é c01.fm Page 29 Saturday, March 17,2007 2:00 PM é {

Q2
7N

A Solution to a
Problem and More

Philosophy, if it cannot answer so many questions as we
could wish, has at least the power of asking questions
which increase the interest of the world, and show the

strangeness and wonder lying just below the surface
even in the commonest things of daily life.

Bertrand Russell

In this chapter we take a simple problem-solution pairing and use
gradual and reasoned steps to expand and refine it into a description
that more obviously qualifies as a pattern description. En route we ex-
amine the different facets that a pattern embodies and that its de-
scription should contain. Our incremental approach also illustrates
the iterative nature of pattern writing. The use of feedback, reflection,
growth, and refinement is a normal part of the pattern-writing pro-
cess, not simply an artifact of how we have chosen to illustrate the
facets that comprise a sound pattern description.

e +®

%I% é c01.fm Page 30 Saturday, March 17,2007 2:00 PM

30

A Solution to a Problem and More

1.1 A Solution to a Problem

An Example

If asked for a one-sentence characterization of what a pattern is,
many pattern-aware software developers might respond with some-
thing like:

‘A pattern is a solution to a problem that arises
within a specific context.’

This seems a fair summary at first glance. It is certainly not a false
one, although it may not cover the whole truth. The truth of the sum-
mary is supported by looking around at the common patterns in use
today: they provide working, concrete, and adaptable solutions to
problems that repeatedly arise in certain situations during software
development, from organizational to programming contexts. The sum-
mary is also a good fit with most popular pattern definitions.

A pattern is more, however, than just this soundbite! If it were suffi-
cient, the following would have all that was needed when presenting
a pattern:

Context: A client needs to perform actions on an aggregate data
structure.

Problem: The client may need to retrieve or update multiple ele-
ments in a collection. If the access to the aggregate is expensive,
however, accessing it separately for each element over a loop can
incur severe performance penalties, such as round-trip time,
blocking delay, or context-switching overhead. How can bulk ac-
cesses on an aggregate object be performed efficiently and without
interruption?

Solution: Define a single method that performs the access on the
aggregate repeatedly. Instead of accessing aggregate elements in-

dividually and directly from within a loop, the client invokes the
method to access multiple elements in a single call.

This description is obviously a solution to a problem that arises with-
in a specific context. But is it, as presented, a pattern in the profound
sense in which the term is often applied?

%

%K% é c01.fm Page 31 Saturday, March 17,2007 2:00 PM é {

A

A Solution to a Problem 31

Recurrence and Goodness

It is not simply enough for a solution to a problem to exist to consider
a reasoned design for it a pattern. It must recur—which is, after all,
the motivation behind the use of the word ‘pattern,’ as any dictionary
will attest. In almost all cases in which the term ‘pattern’ is used in
the context of software design, there is an underlying assumption that
we are talking about ‘good’ patterns—that is, patterns that are com-
plete, balanced, and clearly described, and that help to establish
some kind of wholeness and quality in a design. This assumption is
so common that the word ‘good’ is almost always dropped: the word
‘pattern’ effectively subsumes it.

If a pattern, however, represents a commonly recurring design story—
one that varies a little with each retelling—there are not just good sto-
ries to tell. Some recurring practices are incomplete, unbalanced, and
fail to establish a recognizable wholeness and quality. What they lack
in goodness they often make up for in popularity—in spite of usage to
the contrary, ‘common practice’ and ‘best practice’ are not synonyms
[Gab96].

Some patterns have recurrence but not quality. These are ‘bad pat-
terns,” a phrasing used by Christopher Alexander in his original
framing of patterns [Ale79] and the motivation for identifying ‘good
patterns.” ‘Bad patterns’ are dysfunctional, often twisting designs
out of shape, leading to a cycle of ‘solving the solution,’ in which the
ingenuity of developers is consumed in fixing the fixes (to the fixes
to the fixes...).

In identifying and separating good patterns from dysfunctional pat-
terns or nonpatterns, we first need to distinguish between solution
ideas that recur and those that are singular, and so tightly bound to
their application that whatever their merits as specific designs, they
cannot be considered general patterns. We could say that each recur-
ring solution theme qualifies as a ‘candidate pattern.’

We also need more than just the idea of recurrence in a pattern to
make it a useful part of our development vocabulary. We need to know
that its application is beneficial rather than neutral or malignant—a
pattern with no effect or ill effect. Before hastily branding ‘dysfunc-
tional’ any candidate pattern that fails to contribute successfully to a

e +®

%I% é c01.fm Page 32 Saturday, March 17,2007 2:00 PM

A

32

A Solution to a Problem and More

design, however, we must also be able to distinguish between pat-
terns that are truly dysfunctional and patterns that have simply been
misapplied—in other words, dysfunctional applications of otherwise
sound patterns. To assess these qualities reasonably we need to ren-
der our candidate pattern in some form that makes them visible. A
pattern description must be clear and must make it possible to see
the qualities of the pattern—a poor pattern description can obscure a
good pattern, selling it short, whereas a good ‘spin’ can mask a poor
pattern, overselling it [Cool98].

Looking back at our original example above, we can see that it quali-
fies as a ‘candidate pattern,’ but that those additional qualities of in-
terest are still not quite visible in its current form. Until we can be
confident of the pattern’s viability and the ability of our documenta-
tion to convey that, we should consider it a ‘proto-pattern.’ So what is
missing from our proto-pattern description that might confirm its
candidacy as a good pattern?

1.2 A Process and a Thing

When analyzing the content of our example proto-pattern, perhaps
the most glaring deficiency is the vagueness of its solution part: it de-
scribes a process for creating a solution, but does not suggest what
concrete solution to create. Although a pattern can be realized a ‘mil-
lion different ways,’ [Ale79] this diversity arises from the precise detail
of an actual problem and its context, not from the vagueness of a pro-
posed solution structure. A pattern should inform its reader how to
build a solution in a way that is loose enough to be general, but tight
enough to avoid vagueness and accidental ambiguity.

Many solution implementations are possible for our example proto-
pattern: all could be said to follow its solution process, but few could
be said to follow the spirit of the pattern’s message. For example, one
valid implementation would be to define a method in the client that
contained the loop. This design would be a simple refactoring within
the client code, extracting one method from another, but having no
effect whatsoever on the issues highlighted in the problem statement.

%

%K% é c01.fm Page 33 Saturday, March 17, 2007 2:00 PM é {

A Process and a Thing 33

Another valid implementation would be to define a single method on
the aggregate object and have it return each individual result to the
client by callback, in the style of a push notification. Such an imple-
mentation, however, would not be very practical, presenting more of
a problem than a solution in its costly accumulation of round-trip
time. It might follow the letter of the proposed solution, but it would
not follow its spirit. For the original problem there are many known
(and better) solution paths: it is the job of the pattern description to
document its chosen route with accuracy and precision.

The solution part of a good pattern describes both a process and a
thing: the ‘thing’ is created by the ‘process’ [Ale79]. For most software
patterns, ‘thing’ means a particular high-level design outline or de-
scription of code detail. There is an important distinction between
this understanding of the term ‘process’ and the idea of ‘process’ as
a full-lifecycle prescription of software development. The popular and
traditional notion of software development process targets the devel-
opment of a whole system, from its inception to its deployment. It is
ambitious in scale, general in nature, alone in its application.

An individual pattern, by contrast, is focused on solving a single spe-
cific problem. It is unambitious but determined, with well-defined
boundaries and a generality that arises from depth rather than
breadth. On a project, an individual pattern will enjoy the company of
other patterns rather than sit on its own. A pattern might be consid-
ered a microprocess—or even nanoprocess—against the backdrop of
a full-lifecycle software development process.

