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Newton, Fizeau, and Haidinger
Interferometers

M. V. Mantravadi and D. Malacara

1.1. INTRODUCTION

This chapter has been updated by the second author; it includes much of the material

from the previous version of the book. Newton, Fizeau, and Haidinger interferom-

eters are among the simplest and most powerful tools available to a working optician.

With very little effort, these interferometers can be set up in an optical workshop for

routine testing of optical components to an accuracy of a fraction of the wavelength

of light. Even though these instruments are simple in application and interpretation,

the physical principles underlying them involve a certain appreciation and applica-

tion of physical optics. In this chapter, we examine the various aspects of these

interferometers and also consider the recent application of laser sources to them. The

absolute testing of flats will also be considered in this chapter.

1.2. NEWTON INTERFEROMETER

We will take the liberty of calling any arrangement of two surfaces in contact

illuminated by a monochromatic source of light a Newton interferometer. Thus,

the familiar setup to obtain Newton rings in the college physical optics experiment is

also a Newton interferometer; the only difference being the large air gap as one

moves away from the point of contact, as seen in Figure 1.1. Because of this, it is

sometimes necessary to view these Newton rings through a magnifier or even a low-

power microscope. In the optical workshop, we are generally concerned that an

optical flat, one being fabricated, is matching the accurate surface of another

reference flat or that a curved spherical surface is matching the correspondingly

opposite curved spherical master surface. Under these conditions, the air gap is

seldom more than a few wavelengths of light in thickness. In the various forms of the
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Newton interferometer, we are mainly interested in determining the nonuniformity of

this air gap thickness by observing and interpreting Newton fringes. A simple way to

observe these Newton fringes is illustrated in Figure 1.2. Any light source such as a

sodium vapor lamp, low-pressure mercury vapor lamp, or helium discharge lamp can

be used in the setup. Under certain situations, even an ordinary tungsten lamp can

serve this purpose.

Let us first see what happens when two perfect optical flats are placed one

over the other with only a thin air gap between them as illustrated in Figure 1.3.

The surfaces are not exactly parallel, so that the air gap is thinner on the left than on

the right. Generally this separation is not zero at any place, unless the surfaces are

extremely clean, and one presses very hard to get them in close contact. Hence, we

may imagine that the two planes are projected backward, as shown in Figure 1.3, and

they meet at a line of intersection. Let the monochromatic light of wavelength l be

incident on the optical flat combination having an angle a between them, almost

normally. If the air gap is x at a given point, the two reflected rays will have an

optical path difference (OPD) equal to 2x. One of the reflected rays is reflected

internally on one of the surfaces, while the other is reflected externally. We know

that in dielectrics, like glass, one of these two reflected rays, and only one of them,

has a phase change by 180�. In this case it is the reflected ray on the bottom surface

which will have this phase change. Thus, the phase difference between the two

reflected rays will produce a dark fringe when the optical path difference is an

Observing
eye

Magnifier focused
on the air gap

Monochromatic
extended
light source
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divider

Air
gap

Convex surface
plane surface

FIGURE 1.1. Illustration of the setup for Newton rings. A plano-convex lens of about 1 or 2 m in focal

length is placed with its convex surface in contact with the plano surface of an optical flat and illuminated by

monochromatic light.
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integer multiple of the wavelength. We may easily conclude that if the separation x is

zero, there is a dark fringe.

Hence the dark fringes may be represented by

2ax ¼ nl; ð1:1Þ

where n is an integer, and the bright fringes may be represented by

2axþ l
2
¼ nl: ð1:2Þ

Each of these equations represents a system of equally spaced straight fringes, and

the distance d between two consecutive bright or dark fringes is

d ¼ l
2a
: ð1:3Þ

Thus the appearance of the fringes is as shown in Figure 1.3, when two good optical

flats are put in contact with each other, forming a small air wedge, and are viewed in

monochromatic light.

Now let us see what the appearance of Newton fringes is when one surface is

optically flat while the other surface is not. Several situations are possible and in fact

occur in actual practice. When one starts making a surface a plane, it does not turn out

to be a plane on the first try; probably it becomes spherical with a long radius of

curvature. It is necessary to test the surface from time to time with a reference flat to

Observing
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FIGURE 1.2. A simple arrangement to observe the Newton fringes in the optical workshop. With this

arrangement plane and long radius spherical surfaces can be tested.
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ascertain its deviation from flatness. Let us consider a spherical surface of large

radius of curvature R in contact with the optical flat.

Then the sag of the surface is given by x2=2R, where x is the distance measured

from the center of symmetry. Hence the OPD is given by x2=Rþ l=2, and the

positions of the dark fringes are expressed by

x2

R
¼ nl: ð1:4Þ

Hence the distance of the nth dark fringe from the center is given by

xn ¼
ffiffiffiffiffiffiffiffi

nRl
p

: ð1:5Þ

From this, it is easy to show that the distance between the ðnþ 1Þth and the nth fringe

is given by

xnþ1 � xn ¼
ffiffiffiffiffiffi

Rl
p
ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�
ffiffiffi

n
p
Þ; ð1:6Þ

FIGURE 1.3. The principle of the formation of straight, equally spaced fringes between two optically

plane surfaces when the air gap is in the form of a wedge. The fringes are parallel to the line of intersection of

the two plane surfaces.
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and similarly the distance between the ðnþ 2Þth and the ðnþ 1Þth fringe is given by

xnþ2 � xnþ1 ¼
ffiffiffiffiffiffi

Rl
p
ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

�
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Þ: ð1:7Þ

From Eqs. (1.6) and (1.7) we can form the ratio

xnþ1 � xn

xnþ2 � xn�1

� 1þ 1

2n
: ð1:8Þ

Thus, it is seen that when we look at fringes with large values of n, they appear to

be almost equally spaced. Hence, when we are testing for the presence of curvature in

the surface, it is desirable to manipulate the plates in such a way that we see the

fringes with lower order n. In Figure 1.4, the appearance of Newton fringes is shown

when the maximum value of x2=2R is 2 l. Thus, there will be four circular fringes in

this situation. If the maximum value of x2=2R is l=2, we have just one circular fringe.

Thus, by observation of full circular fringes, we can detect a maximum error of l=2 in

the flatness of the surface. If the maximum error is less than l=2, we have to adopt a

different procedure. In this case, the center of the symmetry of the circular fringes is

displaced sideways by suitable manipulation of the two components. Thus, we obtain

fringes in the aperture of the two surfaces in contact with a larger value of n; these

fringes are arcs of circles, and their separations are almost, but not exactly, equal. Let

us take as examples of maximum value x2=2R ¼ l=4 and l=8. Figures 1.5 and 1.6,

respectively, illustrate the appearance of the fringes in these two cases. As can be

inferred, the fringes become straighter and straighter as the value of R increases.

In the optical workshop, it is also necessary to know whether the surface that is

being tested is concave or convex with respect to the reference optical flat. This can

FIGURE 1.4. Appearance of the Newton fringes when a long radius of curvature is kept on a good optical

flat. This situation is for a surface deviating 2l from the plane at its maximum.
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be easily judged by several procedures. One simple method involves pressing near

the edge of the top flat gently by means of a wooden stick or pencil. If the surface is

convex, the center of the fringe system moves toward the point of the application of

pressure. If the surface is concave, the center of the fringe system moves away from

the point of the application of pressure, as shown in Figure 1.7 (a).

A second very simple method is to press near the center of the ring system on the

top flat, as shown in Figure 1.7 (b). If the surface is convex, the center of the fringe is

not displaced but the diameter of the circular fringes is increased.

FIGURE 1.5. Appearance of the Newton fringes when a surface of long radius of curvature is kept on a

good optical flat. This situation is for a surface deviating byl=4 from the plane at its maximum. The center of

symmetry of the fringes is outside the aperture of the surfaces, and hence only arcs of circles are seen.

FIGURE 1.6. Same as Figure 1.5 except that the maximum error is l=8 and some tilt is introduced.
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Another method of deciding whether the surface is convex or concave involves the

use of a source of white light. If slight pressure is applied at the center of the surfaces,

the air gap at this point tends to become almost zero when the surface is convex.

Hence the fringe at this point is dark, and the first bright fringe will be almost

colorless or white. The next bright fringe is tinged bluish on the inside and reddish on

the outside. On the contrary, if the surface is concave, the contact is not a point

contact but occurs along a circle, and the air gap thickness tends to become zero

along this circle. The dark fringe will be along this circle, and the sequence of colored

fringes will be the same as before as one proceeds from the black fringe. This

situation is illustrated in Figures 1.8 and 1.9. This procedure is not very easy to

perform unless the surfaces are clean and is not generally recommended.

