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1
Theory of Molecular
Vibrations. The Origin of
Infrared and Raman Spectra

1.1 ELECTRONIC, VIBRATIONAL, ROTATIONAL
AND TRANSLATIONAL ENERGY

In classical mechanics, a molecule can be seen as a collection of M nuclei
and N electrons. Therefore, the system of M + N particles has 3(N + M)
degrees of freedom to describe its motions. First, one can fix in space the
location of the heavy nuclei (fixed nuclei approximation). The symmetry
of this spatial distribution of nuclei can be associated with a ‘molecu-
lar point group’, which is a symmetry group corresponding to a fixed
point [the center of mass (CM)]. The 3N degrees of freedom describe the
motion of the electrons around the frozen frame, and the corresponding
energy of motion is the electronic energy Ee. We can regroup the nuclei
and electrons into 3M effective atoms, and fix the origin of the system
of coordinates in the CM of the molecule. The motion of this point in
space is described by three degrees of freedom, and gives the translational
energy of the molecule that is directly related to thermal energy. Accord-
ing to the equipartition principle, the energy is 3/2kT, where k is the
Boltzmann constant. For 1 mol of molecules, we multiply by Avogadro’s
number, NA, and k is simply replaced by NAk = R, the gas constant,
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2 THEORY OF MOLECULAR VIBRATIONS

and the thermal energy per mole is 3/2RT. For the fixed molecule at the
CM there are 3M − 3 degrees of freedom. The fixed molecule can ro-
tate, and to describe the rotation of a nonlinear molecule we need three
degrees of freedom (two for a linear molecule). Therefore, we can elimi-
nate six of the 3M coordinates and we are left with 3M − 6 (or 3M − 5)
vibrational degrees of freedom to describe the motions of the nuclei
(effective atoms), and the total energy of the molecule has been parti-
tioned into electronic, vibrational, rotational and translational (thermal)
[1–3]:

Emolecular = Eelectronic + Evibrational + Erotational + Etranslational

1.1.1 Electronic Structure of Molecules

The origin of electronic, vibrational and rotational spectroscopy is in
the quantization of these energies, and we shall briefly refresh the quan-
tum mechanical treatment of molecules [4,5]. In spectroscopy, the word
molecule refers to a stable system of nuclei and electrons. When the total
number of electrons differs from that of the positive charges, the system
is said to be a molecular ion. When the number of electrons is odd, the
system is called a free radical (a free radical is defined as a system with a
nonzero spin). Nuclei and electrons have well-defined mass, charge and
spin. Since molecules are made of nuclei and electrons, molecules have
well defined mechanical (mass), electrical (charge) and magnetic (spin)
properties. In particular, the ratio of the mass of the proton to the mass
of the electron is 1836. Therefore, the mass of the nuclei is at least 1836
times larger than the mass of the electrons. This fact allows for the sepa-
rate treatment of the motion of the electrons (electronic spectrum) from
that of the nuclei (vibrational spectrum) [6].

The total molecular Hamiltonian, ĤMOL, describes a molecule isolated
in space, that is, no external field is acting upon the molecule. The external
potential Vext equals zero. Further, the total molecular Hamiltonian is
written solely in terms of the spatial coordinates, i.e. the spin variables are
not included in the Hamiltonian. In the spinless molecular Hamiltonian,
two terms can be distinguished:

ĤMOL = T + V (1.1)
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Where T is the kinetic energy operator of all M nuclei and N electrons
of the system:

T = − h̄2

2m

N∑
i=1

�i − h̄2

2

M∑
α=1

1
Mα

�α = Te + Tn (1.2)

where

∇ · ∇ = ∇2 = � = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

The subscript i represents the number of electrons, α is the number of
nuclei, Mα is the mass of the nucleus α, Te is the electronic kinetic energy
operator and Tn is the nuclear kinetic energy operator. The terms of the
potential energy operator VT can be classified, as in the case of atoms, into
two parts: electrostatic interactions and interactions between momenta:

VT = −
N∑
i

M∑
α

zαe2

Riα
+ 1

2

∑
i �= j

e2

ri j
+ 1

2

∑
α �=β

zαzβe2

Rαβ

+ V ′. (1.3)

where ri j is the distance between two electrons i and j , Riα is the distance
between the electron i and the nucleus α and Rαβ is the distance between
two nuclei α and β. The first term is the electron–nuclear attraction,
the second term is the electron–electron repulsion and the third term is
the nuclear–nuclear repulsion. V ′ includes the interactions between the
spin angular momenta of nuclei and electrons and the orbital angular
momenta of electrons:

V′ = V(spin−orbit) + V(spin−spin) (1.4)

In what follows, only the electrostatic interactions will be taken into
account; the interaction between momenta may be considered as a per-
turbation. Hence the potential energy operator (1.3) can be rewritten
as

V = Vee + Ven + Vnn (1.5)

where V ′ has been neglected (later on it can be included as a perturba-
tion to the basic electrostatic problem). The electrostatic potential energy
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operator (1.5) is a function of the distances between nuclei and electrons
only, and a separation of variables can be carried out on the station-
ary Schrödinger equation. This means that the three degrees of freedom
corresponding to the CM of the system can be separated. Therefore,
the Schrödinger equation is a differential equation of 3(N + M) − 3
variables. Such an equation cannot be solved for most of molecular
systems. Under these circumstances, a variety of approximate approaches
are used. All these approximate methods have, however, a common start-
ing point: the separation of nuclear and electronic motions, which is
known as the Born–Oppenheimer or adiabatic approximation [3,4,7].
The foundation for the approach is the assumption of a large en-
ergy splitting between the electronic states. Notably, for molecules
adsorbed on metal surfaces the use of the approximation may come into
question [8].

1.2 SEPARATION OF NUCLEAR AND
ELECTRONIC MOTIONS

The eigenfunction ψ(r ,R), with r being electron coordinates and R nu-
clear coordinates, in the stationary Schrödinger equation is approximated
by a product:

ψ(r ,R) = �(r ,R)χ (R). (1.6)

The function �(r ,R) depends on R only in a parametric fashion and
is known as the electronic wavefunction, and satisfies the completeness
relation

〈�(r ,R)|�(r ,R)〉 = 1 (1.7)

where the integration is only over electronic coordinates. The function
χ (R) is known as the nuclear wavefunction and satisfies the condition

〈χ (R)|χ (R)〉 = 1. (1.8)

Here the integration takes place over nuclear coordinates only. On the
basis of the variational principle, it can be shown that the function �(r ,R)
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is determined by

He� = (Te + V) � = Ee (R) � (1.9)

where V is the electrostatic potential operator (1.5), Ee(R) are the eigen-
values of the electronic equation and are functions of the nuclear coor-
dinates in a parametric form.