An Example (Take 2)

Our proto-pattern’s original solution part is missing the concrete
‘thing’ to build. We can revise that paragraph to arrive at a second
version:

Define a single method that performs access on the aggregate re-
peatedly. This method is defined as part of the interface of the ag-
gregate object. It is declared to take all the arguments for each
execution of the action, for example via an array or a collection,
and to return results by similar means. Instead of accessing ag-
gregate elements individually and directly from within a loop, the
client invokes the method to access multiple elements in a single
call.

e +®

%K% é c01.fm Page 34 Saturday, March 17,2007 2:00 PM é {

34 A Solution to a Problem and More

This second solution version is much clearer than the original one: we
now know what concrete solution to build to resolve the given prob-
lem, not just how to build this solution.

1.3 Best of Breed

Now that our revised solution statement gives us a better idea of
what to build, we can more clearly see the mismatch between what
is described as a problem and what is proposed as a solution. Al-
though the recommendation is to encapsulate all repeated accesses
of an aggregate object in a single method, the problem statement
says the following:

The client may need to retrieve or update multiple elements in a
collection. If the access to the aggregate is expensive, however, ac-
cessing it separately for each element over a loop can incur severe
performance penalties, such as round-trip time, blocking delay, or
context-switching overhead. How can bulk accesses on an aggre-
gate object be performed efficiently and without interruption?

This statement does not say that there is only one form of access or
action on the aggregate object. Rather it refers to bulk accesses in
general, of which retrieval and update are obvious and representative
examples. If we implement the second solution version, however, we
would find that all bulk accesses would be channeled through a single
method. We would have to include some additional parameter or pa-
rameters to accommodate the variation in the actions that might be
performed against the aggregate object. This method would be weakly
cohesive, supporting a superset interface for any data that might flow
to and from the aggregate, and some kind of selector to indicate which
action was required. Such a method would be tedious and error-prone
to use and maintain.

SINGLETON is an example of a well-known pattern with a weak solu-
tion. Its original intent is to ‘ensure a class only has one instance, and
provide a global point of access to it’ [GoF95]. The solution proposed
to resolve this problem is to disallow creation of an instance of a class
via its constructor. Instead, the pattern introduces a globally accessible

e +®

%I% é c01.fm Page 35 Saturday, March 17,2007 2:00 PM

A

Best of Breed

35

method that creates and returns a new instance of the class on de-
mand: if a class-level static reference to a singleton instance is null, a
new instance is created and returned, otherwise the reference to the
existing singleton instance is returned.

The problem with this solution is the use of a single global access
point to an object, which is considered poor practice in modern pro-
gramming, whether in enterprise or embedded systems, since it tightly
couples code that uses the singleton class to a particular context, in-
appropriately hardwiring the architecture to a set of potentially un-
stable assumptions. Consequently, a number of issues arise when
dealing with SINGLETON, including (but not limited to):

* How to make a SINGLETON thread-safe?

* How to customize SINGLETON behavior?

* How to dispose of or exchange a SINGLETON instance?
* How to unit-test code dependent on a SINGLETON?

The literature, such as [V1is98b] [BuHe03] [POSA2], that discusses
these issues dwarfs the page count of the original pattern description
in the Gang-of-Four book! Working around or fine tuning SINGLETON
appears to be as popular a sport as introducing it into a system. De-
constructing the SINGLETON pattern, therefore, suggests that it may
introduce more problems than it resolves—a fact that Kent Beck sum-
marized nicely [Beck03]: ‘How do you provide global variables in lan-
guages without global variables? Don’t. Your programs will thank you
for taking the time to think about design instead.’

In practice a useful pattern should therefore not propose just any so-
lution for the problem it is addressing. Instead, it should present a ro-
bust solution that resolves the problem optimally. The solution in a
good pattern, moreover, needs to have a proven track record. Quality
patterns do not represent neat ideas that might work, but concepts
that have been applied repeatedly and successfully in the past—this
recurrence is what makes a pattern a pattern, and the track record is
what demonstrates its quality.

The Gang-of-Four puts it this way: Patterns distill and provide a
means to reuse the design knowledge gained by experienced practitio-
ners’ [GoF95]. Brian Foote put it even more succinctly: ‘Patterns are

%

%I% é c01.fm Page 36 Saturday, March 17,2007 2:00 PM

36 A Solution to a Problem and More

an aggressive disregard of originality’ [PLoPD3]. Consequently, new
ideas must first prove their worth in the line of active duty—often
many times—before they can truly be called patterns.

An Example (Take 3)

Another revision of our proto-pattern solution provides us with a third
version—which has the quality we expect from a ‘good’ pattern:

For a given action, define a single method that performs the action
on the aggregate repeatedly. This method is defined as part of the
interface of the aggregate object. It is declared to take all the argu-
ments for each execution of the action, for example via an array or
a collection, and to return results by similar means. Instead of ac-
cessing aggregate elements individually and directly from within a
loop, the client invokes the method to access multiple elements in
a single call.

Each method folds repetition into a data structure rather than a
loop within the client, so that looping is performed before or after
the method call, in preparation or follow-up. Consequently, the
cost of access to the aggregate is reduced to a single access, or a
few ‘chunked’ accesses. In distributed systems this ‘compression’
can significantly improve performance, incur fewer network er-
rors, and save precious bandwidth.

The trade-off in complexity is that each method performs signifi-
cantly more housekeeping to set up and work with the results of
the call. This solution also requires more intermediate data struc-
tures to pass arguments and receive results. The higher the costs
for networking, concurrency, and other per-call housekeeping,
however, the more affordable this overhead becomes.

This third version better resolves the original problem, avoiding the
problems identified for the second version.

1.4 Forces: the Heart of Every Pattern

The previous discussion reveals that the problem addressed by our
proto-pattern is not as easy to resolve as it might first appear. The
pure problem cannot be considered in isolation. There are also a
number of requirements on its solution—for example, that it should

%

%I% é c01.fm Page 37 Saturday, March 17,2007 2:00 PM é

A

Forces: the Heart of Every Pattern 37

be bandwidth-friendly. It is hard—if not impossible—to derive such
requirements from the simple problem statement, however. Yet to
achieve the desired quality of implementation, the problem’s solution
needs to address them.

If, on the other hand, such requirements were added to the proto-
pattern’s problem statement, they would become explicit, and a con-
crete solution for the problem could deal with them appropriately. The
same argument holds for any desired property that the solution
should provide. Similarly, there may be some constraints that limit
the solution space for the problem, or just some things worth taking
into account when resolving it. These requirements, desired proper-
ties, constraints, and other facts fundamentally shape every given
problem’s concrete solution. The pattern community calls these influ-
encing factors forces, a term taken from Christopher Alexander’s early
pattern work [Ale79].

Forces tell us why the problem that a pattern is addressing is actually
a problem, why it is subtle or hard, and why it requires an ‘intelligent—
perhaps even counter-intuitive—solution. Forces are also the key to
understanding why the problem’s solution is as it is, as opposed to
something else. Finally, forces help prevent misapplications of a pat-
tern in situations for which it is not practical [Bus03al].

For example, much of the confusion about SINGLETON could have
been avoided if the original description [GoF95] had listed a force like
‘The property of having only one instance of class is a property of the
type being represented, such as a class that realizes a stateful API to
a specific piece of hardware in a system, and not simply an incidental
property of an application that uses only a single instance of a class.’
SINGLETON would still have a place in the pattern space, but not the
broad and overbearing dominion it has now—which is a root cause
for the trouble this pattern can cause [Ada79].

%I% é c01.fm Page 38 Saturday, March 17,2007 2:00 PM

38

A Solution to a Problem and More

An Example (Take 4)

To motivate the concrete solution proposed by our proto-pattern, we
therefore add the following four forces [Hearsay01] to its description:

An aggregate object shared between clients in a concurrent envi-
ronment, whether locally multithreaded or distributed, is capable
of encapsulating synchronization for individual method calls but
not for multiple calls, such as a call repeated by a loop.

