
1
FUNDAMENTALS OF

MACHINE VIBRATION AND
CLASSICAL SOLUTIONS

This chapter is focused on practical applications of mechanical vibrations
theory. The reader may want to supplement the chapter with one of the
vibration textbooks in the reference list at the end of the chapter if he has
no background in the theory.

THE MAIN SOURCES OF VIBRATION IN MACHINERY

The most common sources of vibration in machinery are related to the
inertia of moving parts in the machine. Some parts have a reciprocating
motion, accelerating back and forth. In such a case Newton’s laws require
a force to accelerate the mass and also require that the force be reacted to
the frame of the machine. The forces are usually periodic and therefore
produce periodic displacements observed as vibration. For example, the
piston motion in the slider-crank mechanism of Fig. 1-1 has a fundamental
frequency equal to the crankshaft speed but also has higher frequencies
(harmonics). The dominant harmonic is twice crankshaft speed (2nd har-
monic). Figure 1-2a shows the displacement of the piston. It looks almost
like a sine wave but it is slightly distorted by higher-order harmonics
due to the nonlinear kinematics of the mechanism. Fig. 1-2b shows the
acceleration of the piston, where the 2nd harmonic is amplified since
the acceleration amplitude is frequency-squared times the displacement
amplitude.

Even without reciprocating parts, most machines have rotating shafts
and wheels that cannot be perfectly balanced, so according to Newton’s
laws, there must be a rotating force vector at the bearing supports of each
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Figure 1-1 Slider-crank mechanism.

rotor to produce the centripetal acceleration of the mass center. Most of
these force vectors are rotating and therefore produce a rotating displace-
ment vector (all real machine parts are elastic) that can be observed as
an orbit if two orthogonal vibration transducers are employed. Each of
the transducers will produce a time trace similar to Fig. 1-2a or 1-2b.
Harmonics and resulting distortion similar to Fig. 1-2a and 1-2b can be
produced by shaft misalignment or by nonlinearity of the bearing stiffness.
The fundamental frequency of the X and Y (orthogonal) vibration vec-
tors is shaft speed ω, so the fundamental vibration is x(t) = X cos(ωt) and
y(t) = Y sin(ωt). This type of vibration is referred to as forced response or
synchronous response to unbalance. The vibration amplitude can become
very large if the excitation frequency (rotor speed for example) becomes
close to one of the natural frequencies of the machine structure. This is
called a resonance or a critical speed , but it is not an unstable motion
since the amplitude does not grow with time (unless there is no damping).

Another type of machine vibration problem, less common but more
difficult to deal with, can come from the characteristic natural vibration
frequencies (eigenvalues) of the machine structure and its supports, even
if no imbalance or excitation is present. Natural frequencies die out in
static structures due to the energy dissipated by damping, but in rotating
machines they can grow larger with time. This is known as self-excited
instability or rotordynamic instability . It is an innate potential characteris-
tic of some rotating machines, especially when fluid pressures are present
(e.g., bearings, impellers, turbine wheels, or seals).

Every real structure has an infinite number of natural frequencies, but
many machinery vibration problems involve just one of these frequencies.
That is why the simple single degree of freedom (SDOF) model (with
just one natural frequency) presented in vibration textbooks [1–3] can be
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Figure 1-2 (a) Displacement of the piston, and (b) acceleration of the piston.

useful for analyzing vibration in machines. In fact, a SDOF model, con-
sisting of one rigid mass, one spring, and one damper can be constructed
to represent the vibration characteristics of any real machine in the neigh-
borhood of a particular natural frequency of interest. This is called a modal
model . To make physical sense out of complex machinery vibration data,
or from realistic computer simulations of machinery vibration, the details
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of the SDOF mathematical model, its variations, and its solutions must
be burned indelibly into the mind of the vibration engineer.

THE SINGLE DEGREE OF FREEDOM (SDOF) MODEL

The SDOF model as seen in most vibration textbooks is shown in
Fig. 1-3. Here it will be referred to as system A. The stiffness, damping,
and mass are k , c, and m , respectively. The undamped natural frequency
is given by

ωn =
√

k

m
rad/sec (1-1)

The circular frequency ωn can be converted to hertz (Hz) (cycles/sec) as
fn = ωn/2π , or to revolutions per minute (rpm) as N = 60 fn .

With a sinusoidal force applied to the mass, the differential equation
of motion

mẍ + cẋ + kx = F sin(ωt) (1-2)

has a solution made up of two parts: (1) the particular solution for x
that gives F sin(ωt) on the right-hand side, and (2) the homogeneous
solution for x that gives zero on the right-hand side. The sum of the two
solutions, of course, gives F sin(ωt), which satisfies the equality sign.
The two solutions represent the two types of machine vibration described
in the previous section, that is, forced response and characteristic (free)
vibration. The particular solution for forced response is

xp(t) = F sin(ωt + φ)
/√(

k − mω2
)2 + (cω)2 (1-3)

Fsin (ωt)

m

kc

x(t)

Figure 1-3 Single degree of freedom vibration model (system A).



THE SINGLE DEGREE OF FREEDOM (SDOF) MODEL 5

Notice that the frequency ω of the forced vibration response is the same as
the frequency of the excitation. The angle φ gives the time φ/ω by which
the response x lags the excitation force F . For analyzing a vibration prob-
lem it is important to understand how k , c, and m influence the response
amplitude. They have different effects depending on the frequency ratio
ω/ωn , as we shall see in the section to follow. Looking at Eq. 1-3 we
can see that the amplitude X of the forced vibration response is

X = F
/√(

k − mω2
)2 + (cω)2 (1-4)

which depends on k , c, m , ω, and F . Notice that the denominator gets
small when the exciting frequency ω is ωn (Eq. 1-1) unless the damping
coefficient c is large. A plot of Eq. 1-4 is shown in Fig. 1-7. It is called
the Bode amplitude plot or the frequency response plot for system A.

