
1

Genetic Algorithms in Electromagnetics, by Randy L. Haupt and Douglas H. Werner
Copyright © 2007 by John Wiley & Sons, Inc.

1
Introduction to 

Optimization in 
Electromagnetics

As in other areas of engineering and science, research efforts in electromag-
netics have concentrated on fi nding a solution to an integral or differential 
equation with boundary conditions. An example is calculating the radar cross 
section (RCS) of an airplane. First, the problem is formulated for the size, 
shape, and material properties associated with the airplane. Next, an appropri-
ate mathematical description that exactly or approximately models the air-
plane and electromagnetic waves is applied. Finally, numerical methods are 
used for the solution. One problem has one solution. Finding such a solution 
has proved quite diffi cult, even with powerful computers.

Designing the aircraft with the lowest RCS over a given frequency range is 
an example of an optimization problem. Rather than fi nding a single solution, 
optimization implies fi nding many solutions then selecting the best one. 
Optimization is an inherently slow, diffi cult procedure, but it is extremely 
useful when well done. The diffi cult problem of optimizing an electromagnet-
ics design has only recently received extensive attention.

This book concentrates on the genetic algorithm (GA) approach to opti-
mization that has proved very successful in applications in electromagnetics. 
We do not think that the GA is the best optimization algorithm for all prob-
lems. It has proved quite successful, though, when many other algorithms have 
failed. In order to appreciate the power of the GA, a background on the most 
common numerical optimization algorithms is given in this chapter to familiar-
ize the reader with several optimization algorithms that can be applied to 
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electromagnetics problems. The antenna array has historically been one of the 
most popular optimization targets in electromagnetics, so we continue that 
tradition as well.

The fi rst optimum antenna array distribution is the binomial distribution 
proposed by Stone [1]. As is now well known, the amplitude weights of the 
elements in the array correspond to the binomial coeffi cients, and the resulting 
array factor has no sidelobes. In a later paper, Dolph mapped the Chebyshev 
polynomial onto the array factor polynomial to get all the sidelobes at an equal 
level [2]. The resulting array factor polynomial coeffi cients represent the 
Dolph–Chebyshev amplitude distribution. This amplitude taper is optimum in 
that specifying the maximum sidelobe level results in the smallest beamwidth, 
or specifying the beamwidth results in the lowest possible maximum sidelobe 
level. Taylor developed a method to optimize the sidelobe levels and beam-
width of a line source [3]. Elliot extended Taylor’s work to new horizons, 
including Taylor-based tapers with asymmetric sidelobe levels, arbitrary side-
lobe level designs, and null-free patterns [4]. It should be noted that Elliot’s 
methods result in complex array weights, requiring both an amplitude and 
phase variation across the array aperture. Since the Taylor taper optimized 
continuous line sources, Villeneuve extended the technique to discrete arrays 
[5]. Bayliss used a method similar to Taylor’s amplitude taper but applied to 
a monopulse difference pattern [6]. The fi rst optimized phase taper was devel-
oped for the endfi re array. Hansen and Woodyard showed that the array 
directivity is increased through a simple formula for phase shifts [7].

Iterative numerical methods became popular for fi nding optimum array 
tapers beginning in the 1970s. Analytical methods for linear array synthesis 
were well developed. Numerical methods were used to iteratively shape the 
mainbeam while constraining sidelobe levels for planar arrays [8–10]. The 
Fletcher–Powell method [11] was applied to optimizing the footprint pattern 
of a satellite planar array antenna. An iterative method has been proposed to 
optimize the directivity of an array via phase tapering [12] and a steepest-
descent algorithm used to optimize array sidelobe levels [13]. Considerable 
interest in the design of nonuniformly spaced arrays began in the late 1950s 
and early 1960s. Numerical optimization attracted attention because analytical 
synthesis methods could not be found. A spotty sampling of some of the tech-
niques employed include linear programming [14], dynamic programming 
[15], and steepest descent [16]. Many statistical methods have been used as 
well [17].

1.1 OPTIMIZING A FUNCTION OF ONE VARIABLE

Most practical optimization problems have many variables. It’s usually best 
to learn to walk before learning to run, so this section starts with optimizing 
one variable; then the next section covers multiple variable optimization. 
After describing a couple of single-variable functions to be optimized, several 

2 INTRODUCTION TO OPTIMIZATION IN ELECTROMAGNETICS



single variable optimization routines are introduced. Many of the multidimen-
sional optimization routines rely on some version of the one-dimensional 
optimization algorithms described here.

Optimization implies fi nding either the minimum or maximum of an objec-
tive function, the mathematical function that is to be optimized. A variable is 
passed to the objective function and a value returned. The goal of optimization 
is to fi nd the combination of variables that causes the objective function to 
return the highest or lowest possible value.