The overhead of blocking, synchronization, and thread manage-
ment must be added to the costs for each access across threads or
processes. Similarly, any other per-call housekeeping code, such
as authorization, can further reduce performance.

Where an aggregate object is remote from its client, each access
incurs further latency and jitter, and decreases available network
bandwidth.

Distributed systems are subject to partial failure, in which a client
may still be live after a server has died. Remote access during it-
eration introduces a potential point of failure for each loop execu-
tion, which exposes the client to the problem of dealing with the
consequences of partial traversal, such as an incomplete snapshot
of state or an incompletely applied set of updates.

A quick check reveals that the third version of the solution state-
ment already satisfies the first three forces, either directly or as a by-
product of the proposed design. In particular, synchronization is
isolated to a single method call rather than across many, the con-
currency cost is reduced by replacing multiple calls with a single
call, and the remote access cost is reduced by replacing multiple
calls with a single call. The fourth force is not yet addressed by this
third solution version, however, since the result of a failed call could
yield a partial update or an incomplete query. We noticed this defi-
ciency only because we thought hard about the forces and made
them explicit. We also noticed that we can afford to make some other
consequences more explicit.

These considerations lead to a fourth version of the solution:

For a given action, define a single method that performs the action
on the aggregate repeatedly.

%I% é c01.fm Page 39 Saturday, March 17,2007 2:00 PM é

Forces: the Heart of Every Pattern 39

This method is defined as part of the interface of the aggregate ob-
ject. It is declared to take all the arguments for each execution of
the action, for example via an array or a collection, and to return
results by similar means. Instead of accessing aggregate elements
individually and directly from within a loop, the client invokes the
method to access multiple elements in a single call.

Each method folds repetition into a data structure rather than a
loop within the client, so that looping is performed before or after
the method call, in preparation or follow-up. Consequently, the
cost of access to the aggregate is reduced to a single access, or a
few ‘chunked’ accesses. In distributed systems this ‘compression’
can significantly improve performance, incur fewer network er-
rors, and save precious bandwidth.

Each access to the aggregate becomes more expensive but the
overall cost for bulk accesses has been reduced. Such accesses
can also be synchronized as appropriate within the method call.
Each call can be made effectively transactional, either succeeding
or failing completely, but never partially.

The trade-off in complexity is that each method performs signifi-
cantly more housekeeping to set up and work with the results of
the call. This solution also requires more intermediate data struc-
tures to pass arguments and receive results. The higher the costs
for networking, concurrency, and other per-call housekeeping,
however, the more affordable this overhead becomes.

Now all four forces are resolved and the resulting solution is stronger.
Even though the second and third force were addressed together, it is
still important to list them as separate forces: they are different and
they are independent. Network bandwidth is the not the same kind of
resource or consideration as context switching cost: the communica-
tion cost may vary independently from platform processing power.
This variability underscores the importance of listing all forces explic-
itly, even if at first glance they appear superfluous.

Unfortunately it might not always be possible to resolve all forces
completely in a solution: forces are likely to contradict and conflict
with one another. A particular force may address an aspect that can
only be resolved at the expense of the solution’s quality in respect to
aspects addressed by other forces. For example, efficiency can often

%I% é c01.fm Page 40 Saturday, March 17,2007 2:00 PM

40

A Solution to a Problem and More

be achieved only by giving up flexibility, and vice versa. In such cases
a solution must balance the forces, so that each is resolved sufficiently,
if not completely, to meet the requirements sufficiently.

Dysfunctional, Bad, or Anti?

Having discussed forces, we now are in a position to revisit and clarify
some distinctions in terminology. Christopher Alexander favored char-
acterizing recurring problematic approaches as bad patterns [Ale79],
whereas our emphasis has been to characterize them as dysfunctional
patterns. You may also have come across the term anti-patterns,
which also sounds applicable.

The term ‘anti-pattern’ has quite a sensational ring to it, since it sets
up some kind of contrast or conflict. It is not immediately clear, how-
ever, what the term entails. In looking at other words that follow the
‘anti-’ pattern, there are a number of possibilities. For example, in the
manner of antibiotics and antidotes, perhaps they are a cure for
someone with ‘patternitis™—a term often used to describe someone
who has become too carried away in their use of patterns.

Perhaps anti-patterns provide a cosmic balance for patterns, cancel-
ing them out in some dramatic way, as matter and antimatter do on
contact? Perhaps they are simply against patterns, in the manner of
many political ‘anti-’ slogans, or they are a way of bringing them
down, in the manner of anti-aircraft devices? Perhaps they precede a
deeper understanding of patterns, as antipasto precedes a main
course? Perhaps they offer only a disappointing conclusion, an anti-
climax? Jim Coplien [Cope95] offers the following clarification:

Anti-patterns are literature written in pattern form to encode prac-
tices that don’t work or that are destructive. Anti-patterns were in-
dependently pioneered by Sam Adams, Andrew Koenig [Koe95],
and the writer. Many anti-patterns document the rationalizations
used by inexpert decision makers in the Forces section. [...]

Anti-patterns don’t provide a resolution of forces as patterns do,
and they are dangerous as teaching tools: good pedagogy builds
on positive examples that students can remember, rather than
negative examples. Anti-patterns might be good diagnostic tools to
understand system problems.

%I% é c01.fm Page 41 Saturday, March 17,2007 2:00 PM é

A

Forces: the Heart of Every Pattern 41

This description was written before the first Antipatterns book
[BMMMO98] popularized the term. In that book the notion of anti-pattern
is at times ambiguous: sometimes anti-pattern refers to a recurring
problem situation—a failing solution—that results from misapplied de-
sign practices. At other times anti-pattern also appears to include a so-
lution response to these problem situations.

The former definition appears closer to the medical metaphor of diag-
noses [Par94] [EGKM+01] [MarO2a] [Mar02b| [Mar03], identifying a
problem situation through its symptoms and root causes. The latter
approach also appears to fit this metaphor, with a proposed remedy
and prognosis, but it also fits the basic pattern concept: the failing
solution is the problem and the cure is the solution. In this latter form
there appears nothing special—let alone ‘anti—about so-called anti-
patterns as solutions to problems. The ambiguity lingers, however,
which motivates the need for a clearer, less affected term for discuss-
ing recurring, problematic approaches.

The definition provided by Jim Coplien seems both the most useful
and the most cautionary. Labeling the problem of unresolved forces
with an ‘anti’ is a little ambivalent and does not properly communi-
cate the problematic nature of such recurring solution attempts. By
contrast, the term ‘bad patterns’ pulls no punches. As a characteriza-
tion, however, partitioning designs into ‘good’ and ‘bad’ can seem a lit-
tle simplistic or even sententious. This kind of value judgment may be
meaningful for an individual, but does not necessarily encourage
open and balanced discussion with others.

With patterns we seek to communicate and understand, so drawing
on a more neutral vocabulary seems prudent. For this reason, we fa-
vor characterizing successful solutions that address the forces in a
problem adequately as ‘whole’ and those that do not as ‘dysfunctional’
[HenO03a]. The former term entails balance and completeness—whole
as opposed to half-done or half-baked—whereas the latter suggests
that a design is impaired in some way and may undermine the stabil-
ity of a larger whole.

%K% é c01.fm Page 42 Saturday, March 17, 2007 2:00 PM é {

A

42 A Solution to a Problem and More

1.5 The Context: Part of a Pattern or Not?

Now that the forces supplement the problem statement, and the so-
lution for the problem is adjusted accordingly, we can turn our atten-
tion to the context part of the proto-pattern:

A client needs to perform actions on an aggregate data structure.

This is a fairly general context. It probably gives rise to a number of
different problems, not just to the one that the example proto-pattern
addresses. In fact, it is so general that little is lost if it is dropped
completely.

The context plays an important role in a pattern, however, since it de-
fines the situation to which it applies. The more precisely this situation
is described, the less likely it is that developers will use the pattern in-
appropriately. Ideally, the context should describe only the particular
situation that can lead to the problem for which the pattern specifies
a solution.