A fourth and simpler procedure is based on the movement of the fringe pattern as

one moves the eye from a normal to an oblique viewing position. Before explaining

this procedure, it is necessary to find a simple expression for the optical path

difference between the two reflected rays at an air gap of thickness t and an angle

of incidence y. This is illustrated in Figure 1.10, where it can be seen that

OPD ¼ 2t

cos y
� 2t tan y sin y ¼ 2t cos y: ð1:9Þ

Thus, the OPD at the normal of incidence, namely 2t, is always greater than the OPD

at an angle y for the same value of air gap thickness t. Using this fact, let us see what

happens when we have a convex contact between the two surfaces. The air gap

increases as we go away from the point of contact. When we view the fringes

obliquely, the OPD at a particular point is decreased, and consequently the fringes

appear to move away from the center as we move our eye from the normal to oblique

(b) Enlargement or contraction of rings

(a) Displacement of  the center of rings

FIGURE 1.7. Two methods to determine whether the surface under test is convex or concave with respect

to the surface: (a) by pressing near the edge and (b) by pressing near the center of the top plate.
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FIGURE 1.8. Convex contact and appearance of the colored fringes with white light illumination.

Pressure is applied at the center.

Almost white

Concave (edge contact)

Blue

Red

Red

Blue

FIGURE 1.9. Convex contact and appearance of the colored fringes with white light illumination.

Pressure is applied at the center.
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position. The reverse of this situation occurs for a concave surface in contact with a

plane surface.

We may consider many other situations where the surfaces are not plane or

spherical. The nature and the appearance of such fringes when viewed are given in

the usual manner in Table 1.1.

We have mentioned that the reference surface is a flat surface against which a

nearly plane surface that is being made is tested. By the same procedure, spherical or

cylindrical surfaces having long radii of curvature can be tested. However, when such

surfaces have very short radii of curvature, it is necessary to use special illumination,

which will be discussed in Section 1.2 on the Fizeau interferometer.

1.2.1. Source and Observer’s Pupil Size Considerations

The OPD given in Eq. (1.9) shows that this value depends on the angle of the reflected

rays being observed, which for small angles y can be approximated by

OPD ¼ 2t cos y � 2t � ty2: ð1:10Þ

Now, in the Newton interferometer we are interested in measuring glasses where t is

not constant and thus y is not constant either. Hence, to reduce the influence of y, as

much as possible, we should have

ty2 � l
k
; ð1:11Þ

where l=k is the maximum allowed error due to variations in y. Typically, to have a

reasonably small error, we at least require that

ty2 � l
4
: ð1:12Þ

A

B

C

D

t

OPD = AB ++ BC − AD = 2 t cos q 

FIGURE 1.10. Ray diagram for calculation of the optical path difference between two reflected rays from

an air gap of thickness t and angle of incidence y.
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Thus, to ensure a small error, both t and y should be small. Regarding the value of t,

we may safely assume that the value of t should never exceed a few wavelengths in

the gap. If the surfaces are clean, then flat t should not exceed about 6l. With this

maximum value of t, the maximum allowed value of y is such that y2 � 1=24 or

y � 0:2. For example, let us set the accuracy, to which the thickness t is to be

assessed, to be equal to l=20, thus, writing Eq. (1.12) as

ty2 � l
20

or 2y � 0:2: ð1:13Þ

From the foregoing analysis, it can be seen that the illumination angle on the two flats

in contact should never exceed 0.2 rad or 12� approximately.

The size of the light source becomes irrelevant if the angular diameter of the

entrance pupil of the observer, as seen from the flats, is smaller than this value. The

light source can thus be extended to any size. It is only necessary that the observation,

visual or photographic, is made nearly perpendicular to the flats and from a minimum

distance, such that it is roughly five times the diameter of the optical flats in contact.

To obtain higher accuracy, the distance from which the observation is made has to be

larger. Alternatively, a collimating lens can be used and the entrance pupil of the

observing eye or camera is then placed at the focus of the collimator.

TABLE 1.1. Nature of Newton fringes for different surfaces

with reference to a standard flat.

Appearance of the Newton fringes

S. No. Surface type Without tilt With tilt

1 Plane

2 Almost plane

3 Spherical

4 Conical

5 Cylindrical

6 Astigmatic

(curvatures of

same sign)

7 Astigmatic

(curvatures of

opposite sign)

8 Highly irregular
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If the observing distance is not large enough, equal thickness fringes will not be

observed. Instead, localized fringes will appear. These fringes are called localized

because they seem to be located either above or below the air gap. The fringes are

localized in the region where corresponding rays from the two virtual images of the

light source intersect each other. It has been shown that this condition may be derived

from the van Cittert–Zernike theorem (Wyant, 1978; Simon and Comatri, 1987;

Hariharan and Steel, 1989).

1.2.2. Some Suitable Light Sources

For setting up a Newton interferometer, we require a suitable monochromatic source.

Several sources are available and are convenient. One source is, of course, a sodium

vapor lamp, which does not require any filter. Another source is a low-pressure mer-

cury vapor lamp with a glass envelope to absorb the ultraviolet light. A third possible

source is a helium discharge lamp in the form of a zigzag discharge tube and with a

ground glass to diffuse the light. Table 1.2 gives the various wavelengths that can be

TABLE 1.2. Characteristics, such as wavelength, of various lamps suitable as light

sources in Newton’s interferometer.

Serial Wavelength(s)

number Lamp type normally used (nm) Remarks

1 Sodium vapor 589.3 The wavelength is the average

of the doublet 589.0 and

589.6 nm. Warm-up time is

about 10 min.

2 Low-pressure 546.1 Because of other wavelengths

mercury vapor of mercury vapor present,

the fringes must be viewed

through the green filter,

isolating the 546.1 nm line.

There is no warm-up time.

Tube lights without fluorescent

coating can be used.

3 Low-pressure 587.6 Because of other wavelengths

helium discharge of helium discharge present,

a yellow filter must be used

to view the fringes.There

is no warm-up time.

4 Thallium vapor 535.0 Characteristics are similar

to those of the sodium

vapor lamp. Warm-up

time is about 10 min.

5 Cadmium vapor 643.8 Red filter to view the fringes

is required. Warm-up

time is about 10 min.
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used in these different spectral lamps. Even an ordinary fluorescent lamp with a plastic

or glass green filter in front of the lamp works, but the fringe visibility is not high.

1.2.3. Materials for the Optical Flats

The optical flats are generally made of glass, fused silica, or more recently developed

zero expansion materials such as CerVit and ULE glass. Small optical flats of less

than 5 cm in diameter can be made of glass; they reach homogeneous temperature

conditions reasonably quickly after some handling. It is preferable to make optical

flats of larger sizes from fused silica or zero expansion materials. Table 1.3 gives

relevant information regarding the materials commonly used for making optical flats.

When making a reference optical flat, it is necessary to consider carefully not only

the material to be used but also the weight, size, testing methods, and many other

important parameters (Primak 1984, 1989a, 1989b; Schulz and Schwider 1987).

1.2.4. Simple Procedure for Estimating Peak Error

Generally, optical surfaces are made to an accuracy ranging from a peak error of 2l
on the lower accuracy side to l=100 on the higher side. It is possible by means of the

TABLE 1.3. Materials used for making optical flats and their properties.

Serial Coefficient of linear

number Material expansion (per �C) Remarks

1 BK7, BSC 75--80� 10�7 These are borosilicate glasses

that can be obtained with a high

degree of homogeneity.

2 Pyrex 25--30� 10�7 This is also a borosilicate glass but

has higher silica content. Several

manufacturers make similar type of

glass under different brand names.

This is a good material for making

general quality optical flats

and test plates.

3 Fused silica 6� 10�7 This is generally the best quartz

or quartz material for making optical flats.

Different grades of the material are

available, based mainly on the

degree of homogeneity.

4 CerVit, Zerodur 0--1� 10�7 This material and similar ones made

by different companies under

different trade names have practically

zero expansion at normal ambient

temperatures.

5 ULE fused silica 0--1� 10�7 This is a mixture of silica

with about 7% titania.
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Newton interferometer to estimate peak errors up to about l=10 by visual observation

alone. Beyond that, it is advisable to obtain a photograph of the fringe system and to

make measurements on this photograph. Figure 1.11 shows a typical interferogram as

viewed in a Newton interferometer. Here, we have a peak error much less than l=4.

Consequently, the top plate is tilted slightly to obtain the almost straight fringes. The

central diametral fringe is observed against a straight reference line such as the

reference grid kept in the Newton interferometer in Figure 1.2. By means of this grid

of straight lines, it is possible to estimate the deviation of the fringe from its

straightness and also from the fringe spacing. The optical path difference is 2t, so

the separation between two consecutive fringes implies a change in the value of t

equal to l=2. Thus, if the maximum fringe deviation from the straightness of the

fringes is d=k with d being the fringe separation, the peak error is given by

Peak error ¼ k

d

� �

l
2

� �

ð1:14Þ

In Figure 1.11 k ¼ 2:5 mm and d ¼ 25 mm; hence, we can say that the peak error is

l=20. Even in this case, it is desirable to know whether the surface is convex or

concave, and for this purpose we can use the procedure described earlier. The only

difference is that we have to imagine the center of the fringe system to be outside the

aperture of the two flats in contact.

1.2.5. Measurement of Spherical Surfaces

Probably one of the most common applications of the Newton interferometer is the

testing of the faces of small lenses while they are being polished. A small test plate

FIGURE 1.11. Newton fringes for an optical flat showing peak error of l=20.