The function χ (R) is the solution of the equation

Hnχ (R) = [Tn + Ee(R)]χ (R) = Eχ (R) (1.10)

Where E is the total energy of the system. Equation (1.10) is known
as the nuclear equation. Let us assume that the electronic equation has
been solved for fixed values of nuclear coordinates R0. Each eigenvalue
Ee(R0) depends on the nuclear coordinates as parameters. Let us take
the lowest energy eigenvalue E0

e (R0) and study its dependence with vari-
ations in nuclear coordinates. A plot of the E0

e (R0) values against the
internuclear distance in a diatomic case gives rise to well-known poten-
tial energy curves. For the case of more than two nuclei a potential energy
surface (or hyper surface) is obtained. It is usually the analytical form
of this dependence that is included in Equation (1.10) as a potential en-
ergy operator Ee(R). For M nuclei there exist 3M nuclear coordinates.
Assuming that the center of mass is entirely determined by the nuclei,
the total number of nuclear coordinates is reduced to 3M − 3. Of these
3M − 3 nuclear coordinates, only three are needed to describe the ro-
tation of a nonlinear system in a frame of reference mounted on the
molecule with its origin at the center of mass. The other 3M − 6 nuclear
coordinates of a nonlinear molecule describe the vibrational motion of
the nuclei within the molecule. For a linear molecule, these numbers are 2
for rotational coordinates and 3M − 5 for vibrational coordinates. It can
be seen that the nuclear Equation (1.10) may be subjected to a ‘second’
Born–Oppenheimer approximation that will allow one to separate a vi-
brational equation with eigenvalues Ev and a rotational equation with
eigenvalues ER. In a first approximation, then, the quantized energy of a
fixed molecule can be represented as the sum of three parts: the electronic,
the vibrational and the rotational energies:

ETOTAL = Ee + Ev + ER. (1.11)
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Figure 1.1 Potential energy curve of a diatomic molecule in the ground electronic
state with vibrational energy levels. R is the internuclear distance. The electronic
energy difference De is greater than D0, the dissociation energy or heat of dissociation

1.2.1 Example. The Potential Energy Function
of Diatomic Molecules

A diatomic molecule can exist in the ground electronic state and also in
a series of excited electronic states. Each electronic state is determined
by an electronic wavefunction ψe(r ,R) and an electronic energy Ee(R).
The exact form or analytical expression of the function Ee(R) for each
electronic state of the molecule can be obtained by solving the electronic
Equation (1.1) for different values of the internuclear distance R. A typi-
cal potential function and vibrational energy levels in the ground state of
a diatomic molecule are shown in Figure 1.1. In molecular spectroscopy
and statistical thermodynamics, it is common to set the origin equal to
the energy minimum of the ground electronic state, i.e. E(0)

e (Re) = 0. This
convention has been applied in Figure 1.1.

Once the potential energy curve has been found, the main character-
istics of the electronic state are defined by:

1. The electronic energy value at the minimum of the potential energy
curve; E(0)

e .
2. The equilibrium internuclear distance, Re, which is the internuclear

distance at the minimum of the potential energy curve.
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3. The potential energy of dissociation, De, which is the difference
between the dissociation limit E(∞)

e and the minimal value of the
electronic energy E(0)

e : De = E(∞)
e − E(0)

e .
4. The second derivative of the electronic energy with respect to the

internuclear distance; this quantity is known as force constant or
potential constant:

ke =
[

d2E(R)
e

dR2

]
e

.

Different electronic states are characterized by different values for Ee,
Re, De, ke and ωe (the harmonic vibrational frequency). Typical values
for diatomic molecules are given in Table 1.1.

1.3 VIBRATIONS IN POLYATOMIC MOLECULES

The same semiclassical treatment for the vibrational motion of the nuclei
on the potential energy surface provided by the electronic energy function
can be extended to polyatomic molecules [1,3,7,9,10]. For a system of N

Table 1.1 Observed spectroscopic constants and calculated potential constant for
a selection of diatomic molecules

Molecule Re/Å ke/mdyn Å−1 ωe/cm−1 D0/eV

H2 0.741 5.755 4402.7 4.48
C2 1.242 12.160 1854.7 6.24
N2 1.097 22.940 2358.1 9.76
O2 1.207 11.768 1580.4 5.12
F2 1.417 4.451 891.9 1.60
Cl2 1.987 3.227 559.7 2.48
Br2 2.281 2.461 323.3 1.97
I2 2.665 1.720 214.5 1.54
LiH 1.595 1.026 1405.7 2.43
BH 1.232 3.048 2366.9 3.46
CH 1.120 4.478 2859.1 3.45
NH 1.047 5.41 3125.5 3.21
OH 0.970 7.793 3735.2 4.39
FH 0.917 9.651 4137.3 5.86
ClH 1.274 5.163 2991.0 4.43
BrH 1.406 4.166 2650.0 3.76
IH 1.609 3.140 2308.6 3.05
BO 1.205 13.658 1885.4 4.60
CO 1.128 19.019 2169.8 11.10
NO 1.150 15.948 1904.0 6.50
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nuclei with nonlinear geometry there are 3N − 6 vibrational degrees of
freedom and for a linear equilibrium geometry there are 3N − 5 vibra-
tional degrees of freedom. Working within the model of the harmonic
oscillator [3,7], the potential energy can be written as

V = 1
2

3N−6∑
i, j=1

ki jqiqj (1.12)

where

ki j =
(

∂2V
∂qi∂qj

)
qi =qj =0

qiqj (1.13)

or, in matrix form,

2V = {q}Uq ‖q‖ . (1.14)

In the same way the kinetic energy is given by

2T = {q̇} Tq ‖q̇‖ (1.15)

where the ‘dot’ notation represents differentiation with respect to time.
Replacing Equation (1.14) and (1.15) in the Lagrange equation:

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 (L = Tq − Uq)

a system of n = 3N − 6 linear differential equations is obtained:

n∑
j=1

(ti j q̈j + ki jqj ) = 0. (1.16)

Considering a solution of the form

qj = l j cos(ωt + δ) = l j cos(
√

λt + δ) (1.17)
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Equation (1.16) transforms to

n∑
j=1

(ki j − λti j )l j = 0 (1.18)

or, in matrix form,

(Uq − λTq)L = 0. (1.19)

The problem then reduces to finding the eigenvalues and eigenvectors of
the secular equation

det |Uq − λTq| = 0. (1.20)

The molecular vibrational problem of polyatomic molecules is reduced
to solving the secular Equation (1.20). This equation, however, is not
convenient for practical computations. Thus, multiplying by T−1

q from
the left, det |T−1

q Uq − λI| = 0, where I is the unit matrix. It has been
assumed that the coordinates q form an independent set of coordinates,
otherwise, T−1

q would not exist. The last equation in matrix from is
written as

T−1
q UqL = L� (1.21)

and introducing Wilson’s notation [4], T −1
q = G and Uq = F , Equation

(1.21) finally gives

GFL = L�. (1.22)

Equation (1.22) is usually known as the G-Wilson method for molecu-
lar vibration. G is thus the inverse of the kinetic energy matrix. Practical
problems are related to the finding of G- and F -matrix elements.