A context that is too broad, in contrast, will run the risk of making a
pattern a jack-of-all-trades but a master of none. One example of
such a pattern is BRIDGE, whose original intent in [GoF95] is: ‘Decou-
ple an abstraction from its implementation so that the two can vary
independently.” Many designs can benefit from this level of indirec-
tion, ranging from making implementation bindings more flexible to
writing C++ code with strong exception-safety guarantees [BuHeO3].

Each of the many possible problems addressed by BRIDGE, however,
has its own context, such as ‘we are creating a component whose im-
plementation must be exchangeable at runtime’ or ‘we are implement-
ing a C++ application that must be exception-safe.’ These differences
result in corresponding differences in the forces associated with the
problem and also differences in the concrete solutions proposed to re-
solve them. Remember, a pattern is often cast as a solution to a prob-
lem that arises in a specific context—which is the (incomplete) ‘defi-
nition’ for patterns from the beginning of this chapter. Consequently,
lacking a precise context, a pattern can become all things to all peo-
ple, with each having their own different—and often incompatible—
view [BuHeO03].

%K% é c01.fm Page 43 Saturday, March 17, 2007 2:00 PM é {

The Context: Part of a Pattern or Not? 43

An Example (Take 5)

To sharpen the context of our proto-pattern, we merge the first two
sentences of its problem statement—which already provides some
context information—with the original context, and also add informa-
tion about the design activity and the corresponding application’s us-
age that lets the problem arise:

In a distributed system, the client of an aggregate data structure
may need to perform bulk actions on the aggregate. For example,
the client may need to retrieve all the elements in a collection that
have specific properties. If the access to the aggregate is expen-
sive, however, because it is remote from the client, accessing it
separately for each element over a loop can incur severe perfor-
mance penalties.

This context is much more precise in describing the situation in which
the problem arises. The context tells us where our proto-pattern may
be applicable and, by implication, where it may not be applicable.
Based on an understanding of the context, the developer can actively
decide not to introduce the design. For example, if the aggregate object
is not remote from the client, an alternative approach may be prefera-
ble, such as one of the solutions that we mentioned before modifying
the original solution for the first time (see page 32). In this particular
case, the proto-pattern’s current solution idea for minimizing execu-
tion overhead would be like ‘shooting mosquitoes with a machine gun.’

Moving information from the problem to the context statement re-
quires rephrasing the remaining part of the problem description so
that it becomes meaningful again:

How can bulk accesses on an aggregate object be performed effi-
ciently and without interruption if access is costly and subject to
failure?

As a side effect of removing context information from the problem
statement, the ‘real’ problem shines through more clearly. It is briefer
and crisper, and we understand more directly that this is a problem.

%K% é c01.fm Page 44 Saturday, March 17,2007 2:00 PM é {

A

44 A Solution to a Problem and More

Context Generality

Narrowing the generality of the original context has the benefit of be-
ing more precise... but it also has a drawback. There may be other sit-
uations in which the problem addressed by the example proto-pattern
can arise, and where the same solution helps to resolve the problem.
Consider, for example, the following context:

In an application with a custom, in-memory database of complex—
as opposed to relational—objects, separate key-based searches for
individual objects are possible but potentially a bottleneck when
performed repeatedly. However, certain well-defined actions, each
of which returns a result, must frequently be performed on all ob-
jects in the database that satisfy a specified search criterion.

Knowing that there may be even more such situations gives rise to a
challenge: how can we ensure the context’s completeness? An overly
general context that acts as an umbrella for many possible problem
situations may be too vague, leading to inappropriate applications
of a pattern. On one hand, too much detail will probably yield an
unreadable pattern prefixed by an exhaustive laundry list’ of specific
context statements. On the other, an overly restrictive context may
prevent developers from applying a pattern in other situations in
which it is also applicable. They may take the pattern only as written
and fail to grasp the opportunity for generalization it implies.

One way of coping with this problem is to start with a context that de-
scribes the known situations in which a pattern is useful, and to up-
date this context whenever a new appropriate situation is found. The
context section would then look and feel similar to the Applicability
section of the Gang-of-Four pattern description form [GoF95], where
the Gang-of-Four listed all the specific situations in which they knew
the pattern could be and had been applied.

Another way to resolve this problem is to follow the approach taken
in the second volume of the Pattern-Oriented Software Architecture se-
ries, Patterns for Concurrent and Networked Objects [POSA2]. There
the focus of the context statements was narrowed to the theme of the
book: concurrency and networking. Each pattern’s context addressed
situations related only to these topics, and the patterns’ applicability
in other situations was addressed in a separate chapter.

%K% é c01.fm Page 45 Saturday, March 17,2007 2:00 PM é {

A

The Context: Part of a Pattern or Not? 45

A narrow approach to contexts works well if a collection of patterns is
centered around a common theme: the context attached to each pat-
tern is lean, so readers can readily identify applicability in a particular
domain. Other situations in which the patterns may help are not
stressed, although they are not forgotten. The patterns benefit from
being focused, narrowed with respect to context, rather than trying to
be all things to all people.

Unfortunately, neither approach truly resolves the context-complete-
ness problem: overlooking a situation in which a pattern is applicable
is quite likely. As a result, the overly general contexts in A System of
Patterns and this section’s example proto-pattern, the split contexts
in Patterns for Concurrent and Networked Objects, and the applicabil-
ity section of the Gang-of-Four patterns [GoF95] do not work very
well. On the other hand, the two latter approaches seem more practi-
cal than a general and possibly vague context. It is better to support
the appropriate application of a pattern in a few specific situations
than to address the possible application of a pattern everywhere—a
jack of all trades, but a master of none.

Context Detached

A completely different approach is to consider the context as not being
a part of an individual pattern at all. We have already shown that mul-
tiple contexts are possible for the example proto-pattern, but there is
only one problem and one solution statement. Another possible per-
spective is that contexts are needed only for describing pattern lan-
guages, where they are used to specify how the languages integrate
their constituent patterns. In other words, the contexts define a net-
work of patterns—the pattern language—but the nodes—the individ-
ual patterns—are independent of the network, hence they are context
free. Consequently, the context-completeness problem appears not to
arise. If there are multiple pattern languages in which a pattern is
useful or needed, each will provide its own context for the pattern.

While this extrinsic approach seems tidy, it gives rise to another prob-
lem. If a pattern does not characterize the situation in which a prob-
lem occurs, how can the pattern be said to honestly characterize the
nature of the problem and its scope? Problems are not context-free
modular parts that can simply be plugged into any context. Context

e +®

%K% é c01.fm Page 46 Saturday, March 17, 2007 2:00 PM é {

46 A Solution to a Problem and More

is not simply glue: there is the implication of fit, not simply adhesion,
between context and problem. Thus characterization of a problem im-
plies characterization of the context.

To some extent the question of context is a question of perspective.
From the perspective of an individual pattern it is important to know
the situations in which it can be applied successfully. The question of
how a pattern is integrated with other patterns is useful, but less im-
portant. So the context is probably part of a pattern, which, unfortu-
nately, allows the context-completeness problem to arise.

From a pattern language perspective it is necessary to know how the
language’s constituent patterns connect. It is not necessary to know
which other pattern languages also include a particular pattern. The
context is therefore only needed to define a specific pattern language,
not to properly describe a particular pattern and the many situations
to which the pattern applies. Under this characterization, therefore,
the context-completeness problem appears to go into remission. This
simplification, however, comes at the expense of limiting the scope of
applicability of the underlying pattern. This tension and interplay
between the general and the specific is an enduring and (appropriately)
recurring theme in our exploration of the pattern concept.

This chapter is about stand-alone patterns, not pattern languages, so
it takes the patterns-eye view: some or all of the context is part of a
pattern. This view also corresponds to the majority of the software
patterns, which stand alone and are not yet organized into pattern
languages. We will return to the question of context in later chapters
that focus on more than stand-alone patterns.