1.2. NEWTON INTERFEROMETER 13



with the opposite radius of curvature is made according to the required accuracy and

then placed over the surface under test. A test plate is useful not only to detect surface

irregularities but also to check the deviation of the radius of curvature from the

desired value (Karow 1979).

The observation should be made in such a way that the light is reflected almost

perpendicular to the interferometer surfaces. Convex surfaces can be tested with the

test plate shown in Figure 1.12(a), with a radius of curvature r in the upper surface

given by

r ¼ ðN � 1ÞðRþ TÞL
NLþ Rþ T

; ð1:15Þ

where N is the refractive index of the test plate glass. Concave surfaces can be tested

as in Figure 1.12 (b). In this case, the radius of curvature r of the upper surface is

r ¼ ðN � 1ÞðR� TÞL
NL� Rþ T

ð1:16Þ

It is important to remember that the fringes are localized very near to the inter-

ferometer surfaces, and therefore the eye should be focused at that plane.

The radius of curvature is checked by counting the number of circular fringes. The

relation between the deviation in the radius of curvature and the number of rings can

be derived with the help of Figure 1.13, where it can be shown that the distance

Surface
under test

Surface
under test

Test
plate Test

plate

(a) (b)

R R

r

r

L L

T
T

FIGURE 1.12. Test plates to test spherical surfaces with Newton fringes.
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e between the two surfaces, measured perpendicularly to one of the surfaces, is given

by

e ¼ ðr þ�rÞ 1� 1� 2ð1� cos yÞr�r

ðr þ�rÞ2

" #1=2
8

<

:

9

=

;

: ð1:17Þ

If either �r or the angle y is small, this expression may be accurately represented by

e ¼ ð1� cos yÞ�r: ð1:18Þ

Since the number of fringes n is given by n ¼ 2e=l, we can also write

n

�r
¼ 2ð1� cos yÞ

l
ð1:19Þ

If D is the diameter of the surface, the angle y is defined as sin y ¼ D=2r. Therefore, a

relation can be established between the increment per ring in the radius of curvature

and the surface ratio r=D, as shown in Table 1.4.

1.2.6. Measurement of Aspheric Surfaces

Malacara and Cornejo (1970) used the method of Newton fringes to determine the

aspheric profile of a surface that deviates markedly from a spherical surface. This

method is useful if the aspheric deviates from the nearest spherical by a few

wavelengths of light (say, 10–20l). The method consists in using a spherical test

plate in contact with the aspherical surface and finding the position of the fringes by

means of a measuring microscope. From these position values, one can then obtain

the actual air gap as a function of the distance, and a plot can be made and compared

with the required aspheric plot. Figure 1.14 shows a typical schematic arrangement

for this method.

It is important to consider that the surface under test probably does not have

rotational symmetry. Therefore, the measurements must be made along several

diameters in order to obtain the complete information about the whole surface.

r

e
q

r + ∆ r
∆ r

FIGURE 1.13. Geometry to find the separation between two spherical surfaces with different radii of

curvature measured along the radius of one of them.
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TABLE 1.4. Radius of curvature increment per fringe for

several values of the power ratio r=D of the spherical surface

being tested with newton fringes.

r=D �r=n (cm)

1.0 0.00020

2.0 0.00086

3.0 0.00195

4.0 0.00348

5.0 0.00545

6.0 0.00785

7.0 0.01069

8.0 0.01397

9.0 0.01768

10.0 0.02183

20.0 0.08736

30.0 0.19661

40.0 0.34970

50.0 0.54666

60.0 0.78712

70.0 1.07033

80.0 1.39665

90.0 1.77559

100.0 2.18144

Aspheric surface
under test

Spherical
test plate

Low power
traveling
microscope

Monochromatic
light source

Reticle

FIGURE 1.14. Schematic arrangement showing the method of measuring aspheric surfaces with a

spherical test plate using Newton fringes.
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Instead of directly measuring the fringe positions with a microscope, a photograph

can be taken, and then the fringe positions can be measured with more conventional

procedures.

If the reference surface is spherical and the surface under test is aspherical

(hyperboloid or paraboloid), the ideal fringe patterns will be those of a Twyman–

Green interferometer for spherical aberration as described in Chapter 2.

The reference surface may also be another aspherical surface that exactly matches

the ideal configuration of the surface under test. This procedure is useful when a

convex aspheric is to be made, since a concave aspheric can be made and tested more

easily than a convex surface. The advantage of this method is that a null test is

obtained. It has the disadvantage that the relative centering of the surfaces is very

critical because both surfaces have well-defined axes, and these must coincide while

testing. This problem is not serious, however, because the centering can be achieved

with some experience and with some device that permits careful adjustment.

When mathematically interpreting the interferograms, it should be remembered

that the OPD is measured perpendicularly to the surfaces, whereas the surface sagitta

z is given along the optical axis. Therefore the OPD is given by 2ðz1 � z2Þ cos y,

where siny ¼ Sc.

1.2.7. Measurement of Flatness of Opaque Surfaces

Sometimes we encounter plane surfaces generated on such metal substrates as steel,

brass, and copper. An optical flat made of glass should be put on top of such objects

for viewing Newton fringes. It is not always the case that the metal object is in the

form of a parallel plate. The plane surface may be generated on an otherwise irregular

component, and hence some means of holding the component while testing becomes

necessary. This can be avoided if we can put the object on top of the optical flat and

observe the fringes through the bottom side of the flat. This sort of arrangement is

shown in Figure 1.15. Since most metal surfaces have reflectivities that are quite high

compared to the value for a glass surface, the contrast of the fringes is not very good.

To improve this situation, the optical flat is coated with a thin evaporated film of

chromium or inconel having a reflectivity of about 30–40%. This brings about the

formation of sharper, more visible fringes.

It is necessary to point out that if the object is very heavy, it will bend the optical

flat and the measurement will not be accurate. Therefore, this kind of arrangement is

suitable for testing only small, light opaque objects. In dealing with heavy objects, it

is preferable to place the optical flat on top of the object.

1.3. FIZEAU INTERFEROMETER

In the Newton interferometer, the air gap between the surfaces is very small, and of

the order of a few wavelengths of light. Sometimes it is convenient to obtain fringes

similar to the ones obtained in the Newton interferometer, but with a much larger air

gap. When the air gap is larger, the surfaces need not be cleaned as thoroughly as they
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must be before being tested in the Newton interferometer. Also, due to the larger gap,

the requirements for the collimation and size of the light source become stronger.

This is called a Fizeau interferometer.

The Fizeau interferometer is one of the most popular instruments for testing

optical elements. Some of its main applications will be described here, but the basic

configurations used for most typical optical elements are identical to the ones used

with the Twyman-Green interferometer to be described in Chapter 2. The reader is

referred to that chapter for more details.

1.3.1. The Basic Fizeau Interferometer

From the foregoing considerations, it is seen that we should have a collimating

system and a smaller light source in a Fizeau interferometer. Figure 1.16 shows the

schematic arrangement of a Fizeau interferometer using a lens for collimation. The

optical flat that serves as the reference is generally mounted along with the lens and is

preadjusted so that the image of the pinhole reflected by the reference surface falls on

the pinhole itself. Either the back side of the flat is antireflection coated or (more

conveniently) the reference optical flat is made in the form of a wedge (about 10–

20 min of arc) so that the reflection from the back surface can be isolated. To view the

fringes, a beam divider is located close to the pinhole. The surface under test is kept

below the reference flat, and the air gap is adjusted to the smallest value possible;

then the air wedge is gradually reduced by manipulating the flat under test. When the

air wedge is very large, two distinct images of the pinhole by the two surfaces can be

Observing
eye

Monochromatic
extended
light source

Beam
divider

Object under test

Reference flat

FIGURE 1.15. Schematic arrangement showing the method of testing opaque plane surfaces on irregular

objects by placing them on top of the optical flat.
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seen in the plane P in Figure 1.16. By making use of screws provided to tilt the flat

under test, one can observe the movement of the image of the pinhole and can stop

when it coincides with that of the reference flat. Then the observer places his eye at

the plane P and sees, localized at the air gap, the fringes due to variation in the air gap

thickness. Further adjustment, while looking at the fringes, can be made to alter the

number and direction of the fringes. The interpretation of these fringes is exactly the

same as that for Newton and Twyman-Green fringes.

Figure 1.17 is a schematic of a Fizeau interferometer using a concave mirror as the

collimating element. If a long focal length is chosen for the concave mirror, a

spherical mirror can be used. For shorter focal lengths, an off-axis paraboloidal

Surface
under test

Reference
flat

Collimator

Beam
splitter

Interferogram

Monochromatic
point 
light source

Eye or
imaging
system

FIGURE 1.16. Schematic arrangement of a Fizeau interferometer using a lens for collimation of light.
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point 
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Eye or
imaging
system

Concave
collimating
mirror

FIGURE 1.17. Schematic arrangement of a Fizeau interferometer using a concave mirror for collimation

of the illuminating beam.
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mirror may be required. Both the schemes of Figures 1.16 and 1.17 may be arranged

in either a vertical (upright and inverted) or a horizontal layout. In the vertical

situation the optical flats are horizontal, whereas in the horizontal layout the optical

flats stand on their edges.