In quantum mechanics, the harmonic approximation for a nonlinear
molecule gives a discrete spectrum of energy values:

E0 =
3N−6∑
i=1

h̄ωi

(
vi + 1

2

)
vi = 0, 1, 2, . . . (1.23)

where vi is the vibrational quantum number and ωi is the harmonic vi-
brational frequency. Potential energy surfaces for polyatomic molecules
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can be obtained using ab initio Hartree–Fock (HF) and density functional
theory (DFT) methods that are now common analytical tools for infrared
and Raman spectral computations. Thereby the 3N − 6 or 3N − 5 nor-
mal modes of the harmonic approximation can be found. The symmetry
of the potential function will allow for the reduction in size of the matrix
(1.22) to a group of smaller matrices, one for each irreducible represen-
tation of the molecular point group. The methods of group theory will
permit the calculation of the number of normal modes in each of the
symmetry species and the extraction of their infrared or Raman activity.

The vibrational problem, or finding the infrared and Raman frequen-
cies and intensities, is currently solved directly using quantum chemistry,
and we will illustrate this computational approach using Gaussian 98.
The detailed example at the end of this chapter was chosen to illustrate
the applications to surface-enhanced vibrational problems.

1.4 EQUILIBRIUM PROPERTIES. DIPOLE MOMENT
AND POLARIZABILITY

The interpretation of the observed infrared and Raman spectra using the
basic models of the rigid rotator and harmonic oscillator are explained in
Herzberg’s book (Chapter III, p. 66) [2]. This approximation is the basis
for the widespread application of vibrational spectroscopy as a tool for
the detection, identification and characterization of molecules.

Two molecular properties that are defined by the charge distribution
at the equilibrium geometry of the electronic state will change with vari-
ations in the internuclear distance (or any of the vibrational degrees of
freedom in a polyatomic molecule): the dipole moment μ and the molec-
ular polarizability α. The dipole moment is a vector, μ = μx + μy + μz,
and for each of the components we can write a series expansion about
the equilibrium geometry:

μ = μ0 +
(

∂μ

∂q

)
0

q + 1
2

(
∂2μ

∂q2

)
0

q2 + . . . (1.24)

where μ0 represents the equilibrium value of the dipole moment. The
displacement q has the form q (t) = q0 cos (ω0t). It will be seen that the
infrared spectrum of fundamental vibrational frequencies is determined
by the first partial derivative(∂μ/∂q)0 in the series [11,12]. Since there
are three components for each vibration, each vibrational frequency has
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up to three chances to be seen in the infrared spectrum. In other words,
for a vibrational transition to be allowed in the infrared spectrum, it
is necessary that at least one of these three components be different
from zero. Notably the first term, the permanent dipole moment, μ0,
will play no role in the probability of seeing a fundamental vibration
in the infrared spectrum. The polarizability is a tensor, a response func-
tion that represents the volume and shape of the molecular electronic
cloud [13]:

α =
⎛⎝αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞⎠ . (1.25)

For spectroscopic applications, the tensor is considered to be symmet-
ric, reducing the total number of unknowns for each tensor to six. As
was seen for the dipole moment, each of the components of the polariz-
ability tensor can be written as a series expansion about the equilibrium
geometry:

α = α0 +
(

∂α

∂q

)
0

q + 1
2

(
∂2α

∂q2

)
0

q2 + . . . (1.26)

where α0 is the equilibrium value of the polarizability tensor element,
and q represents the deviation from equilibrium. The first derivative,
α′ = (∂α/∂q)0, is responsible for determining the observation of vibra-
tional fundamentals in the Raman spectrum [13]. Since polarizability is
a response function of the molecule to an external electric field, the po-
larizability and polarizability derivatives are tensors of the second rank,
i.e. for a symmetric tensor each vibration has six chances to be observed
in the Raman spectrum. In other words, for a vibrational transition to be
allowed in the Raman spectrum, it is necessary that at least one of the six
components of the derivative tensor be different from zero. The polariz-
ability derivative tensor (the Raman tensor) is shown in Equation (1.27),
where the first partial derivative is represented by α′

i j . The α′ tensor has
certain important properties: it is symmetric and its trace is invariant.

α′ =

⎛⎜⎝α′
xx α′

xy α′
xz

α′
yx α′

yy α′
yz

α′
zx α′

zy α′
zz

⎞⎟⎠ . (1.27)



OTE/SPH OTE/SPH
JWBK077-01 JWBK077-Aroca March 14, 2007 21:40 Char Count= 0

12 THEORY OF MOLECULAR VIBRATIONS

1.5 FUNDAMENTAL VIBRATIONAL TRANSITIONS
IN THE INFRARED AND RAMAN REGIONS

The description of the energy states and equilibrium properties of the
molecule given above has prepared us for the final step in explaining
infrared and Raman spectra: the interaction of the molecule with elec-
tromagnetic radiation [13]. The interaction of the electric vector of the
electromagnetic radiation with the molecule will give rise to infrared
absorption and inelastic scattering (Raman) spectra [14]. The simplest
description of the electric field of light is that of plane harmonic waves,
which can be written as

E(r ,t) = E0 exp[i(kr − ωt)] (1.28)

where the vector E is perpendicular to k, the propagation direction. The
direction of E in space determines its polarization and, thereby, for a
wave traveling along z, the light polarization can be either Ex or Ey (light
polarization is discussed in Chapter 2). We have a quantum object, the
molecule, interacting with the radiation field, a plane wave, as described
in classical electromagnetic theory. Thereby, the description of the process
is semi-classical, and the interaction is known as the semi-classical theory
of quantum transitions. The coupling operator between the quantum
molecule and the radiation field is given by H ′ = −p · E, where p is
the dipole moment and E is the electric field vector. For infrared p is
given by Equation (1.24) and for Raman by p = αE. The probability for
the absorption (or emission) of electromagnetic radiation per unit time
is proportional to the square of the transition dipole moment matrix
element along the direction of the light polarization: |〈
v |p · E| 
v ′ 〉|.
For molecules in the gas phase with a random orientation, and where
the average of the square of the angular part is one, the discussion can
proceed with |〈
v |p| 
v ′ 〉|.

The Raman effect can be explained in terms of the induced dipole
moment, p = αE, and using Equation (1.26) for the polarizability:

p = α0E +
(

∂α

∂q

)
0

qE + 1
2

(
∂2α

∂q2

)
0

q2E + . . . . (1.29)

However, since E = E0 cos(ωt), and neglecting the second derivative,

p = α0E0 cos(ωt) +
(

∂α

∂q

)
0

q0 cos(ω0t)E0 cos(ωt) (1.30)
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where ω0 is the natural vibrational frequency of the molecule and ω

is the frequency of the radiation field. Using the trigonometric identity
cos a · cos b = 1

2 [cos(a + b) + cos(a − b)], the induced dipole expression
is

p = α0E0 cos(ω0t) + α′q0E0 cos(ω0 − ω)t + α′q0E0 cos(ω0 + ω)t.
(1.31)

The first term will account for the elastic Rayleigh scattering, the second
for the Stokes Raman scattering and the third for the anti-Stokes Raman
scattering.