Consider the example of minimizing the output of a four-element array 
when the signal is incident at an angle φ. The array has equally spaced ele-
ments (d = λ/2) along the x axis (Fig. 1.1). If the end elements have the same 
variable amplitude (a), then the objective function is written as

 AF1
2 30 25( ) .a a e e aej j j= + + +Ψ Ψ Ψ  (1.1)

where Ψ = k du
 k = 2π/λ
 λ = wavelength
 u = cos φ

A graph of AF1 for all values of u when a = 1 is shown in Figure 1.2. If u = 0.8 
is the point to be minimized, then the plot of the objective function as a func-
tion of a is shown in Figure 1.3. There is only one minimum at a = 0.382.

Another objective function is a similar four-element array with uniform 
amplitude but conjugate phases at the end elements

 AF2
2 30 25( ) .δ δ δ= + + + −e e e e ej j j j jΨ Ψ Ψ  (1.2)

Figure 1.1. Four-element array with two weights.
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Figure 1.2. Array factor of a four-element array.

Figure 1.3. Objective function with input a and output the fi eld amplitude at u = 0.8.

where the phase range is given by 0 ≤ δ ≤ π. If u = 0.8 is the point to be 
minimized, then the plot of the objective function as a function of δ is as shown 
in Figure 1.4. This function is more complex in that it has two minima. The 
global or lowest minimum is at δ = 1.88 radians while a local minimum is at 
δ = 0.

Finding the minimum of (1.1) [Eq. (1.1), above] is straightforward—head 
downhill from any starting point on the surface. Finding the minimum of (1.2) 
is a little more tricky. Heading downhill from any point where δ < 0.63 radian 
(rad) leads to the local minimum or the wrong answer. A different strategy is 
needed for the successful minimization of (1.2).



1.1.1 Exhaustive Search

One way to feel comfortable about fi nding a minimum is to check all possible 
combinations of input variables. This approach is possible for a small fi nite 
number of points. Probably the best example of an exhaustive search is graph-
ing a function and fi nding the minimum on the graph. When the graph is 
smooth enough and contains all the important features of the function in 
suffi cient detail, then the exhaustive search is done. Figures 1.3 and 1.4 are 
good examples of exhaustive search.

1.1.2 Random Search

Checking every possible point for a minimum is time-consuming. Randomly 
picking points over the interval of interest may fi nd the minimum or at least 
come reasonably close. Figure 1.5 is a plot of AF1 with 10 randomly selected 
points. Two of the points ended up close to the minimum. Figure 1.6 is a plot 
of AF2 with 10 randomly selected points. In this case, six of the points have 
lower values than the local minimum at δ = 0. The random search process can 
be refi ned by narrowing the region of guessing around the best few function 
evaluations found so far and guessing again in the new region. The odds of all 
10 points appearing at δ < 0.63 for AF2 is (0.63/π)10 = 1.02 × 10−7, so it is unlikely 
that the random search would get stuck in this local minimum with 10 guesses. 
A quick random search could also prove worthwhile before starting a downhill 
search algorithm.

Figure 1.4. Objective function with input d and output the fi eld amplitude at u = 0.8.
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Figure 1.5. Ten random guesses (circles) superimposed on a plot of AF1.

Figure 1.6. Ten random guesses (circles) superimposed on a plot of AF2.

1.1.3 Golden Search

Assume that a minimum lies between two points a and b. Three points are 
needed to detect a minimum in the interval: two to bound the interval and 
one in between that is lower than the bounds. The goal is to shrink the interval 
by picking a point (c) in between the two endpoints (a and b) at a distance Δ1 
from a (see Fig. 1.7). Now, the interval is divided into one large interval and 
one small interval. Next, another point (d) is selected in the larger of the two 
subintervals. This new point is placed at a distance Δ2 from c. If the new point 



on the reduced interval (Δ1 + Δ2) is always placed at the same proportional 
distance from the left endpoint, then

 Δ
Δ Δ Δ

Δ
Δ Δ

1

1 2 1

2

1 2+ +
=

+
 (1.3)

If the interval is normalized, the length of the interval is

 Δ Δ Δ1 2 1 1+ + =  (1.4)

Combining (1.3) and (1.4) yields the equation

 Δ Δ1
2

13 1 0− + =  (1.5)

which has the root

 Δ1
5 1
2

0 38197=
−

= . . . .  (1.6)

This value is known as the “golden mean” [18].
The procedure above described is easy to put into an algorithm to fi nd the 

minimum of AF2. As stated, the algorithm begins with four points (labeled 
1–4 in Fig. 1.8). Each iteration adds another point. After six iterations, point 
8 is reached, which is getting very close to the minimum. In this case the golden 
search did not get stuck in the local minimum. If the algorithm started with 
points 1 and 4 as the bound, then the algorithm would have converged on the 
local minimum rather than the global minimum.