The homogeneous part of the solution (for free vibration) with F = 0
is given by

xh(t) = Aest (1-5)

where s is a complex number, s = λ + iωd . s is called the eigenvalue.
Using the law of exponents, Eq. 1-5 can be rewritten as

xh(t) = Aeλt eiωd t (1-6)

where

eiωd t = cos(ωd t) + i sin(ωd t) (1-7)

Equation 1-5 or 1-6 satisfies the differential Eq. 1-2 with F = 0 provided
that the real part of the eigenvalue is λ = −c/2m and the imaginary part
is the square root of ω2

d = k/m − (c/2m)2. The amplitude A in Eq. 1-5
is of little interest here since it is determined only by the initial condition
that instigates the free vibration. In rotating machinery, the differential
equations are more complicated but still are of the same class as (1-2)
and have the same form of homogeneous solution as (1-5). The imaginary
part of s , ωd , is the damped natural frequency. Notice that it becomes
equal to ωn , Eq. 1-1, when the damping coefficient c = 0.

The real part λ of the eigenvalue s determines how fast the
free vibration dies out. It is often converted into a damping ratio
ζ = c/ccr, where the critical damping ccr = 2mωn . Critical damping
is the amount required to prevent free vibration (and no more). The
conversion equation is ζ = −λ/ωn . Figure 1-4a shows free vibration with
ζ = 0.05 (5% of critical damping); Fig. 1-4b shows the same system
with ζ = 0.25 (25% of critical damping). If a free vibration is graphed
like Fig. 1-4, the damping can be expressed as the natural logarithm of
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Figure 1-4 (a) Free vibration with 0.05 damping ratio; (b) free vibration with
0.25 damping ratio.

the ratio of successive amplitudes Xn/Xn+1. The logarithmic decrement
δ = ln(Xn/Xn+1) = 2πζ

/(
1 + ζ 2

)1/2
. The inverse expression is often

useful: ζ = δ
/[

(2π)2 + δ2
]1/2

.
The algebraic sign of the real part of the eigenvalue λ is the mathemati-

cal test for vibration stability, i.e., whether the free vibration of frequency
ωd will die out or, in the unstable case, will grow with time. For example,
in the simple system of Fig. 1-3, λ becomes positive if the damping c is
negative. Negative damping is possible in mechanical systems, especially
when fluid pressures are acting.

USING SIMPLE MODELS FOR ANALYSIS AND DIAGNOSTICS

Techniques and methods for solving vibration problems can often be
developed by using the simple one degree of freedom model even though
the real system is more complicated. The main purpose of the model is
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to provide an understanding of the type of problem being encountered so
that the most effective type of “fix” can be identified. Sometimes a simple
model can even yield useful approximations for the optimum parametric
values, such as stiffness and damping to be employed. In contrast to the
large and detailed finite element models being promoted by some for
all diagnostic vibration analysis, this approach suggests that the engineer
should first use the simplest possible model that contains the relevant
physical characteristics and resort to the more detailed models only when
the simple models do not yield sufficient guidance for modifications to
the design or when improved accuracy is desired.

In addition to system A of Fig. 1-3, two more single degree of freedom
models are shown in Figs. 1-5 and 1-6. All three of these systems have
a single natural frequency determined by their modal mass and stiffness,
but there are subtle differences between the three models that are related
to the type of excitation.

The constant amplitude exciting force F in system A is generally
unrealistic. Inertia forces in rotating machinery are proportional to speed
squared. Model C in Fig. 1-6 has an unbalanced rotor so that the exciting
force F = mω2u, where u is the offset of the center of rotor mass m from
the axis of rotation. Note that the mass m is the rotating mass, not the
total mass, so m on the left side of differential equation (1-2) must be
replaced by the total mass M unless the nonrotating mass is negligible.

In some cases the excitation is a vibration displacement at the base,
rather than a force. This is represented by system B in Fig. 1-5.

These small differences in the models produce different frequency
response curves. The differences are useful in diagnosing problems and
determining solutions. Obviously, to use these differences, the engineer
must have a complete and thorough knowledge of the three models and
their responses. The three systems illustrated in Figs. 1-3, 1-5, and 1-6
and their mathematical analyses are described in most vibration textbooks
[1–3]. In some cases the damping should be included in the most real-
istic way possible, i.e., as viscous, Coulomb, hysteretic, or aerodynamic
damping. However, if the damping is other than viscous, it may usually be

Ysin (wt)

m

kc

x(t)

SYSTEM  B

Figure 1-5 SDOF model with base excitation.
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Rotor mass = m

Total mass = M
kc

x(t)
u ωt

SYSTEM  C

Unbalance = u

Figure 1-6 SDOF model with rotating unbalance.

represented by an equivalent viscous damping coefficient that varies with
frequency [1, page 73]. For purely steel structures, it is usually less than
5% of the critical value. System B may have its predominant damping
either (1) between the vibrating base and the modal mass, or (2) from the
mass to ground. It is important to recognize the difference and set up the
model correctly.