For infrared absorption, neglecting the ‘electrical anharmonicity’ (sec-
ond derivatives) in Equation (1.24), the transition between two vibra-
tional states is |〈
v|μ′|
v′ 〉|, with μ′ = (∂μ/∂q)0. Dipole moment deriva-
tives μ′ form a three-dimensional vector, i.e. μ′ = μ′

x + μ′
y + μ′

z.
The computation of the transition dipole moment matrix element will

answer the question of whether a particular vibrational transition would
be allowed or forbidden in the infrared or Raman spectrum. The results
are known as the selection rules for infrared and Raman spectra. Ulti-
mately, it should be remembered that for molecular systems other than
gases (crystals, organized films, adsorbed molecules and others), the fi-
nal observation of a particular vibrational transition in the infrared or
Raman spectrum also depends on the direction of the incident radiation
field.

1.6 SYMMETRY OF NORMAL MODES
AND VIBRATIONAL STATES

The first task in the study of the vibrational spectrum of a given molecule
should be the finding of the symmetry point group to which the equilib-
rium molecular geometry belongs. Group theory is discussed in special-
ized undergraduate textbooks, and we will review here only the basic
elements relevant to vibrational spectroscopy [12,15,16]. Groups are a
set of operations that satisfy the following four conditions: (i) one of the
operations is the identity operation; (ii) each operation in the group has
an inverse; (iii) the members of the group fulfill the associative law; and
(iv) the product of two members of the group is also a member of the
group. The symmetry operations that form the point groups transform
the molecule into self-coincidence. Rotations are symmetry operations
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Figure 1.2 Axes of rotation and planes of symmetry in the anthracene molecule

that are called proper because they do not change the chirality of the
molecule. Rotation–reflection operations are called improper, because
they are not physically feasible and change the chirality. To carry out the
operation of symmetry a symmetry element is necessary. This could be a
point, a line or a plane. Therefore, symmetry operations are associated
with symmetry elements. There are only four symmetry elements, the
n-fold axis of rotation Cn, the n-fold rotation-reflection axis Sn, the plane
σ and the center of inversion i. Finding them in a molecule allows the
assignment of the molecule to one of the 32 point groups. Anthracene
is a molecule belonging to the D2h point group where the Cn, σ and i
elements of symmetry can be found, and is used here for illustration.

Figure 1.2 (left) illustrates the two axes of rotations, C2, found in the
molecule. In Figure 1.2 (right), the three planes of symmetry and the
center of symmetry are highlighted. Each group has a finite number of
symmetry operations and, with them, the group multiplication table can
be generated. Since symmetry operations are transformations of coordi-
nates, each of them can be represented by a three-dimensional matrix.
For a molecule a reducible matrix representation � can be constructed
that contains a number of irreducible representations �i . The trace of the
matrix in the irreducible representation is called the character of the irre-
ducible representation and is denoted with the Greek letter χ (R), where
R represents the symmetry operation [15]. Point group character tables
are given in almost all spectroscopy textbooks [16]. Every group contains
the identity operation E. The sum of the squares of the characters under
E gives the order of the group. The character table for the D2h group of
anthracene is given in Table 1.2.
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Table 1.2 Character table for the D2h point group of anthracene

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz) μ′ A′

Ag +1 +1 +1 +1 +1 +1 +1 +1 α′
xx, α

′
yy, α

′
zz

B1g +1 +1 −1 −1 +1 +1 −1 −1 α′
xy

B2g +1 −1 +1 −1 +1 −1 +1 −1 α′
xz

B3g +1 −1 −1 +1 +1 −1 −1 +1 α′
yz

Au +1 +1 +1 +1 −1 −1 −1 −1
B1u +1 +1 −1 −1 −1 −1 +1 +1 μ′

z
B2u +1 −1 +1 −1 −1 +1 −1 +1 μ′

y
B3u +1 −1 −1 +1 −1 +1 +1 −1 μ′

x

The sum of the squares under E is equal to 8, the order of the group.
A is a one-dimensional representation symmetric with respect to ro-
tation about the principal axis. B is a one-dimensional representation
anti-symmetric with respect to rotation about the principal axis. g (ger-
ade) is symmetric with respect to the inversion centre and u (ungerade)
is antisymmetric with respect to the inversion centre. The subscripts 1
(symmetric), 2 and 3 (antisymmetric) are used solely with A and B.

After the point group has been identified, we proceed to the assign-
ment of the fundamental vibrational frequencies (normal modes) to the
irreducible representations of the group. For the molecule at hand, an-
thracene, with 24 atoms, we have (3 × 24) − 6 = 66 normal modes. Since
there are three internal cycles in the molecule, the total number of stretch-
ing vibrations is 24 − 1 + 3 = 26, which is also the total number of
chemical bonds in the molecule. The 26 stretching modes contain 10
high-frequency C–H stretchings and 16 C–C ring stretching modes. The
other 40 modes are deformation of plane angles (angle between three
atoms) and dihedral angles (angle between two planes). All of these nor-
mal modes expressed in terms of generalized coordinates (Lagrange’s
formalism) are set up using 3N (N = number of atoms) Cartesian dis-
placement coordinates. During the symmetry operation, a number of
atoms are shifted while a few remain unshifted (nR). Accordingly, only
unshifted atoms can contribute to the character, and a new character Xvib

must be constructed to be added to the given character table. The calcula-
tion of this character is different for proper and improper rotations, and
eliminating from the outset the pure translations and rotations to leave
3N − 6 (or 3N − 5) vibrations, the expressions are (note that reflections
are improper rotations):

χvib
(
Ck

n

) = (nR − 2) (1 + 2 cos θ ) (1.32a)
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Table 1.3 Contributions of each operation to character

Proper rotation Improper rotation

Ck
n +1 + 2 cos θ Sk

n −1 + 2 cos θ

C1
1 = E +3 S1

1 = S1
1 = σ +1

C1
2 −1 S1

2 = i −3
C1

3 , C2
3 0 S1

3 , S5
3 −2

C1
4 , C3

4 +1 S1
4 , S3

4 −1
C1

5 , C4
5 +τ S1

5 , S9
5 τ − 2

C2
5 , C3

5 1 − τ S3
5 , S7

5 −1 − τ

C1
6 , C5

6 +2 S1
6 , S5

6 0

C1
7 , C6

7 +1 + 2 cos
2π

7
S1

7 , S13
7 −1 + cos

2π

7

C2
7 , C5

7 +1 + 2 cos
4π

7
S3

7 , S11
7 −1 + 2 cos

4π

7

C3
7 , C4

7 +1 + 2 cos
6π

7
S5

7 , S9
7 −1 + 2 cos

6π

7
C1

8 , C7
8 1 + √

2 S1
8 , S7

8 −1 + √
2

C3
8 , C5

8 1 − √
2 S3

8 , S5
8 −1 − √

2
C1

10, C9
10 1 + τ S1

10, S9
10 −1 + τ

C3
10, C7

10 2 − τ S3
10, S7

10 −τ

C1
12, C11

12 1 + √
3 S1

12, S11
12 −1 + √

3

C5
12, C7

12 1 − √
3 S5

12, S7
12 −1 − √

3

C1
14, C13

14 +1 + 2 cos
π

7
S1

14, S13
14 −1 + 2 cos

π

7

C3
14, C11

14 +1 + 2 cos
3π

7
S3

14, S11
14 −1 + 2 cos

3π

7

C5
14, C9

14 +1 + cos
5π

7
S5

14, S9
14 −1 + 2 cos

5π

7
C1

16, C15
16 1 + (2 + √

2)
1
2 S1

16, S15
16 −1 + (2 + √

2)
1
2

C3
16, C13

16 1 + (2 − √
2)