An Example (Take 6)

We can revise the context of our proto-pattern such that it captures
and characterizes the known situations in which it applies and which
are of interest—in this case systems with an element of multithread-
ing, distribution, or both:

In a distributed or concurrent system, the client of an aggregate
data structure may need to perform bulk actions on the aggregate.
For example, the client may need to retrieve all elements in a col-
lection that have specific properties. If the access to the aggregate
is expensive, however, because it is remote from the client or

e +®

%K% é c01.fm Page 47 Saturday, March 17,2007 2:00 PM é {

Genericity 47

shared between multiple threads, accessing it separately for each
element over a loop can incur severe performance penalties, such
as round-trip time, blocking delay, or context-switching overhead.

Independent of the ‘context-completeness question,’ the proto-pattern
has improved once again. Developers can get a good picture of the sit-
uations in which it may be applied, even if the new context does not
enumerate all possible situations.

1.6 Genericity

With the revised context, problem, and solution sections described
above, the example proto-pattern looks much more like a useful and
beneficial pattern than the version with which we started. We are still
not done, however. Although the solution section is quite specific with
respect to its use of objects and methods, this might not be our inten-
tion. In particular, is the essence of the pattern solution being overly
constrained? Is the solution offered at the same level as the problem
to be solved?

Specific problems with object structure should be addressed using the
tools and concepts of object orientation. A problem expressed more
generally, however, should not suddenly be shackled to an object-
oriented frame of reference. Conversely, patterns that deal with pro-
gramming language specifics in the problem must also articulate their
solutions at that level—anything more general will appear vague and
imprecise. In general, patterns are as independent or dependent on a
particular implementation technology as is necessary to convey their
essence. For example, the problem our proto-pattern addresses can
arise in procedural code, not just in object-oriented code. It is possible
to express the solution for this problem in the context of objects and
methods, plain functions, wire-level protocols, or even overseas parcel
delivery. These alternatives do not violate the solution’s core principle.9

9. Even patterns that seem to depend on a specific implementation paradigm, for ex-
ample object technology, often do not: PROXY, for example, loses little of its essence by
giving up inheritance, while STRATEGY can be implemented in C by using function
pointers instead of object-level polymorphism.

e +®

%K% é c01.fm Page 48 Saturday, March 17, 2007 2:00 PM é {

48 A Solution to a Problem and More

If the problem addressed by a pattern requires the presence or the
use of a specific technology or paradigm, this dependency should be
stated explicitly. If not, a conscious decision should be taken as to
whether narrowing the description in this way benefits the intended
audience. Otherwise the pattern should not depend on the technology
or paradigm, to avoid overly constraining its applicability and imple-
mentation options.

An Example (Take 7)

Let us assume that our goal was to provide an object-oriented solution
for our problem. This aspect can be fixed’ either by adding another
force to the proto-pattern’s description, if the use of object technology
is a requirement for resolving the problem, or by extending its context,
if using object technology is a precondition in our situation. We decide
on the latter and change the first and last sentences of the context
statement:

In a distributed or concurrent object system, the client of an ag-
gregate object may need to perform bulk actions on the aggregate.
For example, the client may need to retrieve all elements in a col-
lection that have specific properties. If the access to the aggregate
is expensive, however, because it is remote from the client or
shared between multiple threads, accessing it separately for each
element over a loop—whether by index, by key, or by ITERATOR—
can incur severe performance penalties, such as round-trip time,
blocking delay, or context-switching overhead.

These changes may not be the best way to indicate that object tech-
nology should be used to resolve the problem addressed by our exam-
ple proto-pattern, but at least the assumption is now explicit and the
wording more precise. This discussion also leads us to another con-
sideration: the aggregate object’s interface. Consider the second sen-
tence of the current solution section:

Each method is defined as part of the interface of the aggregate
object.

What does this imply about the aggregate object? Does it mean that
whatever interface is used to declare its capabilities must include a
declaration for the new method? Or are other schemes possible? For
example, a separate EXPLICIT INTERFACE that offers just the iteration

e +®

%K% é c01.fm Page 49 Saturday, March 17,2007 2:00 PM é {

Genericity 49

capability can be defined and used as a commodity to specify the
same capability in other object types, allowing the uniform treatment
of many different aggregate types via a common type.

And what of the aggregate’s implementation? The proto-pattern cur-
rently has nothing to say on the matter. It may be that the aggregate’s
class implements the new method directly. It is also feasible, however,
that the underlying aggregate mechanism is left untouched and an
OBJECT ADAPTER is used instead, adapting the mismatched interfaces
of a distribution-friendly model and an in-process implementation.

A generic problem resolution does not necessarily introduce specific
classes, components, or subsystems. Instead, it introduces roles
[RWLO6] [Rie98] [RG98] [RBGMOO] that particular components of the
system must adopt to resolve the original problem well. A role defines
a specific responsibility within a system, and includes interaction
with other roles.

Although separating the implementations of different roles is recom-
mended, encapsulation in separate, distinct components is neither
required nor implied. A single component may take on multiple
roles. Roles can be assigned to existing components or they can be
expressed in new components. If necessary, developers can intro-
duce role-specific interfaces for components, so that clients see only
the roles they need.

Roles are key to the seamless and optimal integration of a pattern into
an existing software architecture, and for combining multiple pat-
terns in larger-scale designs. We therefore revise the proto-pattern’s
solution part once again, producing a new version:

For a given action, define a single method that performs the action
on the aggregate repeatedly.

Each method is defined as part of the interface of the aggregate ob-
ject, either directly as part of the EXPLICIT INTERFACE exported for
the whole aggregate type, or as part of a narrower, mix-in EXPLICIT
INTERFACE that only defines the capability for invoking the repeat-
ed action. The method is declared to take all the arguments for
each execution of the action, for example via an array or a collec-
tion, and to return results by similar means. Instead of accessing
aggregate elements individually and directly from within a loop,
the client invokes the method to access multiple elements in a

e +®

%I% é c01.fm Page 50 Saturday, March 17,2007 2:00 PM

A

50

A Solution to a Problem and More

single call. The method may be implemented directly by the aggre-
gate object’s underlying class, or indirectly via an OBJECT ADAPTER,
leaving the aggregate object’s class unaffected.

[...]

Now developers can declare the method for accessing the aggregate as
part of an existing interface or in an interface of its own and, similarly,
implement the method as part of an existing class or in a class of its
own. The roles within the proto-pattern are stable but accommodate
variation in implementation.

The solution part of a pattern should therefore state explicitly which
particular roles must be implemented in their own components. For
all other roles it introduces, a pattern should not prescribe an imple-
mentation that unnecessarily restricts the solution’s genericity.

The latest solution version still describes how to construct a struc-
ture that resolves the original problem. With roles, however, there
are many more implementation choices available for the solution.
Roles thus contribute significantly to the genericity of a pattern—
much more than a strict class approach can ever do. Roles also
make it easier to adapt a pattern’s core idea to the needs of a con-
crete application. Unnecessary complexity and indirection levels can
be avoided, which leads to simpler, more flexible, and more effective
pattern implementations.

1.7 A Diagram Says More than a Thousand Words... or Less

Now that the latest solution version provides more of the qualities we
expect from a whole pattern, it is worth spending some time discuss-
ing a pattern’s solution part more generally. Abstracting from its con-
crete look-and-feel, the solution part of a software pattern commonly
specifies a design structure consisting of roles that are connected
through various relationships. The structure is completed by some
behavior that ‘happens’ in this structure.

The solution part of a code-centric pattern typically offers a code
fragment in which designated elements of a programming language
are arranged in a specific way, together with this code’s behavior.