The frequency response curves for systems A, B, and C are plots of the
amplitude of forced vibration versus the frequency. The response ampli-
tude for system A is computed from Eq. 1-4 at each frequency, using
appropriate values for k , c, m , and F . Figure 1-7 shows the response curve
for system A with parameter values from Table 1-1. For plotting the curve,
frequency ω (rad/sec) has been converted to rpm (cpm). X_static in the
table is F /k , the displacement at zero frequency, which is the deflection
of the spring under a static force F . Resonance is the undamped natural

System A Displacement Response
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Figure 1-7 Forced response of system A (constant amplitude excitation force F).
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Table 1-1 System A values for Fig. 1-7

Data Units

Input
Mass 100 lb
Kstiff 30,000 lb/in
Cdamp 20 lb-sec/in
Force 150 lb
Freqstart 0 rpm
Freqstop 8000 rpm
Npoints 101 use 101

Output
Resonance 3251.252 rpm
Zeta 0.11349 none
X_static 5.00E-03 in

frequency ωn converted to cpm. Zeta is the critical damping ratio, i.e., the
percentage of critical damping divided by 100. The solid curve in Fig. 1-7
has all the parametric values of Table 1-1.

The dashed curve in Fig. 1-7 has all the values of Table 1-1 except that
the damping coefficient c has been increased from 20 lb-sec/in. (in the
solid curve) to 30 lb-sec/in. The main effect of the increased damping is to
reduce the vibration amplitude at the critical speed. It has very little effect
at frequencies away from the critical speed. The critical speed (where the
peak vibration occurs) is 3200 rpm for the solid curve and about 3150 rpm
for the dashed curve. These are both slightly below the undamped natural
frequency of 3251 cpm. Thus, damping tends to lower the critical speed.
(This effect is reversed in system C (below) when the constant shaking
force F is replaced with a rotating unbalance force mω2u). In Fig. 1-
7, notice that the response amplitude X (= 5 mils at zero frequency)
becomes large near the natural frequency, and approaches zero at very
high frequencies. Figure 1-8 shows how the vibration X (the dashed curve)
lags the force F with a phase angle φ (see Eq. 1-3). Figure 1-9 shows how
the phase angle varies with frequency. More damping (the dashed curve)
makes the phase angle change more gradually as the excitation frequency
passes through ωn . The phase angle is 90 degrees at the undamped natural
frequency ωn , regardless of the amount of damping. This fact is useful in
determining the value of ωn , since the phase angle can be measured but
ωn cannot be measured.

Graphs like Figs. 1-7 and 1-9 are often referred to as the frequency
response curves, or Bode plots. If the parameter values (k , c, m) are
changed, then the response curves will look similar but will have different
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Figure 1-9 Phase lag response of system A.

values of response amplitude and phase. Increasing the damping generally
brings the peak amplitude down but has a negligible effect at frequencies
away from the natural frequency.

The necessity to plot many different curves for different values of F ,
k , and m is avoided by plotting the curve with dimensionless ratios as
shown in Fig. 1-10. The abscissa in Fig. 1-10 is frequency ratio ω/ωn ;
the ordinate Xk/F is X/X _static (the ratio of vibration amplitude to
static displacement under the force F ).

The frequency response of system B (Fig. 1-5, base vibration excitation)
is given by

X = Y

√√√√ k2 + (ωc)2(
k − mω2

)2 + (cω)2
(1-8)

Figure 1-11 shows the response amplitude X calculated with the paramet-
ric values of Table 1-2. In the table, X_Base is the displacement amplitude
Y of the vibrating support. Notice that damping in system B (the dashed
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Figure 1-11 Response to base excitation of system B.

curve) actually increases the vibration response at high frequencies. Solv-
ing the differential equation for system B [1, page 66] shows that the
crossover frequency is 1.4 times the undamped natural frequency. All
the curves with different damping values cross at this frequency, and the
amplitude there is the same as X_Base. The frequency range above this
is called the isolation range, since the response there is reduced below
what would be obtained with a hard support. A vibrating system with a
fixed excitation frequency can be put into the isolation range by softening
the spring Kstiff between the vibrating base and the mass.

The frequency response of system C (Fig. 1-6) is given by Eq. 1-9,
where u is the unbalance (C.G. offset of the rotor), m is the rotor mass,
and M is the total mass:

X = mω2u
/√(

k − M ω2
)2 + (cω)2 (1-9)
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Table 1-2 System B parameters for Fig. 1-11

Data Units

Input
Mass 0.35 lb
Kstiff 100 lb/in
Cdamp 0.1 lb-sec/in
Cdamp2 0.4 lb-sec/in
X_Base 0.1 in
Freqstart 0 rpm
Freqstop 10,000 rpm
Npoints 101 use 101

Output
Resonance 3172.897 rpm
Zeta 0.166132 none
Zeta2 0.66453 none
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Figure 1-12 Response with an unbalanced rotor for three damping values.

The ratio X /u is often used and is sometimes called the magnification
factor . The response calculated with the parametric values of Table 1-3
is shown in Fig. 1-12 with dimensionless amplitude XM /mu. In the table,
m = Rotrmass and M = Rotrmass + Housmass. Note that XM /mu is
approximately X /u in this case, since m/M = 0.98 (the housing mass
is negligible). Figure 1-12 shows that system C response starts out at
zero and damping in system C reduces the peak amplitude of vibration
response and raises the critical speed. At very high frequencies the vibra-
tion amplitude approaches a limiting value determined by the amount of
unbalance. Increasing the housing mass will reduce this value.
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Table 1-3 System C parameters for
Fig. 1-12

Data Units

Input
Rotrmass 50 lb
Housmass 1 lb
Kstiff 28,000 lb/in
Cdamp 8 lb-sec/in
Cdamp2 16 lb-sec/in
Cdamp3 32 lb-sec/in
Unbalance 0.0015 in
Freqstart 0 rpm
Freqstop 11000 rpm
Npoint 101 use 101

Output
Resonance 4398.29 rpm
Zeta 0.065798 none
Zeta2 0.131597 none
Zeta3 0.263193 none
Totalmass 51 lb
Massratio 0.980392 none

SIX TECHNIQUES FOR SOLVING VIBRATION
PROBLEMS WITH FORCED EXCITATION

When vibration measurements from the real system are compared and
identified with the theoretical response from the appropriate model (A,
B, or C) one of the following techniques for reducing the vibration will
often become apparent.