If the optical system or element under test has a high reflectivity and the reference

flat is not coated, then the two interfering beams will have quite different intensities,

and thus the fringes will have a poor contrast. On the contrary, if the reference flat is

coated with a high reflectivity, but smaller than 100% to allow some light to be

transmitted, a confusing system of fringes will appear because of multiple reflections.

Commonly, to obtain two-beam interference fringes effectively, the reference surface

must be uncoated. Then, to match the intensities, either the reflectivity of the optical

element under test also has to be low or the amplitude of the beam under test has to be

attenuated. The fact that the two surfaces reflecting the interfering beams have a low

reflectivity makes it very important to take all necessary precautions to avoid spurious

reflections at some other surfaces, mainly when a laser light source is used.

1.3.2. Coherence Requirements for the Light Source

As in the Newton interferometer, in the Fizeau interferometer the maximum allowed

angular size of the light source to be used depends on the length of the air gap.

For instance, if the air gap between the flats is 5 mm, and taking l ¼ 5� 10�4 mm,

the permissible value of 2y given by Eq. (1.12) is 0.01 rad. Such a small angle can

be obtained by using a collimator with the entrance pupil of the observer located at

the focus, to observe the angle almost perpendicularly to the air gap for all points of

the observed flats. Also, either the pupil of the observer or the light source has to be

extremely small. Frequently the pupil of the eye has a diameter larger than required,

so that it is simpler to have a light source with a pinhole. The larger the air gap is, the

smaller the pinhole has to be.

When plane surfaces are tested in the Fizeau interferometer the air gap can be

made quite small if desired. The total optical path difference involved does not

exceed a few millimeters. Thus, a small low-pressure mercury vapor lamp can be

used with a green filter as the source of light. When testing for the wedge of thick

plates of glass, the OPD is larger due to the thickness. For gas or metal vapor lamp,

this OPD is about the maximum we can use. For plates of greater thickness, the

contrast of the interference fringes is greatly reduced because the lamp does not give

a very sharp spectral line with a large temporal coherence. Similarly, the same

situation of low contrast occurs when thick glass shells are tested or when spherical

test plates are tested with one test plate.

This limitation can be eliminated, however, if we can use a source of very high

monochromaticity. Fortunately, such a source, the laser, has recently become avail-

able. For our application, the low-power (2 mW) helium–neon gas laser operating in

a single mode TEMoo and with a wavelength of emission at 632.8 nm is ideal. With

this as the source of light, we can tolerate an OPD of at least 2 m and obtain Fizeau

fringes of high contrast. Even larger OPDs are possible provided that a properly

stabilized laser is chosen and vibration isolation is provided for the instrument.
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Most of the coherence requirements for Fizeau interferometers are similar to the

requirements for Twyman–Green interferometers as described in section 2.3. There,

it is pointed out that a gas laser has perfect spatial coherence, and can have almost

perfect temporal coherence and thus we might think that this is the ideal light source

for interferometry, but this is not always the case. The reason is that many unwanted

reflections from other surfaces in the optical system may produce a lot of spurious

fringes that can appear. Also, the laser light produces scattering waves from many

small pieces of dust or scratches in the optical elements. To solve this problem, the

light source can be extended even when using a laser by introducing a thin rotatory

half ground glass close to the point light source. Deck et al. (2000) have proposed an

annular shape for the light source by using a diffracting element to produce a small

cone of light illuminating the rotating ground glass. The effect of the spurious

reflections has been studied by several researchers, for example by Ai and Wyant

(1988 and 1993) and by Novak and Wyant (1997).

Another possible effect to be taken into account is that some optical elements or

systems to be tested may be retroreflectors, either in one dimension like a porro

prism, or in two dimensions like a cube corner prism. The retroreflection has

associated an inversal, reversal, or both (which is equivalent to a 180� rotation) of

the wavefront. A point of view is that then the interference takes place between two

different points on the wavefront, symmetrically placed with respect to the optical

axis if the wavefront was rotated, or symmetrically placed with respect to the

inversion or reversion axis. The fringes will have a good contrast only if the spatial

coherence of the wavefront is high enough. This condition imposes a stronger

requirement on the small size of the point light source.

Another equivalent explanation for this retroreflection effect is illustrated in

Figure 1.18. Let us consider the pinhole on the light source to have a small finite

Retroreflecting
system

(porro or cube corner prism)
Reference
flat

Incident
wavefront

Reference
wavefront  

2 q

Retroreflected
wavefront

FIGURE 1.18. Interference between the reference wavefront and the wavefront retroreflected by a porro

prism under test. Both wavefronts originate at one point on the edge of the small light source. The angle

between these two wavefronts reduces the contrast of the fringes.
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size and a flat collimated incidence wavefront coming from the edge of that

pinhole at a small angle y. It is easy to see that the two interfering wavefronts

will not be parallel to each other, but will make an angle 2y between them. Of

course, there are infinite number of wavefronts coming from different points at the

pinhole of the light source, all with different orientations and angles, smaller than

y. This multiplicity of wavefronts with different angles will reduce the contrast of

the fringes from a maximum at the center where all the wavefronts intersect,

decreasing towards the edge of the pupil. This effect is also present for the same

reason in the Twyman–Green interferometer as described in Chapter 2 in more

detail.

The strong spatial coherence requirements when a retroreflecting system is tested

is difficult to satisfy with gas or metal vapor lamps, but with gas lasers it is always

fulfilled.

1.3.3. Quality of Collimation Lens Required

We shall briefly examine the quality of collimating lens required for the Fizeau

interferometer. Basically, we are interested in determining the variation in air gap

thickness. However, the OPD is a function of not only the air gap thickness but also

the angle of illumination, and at a particular point this is 2t cos y. The air gap t varies

because of the surface defects of the flats under test, while the variation of y is due to

the finite size of the source and the aberration of the collimating lens.

For Fizeau interferometers using conventional sources of light, the maximum air

gap that is useful is 50 mm. Also, in this case we have to consider the size of the

source and the aberration of the lens separately. The effect of the size of the source is

mainly on the visibility of the Fizeau fringes. The excess optical path difference ty2

should be less than l=4 for good contrast of the Fizeau fringes and the pinhole is

chosen to satisfy this condition. The effect of the pinhole is uniform over the entire

area of the Fizeau fringes. On the contrary, the effect of aberration in the collimating

lens is not uniform. Thus, we have to consider the angular aberration of the lens and

its effect. If f is the maximum angular aberration of the lens, then tf2 should be less

than kl, where k is a small fraction that depends on the accuracy required in the

instrument. Thus, let us set k ¼ 0:001, so that the contribution of tf2 is 0:001l.

Taking a maximum value of t ¼ 50 mm for the ordinary source situation, we have

f2 � 0:001l
t
� 10�8;

or

f ¼ 10�4 rad: ð1:20Þ

This angular aberration is quite large, being of the order of 20 s of arc. Hence,

suitable lenses or mirror systems can be designed for the purpose (Taylor, 1957;

Yoder, 1957; Murty and Shukla, 1970).
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1.3.4. Liquid Reference Flats

It is well known that a liquid surface can be used as a reference flat. Basically the

liquid surface has a radius of curvature equal to that of the earth. If the radius of the

earth is taken as 6400 km, the sag of the surface is (Grigor’ev et al., 1986; Ketelsen

and Anderson 1988)

y2

2R
¼ y2

2� 6:4� 10�9
mm ð1:21Þ

where 2y is the diameter of the liquid surface considered. If we stipulate that this

should not exceed l=100 ðl ¼ 5� 10�4Þ, then

y2 � 6:4� 104

or

2y � 512 mm ð1:22Þ

Thus, a liquid surface of about 0.5 m diameter has a peak error of only l=100 as

compared to an ideal flat. Therefore, it has been a very attractive proposition to build

liquid flats as standard references. In practice, however, there are many problems,

mainly in isolating the disturbing influence of vibrations. It is also necessary to

exclude the region near the wall of the vessel that holds the liquid and to make sure

that no dust particles are settling down on the surface. Possible liquids that can be

useful for the purpose are clear and viscous, such as glycerin, certain mineral oils,

and bleached castor oil. Water is probably not suitable because of its low viscosity.

Mercury may not be suitable because of its high reflectivity; the two interfering

beams will have very unequal intensities, resulting in poor contrast of the fringes

unless the surface under test is also suitably coated. However, mercury has been used

as a true horizontal reference plane reflecting surface in certain surveying and

astronomical instruments.