1.1.4 Newton’s Method

Newton’s method is a downhill sliding technique that is derived from the 
Taylor’s series expansion for the derivative of a function of one variable. 
The derivative of a function evaluated at a point xn+1 can be written in terms 
of the function derivatives at a point xn

 ′ = ′ + ′′ − + ′′′ − ++ + +f x f x f x x x
f x

x xn n n n n
n

n n( ) ( ) ( )( )
( )
!

( ) . . .1 1 1
2

2
 (1.7)

Figure 1.7. Golden search interval.
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Keeping only the fi rst and second derivatives and assuming that the next step 
reaches the minimum or maximum, then (1.7) equals zero, so

 ′ + ′′ − =+f x f x x xn n n n( ) ( )( )1 0  (1.8)

Solving for xn+1 yields

 x x
f x
f x

n n
n

n
+ = − ′

′′1
( )
( )

 (1.9)

If no analytical derivatives are available, then the derivatives in (1.9) are 
approximated by a fi nite-difference formula

 x x
f x f x

f x f x f x
n n

n n

n n n
+

+ −

+ −
= −

−[ ]
− +1

1 1

1 12 2
Δ ( ) ( )

[ ( ) ( ) ( )]
 (1.10)

where

 Δ = − = −+ −x x x xn n n n1 1  (1.11)

This approximation slows the method down but is often the only practical 
implementation.

Let’s try fi nding the minimum of the two test functions. Since it’s not easy 
to take the derivatives of AF1 and AF2, fi nite-difference approximations will 
be used instead. Newton’s method converges on the minimum of AF1 for 
every starting point in the interval. The second function is more interesting, 

Figure 1.8. The fi rst eight function evaluations (circles) of the golden search algorithm when 
minimizing AF2.



though. Figure 1.9 shows the fi rst fi ve points calculated by the algorithm from 
two different starting points. A starting point at δ = 0.6 radians results in the 
series of points that heads toward the local minimum on the left. When the 
starting point is δ = 0.7 rad, then the algorithm converges toward the global 
minimum. Thus, Newton’s method is known as a local search algorithm, 
because it heads toward the bottom of the closest minimum. It is also a non-
linear algorithm, because the outcome can be very sensitive to the initial 
starting point.

1.1.5 Quadratic Interpolation

The techniques derived from Taylor’s series assumed that the function is 
quadratic near the minimum. If this assumption is valid, then we should be 
able to approximate the function by a quadratic polynomial near the minimum 
and fi nd the minimum of that quadratic polynomial interpolation [19]. Given 
three points on an interval (x0, x1, x2), the extremum of the quadratic interpo-
lating polynomial appears at

 x
f x x x f x x x f x x x

f x x x
3

0 1
2

2
2

1 2
2

0
2

2 0
2

1
2

0 12
=

−( ) + − + −
−

( ) ( )( ) ( )( )

( )( 22 1 2 0 2 0 12 2) ( )( ) ( )( )+ − + −f x x x f x x x
 (1.12)

When the three points are along the same line, the denominator is zero and 
the interpolation fails. Also, this formula can’t differentiate between a 
minimum and a maximum, so some caution is necessary to insure that it 
pursues a minimum.

Figure 1.9. The convergence of Newton’s algorithm when starting at two different points.
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MATLAB uses a combination of golden search and quadratic interpolation 
in its function fminbnd.m. Figure 1.10 shows the convergence curves for the 
fi eld value on the left-hand vertical axis and the phase in radians on the right-
hand vertical axis. This approach converged in just 10 iterations.

1.2 OPTIMIZING A FUNCTION OF MULTIPLE VARIABLES

Usually, arrays have many elements; hence many variables need to be adjusted 
in order to optimize some aspect of the antenna pattern. To demonstrate the 
complexity of dealing with multiple dimensions, the objective functions in 
(1.1) and (1.2) are extended to two variables and three angle evaluations of 
the array factor.

     AF ,3 1 2 2 1
2 3

1
4

2
5

1

31
6

( )a a a a e e e a e a ej j j j j

m

m m m m m= + + + + +
=

∑ Ψ Ψ Ψ Ψ Ψ  (1.13)

    AF ,4 1 2
2 3 4 51

6
2 1 1 2( )δ δ δ δ δ δ= + + + + +e e e e e e e e ej j j j j j j j jm m m m mΨ Ψ Ψ Ψ Ψ

mm=
∑

1

3

   (1.14)

Figure 1.11 is a diagram of the six-element array with two independent 
adjustable weights. The objective function returns the sum of the magnitude 
of the array factor at three angles: φm = 120°, 69.5°, and 31.8°. The array 
factor for a uniform six-element array is shown in Figure 1.12. Plots of the 
objective function for all possible combinations of the amplitude and phase 
weights appear in Figures 1.13 and 1.14. The amplitude weight objective func-

Figure 1.10. Convergence of the MATLAB quadratic interpolation routine when minimizing 
AF2.