1. Identify and reduce the excitation source. This most obvious solu-
tion is also the one least likely to be possible in systems of type A
or type B, but it should be investigated first. In rotating machin-
ery (system C), this technique is implemented by balancing the
rotating parts. Balancing will be effective only when the vibration
frequency is equal to the speed of a rotating part or its integer
harmonics, and this fact is the corollary of a diagnostic rule: Fre-
quency components in a measured spectrum that are synchronous
with a rotating speed or one of its harmonics are often caused by
rotating imbalance. In a reciprocating machine (Fig. 1-1), balanc-
ing the 2nd harmonic often requires a separate unbalanced balance
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shaft rotating at twice crankshaft speed to cancel out the inertia
forces.

2. Tune the natural frequency to a value further away from the frequency
of excitation to avoid resonance. A study of the frequency response
curves for any of the systems A, B, or C reveals that the vibra-
tory excitation is highly magnified at frequencies near the natural
frequency. This magnification factor R, or Q factor as it is some-
times called, can typically range from 5 to 50 or more depending
on the amount of damping. The excitation frequency can seldom be
changed, but the natural frequency can sometimes be easily changed
by changing the modal stiffness. This is one place where intelligent
construction of the analytical model becomes important, since the
modal stiffness may be made up of several real stiffnesses in par-
allel or in series. In parallel combinations the very low stiffnesses
have little effect in determining the modal stiffness, while in series
combinations the very high stiffnesses have little effect. The tuning
method is effective only when the excitation frequency is constant
or when it only varies over a narrow range.

3. Isolate the modal mass from the vibratory excitation by making the
modal stiffness very low. Notice that all the response curves show
a very low response to the vibratory excitation at frequencies much
higher than the natural frequency (far to the right on the response
curves). Once again, the excitation frequency usually cannot be
changed but the natural frequency can be brought far down by a
very soft modal stiffness, thus placing the system response far to
the right of resonance on the response curve. This method is par-
ticularly effective in systems of type B. A typical application is
isolating an electronics box from a vibrating vehicle frame.

4. Add damping to the system. Damping is added by incorporating
mechanisms that dissipate vibratory energy into heat. When they
work, damping mechanisms produce forces that act in opposition to
the vibratory velocity. Contrary to popular belief, however, adding
damping indiscriminately does not always reduce vibration. Damp-
ing does work well whenever operation is near resonance (and this
is the operating condition most likely to cause a problem). At fre-
quencies away from resonance damping has very little effect, except
to increase the forces transmitted to ground at high frequencies far
above resonance. In a system B application where isolation is used,
damping added between the modal mass and the vibrating support
will actually increase the vibration of the mass at high frequencies.
In a system C (rotating machinery) application with rolling element
bearings, adding damping to the bearing supports will increase the
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dynamic bearing loads and shorten bearing life for operation at high
supercritical speeds [4, page 14].

5. Add a vibration absorber. A vibration absorber is a separate
spring–mass assembly, which is added to the original system to
“absorb” the vibration. This method works well only under a strict
set of conditions: (a) the excitation frequency must be constant
and resonant (i.e., equal to a natural frequency of the system), (b)
the absorber spring–mass assembly must be tuned to a natural
frequency equal to the resonant frequency of the original system, (c)
the absorber mass should be at least 20 percent of the modal mass
of the original system, and (d) the absorber spring–mass assembly
should not have much damping. Under all of these conditions
the modal mass of the original system will stand still while the
absorber mass vibrates with a large amplitude. Since the absorber
adds a degree of freedom to the analytical model, it follows that
mathematical analysis of absorber performance requires at least a
two degree of freedom model with two differential equations to
solve simultaneously [2, page 293].

6. Stiffen the system. This method is listed last because it is valid only
for systems of type A, but often is mistakenly suggested for all
type systems. On the dimensionless response curves for system A
(Fig. 1-10), notice on the vertical amplitude axis that the vibration
amplitude X is determined by multiplying the graph value by F /k .
Thus, the vibration amplitude can be made smaller at any frequency
by raising the stiffness k . Once again, this applies only to systems
of type A in which there is a constant amplitude force excitation
that does not vary with frequency.

SOME EXAMPLES WITH FORCED EXCITATION

Illustrative Example 1

Problem: Figure 1-13 shows a car towing a trailer. This car/trailer system
has a vibration problem in the direction of travel, which occurs only
during braking. The car has a warped front brake disk, which produces a
vibratory braking torque and braking force P . The trailer hitch is flexible
in the direction of travel such as might be produced by installing the hitch
ball directly onto a lightly constructed rear bumper. During braking the
vibration frequency decreases as the front wheel speed decreases. At some
particular speed the excitation frequency becomes equal to the natural
frequency of the car/trailer system and the amplitude becomes very large.
The car and trailer move longitudinally as rigid bodies (out of phase) in
the vibratory motion.
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Analysis: Let the car displacement be X1 and the trailer be X2 (relative
to the displacement produced by travel speed). There are two degrees of
freedom (dof), but the system can be reduced to 1 dof because there is no
spring to ground. The two differential equations (one for each dof) can be
combined by subtracting one from the other (because the first mode has
zero frequency). X = X1 − X2 is a modal coordinate. This produces the
system A differential equation (1-2), where me is the modal or equivalent
mass and Pe is the modal or equivalent force as follows:

meẌ + KX = Pe (1-10)

where
me = m1m2

m1 + m2
(1-11)

Pe = m2P

m1 + m2
(1-12)

Figure 1-14 is the dimensionless response curve with the modal param-
eters and with a small amount of damping added to keep the amplitudes
positive.