1.3.5. Fizeau Interferometer with Laser Source

We shall now describe a Fizeau interferometer using a source such as the helium–

neon gas laser of about 2 mW power lasing at 632.8 nm in the single mode. A

schematic diagram is shown in Figure 1.19. A very well corrected objective serves to

collimate the light from the pinhole, illuminated by a combination of the laser and a

microscope objective. Between the collimating objective and the pinhole (spatial

filter), a beam divider is placed so that the fringes can be observed from the side. It is

also desirable to provide a screen, upon which the Fizeau fringes are projected, to

avoid looking into the instrument as is normally done when conventional light

sources are used. The laser has a high radiance compared to other sources, and a

direct view may be dangerous to the eye under some circumstances. The reference
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plane surface is permanently adjusted so that the reflected image of the pinhole is

autocollimated. The surface under test is adjusted until the image reflected from it

also comes into coincidence with the pinhole. To facilitate preliminary adjustment,

the screen is used to project the two pinhole images from the two reflecting plane

surfaces. This is accomplished by removing the negative lens between the beam

divider and the ground glass screen. The pinhole image from the reference surface is

at the center of the screen, whereas the one from the surface under test is somewhere

on the screen; by manipulation of this surface, the two spots of light on the screen can

be brought into coincidence. Then the negative lens is inserted in the path, and the

Fizeau fringes are projected on the screen. These fringes can be further adjusted in

direction and number as required. By the use of another beam divider, it is possible to

divert part of the beam to a camera for taking a photograph of the fringe pattern. The

whole instrument must be mounted on a suitable vibration-isolated platform.

This instrument can be used for various other applications that are normally not

possible with conventional sources of light. We describe some such applications in

the sections that follow. In addition, many possibilities exist for other applications

depending on the particular situations involved.

Several commercial Fizeau interferometers have been available for several years,

but probably the two most widely known are the Zygo interferometer (Forman,

1979), shown in Figure 1.20, and the Wyko interferometer, shown in Figure 1.21.

1.3.6. Multiple-Beam Fizeau Setup

If, instead of two-beam fringes, multiple-beam fringes of very good sharpness are

required, the reference optical flat and the optical flat under test are coated with a

splitter
Beam

Monochromatic

source
light 
point 

Imaging
system

Reference
flat

Collimator under test
Flat

(camera)

Ground glass
screen

Negative lens
out for coincidence of spots
for viewing fizeau fringes

Laser

Beam
splitter

FIGURE 1.19. Schematic arrangement of a Fizeau interferometer using a laser source. The scheme shown

here is for plane surfaces. The system is easily aligned with the help of a sliding negative lens.
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reflecting material of about 80–90% reflectivity (see Chapter 6) such as aluminum or

silver. If higher reflectivities are required, multilayer dielectric coatings can be

applied. In fact, the instrument may be provided with several reference flats having

coatings of different reflectivities.

2mW. Laser

TV camera

Cooke
triplet

Imaging
lens

Zoom lens

Rotating
diffuser disc

Imaging lens

Polarizing beam splitter cube

Microscope
objetive

Negative lens

Field
lens
and
screen

Beam splitter

Mirror to illuminate screen

/4 plate at 45°

FIGURE 1.20. Fizeau interferometer manufactured by Zygo Corp. (Courtesy of Zigo Corp.).
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FIGURE 1.21. Fizeau interferometer manufactured by Wyko Corp. (Courtesy of Wyko Corp.).
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1.3.7. Testing Nearly Parallel Plates

In many applications, glass plates having surfaces that are both plane and parallel are

required. In such cases, the small wedge angle of the plate can be determined by the

Fizeau interferometer, and the reference flat of the interferometer need not be used

since the fringes are formed between the surfaces of the plate being tested. If a is the

angle of the wedge and N is the refractive index of the glass, the angle between the

front- and back-reflected wavefronts is given by 2na, and hence the fringes can be

expressed as

2Na ¼ l
d
; ð1:23Þ

where d is the distance between two consecutive bright or dark fringes. Hence the

angle a is given by

a ¼ l
2nd

: ð1:24Þ

To determine the thinner side of the wedge, a simple method is to touch the plate

with a hot rod or even with a finger. Because of the slight local expansion, the

thickness of the plate increases slightly. Hence a straight fringe passing through the

region will form a kink pointing toward the thin side, as shown in Figure 1.22. For

instance, if we take N ¼ 1:5, l ¼ 5� 10�4 mm, and a ¼ 5� 10�6 (1 s of arc), we

get for d a value of about 33 mm. Hence a plate of 33 mm diameter, showing one

fringe, has a wedge angle of 1 s of arc. If the plate also has some surface errors, we

FIGURE 1.22. Kink formation in the straight Fizeau fringes of a slightly wedged plate, obtained by

locally heating the plate. The kink is pointing toward the thin side of the wedge.
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get curved fringes, indicating both surface and wedge errors. If the surfaces are

independently tested and found to be flat, and even in this situation one is getting

curved fringes, these should be attributed to variation of the refractive index inside

the plate in an irregular manner. In fact, by combining the tests on the Newton

interferometer and the Fizeau interferometer for a parallel plate, it is possible to

evaluate the refractive index variation (inhomogeneity) (Murty, 1963; Murty,

1964a; Forman, 1964).

1.3.8. Testing the Inhomogeneity of Large Glass or Fused Quartz Samples

The sample is made in the form of a parallel plate. The surfaces should be made as flat

as possible with a peak error of not more than l. Then the plate is sandwiched

between two well-made parallel plates of glass with a suitable oil matching the

refractive index of the sample. This will make the small surface errors of the sample

negligible, and only straight fringe deformation due to the inhomogeneity of the

sample will be seen. If the sandwich is kept in the cavity formed by the two coated

mirrors, very sharp dark fringes on a bright background are obtained. If, for instance,

the maximum fringe deviation from straightness is k and the distance between two

fringes is d, the optical path difference is (k=dÞl. Now the OPD due to the inhomo-

geneity �N and thickness t of the sample is given by 2�N � t, and hence

�N ¼ k

d

� �

l
2t

� �

ð1:25Þ

As an example, if k=d ¼ 0:25, l ¼ 632:8 nm, and t ¼ 50 mm, we have

�N ¼ 1:6� 10�6. Thus a maximum variation of 1:6� 10�6 may be expected in

the sample for the direction in which it has been tested. Figure 1.23 shows the

schematic arrangement of the Fizeau interferometer for the method just described.
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splitter

Interferogram
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Eye or
imaging
system
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FIGURE 1.23. Schematic arrangement of a Fizeau interferometer for testing the homogeneity of solid

samples of glass, fused quartz, and so on.
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1.3.9. Testing the Parallelism and Flatness of the Faces of Rods, Bars, and

Plates

Frequently, the need for testing the parallelism and the flatness of two opposite faces

in a rod, plate, or bar arises. If the plate to be tested is transparent and has a highly

homogeneous refractive index, the problem is not so complicated. If the refractive

index of the material is inhomogeneous or if it is not transparent, special techniques

have to be developed.

Vannoni and Molezini (2004) described a configuration for this purpose, as

illustrated in Figure 1.24. The first step is to adjust the interferometer to produce

the minimum number of fringes without the plate or rod to be tested. The field of view

will show the fringes due to any possible defect in the right angle prism. Then the

plate is inserted as shown in the figure.

1.3.10. Testing Cube Corner and Right-Angle Prisms

In their retro-reflective configuration, if the right angles of cube comer and right-

angle prisms are exact without any error, they reflect an incident plane wavefront as a

single emerging plane wavefront. Otherwise the reflected wavefront consists of

several plane wavefronts with different tilts, making possible the measurement of

the prism errors. Because of the total internal reflection, the intensity of reflected

light from these prisms is very high, nearly 100%. Since the reference flat is not

coated, the fringes will have a poor contrast. To optimize the fringe contrast, either

the reflectivity of the optical element under test also has to be low or the amplitude of

the beam under test has to be attenuated.

To reduce the effective reflectivity of the right angle or cube prism, we can

introduce a parallel plate of glass coated with a metallic film having a transmis-

sion between 20% and 30%. In this case the intensities of the two beams matched

reasonably well, and we get a good contrast of two-beam fringes. The coated

plate between the prism and the uncoated reference flat should be tilted

Bar or rod
under test

Reference
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Beam
splitter

Interferogram
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point 
light source

Eye or
imaging
system

Right angle
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Field of
view

FIGURE 1.24. Schematic arrangement to test an opaque bar or rod for flatness and parallelism of the two

opposite faces.
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sufficiently to avoid the directly reflected beam. This method is shown schema-

tically in Figure 1.25.

Another possible method is to reduce the reflectivity of one of the total reflecting

surfaces. This can be done by constructing a special cell in which the prism is

mounted, and behind one reflecting surface, a thin layer of water or some other

suitable liquid is in contact with the surface. Thus, in effect, the refractive index

difference is reduced at one total internal reflecting surface, and hence, the intensity

of the wavefront reflected from the prism matches that of an uncoated flat. This

method is shown schematically in Figure 1.26.
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flat
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point 
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FIGURE 1.25. Schematic arrangement of a Fizeau interferometer for testing cube corner prisms and

right-angle prisms. Here an absorbing plate is inserted between the prisms and the reference flat surface to

equalize the intensities of the two interfering beams.
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FIGURE 1.26. A scheme for reducing the intensity of reflected light from the corner cube prism and the

right-angle prism. One of the total internally reflecting faces is brought into contact with water or some other

liquid by the use of a cell behind it.
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The interferograms obtained when testing of these prisms are identical to those in

the Twyman–Green interferogram. For more details please see Chapter 2.