1
2 S3

16, S13
16 −1 + (2 − √

2)
1
2

C5
16, C11

16 1 − (2 − √
2)

1
2 S5

16, S11
16 −1 − (2 − √

2)
1
2

C7
16, C9

16 1 − (2 + √
2)

1
2 S7

16, S9
16 −1 − (2 + √

2)
1
2

for proper rotations and

χvib
(
Sk

n

) = (nR) (−1 + 2 cos θ ) (1.32b)

for improper rotations.
The contributions of each operation to character are tabulated for

convenience and they are given in Table 1.3 (J.A. Salthouse and M.J.
Ware. Cambridge University Press, 1972).
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Table 1.4 Revised character table

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz) μ′ α′

Ag +1 +1 +1 +1 +1 +1 +1 +1 α′
xx, α

′
yy, α

′
zz

B1g +1 +1 −1 −1 +1 +1 −1 −1 α′
xy

B2g +1 −1 +1 −1 +1 −1 +1 −1 α′
xz

B3g +1 −1 −1 +1 +1 −1 −1 +1 α′
yz

Au +1 +1 +1 +1 −1 −1 −1 −1
B1u +1 +1 −1 −1 −1 −1 +1 +1 μ′

z
B2u +1 −1 +1 −1 −1 +1 −1 +1 μ′

y
B3u +1 −1 −1 +1 −1 +1 +1 −1 μ′

x
Xvib 66 2 2 −2 0 24 4 0
nR 24 0 0 4 0 24 4 0

We can rewrite the character table adding the character for the nor-
mal modes of vibration calculated using Equations (1.32) and Table 1.3,
giving Table 1.4.

The number of normal modes ai of each irreducible representation �i

is calculated as follows:

ai = 1
h

∑
R

gRχi (R) χvib (R) (1.33)

where h is the order of the group and gR is the number of operations in
the Rth class. The last two factors in Equation (1.33) are the character
of the irreducible representation and the character of the normal modes,
respectively.

For instance, for the totally symmetric modes, the number of normal
modes is

aAg = 1
8

(66 × 1 + 2 × 1 + 2 × 1 − 2 × 1 + 24 × 1 + 4 × 1) = 12,

and the total representation is found to be

� = 12ag + 11b1g + 6b2g + 4b3g + 5au + 6b1u + 11b2u + 11b3u.

(1.34)

Lower-case letters are used for species of normal vibrational modes ac-
cording to IUPAC recommendations. The results obtained for the fixed
molecule with an equilibrium geometry belonging to the point group
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D2h allows one to know their activity in the Raman and infrared spec-
tra. The caveat is to make sure that the Cartesian coordinates used for
the molecular system correspond to the system of coordinates used in the
character table provided. Most character tables given in textbooks follow
Mullikan’s recommendations and notation. Character tables provide the
species of symmetry for dipole moment derivatives μ′

i and polarizability
derivatives α′

i j , in the last two columns of the table. Since anthracene
is a centrosymmetric molecule, the mutual exclusion rule applies, and
infrared-active modes are not Raman active and vice versa. Therefore,
the infrared spectrum is given by

�IR = 6b1u + 11b2u + 11b3u and (5au)

which are silent modes.
The Raman spectrum can contain the following active normal modes:

�Raman = 12ag + 11b1g + 6b2g + 4b3g.

This concludes our discussion on the vibrational spectrum using sym-
metry. The number and activity of the fundamental vibrational frequen-
cies of each symmetry species are known. However, we have no informa-
tion about the intensity with which each normal mode will be observed.
The intensity of the infrared and Raman spectra can be computed ab
initio, and this task will be shown with one more example before the
conclusion of the present chapter.

1.7 SELECTION RULES

The conservation of angular momentum and parity impose restrictions
on the quantum transitions of a molecule. These restrictions are collec-
tively known as selection rules (reference 4, p. 294). In infrared spec-
troscopy, using the harmonic approximation, the relevant rules are the
electric dipole selection rules. The description of the absorption of light
by a molecule requires knowledge of the coupling of the electric dipole to
an external electromagnetic field: H ′ = −p · E. The probability for the
absorption is therefore proportional to the square of the dipole moment
matrix element along the direction E j of light polarization. The ampli-
tude of the transition is proportional to the scalar product j · 〈ψv |p| ψv ′ 〉.
The selection rules for transitions between vibrational levels ψv ′ and ψv
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are determined by the matrix element 〈ψv|p|ψv ′ 〉. Symmetry reduces the
electric dipole selection rules to the requirement of equal irreducible rep-
resentations of the normal mode and one of the coordinates in p.

The general selection rule for an allowed transition between two elec-
tronic or vibrational states connected by an operator p requires that
the direct product (triple product) has a totally symmetric component:
�state × �p × �state′ = totally symmetric (reference 6, p. 129). For an iso-
lated molecule or gas-phase spectrum, the triple product is directly given
in the character table as we described in the example in Section 1.6. How-
ever, when there is a molecular orientation as in solids, adsorbates and
films or low-temperature experiments, the scalar product j · 〈ψv|p|ψv ′ 〉
becomes the most important tool in the spectral interpretation of the
observed intensities. Standard point groups can be used for adsorbed
molecules and surface complexes, for which we can ignore all but one
equilibrium configuration. The reduced representation of the μ′ and α′

i j
operators connecting spectroscopic infrared and Raman transitions are
listed in the character table. For example, the electric dipole moment op-
erator μ′ transforms as x, y, z where as the electric polarizability α′

i j (sec-
ond rank tensor) operator transforms as x2, y2, z2, xy, xz, yz. For crystals
[12], adsorbates or thin solid films, there may exist spatial anisotropy in-
troduced by molecular alignment. Therefore, the observed intensity of the
allowed infrared and Raman modes can be modulated by a well-defined
spatial orientation (polarization) of the incident electric field. This means
that allowed infrared modes of a given symmetry species will be seen with
an absorption intensity proportional to the square of the scalar product,
E · μ′, i.e. the square of the cosine of the angle between the polarization
of the vector E and the directional properties of the dynamic dipole μ′

(∂μ/∂Q). The corollary is that symmetry species of single crystals and
adsorbed molecules of known orientation may be distinguished by the
use of polarized radiation [12]. For the interaction Hamiltonian, the most
notable practical applications are the following:

1. To describe infrared experiments on molecules adsorbed on reflect-
ing metal surfaces one follows the realization that the light at the
reflecting surface is highly polarized and, at the appropriate an-
gle of incidence, the p-polarized component of the electromagnetic
wave is three orders of magnitude larger than the parallel compo-
nent. The latter is the basis for the polarization selection rules of
specular reflection–absorption infrared spectroscopy (RAIRS). As
a result, RAIRS is the most extensively used technique to determine
the orientation of nanometric organic films [17,18].
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2. To describe Raman experiments on single crystals using plane po-
larized incident light, one follows the convention of Damen, Porto
and Tell (Porto’s notation) [19].