See Problem 5-6 in [1] for the torsional analogy to this problem. The
coordinates X1 and X2 describe the displacement of the car and trailer,
respectively, as rigid bodies. This model has two degrees of freedom, but
since neither the car nor the trailer has spring connections to ground, only
one degree of freedom is relevant. Any movement of the system in which
the car and trailer move in unison is irrelevant since they cannot vibrate
together in phase; hence, the vibration coordinate of interest is the relative
displacement X = X1 − X2. Mathematically this is the modal coordinate
of the second mode, as the first mode has zero natural frequency. In the
model of Fig. 1-13 the vibratory braking torque has been translated into
a vibratory braking force with amplitude P and frequency ω equal to
the rotational speed of the front wheel. The two differential equations in
X1 and X2 have been subtracted one from another to produce the single
differential equation in x (this is possible only when there are no springs to
ground). Inspection of the resulting differential equation in X shows that

Warped
Disk

x sin (ωt)

Figure 1-13 Car and trailer with flexible bumper/hitch.
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Figure 1-14 Dimensionless response of the car and trailer to the warped
brake disk.

the modal mass me is m1m2(m1 + m2) and the equivalent excitation force
Pe is Pm2/(m1 + m2). The modal stiffness is simply the hitch connection
stiffness K . The system is of Type A since the differential equation has
exactly the same form as the system A equation 1–2 . This is true because
the equivalent excitation is a constant force F = Pe . Notice that the modal
mass can be easily calculated from the weights of the car and trailer,
and the modal stiffness K can be measured directly by applying static
forces to the hitch or by measuring the resonant frequency and calculating
K = ω2me . The numerical magnitude of P need not be known to arrive
at useful solutions as will be seen below.

Solution: Consider the six different methods described above for reduc-
ing vibration. The first method, reducing the source, could be implemented
by replacing the warped brake disk and would be the ideal solution. If
for some reason this cannot be done, consider the remaining methods.
Tuning or absorption will not work because the excitation frequency is
variable. Isolation will not work because the excitation frequency goes all
the way down to zero. Damping would help at frequencies near resonance,
but requires the addition of an expensive damping element to the flexible
hitch connection at the rear bumper. Method 6, stiffening the system, can
be implemented by stiffening the rear bumper or hitch connection and
would be the best approach if the warped brake disk cannot be corrected
or replaced. On the dimensionless response curve, note the effect of K on
the value of X at every frequency. Stiffening the system in this case will
reduce the response at all frequencies.

Illustrative Example 2

Problem: It is desired to mount an electronics package onto a vibrating
surface with assurance that the electronics will survive. This generally
requires that testing be done to define the limits of the vibratory envi-
ronment that could damage the electronics in the package and also that
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the vibration amplitude of the mounting surface be known as a function
of frequency (preferably from testing). In this example an electronic box
weighing 0.35 lb is to be supported on a bracket that is welded to a vibrat-
ing bulkhead (Fig. 1-15). The excitation is rotating unbalance. A rubber
mounting pad is to be designed as a vibration isolator. The vibration lim-
its specified by the electronics manufacturer are shown in Fig. 1-16. The
bulkhead vibration measured with an accelerometer is shown in Fig. 1-17.

Analysis: This type of problem is almost always addressed with method
3 (isolation) and is modeled by system B. It is helpful to plot the sys-
tem B response curve in terms of dimensionless parameters as shown in
Fig. 1-18. The frequency ratio is the ratio of the exciting frequency ω to
the undamped natural frequency ωn .

2"

H

3"

u (t )
1"
 4 

Figure 1-15 Electronic box installation.
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Figure 1-16 Vibration limits for the electronics.
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Figure 1-17 Measured bulkhead vibration, g’s.
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Figure 1-18 Dimensionless system B response (transmissibility).

The dimensionless transmissibility (ordinate) in Fig. 1-18 is the ratio of
the vibratory amplitude of the electronics box to the vibratory amplitude
of the mounting surface. There are two different curves for two different
damping factors. The dashed curve line is for the higher damping. Inspec-
tion of the response curve shows that the best place to be on the response
curve is far to the right at very high-frequency ratios, and with less damp-
ing. This can be accomplished if the mounting stiffness can be made soft
enough and with relatively small damping. It is helpful in quantifying a
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solution to fit a curve to the measured vibration of the mounting surface,
which is shown in Fig. 1-17. The problem may now be stated mathemati-
cally as follows: At every frequency in the operating range the product of
the transmissibility and the amplitude in g’s at the mounting surface must
be less than the vibration limit shown in Fig. 1-16. The function τ = X/Y
that generates the transmissibility curve in Fig. 1-18 is the dimensionless
form of Eq. 1-8. The function is

τ =
√√√√ 1 + η2(

1 − r2
)2 + η2

(1-13)

where η is a damping factor and r is the frequency ratio ω/ωn . For viscous
damping the damping factor is

η = 2ξr (1-14)

where ξ is the ratio of the viscous damping coefficient to the critical value
and r is the frequency ratio. For hysteretic damping, which elastomeric
materials exhibit, the damping factor η is simply the loss factor of the
elastomeric material (generally published by the manufacturer with other
material properties).