Figure 1.11. A six-element array with two independent, adjustable weights.

Figure 1.12. The array factor for a six-element uniform array.

tion has a single minimum, while the phase weight objective function has 
several minima.

1.2.1 Random Search

Humans are intrigued by guessing. Most people love to gamble, at least occa-
sionally. Beating the odds is fun. Guessing at the location of the minimum 
sometimes works. It’s at least a very easy-to-understand method for minimiza-
tion—no Hessians, gradients, simplexes, and so on. It takes only a couple of 
lines of MATLAB code to get a working program. It’s not very elegant, 
though, and many people have ignored the power of random search in the 
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development of sophisticated minimization algorithms. We often model pro-
cesses in nature as random events, because we don’t understand all the com-
plexities involved. A complex cost function more closely approximates nature’s 
ways, so the more complex the cost function, the more likely that random 
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Figure 1.15. Ten random guesses for AF4.

guessing plays an important part in fi nding the minimum. Even a local opti-
mizer makes use of random starting points. Local optimizers are made more 
“global” by making repeated starts from several different, usually random, 
points on the cost surface.

Figure 1.15 shows 10 random guesses on a contour plot of AF4. This fi rst 
attempt clearly misses some of the regions with minima. The plot in Figure 1.16 
results from adding 20 more guesses. Even after 30 guesses, the lowest 
value found is not in the basin of the global minimum. Granted, a new set of 
random guesses could easily land a value near the global minimum. The 
problem, though, is that the odds decrease as the number of variables 
increases.

1.2.2 Line Search

A line search begins with an arbitrary starting point on the cost surface. A 
vector or line is chosen that cuts across the cost surface. Steps are taken along 
this line until a minimum is reached. Next, another vector is found and the 
process repeated. A fl owchart of the algorithm appears in Figure 1.17. Select-
ing the vector and the step size has been an area of avid research in numerical 
optimization. Line search methods work well for fi nding a minimum of a 
quadratic function. They tend to fail miserably when searching a cost surface 
with many minima, because the vectors can totally miss the area where the 
global minimum exists.
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Figure 1.17. Flowchart of a line search minimization algorithm.
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Figure 1.16. Thirty random guesses for AF4.

The easiest line search imaginable is the coordinate search method. If the 
function has two variables, then the algorithm begins at a random point, holds 
one variable constant, and searches along the other variable. Once it reaches 
a minimum, it holds the second variable constant and searches along the fi rst 



variable. This process repeats until an acceptable minimum is found. Mathe-
matically, a two-dimensional cost function follows the path given by

 f v v f v v f v v f v v( ) ( ) ( ) ( ) . . .1
0

2
0

1
1

2
0

1
1

2
1

1
2

2
1, , , ,→ → → →  (1.15)

where vn
m+1 = vn

m + �nm+1 and �mn+1 is the step length calculated using a formula. 
This approach doesn’t work well, because it does not exploit any information 
about the cost function. Most of the time, the coordinate axes are not the best 
search directions [20]. Figure 1.18 shows the paths taken by a coordinate 
search algorithm from three different starting points on AF4. A different 
minimum was found from each starting point.

The coordinate search does a lot of unnecessary wiggling to get to a 
minimum. Following the gradient seems to be a more intuitive natural choice 
for the direction of search. When water fl ows down a hillside, it follows the 
gradient of the surface. Since the gradient points in the direction of maximum 
increase, the negative of the gradient must be followed to fi nd the minimum. 
This observation leads to the method of steepest descent given by [19]

 v v f vm m m m+ = − ∇1 α  ( )  (1.16)

where αm is the step size. This formula requires only fi rst-derivative informa-
tion. Steepest descent is very popular because of its simple form and often 
excellent results. Problems with slow convergence arise when the cost function 
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has narrow valleys, since the new gradient is always perpendicular to the old 
gradient at the minimum point on the old gradient.

Even more powerful methods are possible if second-derivative information 
is used. Starting with the Taylor series expansion of the function

 f v f v f v v v v v v vm m m m m T m m m m T( ) ( ) ( )( ) . ( ( ) . . .+ + + += + ∇ − + − − +1 1 1 10 5 )H
 (1.17)

where vm = point about which Taylor series is expanded
 vm+1 = point near vm

 T =  transpose of vector (in this case row vector becomes column 
vector)

 H = Hessian matrix with elements given by hij = ∂2f/∂vi∂vj

Taking the gradient of (1.17) and setting it equal to zero yields

 ∇ = ∇ + − =+ +f v f v v vm m m m( ) ( ) (1 1 0)H  (1.18)

which leads to

 v v f vm m m m+ −= − ∇1 1α H  ( )  (1.19)