1.3.11. Fizeau Interferometer for Curved Surfaces

Just as collimated light is employed for testing optical flats on the Fizeau inter-

ferometer, it is possible to use either divergent or convergent light for testing curved

surfaces. Figure 1.27 shows an arrangement for testing a concave surface against a

reference convex surface. The point source of light is located at the center of the

curvature of the convex reference surface. The concave surface under test is adjusted

until its center of curvature, too, almost coincides with the point source of light. The

procedure is exactly the same as before except that to achieve the uniform air gap, we

have to provide some translational motion also (Moore and Slaymaker, 1980).

The same setup can be used very easily for checking the uniformity of the

thickness (concentricity) of spherical shells. In this case the interfering beams are

obtained from the front and back of the two spherical concentric surfaces. Figure 1.28

shows this setup for testing the concentricity of a spherical shell. If the radii of

curvature are correct but the shell has a wedge (the centers of curvature are laterally

displaced), we get straight fringes characteristic of the wedge. The hot rod or finger

touch procedure described in Section 1.2.3 can be adopted to determine which side is

thinner. If the two radii are not of proper value (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 � r2
p 6¼ t, where r1 and r2 are the

two radii and t is the center thickness), the value of t is not constant over the entire

shell. Hence, we get circular fringes like Newton fringes. If in addition a wedge is

present, the center of these circular fringes will be decentered with respect to the

center of the shell. In this situation also, we can adopt the hot rod or finger touch

procedure to decide whether the shell is thin at the edge or at the center.

Beam
splitter

Interferogram

Monochromatic
point 
light source

Imaging
system
or eye

Reference
surface

Surface
under test

FIGURE 1.27. Fizeau interferometer set up for curved surfaces. Here the convex surface is the reference

surface and the concave surface is under test.
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We can also have an arrangement for testing convex surfaces against a concave

reference surface, as shown schematically in Figure 1.29. Here we use a lens or a

group of lenses at finite conjugate distances such that the point source of light is at

one conjugate, whereas the common center of curvature of the test surface and the

reference surface is at the other conjugate. The concave reference surface is fixed to

the instrument, while the convex surface under test is manipulated in the usual

manner to obtain a uniform air gap.

Beam
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Interferogram
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point 
light 
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FIGURE 1.28. Fizeau interferometer setup for testing the concentricity of the spherical shell.
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FIGURE 1.29. Fizeau interferometer setup for testing a convex surface against a concave reference

surface.
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1.3.12. Testing Concave and Convex Surfaces

The reference surface is again the uncoated flat surface that is part of the Fizeau

interferometer. The collimated light from the instrument, after passing through the

optical flat, is again focused by the use of another highly corrected lens. If the

surface is concave, it is set up as shown in Figure 1.30; if convex, as shown in

Figure 1.31. When the surface is spherical and the center of curvature coincides

with the focus of the lens, a plane wavefront is reflected back. Hence, we should

obtain straight fringes due to the interference of the two beams. If the optical

reference flat and the spherical surfaces are coated with high reflecting material,

we can get very sharp, multiple-beam Fizeau fringes. If the surfaces are not

spherical but are aspheric, appropriate null lenses must be used in the interfe-

rometer. This setup can also be used to measure the radius of curvature if a length-

measuring arrangement is provided.

The testing of convex surfaces with the Fizeau interferometer presents many

interesting problems, mainly if the surface is large and/or aspheric, which have been

analyzed by several authors, for example by Burge (1995).

Another interferometer, which may be considered as a Fizeau interferometer, was

devised by Shack (Shack and Hopkins, 1979; Smith, 1979). The difference is that this

scheme uses a He–Ne laser source to give very large coherence length. Hence, the

separation between the convex reference surface and the concave surface under test

can be very large (typically several meters). Also, the convex reference surface
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FIGURE 1.30. Schematic diagram of a Fizeau interferometer for testing a concave surface using a

concave reference surface or a flat reference surface.
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becomes a part of the instrument and can be of very short radius of curvature. The

scheme, in fact, incorporates the device in the form of a beam-divider cube with one

of the faces made into a convex spherical surface. The Shack interferometer is shown

schematically in Figure 1.32. It is possible to test a large aspherical surface with this

interferometer if a suitable null corrector is inserted between the interferometer and

the surface under test.

1.4. HALDINGER INTERFEROMETER

With the Newton and Fizeau interferometers, we are basically interested in finding

the variation in the air gap thickness. In these cases, the fringes are referred to as

fringes of equal thickness. If, however, the thickness of the air gap is uniform and it is

illuminated by a source of large angular size, we get what are called fringes of equal

inclination. These fringes are formed at infinity, and a suitable lens can be used to

focus them on its focal plane. If the parallel gap is that of air, we have the simple

relation 2t cos y ¼ nl, as given in Eq. (1.9), from which we can easily see that, for a
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FIGURE 1.31. Schematic diagram of a Fizeau interferometer for testing a convex surface using a flat

concave reference surface or a flat reference surface.
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constant value of t, we obtain fringes of equal inclination that are circles and are

formed at infinity.

If the air gap is replaced by a solid plate such as a very good parallel plate of glass,

Eq. (1.9) is modified slightly to include the effect of the refractive index N of the plate

and becomes

2Nt cos y0 ¼ nl ð1:26Þ

where y’ is the angle of refraction inside the glass plate. For small values of y’, we

may approximate this expression as

2Nt ¼ t

N

� �

y2 ¼ nl ð1:27Þ

To see Haidinger fringes with simple equipment, the following method, illustrated in

Figure 1.33 may be adopted. A parallel plate of glass is kept on a black paper and is

illuminated by the diffuse light reflected from a white card at 45�. At the center of the

white card is a small hole through which we look at the plate. With relaxed

accommodation our eyes are essentially focused at infinity, i, and we see a system

Laser

Microscope
objective

Pinhole

Surface
under test

Reference
surface

Beam
splitter

Imaging
lens
or eye

Interference
pattern

Polarizer

Relay
lens

FIGURE 1.32. Schematics of a Shack–Fizeau interferometer.
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of concentric circular fringes. For the light source we can use a sodium or even a

fluorescent lamp.

In the situation where the laser is the source of light, there is a much higher

limit for the value of t. Even though several meters can be used for t, we shall set

t ¼ 1000 mm. In this case, using l ¼ 632:8 nm, we get for f an upper limit of 5 s

of arc. Hence it is not difficult to design a collimating system to satisfy this

condition.

Another aspect that is important, especially with large values of t, is the lateral

shear one can get in the instrument. To avoid this, the autocollimated pinhole images

must coincide with the pinhole itself. Similarly, if the collimating lens is not properly

collimated, either a convergent or a divergent beam will emerge. The collimation

may be accurately performed by using any of the various devices available, such as

the plane parallel plate shearing interferometer (Murty, 1964b).

A somewhat better method is to use a lens for focusing the system of Haidinger

fringes on its focal plane. This requires a setup almost identical to that for the Fizeau

interferometer. The only difference is that, instead of a pinhole, a wider aperture is

used to have a large angular size for the source. The Haidinger fringes are then

formed in the focal plane of the lens.

1.4.1. Applications of Haidinger Fringes

The Haidinger fringes may be used as a complementary test to that provided by

the Fizeau interferometer. If we are testing a nearly parallel plate, we can find its

wedge angle either by the Fizeau or by the Haidinger method. In the Haidinger

method we look for the stability of the concentric fringes as we move our line of

sight across the plate with a small aperture. If t is slowly varying, the center of the
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light source

White
card

Plane-parallel
glass plate

Central
hole

FIGURE 1.33. A simple arrangement to see Haidinger fringes for a nearly parallel glass plate.
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circular fringe system also appears to change. If t is decreasing, we are moving

toward the thinner side of the wedge, and in this case the circular Haidinger

fringes appear to expand from the center. On the contrary, the fringes appear to

converge to the center if we are moving toward the thick side of the wedge. If we

note how many times the center of the fringe system has gone through bright and

dark cycles, we can also estimate the wedge angle in the same manner as for the

Fizeau situation.

1.4.2. Use of Laser Source for Haidinger Interferometer

A helium–neon laser source of low power is very useful for this interferom-

eter, as it is for the Fizeau instrument. It enables the fringes to be projected on a

screen. In this case, the laser can be made to give effectively a point source of

light, and consequently, the Haidinger fringes can be considered as the inter-

ference from two point sources that are coherent to each other. Hence it is

possible to obtain the circular fringes even at a finite distance from the two

coherent point sources, and no lens is needed to form the fringes in its focal

plane. Figure 1.34 shows the two point images of a point source reflected from a

glass plate having a wedge. For the purpose of analysis, it is sufficient for us to

consider two point sources of light that are coherent to each other. Then, if we

place a screen sufficiently far away and perpendicular to the line joining the two

sources, we get a system of concentric circular fringes similar to Newton’s rings

and the center of the fringes is collinear with the two point sources. Also, for a

glass plate of refractive index N, the distance between the virtual point sources is

2t=N, where t is the thickness of the plate. Now, if the glass plate has a small

wedge, the two virtual sources will also have a slight lateral displacement with

respect to each other; this is given by 2Nar, where a is the wedge angle and r is

the distance of the point source from the wedged plate. These various parameters

are illustrated in Figure 1.34.