%

%K% é c01.fm Page 51 Saturday, March 17,2007 2:00 PM é {

A

A Diagram Says More than a Thousand Words... or Less 51

For organizational patterns, the solution part introduces a particu-
lar organizational structure, roles in this structure, their responsi-
bilities, and the communication between the roles. Speaking most
generally, a pattern is often said to define a spatial configuration of
elements that exposes or enables particular dynamics.

To complement the textual description of their solution part, many
patterns therefore include diagrams that illustrate and summarize
this configuration of elements, the interactions within this configura-
tion, and, if relevant, its evolution over time. These diagrams can help
communicate the essence and detail of a pattern. They provide a
graphical description of that pattern’s ‘big picture.” A diagram often
says more than a thousand (and twenty—four)10 words.

Diagrammability and Patterns

It has been suggested that the capability of providing such a diagram
is a fundamental property of patterns. However, there are software
concepts, such as very specific design and implementation decisions
taken for very specific systems, for which it is also possible to provide
an illustrating diagram, that are not patterns. A concept in software
must fulfill many more properties before it can be called a pattern.
The flip side of ‘if you can’t draw a diagram of it, it isn’t a pattern’
[Ale79] is that even if you can draw a diagram of it, it is not necessarily
a pattern. The ability to draw a diagram may appear necessary for
something to be a pattern, but it is certainly not sufficient.

A diagram may therefore be helpful to a pattern’s readership, but we
should be cautious in stating that diagrammability is a key identifying
property of patterns. Humans are versatile and imaginative, which
means that in practice it is possible to express any concept in human
experience, no matter how abstract, through some form of diagram.
It is true that a diagram of a particularly abstract concept may not
convey its meaning effectively to all observers, but it is also true that
not only is the diagrammability of something not sufficient for pat-
ternhood, it fails to distinguish a pattern from anything else that may
be conceived, experienced, invented, or otherwise formed.

10. Trygve Reenskaug, ROOTS 2001 conference, Norway.

e +®

%I% é c01.fm Page 52 Saturday, March 17,2007 2:00 PM

A

52

A Solution to a Problem and More

Perhaps a more useful distinction is to emphasize that the concept
in question must be a designed artifact, as opposed to something oc-
curring in nature, and that a diagram must be based on the design’s
spatial configuration. Of course this does not uniquely distinguish
patterns from other design concepts, but as a way of thinking about
diagramming it is perhaps a more useful path to take.

For example, it is certainly possible to create diagrams that illustrate
fundamental design principles like ‘separation of concerns’ and ‘en-
capsulation,’ but such diagrams will tend to be general and abstract,
and thus hard to communicate and discuss. When applied in a spe-
cific design, however, these principles come to life and are more tan-
gible by developers. For example, our proto-pattern encapsulates the
iteration over elements of an aggregate object within the data struc-
ture that is returned when accessing these elements:

[...] Instead of accessing aggregate elements individually and di-
rectly from within a loop, the client invokes the method to access
multiple elements in a single call. [...]

A diagram that illustrates this specific case of encapsulation is easier
to understand, communicate, and discuss—and thus of more value
in the context of a concrete design than a diagram that illustrates en-
capsulation in general.

Even the path of showing a concrete design, however, is not without
its own pitfalls and pratfalls. The notion of space—and hence ‘spa-
tial—in the aphysical and invisible domain of software is more about
metaphor than matter [HenO3b]. It is a subtle but significant distinc-
tion, but one that should be kept in mind when carrying ideas from
physical engineering and architectural disciplines to aphysical ones,
such as software development. With the exception of software arti-
facts such as user interfaces, spatial concepts in software design de-
rive from constructed visualizations that are the result of choice, as
opposed to being a given. Consequently, a different choice of mapping
can create a different notion of space. It is possible, therefore, to make
a poor design look good through simple cosmetics and a flattering
choice of abstractions, and a good design look poor by not paying
enough attention to the choice and detail of visualization.

%I% é c01.fm Page 53 Saturday, March 17,2007 2:00 PM é ‘

A Diagram Says More than a Thousand Words... or Less 53

In advocating diagrams for patterns, it may be more useful to consider
diagramming a matter of taste, form, and presentation than as some-
thing deeper. With this sensibility in mind, we can provide the follow-
ing diagram for our proto-pattern.

— —>{ void put (Key[] keys, Object[] values)
begin
Execute pre-bulk-access code.
before_bulk_access ();

input arguments

Execute post-bulk-access code.
after_bulk access ();

- l pUt : B
get - T — —
I v

Client

|
|
Collection of | ## Bulk store of all received objects.
| .
|

| Object || Object || Object |

| Object || Object || Object | An aggregate Object [] get (Key[] keys)
object begin
Collection of .
output arguments end;

This diagram intentionally does not follow popular modeling notations
such as UML [BRJ98]. The reason for this is simple: a formal (UML)
structure diagram is too often interpreted as the one and only true so-
lution for a given problem. In the context of patterns, however, it is not
the only solution! A pattern is generic, it defines roles, not classes, and
so there can be many ways to implement it. A formal diagram, on the
other hand, can often depict only one particular of the many possible
configurations and interactions of these roles, or only one of their many
possible evolution paths.

In addition, the more formal a diagram is, the more tempting it is to
implement the pattern as specified in the diagram, because it appears
to represent a standardized reference solution that is reusable whole-
sale and without adaptation in every situation to which the pattern is
applicable. The OBSERVER story from Chapter O illustrates this mis-
conception nicely. The less formal a pattern diagram is, in contrast,
the more developers are forced to think how to implement the pattern
in their own systems, or how to specify its implementation in the de-
sign notation they use. Thinking is the essence of design, not (rote)
automation.

%I% é c01.fm Page 54 Saturday, March 17,2007 2:00 PM

54

A Solution to a Problem and More

If developers think in roles, however, and interpret any diagram as
just an illustration of one of many possible concrete solution struc-
tures for resolving a particular problem, the specific notation selected
becomes less important. When thinking in roles it may even be bene-
ficial to follow known notations to illustrate the solution, because
everybody is familiar with them. In much of the Pattern-Oriented Soft-
ware Architecture series we assume that readers are familiar with the
basics of the pattern concept and know that pattern participants de-
note roles, at least after reading the introduction to patterns in A Sys-
tem of Patterns [POSA1].

It was in exercising this matter of choice, therefore, that OMT and
UML diagrams were favored over informal sketches [POSA1] [POSA2]
[POSAS]. But this choice was made in context, and does not mean the
same decision applies in all cases. For example, in A Pattern Language
of Distributed Computing [POSA4] a less formalized, made-up notation
is used to illustrate pattern structure. This ‘Bizarro’' ! notation is also
used here to illustrate our pattern-in-progress.

1.8 Evocative Names Help Pattern Recollection

To be used successfully, a pattern description must at least provide a
clear and sound solution to a recurring problem that is well-presented
through prose and pictures, as discussed above. But if we want to use
patterns in our designs and implementations effectively, we must also
be able to identify and reference each individual pattern quickly and
unambiguously. In addition, even if we do not have particular pattern
descriptions or their structure diagrams to hand, we still need a way
of talking about these patterns and the designs in which they occur.
In other words, we must be able to remember a pattern, otherwise it

11. The chunky and blocky appearance is reminiscent of the cubic Bizarro world,
Htrae, home of Bizarro, a character from DC Comics’ Superman series. Bizarro logic is
also slightly inverted and different, giving Bizarro modeling a distinctly different feel to
UML: where UML documents models different aspects through a multitude of dia-
grams, Bizarro notation uses only a single diagram that integrates multiple aspects.
Where UML is formalized, Bizarro notation is more ad hoc: where UML is a marketable
skill, mastery of Bizarro notation confers no career advantage (except on Htrae).

%

%K% é c01.fm Page 55 Saturday, March 17, 2007 2:00 PM é {

A

Evocative Names Help Pattern Recollection 55

cannot become a word in our design vocabulary. A pattern that can-
not be remembered is less likely to be recalled in practice, regardless
of its other qualities.