This formula is known as Newton’s method. Although Newton’s method prom-
ises fast convergence, calculating the Hessian matrix and then inverting it is 
diffi cult or impossible. Newton’s method reduces to steepest descent when the 
Hessian matrix is the identity matrix. Several iterative methods have been 
developed to estimate the Hessian matrix with the estimate getting closer after 
every iteration. The fi rst approach is known as the Davidon–Fletcher–Powell 
(DFP) update formula [21]. It is written here in terms of the mth approxima-
tion to the inverse of the Hessian matrix, Q = H−1:

 

Q Q
v v v v

v v f v f v
Q

m m
m m m m T

m m T m m

m

+
+ +

+ += +
− −

− ∇ − ∇

−

1
1 1

1 1

( )( )
( ) ( ( ) ( ))
(∇∇ − ∇ ∇ −∇
∇ −∇

+ +

+

f v f v f v f v Q

f v f v Q

m m m m T m

m m T m

( ) ( ))( ( ) ( ))
( ( ) ( )) (

1 1

1 ∇∇ −∇+f v f vm m( ) ( ))1  (1.20)

A similar formula was developed later and became known as the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update [22–25]:

 

H H
f v f v f v f v

f v f v
m m

m m m m T

m m
+

+ +

+= + ∇ − ∇ ∇ − ∇
∇ − ∇

1
1 1

1

( ( ) ( ))( ( ) ( ))
( ( ) ( ))) ( )

( )( )
( ) (

T m m

m m m m m T m

m m T m m m

v S v
H v v v v H

v v H v v

+

+ +

+ +

−

− − −
− −

1

1 1

1 1 ))
 (1.21)



As with the DFP update, the BFGS update can be written for the inverse of 
the Hessian matrix.

A totally different approach to the line search is possible. If a problem has 
N dimensions, then it might be possible to pick N orthogonal search directions 
that could result in fi nding the minimum in N iterations. Two consecutive 
search directions, u and v, are orthogonal if their dot product is zero or

 u v uvT⋅ = = 0  (1.22)

This result is equivalent to

 uHvT = 0  (1.23)

where H is the identity matrix. If (1.23) is true and H is not the identity matrix, 
then u and v are known as conjugate vectors or H-orthogonal vectors. A set of 
N vectors that have this property is known as a conjugate set. It is these vectors 
that will lead to the minimum in N steps.

Powell developed a method of following these conjugate directions to the 
minimum of a quadratic function. Start at an arbitrary point and pick a search 
direction. Next, Gram–Schmidt orthogonalization is used to fi nd the remain-
ing search directions. This process is not very effi cient and can result in some 
search directions that are nearly linearly dependent. Some modifi cations to 
Powell’s method make it more attractive.

The best implementation of the conjugate directions algorithm is the con-
jugate gradient algorithm [26]. This approach uses the steepest descent as its 
fi rst step. At each additional step, the new gradient vector is calculated and 
added to a combination of previous search vectors to fi nd a new conjugate 
direction vector

 v vm m m m+ = +1 α �  (1.24)

where the step size is given by

 αm
mT m

mT m

f v

H
= −

∇�
� �

( )
 (1.25)

Since (1.25) requires calculation of the Hessian, αm is usually found by mini-
mizing f(vm + αm�m). The new search direction is found using

 � �m m m mf+ + += −∇ +1 1 1β  (1.26)

The Fletcher–Reeves version of βm is used for linear problems [18]:

 βm
T m m

T m m

f v f v

f v f v
=

∇ ∇
∇ ∇

+ +( ) ( )
( ) ( )

1 1

 (1.27)
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This formulation converges when the starting point is suffi ciently close to the 
minimum. A nonlinear conjugate gradient algorithm that uses the Polak–
Ribiere version of βm also exists [18]:

 βm
m m T m

T m m

f v f v f v

f v f v
=

∇ − ∇ ∇
∇ ∇

⎧
⎨
⎩

⎫
⎬
⎭

+ +

max
[ ( ) ( )] ( )

( ) ( )

1 1

0,  (1.28)

The nonlinear conjugate gradient algorithm is guaranteed to converge for 
linear functions but not for nonlinear functions.

The problem with conjugate gradient is that it must be “restarted” every N 
iterations. Thus, for a nonquadratic problem (most problems of interest), 
conjugate gradient starts over after N iterations without fi nding the 
minimum. Since the BFGS algorithm does not need to be restarted and 
approaches superlinear convergence close to the solution, it is usually pre-
ferred over conjugate gradient. If the Hessian matrix gets too large to be 
conveniently stored, however, conjugate gradient shines with its minimal 
storage requirements.