3. To describe Raman experiments on molecules adsorbed on metal
surfaces using plane polarized radiation, one follows the convention
of surface selection rules (propensity rules) [20,21].

Practical applications of the selection rules will be given in the cor-
responding chapters where we discuss reflection–absorption infrared
spectroscopy (RAIRS), surface-enhanced Raman scattering (SERS) and
surface-enhanced infrared absorption (SEIRA). However, we finish this
chapter with an example of Raman and infrared intensity calculations
with special attention to the allowed intensities for an oriented molecule.

1.8 THE EXAMPLE OF AB INITIO COMPUTATION
OF THE RAMAN AND INFRARED SPECTRA

To illustrate the power of computational chemistry in vibrational spec-
troscopy, we take as a study case 3,4,9,10-perylenetetracarboxylic acid
dianhydride (PTCDA) [22], a planar D2h molecule (C24H8O6, MW
392.347). There are 108 normal modes and the total irreducible rep-
resentation calculated using the method described in Section 1.6 is

� = 19a1g + 7b1g + 10b2g + 18b3g + 8au + 18b1u(z) + 18b2u(y) + 10b3u(x).

O

O O

O

C

O

CC

O

C

y

z

The procedures employed use the character table and follow the con-
vention for the selection of the molecular axes for the D2h point group.
The conventions for other groups are listed at the end of this section.
Therefore, the x-axis is perpendicular to the molecular plane and the
z-axis passes through the greatest number of atoms. The latter conven-
tion should be strictly followed to maintain correspondence between
the species of the total irreducible representation � and those given in
the character table. This is of paramount importance when studying
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molecular orientation on surfaces or solid-state materials. One of the
most commonly encountered applications is in RAIRS or reflection
Raman scattering from thin films on reflecting surfaces. Correspond-
ingly, the same convention should be followed when interpreting SEIRA
or SERS spectra. We will use here the infrared spectra of PTCDA to
demonstrate the analytical applications of the quantum chemical com-
putations. The PTCDA molecule was computed using Gaussian 98 [23]
at the B3LYP/6–31G(d) level of theory. The initial geometry was mini-
mized within a PM3 calculation, and the corresponding checkpoint file
was used as a starting point in the DFT [B3LYP/6–31G(d)] computation.
The calculated infrared spectra are compared with the infrared spectrum
of the solid PTCDA dispersed in a KBr matrix. The calculated spectra
should correspond closely to the infrared spectrum of PTCDA in the
gas phase. There can be striking differences between the solid-state and
the gas-phase spectra. The quantum chemical calculated frequencies are
scaled, and the scaled wavenumbers agree better with the observed spec-
tra. The top spectrum is presented without the scaling factor and the
bottom computed frequencies have been scaled using the same factor for
the entire spectrum, equal to 0.9614. The rationale and introduction of
the numerical scaling factors are discussed in specialized reports [24] and
the benefits of scaling can be seen in Figure 1.3.

Notably, the infrared spectrum as shown is composed of 8au +
18b1u(z) + 18b2u(y) + 10b3u(x). However, the eight au are silent and there
are 46 active fundamentals to be observed. The 10b3u modes are ob-
served in the spectral range below 1000 cm−1; they are the out-of-plane
vibrations that will include twisting or torsion vibrational modes (τ ) and
wagging modes (ω). The wagging corresponds to changes in dihedral an-
gles, angles between molecular planes. The 18b1u(z) + 18b2u(y) infrared-
active fundamentals contain bond stretching (ν) modes and deformation
or angle bending (δ) modes. In summary, the infrared spectrum shown
in Figure 1.3 is the sum of three spectra, 18b1u(z) + 18b2u(y) + 10b3u(x),
and these spectra could be observed independently for fixed molecular
orientation and using the appropriate polarized light. The latter will be
demonstrated as an application of polarized infrared spectroscopy in the
next chapter. The computed spectra separated by symmetry species are
given in Figure 1.4. The same approach applies to computed Raman spec-
tra. Each of the species of symmetry is plotted independently, and there-
fore the relative intensities are seen with respect to the strongest infrared
active mode within the group. For plotting purposes, each calculated
wavenumber has been given a full width at half-maximum (FWHM) of
5 cm−1.
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Scaled with 0.9614
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Figure 1.3 DFT [B3LYP/6–31G(d)]-calculated (unscaled and scaled) infrared spectra
of PTCDA compared with the infrared spectrum of the solid material dispersed in a
KBr matrix

b3u(x)

Wavenumbers//cm–1

b2u( y)

b1u(z)

200 600 1000 1400 1800

Figure 1.4 DFT-calculated spectra of infrared-active symmetry species in PTCDA

22
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Raman of solid 
PTCDA at 514.5 nm 

ag species of symmetry 

All Raman-active

symmetry species

Wavenumbers/cm–1

400 800 1200 1600

Figure 1.5 Raman spectrum of solid PTCDA recorded with the 514.5 nm laser exci-
tation. DFT-calculated a1g Raman spectrum, and computed spectrum with the sum
of all allowed Raman fundamental vibrational modes

It can be speculated that for a perfectly oriented PTCD molecule, in-
frared light polarized along x will produce the top spectrum in Figure
1.4. Similarly, infrared light polarized along y would give the middle in-
frared spectrum and finally the z-polarized infrared light will deliver the
spectrum at the bottom. This explains the rapid development of polar-
ization spectroscopy in solid state vibrational spectroscopy and surface
vibrational techniques [12,25].

The Raman spectrum was calculated and the Raman-active fundamen-
tals that can be observed are 19a1g + 7b1g + 10b2g + 18b3g, or 54 bands
can be recorded. The spectrum, recorded with 514.5 nm laser radiation,
of a solid sample of PTCDA is shown in Figure 1.5 (top spectrum). The
calculated spectrum, including all Raman-active species of symmetry, i.e.
54 fundamentals, is plotted at the bottom, for comparison. The agree-
ment here is remarkable, despite the fact the excitation is near resonance
(resonance Raman scattering) and the intensities may deviate consider-
ably from those of the normal Raman scattering. The middle spectrum
corresponds to the ag species containing only 19 fundamental vibrational
modes. It can be seen that the totally symmetric modes ag are responsi-
ble for the intensity pattern observed in the Raman spectrum of PTCDA,
and the other species have minor relative intensity in the Raman spectrum
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averaged over all directions of space. The differences can be identified in
the 1600–1800 cm−1 region, where two Raman bands of weak intensity
are seen in the spectrum. However, as in the infrared, spatial molecular
orientation and light polarization can produce Raman spectra with quite
different intensity patterns [19].

1.8.1 Conventions for Molecular Axes

In the axial groups the z-axis is always chosen as the principal axis of
symmetry.

The selection of the x-and y-axes in some groups remains arbitrary. In
point groups Cnv, Dn and Dnh (where n is even), the B species are directly
affected by this choice.

For point group C2v, the x-axis is perpendicular to the molecular plane.
For point groups D4h and D6h, the C2 axes will pass through the great-

est number of atoms (or intersect the largest number of bonds).
For point groups Cnv with even n, the σv plane will pass through the

greatest number of atoms (or intersect the largest number of bonds). To
define x and y in these groups they may be chosen so that the x-axis lies
in one of the σv planes.