Every pattern therefore needs a name. This name should be evocative
[MD97]. Ideally, if someone references a pattern by its name, anyone
familiar with it should be able to recall it from that cue alone. This fa-
miliarity is not always easy to achieve. Cute and obtuse names that
are meaningful only to a handful of people, such as the clique of the
pattern writer, are not necessarily meaningful to others. Recalling
that a pattern is a vehicle for communication, a poorly named pattern
offers poor transportation. Patterns are most memorable if their
names conjure up clear images that convey the essence of their solu-
tions to the target audience [MD97].

A Grammatical Classification of Names

Grammatically, two ‘types’ of names are used commonly in pattern
naming:

* Noun-phrase names describe the result created by a pattern. For
example, ACTIVE OBJECT and COMMAND PROCESSOR. Noun-phrase
names typically describe the solution structure of the pattern, and
in some cases may explicitly enumerate the key roles, for example,
MODEL-VIEW-CONTROLLER or FORWARDER-RECEIVER.

* Verb-phrase names are imperative, giving an instruction that de-
scribes how to achieve a pattern’s desired solution state. For exam-
ple, the ENGAGE CUSTOMERS organizational pattern and the INVOLVE
EVERYONE pattern for organizational change are both examples of
verb-phrase names, as is DON’T FLIP THE Bozo BIT, which is one of
the more colorful cliches of effective software leadership and inter-
personal dynamics within groups.

Noun-phrase names are more common than verb-phrase names, and
are normally preferred. Noun phrases highlight the structural nature
of the solution and can be used most easily as part of an ordinary sen-
tence. In considering patterns as being both ‘a process and a thing,’
noun-phrase names emphasize the ‘thing,” whereas verb-phrase names
emphasize the ‘process.’

%K% é c01.fm Page 56 Saturday, March 17,2007 2:00 PM é {

56 A Solution to a Problem and More

Literal Versus Metaphorical Names

The style of a name is also important. In conjuring up images of a pat-
tern’s essence there is a continuum with two contrasting extremes—
literal names and metaphorical names:

e Literal names are direct descriptions of patterns that use terminol-
ogy in its primary sense, rather than in a metaphorical way. For ex-
ample, EXPLICIT INTERFACE and ITERATOR are literal names.

* Metaphorical names create associations between a pattern and an-
other concept, such as one from everyday life, with which readers
are hopefully familiar. VISITOR, OBSERVER, and BROKER are exam-
ples of metaphorical names.

Given the abstract nature of software development, many terms are
based on metaphors to begin with—sockets, files, windows, and so
on—so from a different point of view, some literal names may be con-
sidered metaphorical. Many names are therefore part literal and part
metaphorical, for example, RESOURCE LIFECYCLE MANAGER.

Which type of name works best is often subject to personal prefer-
ence. For example, REPEATING METHOD would be a literal noun-phrase
name for our proto-pattern and BOXCAR METHOD a metaphorical
noun-phrase name. Both names capture the essence of the pattern’s
solution equally well. We favored a third name, BATCH METHOD, which
has elements of both naming styles. We could have chosen a name
that was both literal and a verb phrase, but it is often hard to phrase
short and crisp instructions that capture a pattern’s essence precisely.
For example, EXPRESS EACH FORM OF REPEATED ACCESS AS A LOOP-
ENCAPSULATING METHOD is an instruction that captures the funda-
mental idea of our proto-pattern, but it is far too verbose to be a
handy and evocative pattern name. Inconvenience is also not a good
property of a transport medium.

%I% é c01.fm Page 57 Saturday, March 17,2007 2:00 PM

Patterns are Works in Progress

1.9 Patterns are Works in Progress

57

After a long and scenic journey, we have finally arrived at the follow-
ing description of the proto-pattern:

Batch Method

In a distributed or concurrent object system, the client of an ag-
gregate object may need to perform bulk actions on the aggregate.
For example, the client may need to retrieve all elements in a col-
lection that have specific properties. If the access to the aggregate
is expensive, however, because it is remote from the client or
shared between multiple threads, accessing it separately for each
element over a loop—whether by index, by key, or by ITERATOR—
can incur severe performance penalties, such as round-trip time,
blocking delay, or context-switching overhead.

How can bulk accesses on an aggregate object be performed effi-
ciently and without interruption if access is costly and subject to
failure?

Four forces must be considered when resolving this problem:

* An aggregate object shared between clients in a concurrent en-
vironment, whether multithreaded locally or distributed across
a network, is capable of encapsulating synchronization for in-
dividual method calls but not for multiple calls, such as a call
repeated by a loop.

e The overhead of blocking, synchronization, and thread manage-
ment must be added to the costs for each access across threads
or processes. Similarly, any other per-call housekeeping code,
such as authorization, can further reduce performance.

e Where an aggregate object is remote from its client, each ac-
cess incurs further latency and jitter and decreases available
network bandwidth.

e Distributed systems are subject to partial failure, in which a
client may still be live after a server has died. Remote access
during iteration introduces a potential point of failure for each
loop execution, which exposes the client to the problem of
dealing with the consequences of partial traversal, such as an
incomplete snapshot of state or an incompletely applied set of
updates.

%I% é c01.fm Page 58 Saturday, March 17,2007 2:00 PM

58

A Solution to a Problem and More

For a given action, therefore, define a single method that performs
the action on the aggregate repeatedly.

Each BATCH METHOD is defined as part of the interface of the ag-
gregate object, either directly as part of the EXPLICIT INTERFACE ex-
ported for the whole aggregate type, or as part of a narrower, mix-in
EXPLICIT INTERFACE that only defines the capability for invoking
the repeated action. The BATCH METHOD is declared to take all the
arguments for each execution of the action, for example via an
array or a collection, and to return results by similar means. In-
stead of accessing aggregate elements individually and directly
from within a loop, the client invokes the BATCH METHOD to access
multiple elements in a single call. The BATCH METHOD may be im-
plemented directly by the aggregate object’s underlying class, or
indirectly via an OBJECT ADAPTER, leaving the aggregate object’s
class unaffected.

A BatrcH METHOD folds repetition into a data structure rather than
a loop within the client, so that looping is performed before or after
the method call, in preparation or follow-up. Consequently, the
cost of access to the aggregate is reduced to a single access, or a
few ‘chunked’ accesses. In distributed systems this ‘compression’
can significantly improve performance, incur fewer network er-
rors, and save precious bandwidth.

By using a BATCH METHOD, each access to the aggregate becomes
more expensive, but the overall cost for bulk accesses has been re-
duced. Such accesses can also be synchronized as appropriate
within the method call. Each call can be made effectively transac-
tional, either succeeding or failing completely, but never partially.

The trade-off in complexity is that a BATCH METHOD performs sig-
nificantly more housekeeping to set up and work with the results
of the call, and requires more intermediate data structures for
passing arguments and receiving results. The higher the costs for
networking, concurrency, and other per-call housekeeping, how-
ever, the more affordable this overhead becomes.

There is a marked difference between this version to the one with
which we started: all the features that make up a good pattern de-
scription are now present. We have an evocative pattern name, a con-
crete and precise context, a crisply phrased problem statement, an
explicit description of all forces that inform any viable solution, and
an appropriate solution that resolves the problem and its forces well.

%

%K% é c01.fm Page 59 Saturday, March 17,2007 2:00 PM é {

A

Patterns are Works in Progress 59

The latest solution description consists of a specific role-based struc-
ture that includes static and dynamic considerations, as appropriate,
and a process to create this structure. It is also possible to draw one
or more illustrative diagrams. The solution is concrete but also generic:
it can be implemented in multiple ways that still preserve its essence
and are recognizably the same pattern. Both the original and the final
versions meet the ‘a pattern is a solution to a problem that arises
within a specific context’ definition, but there are worlds between
them. The latter can be considered a good pattern description, the
former cannot.