1.2.3 Nelder–Mead Downhill Simplex Algorithm

Derivatives and guessing are not the only way to do a downhill search. The 
Nelder–Mead downhill simplex algorithm moves a simplex down the slope 
until it surrounds the minimum [27]. A simplex is the most basic geometric 
object that can be formed in an N-dimensional space. The simplex has N + 1 
sides, such as a triangle in two-dimensional space. The downhill simplex 
method is given a single starting point (v0). It generates an additional N points 
to form the initial simplex using the formula

 v vn n
0

1
0= + μ�  (1.29)

where the �n are unit vectors and μ is a constant. If the simplex surrounds the 
minimum, then the simplex shrinks in all directions. Otherwise, the point cor-
responding to the highest objective function is replaced with a new point that 
has a lower objective function value. The diameter of the simplex eventually 
gets small enough that it is less than the specifi ed tolerance and the solution 
is the vertex with the lowest objective function value. A fl owchart outlining 
the steps to this algorithm is shown in Figure 1.19.

Figure 1.20 shows the path taken by the Nelder–Mead algorithm starting 
with the fi rst triangle and working its way down to the minimum of AF3. 
Sometimes the algorithm fl ips the triangle and at other times it shrinks or 
expands the triangle in an effort to surround the minimum. Although it can 
successfully fi nd the minimum of AF3, it has great diffi culty fi nding the global 



find verticies, v = v1, v2, …, vNpar
calculate f(v)

sort f from fmax,…, fmin-1, fmin
vavg = average of v, excluding vmax

reflect vmax through vavg: vref = 2vavg – vmax

f(vmax-1) < f(vref) < f(vmax)?

vcon = 0.5vmax – 0.5vavg

f(vcon) < f(vmax)?

vmax = vcon

vi = 0.5(vi + vmin)
except for i = min

vmax = vref

yes yes no

no

yesno

vmax = vexp vmax = vref

f(vexp) < f(vmin)?

vexp = 2vavg – vmaxf(vref)  < f(vmin)?

Figure 1.19. Flowchart for the Nelder–Mead downhill simplex algorithm.

minimum of AF4. Its success with AF4 depends on the starting point. Figure 
1.21 shows a plot of the starting points for the Nelder–Mead algorithm that 
converge to the global minimum. Any other point on the plot converges 
to one of the local minima. There were 10,201 starting points tried and 2290 
or 22.45% converged to the global minimum. That’s just slightly better 
than a one-in-fi ve chance of fi nding the true minimum. Not very encouraging, 
especially when the number of dimensions increases. The line search 
algorithms exhibit the same behavior as the Nelder–Mead algorithm in 
Figure 1.21.
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Figure 1.20. Movements of the simplex in the Nelder–Mead downhill simplex algorithm when 
fi nding the minimum of AF3.
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Figure 1.21. Starting points for the Nelder–Mead algorithm denoted by small squares converge 
to the global minimum. All other starting points converge to a local minimum.



1.3 COMPARING LOCAL NUMERICAL OPTIMIZATION ALGORITHMS

This section compares four local optimization approaches against a more for-
midable problem. Consider a linear array along the x axis with an array factor 
given by

 AF , , , ,  el( )u w x N w en
jkx u

n

N
n

el

λ =
=

∑
1

 (1.30)

where Nel = number of elements in the array
 wn = an exp( jδn) = complex element weight
 xn = distance of element n from the origin

Some of these variables may be constants. For instance, if all except u 
are constant, then AF returns an antenna pattern that is a function of 
angle.

The optimization example here minimizes the maximum relative sidelobe 
level of a uniformly spaced array using amplitude weighting. Assume that the 
array weights are symmetric about the center of the array; thus the exponential 
terms of the symmetric element locations can be combined using Euler’s 
identity. Also assume that the array has an even number of elements. With 
these assumptions, the objective function is written as a function of the ampli-
tude weights

 AF ,5
1

2 0 5( ) max cos .a a n u un m
n

N

b= −( )[ ] >
=

∑ Ψ  (1.31)

where ub defi nes the extent of the main beam. This function is relatively 
simple, except for fi nding the appropriate value for ub. For a uniform aperture, 
the fi rst null next to the mainlobe occurs at an angle of about λ/(size of the 
aperture) ≅ λ/[d(N + 1)]. Amplitude tapers decrease the effi ciency of the 
aperture, thus increasing the width of the mainbeam. As a result, ub depends 
on the amplitude, making the function diffi cult to characterize for a given set 
of input values. In addition, shoulders on the mainbeam may be overlooked 
by the function that fi nds the maximum sidelobe level.

The four methods used to optimize AF5 are

1. Broyden–Fletcher–Goldfarb–Shanno (BFGS)
2. Davidon–Fletcher–Powell (DFP)
3. Nelder–Mead downhill simplex (NMDS)
4. Steepest descent

All of these are available using the MATLAB functions fminsearch.m and 
fminunc.m. The analytical solution is simple: −∞ dB. Let’s see how the differ-
ent methods fare.
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The four algorithms are quite sensitive to the starting values of the am-
plitude weights. These algorithms quickly fall into a local minimum, be-
cause their theoretical development is based on fi nding the minimum of 
a bowl-shaped objective function. The fi rst optimization run randomly 
generated a starting vector of amplitude weights between 0 and 1. Each 
algorithm was given 25 different starting values and the results were averaged. 
Table 1.1 shows the results for a linear array of isotropic point sources 
spaced 0.5λ apart. A −∞ sidelobe level would ruin a calculation of the mean 
of the best sidelobe level found over the 25 runs, so the median is as reported 
in Table 1.1. The mean and median are very close except when a −∞ sidelobe 
level occurs.