To apply this theory in practice, several methods are available. One method,

proposed by Wasilik et al. (1971), is illustrated in Figure 1.35. The laser beam is

allowed to pass through a small hole in a white cardboard and is then incident on

Wedge angle  a
Refractive index  N

Point
light source THICKNESS  t

Virtual images of 
as seen in the wedged plate

P

P
P

1
2

2 N a r

r

2 t
N

FIGURE 1.34. Various parameters related to the formation of two virtual coherent sources from a single

point source by a wedged plate.
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the glass plate under test. To provide some divergence for the laser beam, a

negative or positive lens of about 50–100 mm focal length is introduced centrally

behind the cardboard. The lens can be fixed in such a manner that it does not

deviate the beam but only expands it slightly. This cardboard may be made

specially, along with the lens, to fit on the laser. Several concentric circles with

known spacing may be drawn on the cardboard for measuring purposes. The plate

under test is kept on a platform that can be tilted. The plate is adjusted until the

spot of laser light reflected from it goes back through the hole in the cardboard. In

this situation concentric circular Haidinger fringes will be seen on the cardboard

surrounding the hole. If the plate is free from the wedge, the center of the

Haidinger fringe system coincides with the center of the hole. If the plate has a

wedge, the center of the Haidinger fringe system is displaced with respect to the

center of the hole. An approximate formula relating this displacement to the

wedge angle of the wedged glass plate is as follows:

d ¼ 2N2r2a
t

ð1:28Þ

where d¼ displacement of the Haidinger fringe system,

a¼wedge angle of the plate,

t¼ thickness of the glass plate,

N¼ refractive index of the glass plate,

r¼ distance of the point source from the glass plate.

For example, if a ¼ 1 s of arc ð5� 10�6 radÞ, N ¼ 1:5, r ¼ 1000 mm, and

t ¼ 10 mm, we have d ¼ 2:25 mm, which can be easily detected. Hence this method

is quite sensitive and useful.

Another method is illustrated in Figure 1.36. Here the laser beam passes

through the wedged-glass plate and falls on a specially prepared ground-glass

plate in the center of which a small concave or convex reflector of about

Wedge
under test

Low power
positive lens

Gas laser
light beam

White card with
central hole

Low power
negative lens
in contact with hole

or

Haidinger fringes
are observed here

FIGURE 1.35. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here a laser beam is passed through a cardboard, and the Haidinger fringes

are observed around the hole on the cardboard.
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50–100 mm radius of curvature is cemented. The size of the reflector should be

slightly greater than the spot size of the laser. Thus, the laser beam is reflected

back onto the glass plate. The wedged plate is adjusted until the reflected spot

from it coincides with the small reflecting mirror on the ground glass. Now,

Haidinger fringes can be seen on the ground glass, and the center of the fringe

system is displaced with respect to the mirror on the ground glass. The same

formula, Eq. (1.28), is also valid for this case.

A third method utilizes a beam divider, as shown in Figure 1.37. The laser

beam passes through the beam divider, which after reflection from the wedged

plate is again reflected at the beam divider and finally falls on a ground-glass

screen. The plate under test is adjusted until the laser spot reflected from it goes

back on itself. After the position of the spot on the ground glass has been noted, a

negative or positive lens is introduced into the laser beam close to the laser side.

This widens the beam sufficiently so that circular Haidinger fringes can be seen on

Wedge
under test

Gas laser
light beam

Ground glass
screen

Small concave or
convex reflector

FIGURE 1.36. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here the laser beam is directed back into the wedged glass plate by a small

concave or convex mirror on the ground glass. The Haidinger fringes are formed on the ground glass.
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FIGURE 1.37. A schematic arrangement for observing the Haidinger fringes and measuring the

displacement of the center. Here the fringes are observed on the ground glass and by means of a beam

divider, the central obscuration is avoided.
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the ground-glass screen. The displacement of the center of the Haidinger fringe

system is measured, and the same formula, Eq. (1.28), can be used for calculating

the wedge angle a.

1.4.3. Other Applications of Haidinger Fringes

We have discussed earlier the application of Haidinger fringes for the determination

of the very small wedge angle of a nearly parallel plate of glass. There are many types

of prisms that can be reduced to equivalent parallel plates and hence can be tested

for deviation from their nominal angles. A typical example is a right-angle prism

with nominal angles of 90�, 45�, and 45�. In such a prism, it is usually required that

the 90� angle be very close to its nominal value and that the two 45� angles be

equal to each other. In addition, all the faces of the prism should be perpendicular

to a base plane. If not, we say that the prism has pyramidal error that is objec-

tionable in many applications. Figure 1.38 shows how the right-angle prism can be

treated as an equivalent parallel plate with a very small wedge angle. If the beam is

incident first on the face AC, the beam returning after reflection from the face BC

is nearly parallel to the one reflected from the face AC, and hence Haidinger

fringes are seen as a result of the interference between these two beams. This

arrangement checks the equality of the angles A and B. If there were no pyramidal

error and the two angles are equal, the center of the Haidinger fringes will be

exactly at the center of the beam spot. If the angles are equal but there is a

pyramidal error, the center of the Haidinger fringes will be displaced vertically.

If both errors are present, the center will be displaced both vertically and horizon-

tally. The effect of the pyramidal error is to rotate the line of intersection of the two

planes of the equivalent wedge so that it is neither vertical nor horizontal. If the

beam is incident first on AB, the return beam reflected from the internal face of AB

will be nearly parallel to the one reflected from AB externally, and hence we again

get Haidinger fringes due to the interference of these two beams. This arrangement

checks the exactness of the 90� angle of the angle C. If the center of the Haidinger

fringes is not displaced horizontally, the 90� angle is exact; and, if in addition there

A C

B

C A

B

45°

45°

90° 90° 45°

45°

FIGURE 1.38. Schematic of the 45� �90� �45� prism to be equivalent parallel plates of glass.
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is no vertical displacement, there is no pyramidal error. More details of this method

may be found in the paper by Saxena and Yeswanth (1990).

Other examples of prisms that may be treated as equivalent parallel plates are

shown in Figure 1.39. Readers may come across other examples depending on

particular situations.

The formula given in Eq. (1.27) is applicable in the situations described noting

that the displacement has two components, one in the vertical direction and one in the

horizontal direction.

1.5. ABSOLUTE TESTING OF FLATS

Until now, we have considered the testing of flats against a ‘‘perfect’’ flat taken as a

reference. It is, however, often necessary to make a flat when a good reference flat is

not available. In this case, an alternative is to use a liquid flat as mentioned in Section

1.2.2. Another possibility is to make three flats at the same time and test them with

several combinations in order to obtain the absolute departure of the three surfaces

with respect to an ideal flat.

Let us assume that we have three surfaces that will be tested in many combinations

by placing them in pair, one against the other. One of the two glass disks (A) is placed

on top of the other by flipping in x by rotation about an axis that is parallel to the y-

axis. If the surface deformation is represented by FAðx; yÞ as illustrated in Figure 1.40

(a), it is now expressed by

½FAðx; yÞ�x ¼ �FAð�x; yÞ ð1:29Þ

The glass disk at the bottom (B) may be rotated by an angle y with respect to its

original position, as in Figure (1.40)(c). Then, its surface deformation is represented

by ½FBðx; yÞ�y as expressed by

½FBðx; yÞ�y ¼ FBðx cos y� y sin y; x sin yþ y cos yÞ ð1:30Þ

60°

60°60° 60° 30°

90°

FIGURE 1.39. Schematics of two other prisms to be equivalent parallel plates of glass.
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Then, by measuring the fringe pattern we can obtain the value of the difference:

GBAðx; yÞ ¼ ½FBðx; yÞ�y � ½FAðx; yÞ�x ð1:31Þ

If, following the treatment by Schulz and Schwider (1976) we take y ¼ 0 and take the

three possible combinations, (see Figure 1.41) we obtain

GBAðx; yÞ ¼ FBðx; yÞ þ FAð�x; yÞ

GCAðx; yÞ ¼ FCðx; yÞ þ FAð�x; yÞ

GCBðx; yÞ ¼ FCðx; yÞ þ FBð�x; yÞ

ð1:32Þ

This system has more unknowns than equations. Along the y axis, if we make x ¼ 0,

the system has a simple solution. A solution for all the plane can be obtained only the
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FIGURE 1.41. Three different combinations for the three surfaces to be measured.
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if the symmetry about the y axis at least for one surface is assumed, for example for

surface B, by taking FBðx; yÞ ¼ FBð�x; yÞ. Then, we may obtain

FAðx; yÞ ¼
GBAð�x; yÞ þ GCAð�x; yÞ � GCBð�x; yÞ

2
;

FBðx; yÞ ¼
GBAðx; yÞ � GCAðx; yÞ þ GCBðx; yÞ

2
;

FCðx; yÞ ¼
GCAðx; yÞ � GBAðx; yÞ � GCBðx; yÞ

2
:

ð1:33Þ

Several other methods had been devised, for example by Truax (1988). A specially

interesting method is that of Ai and Wyant (1992) as follows next. Let us assume that

the shape of one of the surfaces may be represented by the function Fðx; yÞ. Any one-

dimensional asymmetrical function can be represented by the sum of one even

(symmetrical) function and one odd (antisymmetrical) function. On the contrary,

for any asymmetrical function f ðxÞ the following properties hold:

ð1Þ FeðxÞ ¼ f ðxÞ þ f ð�xÞ is even;

ð2Þ FoðxÞ ¼ f ðxÞ � f ð�xÞ is odd:
ð1:34Þ

Generalizing this result to two dimensions

ð1Þ Feeðx; yÞ ¼ f ðx; yÞ þ f ð�x; yÞ þ f ðx;�yÞ þ f ð�x;�yÞ is even-even;

ð2Þ Feoðx; yÞ ¼ f ðx; yÞ þ f ð�x; yÞ � f ðx;�yÞ � f ð�x;�yÞ is even-odd;

ð3Þ Foeðx; yÞ ¼ f ðx; yÞ � f ð�x;�yÞ þ f ðx; yÞ � f ð�x; yÞ is odd-even;

ð4Þ Fooðx; yÞ ¼ f ðx; yÞ � f ð�x; yÞ þ f ðx;�yÞ � f ð�x; yÞ is odd-odd:

ð1:35Þ

The conclusion is that any two-dimensional asymmetric function Fðx; yÞ can always

be decomposed into the sum of four functions, even-even, even-odd, odd-even, and

odd-odd as follows:

Fðx; yÞ ¼ Fee þ Foo þ Foe þ Feo; ð1:36Þ

where

Feeðx; yÞ ¼ ðFðx; yÞ þ Fð�x; yÞ þ Fðx; �yÞ þ Fð�x; �yÞÞ=4;

Fooðx; yÞ ¼ ðFðx; yÞ � Fð�x; yÞ � Fðx; �yÞ þ Fð�x; �yÞÞ=4;

Feoðx; yÞ ¼ ðFðx; yÞ þ Fð�x; yÞ � Fðx; �yÞ � Fð�x; �yÞÞ=4;

Foeðx; yÞ ¼ ðFðx; yÞ � Fð�x; yÞ þ Fðx; �yÞ � Fð�x; �yÞÞ=4:

ð1:37Þ

Let us now assume that we test two flats with surface shapes FAðx; yÞ and FBðx; yÞ by

placing one over the other. Following Ai and Wyant, eight combinations are selected,
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as in Figure 1.42, where the optical path difference producing Newton or Fizeau

fringes will be

G1ðx; yÞ ¼ ½FBðx; yÞ�x � FAðx; yÞ
G2ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�180

G3ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�90

G4ðx; yÞ ¼ ½FBðx; yÞ�x � ½FAðx; yÞ�45

G5ðx; yÞ ¼ ½FCðx; yÞ�x � ½FAðx; yÞ�180

G6ðx; yÞ ¼ ½FCðx; yÞ�x � FBðx; yÞ
G7ðx; yÞ ¼ ½FCðx; yÞ�x � ½FBðx; yÞ�90

G8ðx; yÞ ¼ ½FCðx; yÞ�x � ½FBðx; yÞ�45

ð1:38Þ
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FIGURE 1.42. Eight different combinations for the three surfaces to be measured.
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With these expressions, the entire profile of the three planes can be calculated. First,

the odd-even, the even-odd, the even-even, and the odd-odd components of the three

desired functions FAðx; yÞ, FBðx; yÞ, and FCðx; yÞ are calculated. The odd-odd com-

ponent is the most difficult to evaluate, which is obtained using Fourier sine series.

Tilt and piston term are not obtained, but this is not a problem since they do not have

any practical interest.

Fritz (1983 and 1984) proposed a method using Zernike polynomials to decom-

pose the desired functions into orthogonal functions. Later, Shao et al. (1992) found

that by neglecting some high spatial frequencies, the solution can be obtained by

using only four combinations.
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Deck L., D. Stephenson, M. Küchel, and C. Evans, ‘‘Advances in Laser Fizeau Inteferometry

for Optical Testing,’’ TOPS, 76, 108–111 (2000).

Forman P. F., ‘‘A Note on Possible Errors Due to Thickness Variations in Testing Nominally

Parallel Plates,’’ Appl. Opt., 3, 646 (1964).

Forman P. F., ‘‘The Zygo Interferometer System,’’ Proc. SPIE, 192, 41 (1979).

Fritz B. S., ‘‘Absolute Calibration of an Optical Flat,’’ Proc. SPIE, 433, 123 (1983).

Fritz B. S., ‘‘Absolute Calibration of an Optical Flat,’’ Opt. Eng., 23, 379 (1984).

Grigor’ev V. A., Va. O. Zaborov, and P. P. Ivanov, ‘‘Use of a Liquid Mirror for the Calibration of

an Interferometer,’’ Sov. J. Opt. Technol., 53, 613 (1986).

Hariharan P. and W. H. Steel, ‘‘Fringe Localization Depth: A Comment,’’ Appl. Opt., 28, 29

(1989).

Karow H. H., ‘‘Interferometric Testing in a Precision Optics Shop: A Review of Testplate

Testing,’’ Proc. SPIE, 192, 56 (1979).

Ketelsen D. A. and D. S. Anderson, ‘‘Optical Testing With Large Liquid Flats,’’ Proc. SPIE,

966, 365 (1988).

Malacara D. and A. Cornejo, ‘‘Testing of Aspherical Surfaces with Newton Fringes,’’ Appl.

Opt., 9, 837 (1970).

Moore R. C. and F. H. Slaymaker, ‘‘Direct Measurement of Phase in a SphericalWave Fizeau

Interferometer,’’ Appl. Opt., 19, 2196 (1980).

Murty M. V. R. K., ‘‘A Note on the Testing of Large Aperture Plane Parallel Plates of Glass,

‘‘Appl. Opt., 2, 1337 (1963).

Murty M. V. R. K., ‘‘Addendum to: A Note on the Testing of Large Aperture Plane Parallel

Plates of Glass,’’ Appl. Opt., 3, 784 (1964a).

44 NEWTON, FIZEAU, AND HAIDINGER INTERFEROMETERS



Murty M. V. R. K., ‘‘The Use of a Single Plane Parallel Plate as a Lateral Shearing Inter-

ferometer with a Visible Gas Laser Source,’’ Appl. Opt., 3, 531 (1964b).

Murty M. V. R. K. and R. P. Shukla, ‘‘Some Considerations of the Fizeau Interferometer,’’ Bull.

Opt. Soc. India, 4, 13 (1970).

Novak E., C, Ai and C. Wyant, ‘‘Errors Caused by Nearly Parallel Optical Elements in a Laser

Fizeau Interferometer Utilizing Strictly Coherent Imaging,’’ Proc. SPIE, 3134, 456–460

(1997).

Primak W., ‘‘Optical Flatness Standard,’’ Opt. Eng., 23, 806 (1984).

Primak W., ‘‘Optical Flatness Standard II: Reduction of Interferograms,’’ Proc. SPIE, 954, 375

(1989a).

Primak W., ‘‘Optical Flatness Standard: Comment,’’ Opt. Eng., 28, 934 (1989b).

Saxena A. K. and L. Yeswanth, ‘‘Low Cost Method for Subarcsecond Testing of a Right Angle

Prism,’’ Opt. Eng., 29, 1516–1520 (1990).

Schulz G. and J. Schwider, in Progress in Optics, vol. 13, E. Wolf, Ed., North Holland,

Amsterdam, 1976, Chap. IV.

Schulz G. and J. Schwider, ‘‘Comments on the Paper ‘‘Optical Flatness Standard,’’ Opt. Eng.,

26, 559 (1987).

Shack R. V. and G. W. Hopkins, ‘‘The Shack Interferometer,’’ Opt. Eng., 18, 226 (1979).

Simon J. M. and S. A. Comatri, ‘‘Fringe Localization Depth,’’ Appl. Opt., 26, 5125 (1987).

Smith W. S., ‘‘Versatile Interferometer for Shop Use,’’ Proc. SPIE, 192, 13 (1979).

Taylor W. G. A., ‘‘Spherical Aberration in the Fizeau Interferometer,’’ J. Sci. Instrum., 34, 399

(1957).

Truax B. E., ‘‘Absolute Interferometric Testing of Spherical Surfaces,’’ Proc. SPIE, 966, 130

(1988).

Vannoni M. and G. Molezini, ‘‘Joint Interferometric Measurement of Planarity and Paralle-

lism,’’ Opt. Eng., 43, 1215–1220 (2004).

Wasilik H., T. V. Biomquist, and C. S. Willet, ‘‘Measurement of Parallelism of the Surfaces of a

Transparent Sample Using Two Beam Nonlocalized Fringes Produced by Laser,’’ Appl.

Opt., 10, 2107 (1971).

Wyant J. C., ‘‘Fringe Localization,’’ Appl. Opt., 17, 1853 (1978).

Yoder P. R., Jr. and W. W. Hollis, ‘‘Design of a Compact Wide Aperture Fizeau Interferometer,’’

J. Opt. Soc. Am., 47, 858 (1957).

REFERENCES 45