Just as most useful software evolves over time as it matures, many
useful pattern descriptions evolve over time as they mature. This
maturity results primarily from the deeper experience gained when
applying patterns in new and interesting ways. For example, the
ABSTRACT FACTORY pattern evolved from the version in the Gang-of-
Four book [GoF95], which allows only object creation, to a version
that offers both object creation and object disposal [HenO2b]
[Bus03a]. The later versions balance the aspects and forces of object
lifetime management better than the original version.

Similarly, the original description of the BROKER pattern in A System
of Patterns [POSA1] has been revised three times. The first revision
was in Remoting Patterns [VKZ04], which decomposed the broker role
of the original POSA1 version into several smaller, more specialized
roles. This version was then revised a second time to use the original
POSA pattern format and elaborate the implementation details of the
revised structure [KVSJ04]. The third revision of BROKER, which is de-
scribed in A Pattern Language for Distributed Computing [POSA4], ex-
tends the second and third version by integrating it with even more
patterns that help implement BROKER-based communication middle-
ware. All three revisions reflect a better understanding of the pattern
itself, as well as its integration with the growing number of patterns
that can be combined into a pattern sequence or language to implement
it. But three need not be the number of the counting: as John Vlis-
sides observes, ‘The deliberations herein should convince you, in case
you need convincing, that a pattern is never, ever finished.’

%K% é c01.fm Page 60 Saturday, March 17, 2007 2:00 PM é {

A

60 A Solution to a Problem and More

Sisyphus the Pattern Writer

We could try to improve our BATCH METHOD pattern further. For ex-
ample, we could revise the context to cover even more situations in
which the pattern applies, such as dealing with access to local, in-
memory complex data structures (a situation that we discussed as an
alternative context on page 44, but did not integrate into the pattern’s
context description). The fact that the solution uses object orientation
could be expressed as a force rather than as a prerequisite in the pat-
tern’s context. We could also extend its description with known uses,
such as examples of production software systems that have used this
pattern successfully, and comparisons with related patterns, such as
ITERATOR.

In other words, improving a pattern is an open-ended process. The
pattern community therefore considers every pattern as a work in
progress, subject to continuous revision, enhancement, refinement,
completion, and sometimes even complete rewriting. Only this per-
spective allows a pattern to evolve and mature, as the various ver-
sions of our example pattern demonstrate. Just compare the patterns
from the Pattern-Oriented Software Architecture series with their early
versions published in the PLoPD series to see how they evolved over
time.

Unfortunately, considering patterns as works in progress is a time-
intensive process that demands a great amount of effort. This is one
reason why there are many more pattern users than pattern authors,
and why so many patterns do not escape their place of origin. On the
other hand, the return on investment of this time and effort is the re-
ward of the feedback that you receive from the software community
and your own increased understanding of the patterns.

For example, if you take the time to discover and document useful
patterns, developers may choose to employ the patterns you describe
into new systems, or they may recognize them in existing systems.
Spreading the word on specific good practices raises the level of de-
sign. Diving into the patterns to document them can only increase
your knowledge, such that casual familiarity with a design solution is
replaced by deep understanding.

%K% é c01.fm Page 61 Saturday, March 17,2007 2:00 PM é {

A

A Pattern Tells a Story and Initiates a Dialog 61

1.10 A Pattern Tells a Story and Initiates a Dialog

Despite the fact that the ‘inal’ version of our pattern is still a work in
progress, the improvement is sufficient—and the length still short
enough—that it does not need explicit section headings to guide the
reader. The pattern still reads well enough that readers are carried
naturally from one logical part to the next. This progression is another
property of a good pattern: it tells a story—albeit a short one. More
precisely, in the context that most interests us, it is a ‘successful soft-
ware engineering story,’ to borrow an observation from Erich Gamma.

Bob Hanmer [CoHa97] takes Erich’s observation further, describing
how the pattern’s name is the story’s title, the context is the story’s
setting, the problem statement is its theme, the forces develop a con-
flict that is hard to resolve, and the solution is the story’s catharsis:
the new resulting context and the situation with the solution in
place is the concluding ‘and they all lived happily ever after.” As we
will see in the rest of this book, however, there is often the prospect
of a sequel.

A pattern, however, does not just tell a story. It also initiates a dialog
with its readers about how to resolve a particular problem well: by ad-
dressing the forces that can influence the problem’s solution, by de-
scribing different feasible solutions, and finally by discussing the
trade-offs of each solution option. A pattern invites its readers to re-
flect on the problem being presented: its nature, the factors to be con-
sidered when resolving it, its various solutions, and which solutions
are most feasible within the readers’ own context.

On first reading, a pattern encourages people to think first and then
to decide and act, explicitly and consciously, rather than blindly fol-
low a set of predefined instructions. They receive guidance, but all
activities they perform are under their own control. This difference
allows the pattern to become part of the readers’ design knowledge:
over time experience becomes expertise that is applied intuitively
rather than dogmatically.

%K% é c01.fm Page 62 Saturday, March 17, 2007 2:00 PM é {

A

62 A Solution to a Problem and More

1.11 A Pattern Celebrates Human Intelligence

Although the seeds of a solution may be found in a careful statement
of the problem, the transition and transformation from one to the
other is not always trivial or direct. Patterns are not automatic deri-
vations from problem ingredients to fully-baked solutions. Patterns
often tackle problems in more lateral ways that can be indirect, un-
usual, and even counter-intuitive.

In contrast to the implied handle-turning nature of many rigid develop-
ment methods or model-driven tools, patterns are founded in human
ingenuity and experience. Although a pattern’s forces constrain the set
of possible, viable solutions, these constraints are not so rigid as to en-
sure only a single outcome that can be captured as an automated
transformation. In contrast, the constraints that bind a refactoring are
strict and easily formalized: a refactoring alters the structure of code in
a limited way so as to preserve its functional behavior.

In our example pattern the avoidance of the common ITERATOR pattern
or even a humble subscripting index to perform iteration may be con-
sidered odd by many developers accustomed to thinking of these as
the ordinary means for expressing iteration over an aggregate object’s
contents. ITERATOR has become the commonplace means for express-
ing iteration decoupled from a collection’s representation in many
mainstream languages, so much so that it has almost gone from being
‘pattern’ to ‘default.’

What interrupts this tidy, uniform view of iteration design is the con-
text of distribution, where the principle of minimizing the number of
remote calls disturbs the peace. Little tweaks to the basic ITERATOR
model do not work and a quite different solution is needed, one based
on another line of reasoning.

%K% é c01.fm Page 63 Saturday, March 17, 2007 2:00 PM é {

A

From a Problem-Solution Statement to a Pattern 63

1.12 From a Problem-Solution Statement to a Pattern

It is now easier to see that a pattern is much more than just a solution
to a problem that arises within a specific context. On the other hand,
this does not mean that this context-problem-solution triad is inap-
propriate for capturing patterns. It is an important form for describing
patterns succinctly, as well as a denotation for every pattern’s main
structural property. It does not, however, specify how to distinguish
a true pattern from an ‘ordinary’ solution to a problem. The context—
problem-solution trichotomy is necessary for a specific concept to be
a pattern, but it is not sufficient.

In case the intent of this chapter is misread, it is also worth clarifying
that just improving a description does not automatically convert any
given solution to a problem into a pattern. Patterns cannot be word-
smithed into existence. Only if a problem-solution pair has the other
properties we discussed above can it be considered a good or whole
pattern. The original example was just poorly expressed, but all the
players were there or waiting in the wings, so stepwise refinement and
piecemeal addition was possible. If a specific solution to a problem is
lacking any of a true pattern’s anatomical necessities, it is probably
just a solution to a problem, and most probably a specific design and
implementation decision for a specific system—but not a pattern.

%}% é c01.fm Page 64 Saturday, March 17,2007 2:00 PM

4| @

