Wilson SW. Classifier fitness based on accuracy. Evol Comp 1995; 3:149–175.

29. Angeline PJ, Fogel DB. An evolutionary program for the identification of dynamical
systems. In: Rogers SK, Rock D, eds. Aerosence 97, Symp. on Neural Networks. Vol.
3077. Orlando, FL: SPIE 1997. p. 409–417.

30. Fogel DB, Wasson EC, Boughton EM, Porto VW. A step toward computer-assisted
mammography using evolutionary programming and neural networks. Cancer Lett
1997; 119:93–97.

31. Wieland AP. Evolving controls for unstable systems. In: Touretzky DS, Elman JL,
Sejnowski TJ, Hinton GE, eds. Connectionist models: Proceedings of the 1990 Summer
School. San Mateo, CA: Morgan Kaufmann; 1990. p. 91–102.

32. Saravanan N, Fogel DB. Evolving neurocontrollers using evolutionary programming. In:
IEEE Conf. on Evol. Comp. Vol. 1. Piscataway, NJ: IEEE Press; 1994. p. 217–222.

33. Fogel DB. A ‘correction’ to some cart-pole experiments. In: Fogel LJ, Angeline PJ, Bäck
T, eds. Evolutionary programming VI. Cambridge, MA: MIT Press; 1996. p. 67–71.

34. Reed J, Toombs R, Barricelli NA. Simulation of biological evolution and machine learn-
ing. J Theor Biol 1967; 17:319–342.

REFERENCES 21

35. Rosenberg R. Simulation of genetic populations with biochemical properties. Ph.D. disser-
tation, University of Michigan, Ann Arbor. 1967.

36. Angeline PJ, Fogel DB, Fogel LJ. A comparison of self-adaptation methods for finite state
machines in a dynamic environment. In: Fogel LJ, Angeline PJ, Bäck T, eds. Evolutionary
programming V. Cambridge, MA: MIT Press; 1996. p. 441–449.

37. Chellapilla K, Fogel DB. Exploring self-adaptive methods to improve the efficiency of
generating approximate solutions to traveling salesman problems using evolutionary pro-
gramming. In: Angeline PJ, Reynolds RG, McDonnell JR, Eberhart R, eds. Evolutionary
Programming VI. Berlin: Springer; 1997. p. 361–371.

38. Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution.
New York: John Wiley & Sons; 1996.

39. Fraser AS. Simulation of genetic systems by automatic digital computers. I. Introduction.
Australian J Biol Sci 1957; 10:484–491.

40. Bremermann HJ. Optimization through evolution and recombination. In: Yovits MC,
Jacobi GT, Goldstein GD, eds. Self-organizing systems—1962. Washington, DC:
Spartan Books; 1962. p. 93–106.

41. Holland JH. Adaptation in natural and artificial systems. Ann Arbor, MI: Univeristy of
Michigan Press. 1975.

42. Rechenberg I. Cybernetic solution path of an experimental problem. Royal Aircraft
Establishment; Library Translation 1122, 1965.

43. English TM. Evaluation of evolutionary and genetic optimizers: no free lunch. In: Fogel
LJ, Angeline PJ, Bäck T, eds. Evolutionary programming V: Proc. of the 5th Annual
Conference on Evolutionary Programming. Cambridge, MA: MIT Press; 1996.
p. 163–169.

44. De Jong KA, Spears WM, Gordon DF. Using Markov chains to analyze GAFOs. In:
Whitley LD, Vose MD, eds. Foundations of genetic algorithms 3. San Mateo, CA:
Morgan Kaufmann; 1995. p. 115–137.

45. Antonisse J. A new interpretation of schema notation that overturns the binary encoding
constraint. In: Schaffer JD, ed. Proceedings of the Third Int. Conf. on Genetic
Algorithms. San Mateo, CA: Morgan Kaufmann; 1989. p. 86–91.

46. Battle DL, Vose MD. Isomorphisms of genetic algorithms. Artificial Intelligence 1993;
60:155–165.

47. Vose MD, Liepins GE. Schema disruption. In: Belew RK, Booker LB, eds. Proceedings of
the Fourth International Conference on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann; 1991. p. 237–240.

48. Radcliffe NJ. Non-linear genetic representations. In: Männer R, Manderick B, eds. Parallel
problem solving from nature. 2. Amsterdam: North-Holland; 1992. p. 259–268.

49. Fogel DB, Ghozeil A. Schema processing under proportional selection in the presence of
random effects. IEEE Trans Evol Computat 1997; 1(4): p. 290–293.

50. Rana S, Whitley LD, Cogswell R. Searching in the presence of noise. In: Voigt H-M,
Ebeling W, Rechenberg I, Schwefel HP, eds. Parallel problem solving from nature—
PPSN IV. Berlin: Springer; 1996. p. 198–207.

51. Gillespie H. Natural selection for variances in offspring numbers: a new evolutionary prin-
ciple. Am Naturalist 1977; 111:1010–1014.

22 INTRODUCTION TO EVOLUTIONARY COMPUTATION

52. Rudolph G. Reflections on bandit problems and selection methods in uncertain environ-
ments. In Bäck T, ed. Proc. of 7th Intern. Conf. on Genetic Algorithms, San Francisco:
Morgan Kaufmann; 1997. p. 166–173.

53. Macready WG, Wolpert DH. Bandit problems and the exploration/exploitation tradeoff.
IEEE Trans Evol Computat 1998; 2(1):2–22.

REFERENCES 23