Solution: The transmissibility function can be multiplied by the curve-
fitted function for Ab (Fig. 1-17) and compared with the vibration limits
in Fig. 1-16. This process is well suited for computer coding and it is
found that the modal stiffness k should be 320 lb/in or less to keep the
vibration amplitude of the electronic box below the specified limits at all
frequencies. The solution is found to be insensitive to variations in the loss
factor for typical rubber materials. The analysis shows that the damping
should be small. If the electronic box is mounted on a bracket as shown
in Fig. 1-15, then the bracket becomes part of the modal stiffness for the
system. The metal bracket, however, is much stiffer than 320 lb/in, so a
rubber pad will probably be needed to get the support stiffness down low
enough. A single pad, or several pads, made of butadiene compound can
be sized so that AE /t = 320 lb/in, where A is the total contact area of
the pads, E is the elastic modulus, and t is the pad thickness. Then the
bracket and the rubber in series will have k < 320 lb/in and a composite
loss factor less than the rubber alone.

Illustrative Example 3

Problem: A typical beach house structure is shown in Fig. 1-19. The house
is built on tall piers (without the cross braces shown with question marks).
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At the beach, the piers are set into soft damp sand and this gives the struc-
ture a significant amount of damping to attenuate lateral vibration. When
such a house is built at locations with a hard rock foundation, the damping
is much less, about 1 percent of the critical value (Q factor = 50). There
are typically two modes of lateral vibration in which the house vibrates as
a rigid body with the piers acting as cantilever beams to produce lateral
stiffness. A rectangular house plan produces orthotropic stiffness (with the
higher stiffness in the longer direction) and consequently the two modes.
The two natural frequencies are about 3 and 5 Hz.

Consider the response of the structure to running a washing machine
with a vertical rotating axis (the tub). The unbalanced tub spins up from
zero to a speed much higher than the natural frequency of the house
on piers and then coasts back down to zero, thus producing resonance
twice in each of the two modes during each spin cycle. The amplitude at
resonance is about 1/4′′, which is enough to rattle dishes.

Analysis: It is tempting to simply rely on experience and recall that
stiffening the system in the car/trailer problem reduced the response at
all frequencies. It would thus seem that cross braces should be added to
the pier support structure as shown in Fig. 1-19. However, this problem
is of type C (rotating excitation) instead of type A. Look at the dimen-
sionless group of variables on the vertical axis of the system C response
curve (Fig. 1-12) and notice that the stiffness k does not directly appear.

F (t )

X

??

ROCK

Figure 1-19 Beach house on piers.
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To get the vibration amplitude from the curve, one multiplies the graphed
value by mu/M , that is, the rotor mass times the unbalance divided by the
total mass. In system C the excitation is centrifugal force, which increases
as the square of rotating frequency. Increasing the stiffness of such a sys-
tem raises resonance to a higher frequency where the excitation force is
higher. Figure 1-20 shows the effect of adding stiffness to the supports.
The assumed parameters are shown in Table 1-4. Notice that the housing
mass in this case is much larger than the rotor mass. Although X /u is
plotted here, the basic dimensionless group is XM /mu, so the large hous-
ing mass reduces the peak vibration to be less than the unbalance. But it
is still unacceptable and adding stiffness makes it worse.

Now consider the other methods described above to reduce the vibra-
tion. Method 1, reducing the source, might be implemented by replacing
the washing machine (which already has an automatic balancer). If method
1 is not practical, we move to method 2 or 3, tuning or isolation, neither
of which work because the frequency of excitation is variable and starts
at zero. Method 5, absorption, would require an absorber mass 1/5 the
mass of the house and would introduce additional natural frequencies in
the operating range. This leaves only method 4, damping, which is the
parameter we lost by moving away from the beach and cementing the
piers into hard rock.
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Figure 1-20 Stiffness raises the vibration amplitude in system C.

Table 1-4 Parameter values for the beach house

Rotrmass 100 lb
Housmass 12,000 lb
Kstiff 6,000 lb/in
Kstiff2 8,000 lb/in
Kstiff3 10,000 lb/in
Cdamp 15 lb-sec/in
Unbalance 1 in
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Solution: Figure 1-21 illustrates the tremendous reduction in resonant
vibration that can be obtained by increasing the damping. The two lower
curves have 30 and 60 lb-sec/in of viscous damping, repectively.

To determine the existing damping, the fraction ξ of critical damping
(damping ratio) can be obtained by measuring the logarithmic decay δ of
free vibration and calculating

ξ = δ√
(2π)2 + δ2

(1-15)

The effective viscous modal damping coefficient is then given by

C = 2mωnξ (1-16)

where m is the mass of the house (lb-sec2/in, not lb) and ωn is the natural
frequency in radians/sec (= 2π times 2.25 Hz or about 14 rad/sec).

Since the damping must act on motion of the house relative to the
ground (i.e., absolute motion), there are practical problems associated with
installing it. A single damping element at one point would probably flex
the house structure and possibly fail at the attachment point. A number
of steel cables from the tops of piers out to ground anchors, with viscous
shock absorbers (dashpots), could likely be made to work but might be a
visual detraction from the house. In this case the sum of all the damping
coefficients of the added dashpots acting in the same direction should be
2 or 3 times the value of the existing C calculated from formula 1-16.

In actual practice, this problem was solved by replacing the washing
machine with one that has a much better automatic balancing mechanism,
with the rotating tub on much softer supports.
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Figure 1-21 Effect of damping on the beach house vibration response.
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Illustrative Example 4

Problem: A power turbine rotor in a turboprop aircraft engine has large
vibration on start-up when the lube oil is hot. The rotor is mounted on
squirrel cage bearing supports with stiffness much lower than the ball
bearings themselves. (This is common practice in aircraft turbine engines).
Figure 1-22 shows the rotor–bearing assembly mounted on pedestals in
the Turbomachinery Laboratory at Texas A&M University. Figure 1-23
shows the measured vibration response with oil at three temperatures rang-
ing from 94 to 204◦F (operating temperature). The squeeze film damper
becomes less effective due to the loss of viscosity at higher temperatures,
which almost doubles the peak vibration response.