1.9 VIBRATIONAL INTENSITIES

The probability of the dipole transition is proportional to the square of
the magnitude of the transition dipole moment (or ‘dynamic dipole’)
[3,7,12]. Working within the ground electronic state, i.e. during the
transition there is no change in the molecular electronic states, the vi-
brational transition moments are defined by [3,7] |μ′|2 = |(μ)v′v′′ |2 =
|〈v′|μ|v′′〉|2 for transitions in the infrared spectra and by |α′|2 =
|(α)v′v′′ |2 = |〈v′|α|v′′〉|2 for transitions observed in the Raman spectra.
Dipole moment and polarizability undergo infinitesimal changes during
molecular vibrations. Near the equilibrium geometry, both molecular
properties can be expanded as a Taylor series in the normal coordinates.
Therefore, we write again here the expansion for the dipole moment and
the polarizability:

p = μ or α = p0 +
n∑
i

(
∂p
∂Qi

)
Qi + 1

2

n∑
i, j

(
∂2 p

∂Qi∂Qj

)
Qi Qj + . . .

(1.35)
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Where Qi is the ith normal coordinate belonging to the set of Q that
diagonalizes the potential energy function and is associated with the har-
monic frequency ωi . The expressions (1.35) are used to calculate the tran-
sition dipole moments in |μ′| = |〈v′|μ|v′′〉| and |α′| = |〈v′|α|v′′〉|. Since the
functions of the harmonic oscillator are orthonormal, in the harmonic
approximation the first term in Equation (1.35) gives zero for μ, and gives
rise to the elastic Rayleigh scattering for α. In the harmonic approxima-
tion, the third term in both series is neglected and, thereby, the infrared
and Raman spectra are completely determined by the first derivatives of
the dipole moment and first derivatives of the polarizability. The calcu-
lation of the fundamental non-zero transition dipole moment is simply
equal to

|μ′| = ∣∣〈v′∣∣ (
∂μ

∂Qi

)
Qi

∣∣v′′〉∣∣ =
(

∂μ

∂Qi

) (
h

4πωi

) 1
2

. (1.36)

When all the matrix elements are taken into account in the transition
dipole, the final result is

|μ′| =
(

∂μ

∂Qi

) (
h

8π2 νi

) 1
2

(vi + 1)
1
2 (1.37)

and its squared magnitude is given by

|μ′|2 =
(

∂μ

∂Qi

)2 (
h

8π2 νi

)
(vi + 1) . (1.38)

Experimentally, the definition of the absorptivity is usually taken from the
equation for the exponential attenuation for irradiance (Lambert’s law):
I = I0e−κz, where I0 is the incident irradiance and I is the irradiance
at depth z of the absorber. The frequency-dependent κ(kappa) is the
extinction coefficient, sometimes called the absorption coefficient, and
is a characteristic property of the material through which the light is
passing. Let us consider the irradiance or radiant flux per unit of area of
surface I (in W/m−2) of a monochromatic beam of frequency ν traveling
along the +z direction with irradiance which is equal to the energy density
multiply by its speed: I0(z) = c × ρ(ν, z), c being the speed of light. For
the transition in a two-state system, with a density of oscillators in the
lower state equal to N1, the number of photons absorbed in 1 within a
distance dz and unit area is B1,2(ν)N1ρ(ν,z)dz. Each absorption takes
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an hν amount of energy from the beam, and thereby the change in the
irradiance is [7]:

dI = −hν1,2 B1,2(ν)(N1 − N2)ρ(ν,z)dz. Using the expression for the
initial irradiance I0, the change is

dI = −I0
hν1,2 B1,2(ν)N1

c
dz.

Assuming that the attenuation is entirely due to absorption, the absorp-
tion coefficient is

κ (ν) = hν1,2 B1,2 (N1 − N2)
c

.

Since the Einstein coefficient for the absorption of a vibrating molecule
(without rotations) is given in terms of the transition dipole moment
[3,7]:

Bv′v′′ = 8π3

3h2 [|〈v′|μx|v′′〉|2 + |〈v′|μy|v′′〉|2 + |〈v′|μz|v′′〉|2]

or in the SI system of units

Bv′v′′ = 1

6ε0 h̄2 |〈v′|μ|v′′〉|2.

With the help of Equation (1.38), an expression is found for the ab-
sorption coefficient using Bv′v′′ :

κ (ν) = 8π3

3ch
ν1,2 (N1 − N2) |〈v| μ |v〉|2 . (1.39)

Since the experimental infrared intensity is not a line, but a band with a
well-defined FWHM, the corresponding integrated absorption coefficient
is given by A = ∫

Band κ (ν)dν. In practice, the quantity A is used for the
determination of (∂μ/∂Qi )2. When the absorbance is proportional to
concentration, the Beer extension of the Lambert law (Beer–Lambert law)
can be formulated. The absolute infrared intensity of an absorption band
is given by the integration over the band, at some standard pathlength
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(l) and molecular concentration (c) of the sample [26]:

A = 1
cl

∫
Band

ln
(

I0

I

)
dν. (1.40)

Absorbance, is a term recommended for use with this measurement, in
preference to absorbancy, optical density or simply extinction. Equating
Equation (1.39) to the integrated absorption, at temperatures where N1 −
N2 = N1, the final results is

A = π N
3c

×
[(

∂μx

∂Qi

)2

+
(

∂μy

∂Qi

)2

+
(

∂μz

∂Qi

)2
]

(1.41)

It is therefore necessary to specify the units of concentration and length.
The most commonly used units in chemistry are mol L−1 and cm. The
product concentration (moles cm−3) and pathlength (cm), shown as cl in
Equation (1.40), has the units of mol cm−2. The integral has dimensions
of cm−1, when the variable for the integration is wavenumber. The units
for A are then cm2 mol−1/cm−1 or cm mol−1. However, these units pro-
duce large numerical values, on the order of 106 for fundamentals. By
changing cm to km (multiplying by 10−5), the intensities can be expressed
by numbers in the range from 0 to 102. At present, the absolute integrated
intensities Aare commonly reported in km mol−1 and these units are also
used in quantum chemical computations of infrared intensities. Two al-
ternative units to consider are the ‘dark’ and the ‘intensity unit’, where
1 dark = 103 cm mol−1 and the ‘intensity unit’ = 107 cm mol−1 [26]. A
thorough discussion of the experimental units and conversion factor can
be found in a review by Pugh and Rao [27], and for liquid-state band
intensities in Ratajczak and Orville-Thomas [28]. Conversion factors are
given in Table 1.5.