These results are somewhat disappointing, since the known answer is −∞ 
dB. The local nature of the algorithms limits their ability to fi nd the best or the 
global solution. In general, a starting point is selected, then the algorithm pro-
ceeds downhill from there. When the algorithm encounters too many hills and 
valleys in the output of the objective function, it can’t fi nd the global optimum. 
Even selecting 25 random starting points for four different algorithms didn’t 
result in fi nding an output with less than −50 dB sidelobe levels.

In general, as the number of variables increases, the number of function 
calls needed to fi nd the minimum also increases. Thus, Table 1.1 has a larger 
median number of function calls for larger arrays. Table 1.2 shows how increas-

TABLE 1.2. Algorithm Performance in Terms of Median Maximum Sidelobe Level 
versus Maximum Number of Function Callsa

 1000 3000 10000
Algorithm Function Calls (dB) Function Calls (dB) Function Calls (dB)

BFGS −24.3 −26.6 −28.2
DFP −24.0 −26.6 −28.3
Nelder–Mead −17.6 −17.2 −17.5
Steepest descent −23.3 −21.8 −23.4

a Performance characteristics of four algorithms are averaged over 25 runs with random starting values for 
the amplitude weights. The 42 isotropic elements were spaced 0.5λ apart.

TABLE 1.1. Comparison of Optimized Median Sidelobes for Three Different 
Array Sizesa

 22 Elements 42 Elements 62 Elements

 Median Median Median Median Median Median
 Sidelobe Function Sidelobe Function Sidelobe Function
 Level (dB) Calls Level (dB) Calls Level (dB) Calls

BFGS −30.3 1007 −25.3 2008 −26.6 3016
DFP −27.9 1006 −25.2 2011 −26.6 3015
Nelder Mead −18.7 956 −17.3 2575 −17.2 3551
Steepest descent −24.6 1005 −21.6 2009 −21.8 3013

a Performance characteristics of four algorithms are averaged over 25 runs with random starting values for 
the amplitude weights. The isotropic elements were spaced 0.5λ apart.



ing the maximum number of function calls improves the results found using 
BFGS and DFP whereas the Nelder–Mead and steepest-descent algorithms 
show no improvement.

Another idea is warranted. Perhaps taking the set of parameters that pro-
duces the lowest objective function output and using them as the initial start-
ing point for the algorithm will produce better results. The step size gets 
smaller as the algorithm progresses. Starting over may allow the algorithm to 
take large enough steps to get out of the valley of the local minimum. Thus, 
the algorithm begins with a random set of amplitude weights, the algorithm 
optimizes with these weights to produce an “optimal” set of parameters, these 
new “optimal” set of parameters are used as a new initial starting point for 
the algorithm, and the process repeats several times. Table 1.3 displays some 
interesting results when the cycle is repeated 5 times. Again, the algorithms 
were averaged over 25 different runs. In all cases, the results improved by 
running the optimization algorithm for 2000 function calls on fi ve separate 
starts rather than running the optimization algorithm for a total of 10,000 
function calls with one start (Table 1.2). The lesson learned here is to use this 
iterative procedure when attempting an optimization with multiple local 
minima. The size of the search space collapses as the algorithm converges on 
the minimum. Thus, restarting the algorithm at the local minimum just expands 
the search space about the minimum.

An alternative approach known as “seeding” starts the algorithm with a 
good fi rst guess based on experience, a hunch, or other similar solutions. In 
general, we know that low-sidelobe amplitude tapers have a maximum ampli-
tude at the center of the array, while decreasing in amplitude toward the 
edges. The initial fi rst guess is a uniform amplitude taper with a maximum 
sidelobe level of −13 dB. Table 1.4 shows the results of using this good fi rst 
guess after 2000 function calls. The Nelder–Mead algorithm capitalized on this 
good fi rst guess, while the others didn’t. Trying a triangle amplitude taper, 
however, signifi cantly improved the performance of all the algorithms. In fact, 
the Nelder–Mead and steepest-descent algorithms did better than the BFGS 
and DFP algorithms. Combining the good fi rst guess with the restarting idea 
in Figure 1.11 may produce the best results of all.