It is desired to minimize the amplitude of response at the critical speed,
independent of temperature. The rotor speed of aircraft engines is highly
variable and it is impossible to avoid passing through some of the lower
critical speeds on start-up.

Analysis: It is often tempting to do the analysis with intuition, which
suggests stiffening the bearing supports—perhaps even mounting the ball
bearings solidly in the engine housing. Recall once again, however, that
this approach moves the resonance to higher speeds where the force
of the unbalanced rotor mass is higher by the square of rotor speed.

Figure 1-22 Power turbine rotor.
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Figure 1-23 Response to unbalance at three oil temperatures.
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Figure 1-24 Effect of increased support stiffness on rotor response.

It would also move the critical speed up into the operating speed range.
Figure 1-24 shows graphically the effect of stiffening the supports and
shows that the amplitude of vibration actually increases with support stiff-
ness. Other undesirable things happen as well to high-speed rotors when
support stiffness is raised, as will be shown in following chapters on rotor-
dynamics. Method 1, balancing the rotor, is often used in cases like this. It
works, but tedious precision balancing is required, and the state of balance
usually tends to degrade with operation time. Since we want to reduce
the amplitude at the critical speed (near resonance), Fig. 1-12 shows that
damping is the preferred approach. Like most aircraft turbine engines, this
system already has squeeze film bearing dampers for this purpose. But the
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damping coefficient should be independent of temperature, and squeeze
film dampers depend on the viscosity of the lube oil. Figure 1-25 shows
the computed effect of damping on the unbalance response of this rotor
at its first critical speed.

Solution: Experiments in the Turbomachinery Laboratory at Texas
A&M University have shown that bearing supports made of woven
wire mesh can provide the same effective damping as a squeeze film
damper at operating temperature, since their damping is independent of
temperature. Figure 1-26 shows the response of this power turbine on
metal mesh supports, measured at three temperatures up to 210◦F. More
about this new type of bearing damper is presented in Chapter 5.
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Figure 1-25 Effect of bearing support damping on the power turbine.
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SOME OBSERVATIONS ABOUT MODELING

The last example above raises a question about the adequacy of a sin-
gle degree of freedom model to represent the power turbine rotor-bearing
system. In this case it was found that the CG of the rotor was directly
above the outboard bearing support. This suggested that the first critical
speed would be a mode with very little pitch (i.e., a cylindrical whirl
mode, not conical) and therefore with little gyroscopic effect. The rotor
was also modeled with XLROTOR using 17 stations with 68 degrees
of freedom as shown in Fig. 1-27. The computed response to unbal-
ance in Fig. 1-28 is identical to the response computed from the one
degree of freedom (dof) model. The judgments required in constructing
an appropriate one-dof model for the power turbine must be based on some
knowledge about rotordynamics. This material is presented in following
chapters.
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Figure 1-27 Computer model of the power turbine with 68 degrees of freedom.



28 FUNDAMENTALS OF MACHINE VIBRATION AND CLASSICAL SOLUTIONS

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000

Rotor Speed, rpm

R
es

p
o

n
se

, m
ils

 p
-p

PT900 Power Turbine, Build #2
SFD CL = 100, 250 deg F, 8 & 13 lb-sec/in
with 20,000/28,000 stiffness & spline shaft

Sta. No. 16: Imbalance response at turbine wheel

Figure 1-28 Response curve computed from the Fig. 1-27 model.

UNSTABLE VIBRATION

None of the examples presented above involve unstable vibration as rep-
resented by the homogeneous solutions (1-5) and (1-6) to the differential
equation. Furthermore, all six of the presented techniques for solving
vibration problems are based on the particular solution, i.e., response to
excitation. Unstable vibration in nonrotating structures is rare. Those few
cases usually involve fluid flow across a transverse member that sheds
Von Karman vortices. The fluid pressure on the transverse member acts in
phase with the vibratory velocity of the member, thus producing a negative
damping coefficient. Since the real part of the eigenvalue is λ = −c/2m
in Eq. 1-6, negative c produces a growing exponential function and the
vibration amplitude grows without limit. The frequency of unstable vibra-
tion is always the natural frequency ωd of the system, independent of any
external exciting frequency.

Figure 1-29 shows a simple apparatus (from Den Hartog [5]) in which
negative damping can be generated. The flow of air around the beam of
semicircular cross section produces a pressure distribution, which pushes
the beam in the same direction as its instantaneous velocity (for motion
in a vertical plane), as shown in Fig. 1-30. The differential equation for
the vertical translational displacement Y of free vibration is

mŸ − cẎ + kY = 0 (1-17)

where m is the mass of the beam, c is the (negative) damping coefficient,
and k is the total effective stiffness of all the springs. The solution of
Eq. 1-17 is

Y (T ) = Aest (1-18)
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where A is a constant, and the values of s that satisfy Eq. 1-17 are the
complex conjugate eigenvalues. They are

s = c

2m
± i

√
k

m
−

( c

2m

)2
(1-19)

The positive real part of the eigenvalue indicates that the natural frequency
of the beam will be unstable, with an amplitude that grows exponentially
with time. In practice, the motion will become bounded at some finite
amplitude large enough to render the linear equation (1-17) no longer
valid. Note that every term in Eq. 1-17 contains the coordinate Y or
one of its derivatives. This makes the equation homogeneous , which is a
general property of the type of equations used to predict instabilities.