Table 1.5 Conversion factors to km mol−1 [11]

Intensity unit for A Concentration units Conversion factor

cm mol−1 mol cm−3 10−5

cm/mmol−1 mol L−1 10−2

cm−2 atm (273/K) atm 0.224
cm−2 atm, (298/K) atm 0.245
s−1/cm−1/atm−1 atm 7.477 × 10−12
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Working within the harmonic approximation, the computation of the
magnitude of the dipole moment derivatives can be directly evaluated
from the integrated intensities:

(
∂μ

∂Qi

)2

= 3c
π N

× A (1.42)

where the constant depends on the units selected for the calculation.
There is, however, an alternative to the integrated absorption coefficient,
which has been recommended to be used for work on infrared intensities,
namely the integral

� = 1
cl

∫
Band

ln
(

I0

I

)
dlnν. (1.43)

The relationship between the two integrals is A = � × νi , where νI is the
band center. The corresponding dipole moment derivative is related to �:

(
∂μ

∂Qi

)2

= 3cνi

π N0
× �. (1.44)

In the presence of degeneracy, the right-hand side should be multiplied
by the degeneracy factor. An important practical difference is that the
units for � are cm2mol−1, where as the units of A are cm mol−1. The
attractive simplicity of A is in the fact that it is directly proportional to
the dipole moment derivative:

(
∂μ

∂Qi

)2

= 3c
π N0

× A. (1.45)

If An is given in km/mol−1, then the absolute value of the dipole moment
derivative is given by (

∂μ

∂Qn

)
0
= 0.0320 ×

√
An. (1.46)

The HCl band at 2886 cm−1 has an integrated absorption A = 33.2
km/mol−1. For the commonly used units of electric dipole moment, de-
bye, the conversion factor is 1D = 3.3356 × 10−30 Cm. Correspondingly,
the units of the dipole moment derivatives are 1 D Å−1 = 3.3356 × 10−20

N
1
2 C g− 1

2 = 0.2083 e(amu)−
1
2 and 1 cm

3
2 s−1 = 2.684 × 10−3 e(amu)−

1
2 .
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Table 1.6 Infrared optical cross-sections for fundamental vibration bands of
methane and ethane (see Gussoni, in reference 11)

Molecule Wavenumbers/cm−1 �/cm2 mol−1 Cross-section/cm2

CH4 3019 2310 3.83 × 10−21

1306 2554 4.24 × 10−21

CH3CH3 2974 4113 6.83 × 10−21

2915 1640 2.72 × 10−21

1460 910 1.51 × 10−21

Another measure of intensity is the ‘integrated optical cross-section’
which can be obtained from the A values in km mol−1 by dividing by the
factor 6.022 × 1020, or the most commonly used ‘optical cross-section’,
obtained by dividing the � values (in cm2mol−1) by 6.022 × 1023.

Infrared cross-sections for the fundamental bands of methane and
ethane are given in Table 1.6.

1.9.1 Raman Intensities

p = αE

where E = electric field (N C−1 or V m−1) and p = induced electric dipole
moment of a molecule, which is a vector pointing from the negative
to the positive charge (C m−1) the unit debye (D) is also used: 1 D =
3.336 × 10−30 C m. Using C V = J, α, the polarizability has the units
C2 m2 J−1 or m3. For instance, the average polarizability of CCl4 is
10.5 × 10−30 m3.

Absolute Raman intensities are reported in terms of the polarizabil-
ity derivative α′. For instance, the derivative of the polarizability with
respect to the normal coordinate for the 2914 cm−1 band of methane
has been reported to be [29], 45α2 = 190 · Na · 10−32 cm4 · g−1 (or 190
Å4 amu−1). The Raman intensities in quantum chemistry computations
are commonly reported in Å4 amu−1, angstroms (10−10 meter or also
known as tenthmeter) and unified atomic mass units, 1.660531 10−24 g.

1.10 DEFINITION OF CROSS-SECTION

Experimentally, the spontaneous inelastic Raman scattering (RS), the
total Stokes scattered light, averaged over all random molecular
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orientations, IRS (photons s−1), is proportional to the incoming flux of
photons, I0 (photons s−1 cm−2): IRS = σRS I0.

The proportionality constant, the Raman cross-section σRS, has the
dimensions of cm2 and is a function of the frequency of excitation. The
Raman cross-section is proportional to the square of the polarizability
derivative for the m → n vibrational transition, α′ = (∂α/∂Q)0, and the
fourth power of the scattering frequency ωS: σRS = CωS

4|α′
mn|2. C con-

tains numerical constants.
The efficiencies of the absorption and scattering processes are deter-

mined by the function ‘cross-section’, which is the meeting point of ex-
periments with theory. There are three common quantities used by spec-
troscopists. The spectral differential cross-section is the rate of removal
of energy from the light beam into a solid angle d� and frequency in-
terval dω: d2σ /d�dω. Integration restricted to include a single intensity
peak gives the differential cross-section dσ /d�.

Integration of the differential cross-section over all directions in space
gives the cross-section σ . The units of σ are m2, and the cross-section
can be interpreted as the target area presented by a molecule (particle)
for scattering or absorption. The definition is easily extended to emis-
sion processes. Typical values of the cross-section for the spectroscopic
processes of interest are illustrated in the Figure 1.6, and specific values
for given molecular vibrations can be found in modern books [30] with
reference to the original work. For instance, the cross-section σ for ab-
sorption in the infrared is ca 10−20 cm2. Therefore, in Figure 1.6, the
value assigned to the y-axis for the infrared cross-section is −log(10−20)
= 20. The absolute Raman cross-section for the 666 cm−1 mode of
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Figure 1.6 A plot of − log σ (cross-section in cm2 per molecule) for the most common
optical processes in linear spectroscopy
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Table 1.7 Excitation wavelength λ
(nm) and σR (×1028 cm2 or ×1012 Å2).

λ σR
a

532.0 0.660 ± 0.1
435.7 1.660 ± 0.5
368.9 3.760 ± 0.3
355.0 4.360 ± 0.4
319.9 7.560 ± 0.3
282.4 13.06 ± 4.0

aAfter Foster et al. [31]. Error represents one
standard deviation from the mean.

Table 1.8 Approximate order of magnitude for cross-sections σ (per molecule) for
various possible processes in spectroscopy

Process Cross-section of σ /cm2

Absorption Ultraviolet 10−18

Absorption Infrared 10−21

Emission Fluorescence 10−19

Scattering Rayleigh scattering 10−26

Scattering Raman scattering 10−29

Scattering Resonance Raman 10−24

Scattering SERRS 10−15

Scattering SERS 10−16

chloroform [31] has been determined using several-laser lines. The re-
sults are given in Table 1.7.

The approximate cross-sections for the most common spectroscopies
are listed in Table 1.8.

The estimated SERS cross-section is taken from the review by Kneipp
et al. [32]. The SERRS cross-section is the one reported by Nie and Emory
[33] for Rhodamine 6G (R6G) excited in resonance at 514.5 nm. Later,
Michaels et al. [34] reported an average SERRS cross-section for R6G of
2 × 10−14 cm2 at 514.5 nm. The SERS/SERRS cross-sections correspond
to experimental results with the best observed enhancement factors.

1.11 THE UNITS OF ENERGY
AND FORCE CONSTANTS

Force constant: ke = 4π2μc2ω2, where ω is the molecular vibration
in wavenumbers (cm−1) and 4π2μc2 is the classical force constant
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factor: 4π2μc2 = 5.98180 × 10−9 N m−1 = 5.98180 × 10−6 N cm−1 =
5.98180 × 10−6 myn Å−1.

Energy (hartree) (used in Gaussian 98) = (2π )4mee4/h4 =
27.2115eV = 4.3598138 × 10−18 J.
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