TABLE 1.3. Algorithm Performance in Terms of Median 
Maximum Sidelobe When the Algorithm Is Restarted Every 
2000 Function Calls (5 Times)a

Algorithm 10,000 Function Calls (dB)

BFGS −34.9
DFP −36.9
Nelder–Mead −29.1
Steepest descent −26.1

a Performance characteristics of four algorithms are averaged over 25 runs 
with random starting values for the amplitude weights. The 42 isotropic 
elements were spaced 0.5λ apart.
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1.4 SIMULATED ANNEALING

Annealing heats a substance above its melting temperature, then gradually 
cools it to produce a crystalline lattice that has a minimum energy probability 
distribution. The resulting crystal is an example of nature fi nding an optimal 
solution. If the liquid cools too rapidly, then the crystals do not form and the 
substance becomes an amorphous mass with an energy state above optimal. 
Nature is seldom in a hurry to fi nd the optimal state.

A numerical optimization algorithm that models the annealing process is 
known as simulated annealing [28,29]. The initial state of the algorithm is a 
single random guess of the objective function input variables. In order to 
model the heating process, the values of the variables are randomly modifi ed. 
Higher heat creates greater random fl uctuations. The objective function 
returns a measure of the energy state or value of the present minimum. The 
new variable set replaces the old variable set if the output decreases. Other-
wise the output is still accepted if

 r e f p f p T≤ ( )− ( )[ ] /old new  (1.32)

where r is a uniform random number and T is a temperature value. If r is too 
large, then the variable values are rejected. A new variable set to replace a 
rejected variable set is found by adding a random step to the old vari-
able set

 p dpnew old=  (1.33)

where d is a random number with either a uniform or normal distribution with 
a mean of pold. When the minimization process stalls, the value of T and 
the range of d decrease by a certain percent and the algorithm starts over. 
The algorithm is fi nished when T gets close to zero. Some common cooling 
schedules include (1) linearly decreasing, Tn = T0 − n(T0 − Tn)/N; 
(2) geometrically decreasing, Tn = 0.99Tn−1; and (3) Hayjek optimal, Tn = 
c/log(1 + n), where c = smallest variation required to get out of any local 
minimum, 0 < n ≤ N; T0 = initial temperature, and TN = ending temperature.

TABLE 1.4. Algorithm Performance in Terms of Median Maximum Sidelobe after 
2000 Function Calls When the Algorithm Seeded with a Uniform or Triangular 
Amplitude Tapera

Algorithm Uniform Taper Seed (dB) Triangular Taper Seed (dB)

BFGS −23.6 −35.9
DFP −26.0 −35.7
Nelder–Mead −23.9 −39.1
Steepest descent −21.2 −39.3

a The 42 isotropic elements were spaced 0.5λ apart.



The temperature is lowered slowly, so that the algorithm does not converge 
too quickly.

Simulated annealing (SA) begins as a random search and ends with little 
variations about the minimum. Figure 1.22 shows the convergence of the 
simulated annealing algorithm when minimizing AF4. The fi nal value was 
0.1228 or −33.8 dB. Simulated annealing was fi rst applied to the optimization 
of antenna arrays in 1988 [30].

SA has proven superior to the local optimizers discussed in this chapter. 
The random perturbations allow this algorithm to jump out of a local minimum 
in search of the global minimum. SA is very similar to the GA. It is a random 
search that has tuning parameters that have tremendous effect on the success 
and speed of the algorithm. SA starts with a single guess at the solution and 
works in a serial manner to fi nd the solution. A genetic algorithm starts with 
many initial guesses and works in a parallel manner to fi nd a list of solutions. 
The SA algorithm slowly becomes less random as it converges, while the GA 
may or may not become less random with time. Finally, the GA is more adept 
at working with continuous, discrete, and integer variables, or a mix of those 
variables.

1.5 GENETIC ALGORITHM

The rest of this book is devoted to the relatively new optimization technique 
called the genetic algorithm (GA). GAs were introduced by Holland [31] and 
were applied to many practical problems by Goldberg [32]. A GA has several 
advantages over the traditional numerical optimization approaches presented 
in this chapter, including the facts that it

Figure 1.22. Convergence of the simulated annealing algorithm for AF4.
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1. Optimizes with continuous or discrete parameters.
2. Doesn’t require derivative information.
3. Simultaneously searches from a wide sampling of the cost surface.
4. Works with a large number of variables.
5. Is well suited for parallel computers.
6. Optimizes variables with extremely complex cost surfaces.
7. Provides a list of optimum parameters, not just a single solution.
8. May encode the parameters, and the optimization is done with the 

encoded parameters.
9. Works with numerically generated data, experimental data, or analytical 

functions.

These advantages will become clear as the power of the GA is demonstrated 
in the following chapters. Chapter 2 explains the GA in detail. Chapter 3 gives 
a step-by-step analysis of fi nding the minimum of AF4. Many other more 
complex examples are presented in Chapters 3–8. For further enlightenment 
on GAs, please turn to the next chapter.
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