Practical examples of this phenomenon do exist. The oscillating eddies
of the air are called Von Karman vortices . The beam could be a long
pipe in a heat exchanger, a vertical smokestack, an electrical transmission

Figure 1-29 Apparatus to demonstrate unstable vibration. From Den Hartog [5].
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Figure 1-30 Negative damping produced by aerodynamic flow separation. From
Den Martog [5].
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wire, or a guy wire. However, unstable vibration is much more common
in rotating machinery than in structures and can be very destructive. In
rotating machinery it is called rotordynamic instability . It is generally
caused by cross-coupled stiffness instead of negative direct damping. It
will be analyzed and discussed in chapters to follow.
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EXERCISES

1-1. Use Excel or some other application to plot the force F and dis-
placement X versus time t for a synchronous vibration at machine
speed 3000 rpm with no higher harmonics. The peak force and
amplitude values are 10 lb and 8 mils (0.008′′), respectively. Let
the displacement lag the force by 90◦. Show that the accelera-
tion amplitude is 790 times larger than the displacement and is
equivalent to 2.04g .
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Ex. Figure 1-1
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1-2. Use Excel or some other application to plot the total displacement
amplitude (x1 + x2) and the total acceleration amplitude (a1 + a2)
versus time for a machine vibration containing synchronous com-
ponent x1(t) and a second harmonic x2(t) with half the amplitude.
The fundamental amplitude is 10 mils (0.010′′). The machine speed
is 6000 rpm. For measurements, note that a displacement trans-
ducer is preferable to an accelerometer here if the primary interest
is synchronous vibration.
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Ex. Figure 1-2a

Acceleration Amplitude vs. time
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Ex. Figure 1-2b

1-3. Substitute Eq. 1-3 into Eq. 1-2 to show that the particular solution
satisfies the differential equation.

1-4. Substitute Eq. 1-5 into Eq. 1-2 to show that the homogeneous
solution satisfies the differential equation with F = 0. Show that
the real part of the eigenvalue λ = −c/2m and the imaginary part
is the square root of ω2

d = k/m − (c/2m)2.
1-5. Referring to Eq. 1-6, the solution to the homogeneous differential

equation for free vibration with no damping is Aeiωt , since λ = 0.
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Show that the solution can also can be written as A1 cos(ωn t) +
A2 sin(ωn t), where A1 and A2 are real numbers and ωn = (k/m)1/2,
provided that A is an arbitrary complex number.

1-6. Show that eq. 1-6 with nonzero damping can be expressed

as xh(t) = e− c
2m t [A1 cos(ωd t) + A2 sin(ωd t)]. Assuming ini-

tial conditions to give A2 = 0, take the ratio of successive
amplitudes Xn/Xn+1 to show that the logarithmic decrement
δ = ln(Xn/Xn+1) = 2πζ/

(
1 + ζ 2

)1/2
, where ζ = c/2mωn .

Hint: Note that the period of the damped vibration is 2π/ωd .
1-7. The tuning method on page 14 states that intelligent construction

of the analytical model is important, since the modal stiffness may
be made up of several real stiffnesses in parallel or in series. In
parallel combinations the very low stiffnesses have little effect in
determining the modal stiffness, while in series combinations the
very high stiffnesses have little effect.

a. Show that the effective stiffness of k1 and k2 in parallel is
practically k1 if k1 = 100k2.

b. Show that the effective stiffness of k1 and k2 in series is prac-
tically k2 if k1 = 100k2.

1-8. Derive the dimensionless form of Eq. 1-3 for the purpose of plot-
ting Fig. 1-14.

1-9. Referring to Illustrative Example 1 and Fig. 1-13:

a. Derive the differential equation in X1 for the car, with Pe as
the excitation force.

b. Derive the differential equation in X2 for the trailer.
c. Divide each equation by the mass and subtract the X2 equation

from the X1 equation.
d. Do the math to obtain Eq. 1-10.
e. Use Excel or some other application to plot Fig. 1-14 in dimen-

sional variables (X versus ω). Assume a speed range 70 mph
down to zero with a tire diameter D = 30′′ and brake excita-
tion force P = 100 lb. Assume resonance occurs at 50 mph.
Assume the car weighs 3000 lb and the trailer weighs 1000 lb.
Include small damping C = 2 lb-sec/in using Eq. 1-4 so that
the amplitude curve is always positive. Vary the stiffness K and
note how it changes the response curve.
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System A Response
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Ex. Figure 1-9

1-10. See Illustrative Example 2, where it is suggested that “it is helpful
in quantifying a solution to fit a curve to the measured vibration
of the mounting surface, which is shown in Fig. 1-17.” Develop a
mathematical function that will approximate the data in Fig. 1-17.
Solution: This can be done with existing curve-fit software, but a
more instructive approach is to realize that the excitation is likely
due to some rotating unbalance since the data begin at the origin,
which is unique to system C. The reason that the data do not look
like Fig. 1-12 for system C is that the data are acceleration, not
displacement. Multiplication by ω2 and division by acceleration
of gravity g converts Eq. 1-9 for system C to acceleration in
g’s. Assuming a small housing mass and dividing numerator and
denominator by M = m yields

ω2X

g
= ω4u/g√

(ω2
n − ω2)2 + (2ξωnω)2

(1-20)

The broad-banded peak response suggests a damping ratio ζ

about equal to 0.085. The peak acceleration in the data is 6.2g
or 2396 in/sec2. This allows a calculation of the unbalance u
= 0.00035′′ to match the peak acceleration. The critical speed
is seen to be about 170 Hz, so ωn = 1068 rad/sec. The angular



34 FUNDAMENTALS OF MACHINE VIBRATION AND CLASSICAL SOLUTIONS

velocity ω must be converted to hertz = ω/(2π) for the graph.
With these values, Eq. 1-20 produces the graph shown here.
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