CHAPTER1

INTRODUCTION

Comples svstems are usually comprised of multiple subsystems that exhibic hoth
highly nonhnear deterministic and stochastic characteristics and ure regulated hi-
erarchically., These svsicms generate signals that exhibit complex chanteristics
such s sensitive dependence on small disturbances, long memory, extremc variu-
tions, and nonstationarity. A stock markey, for cxample, s stongly influenced by
multilavered decisions made by market makers, as well as by interactions of hetero-
genenns traders, nclodme intraday tradees, short-peviod (raders, and long-period
fraders, and thus gives rise 1o highly irregular stock prices. The Internet, as unother
example, has been designed m oo fundamentally decentralized Tashion and consists
of u complex web of scrvers and routers that cannal be eficetively contradled or
analdyzed by tradinonal teols of quening theory or control theory and give rise 1o
highly bursty and multiseule affic with extremely high varince, oy well as complex
dyvnaniics with both determimistic and stochastic components, Stnilarly, biclogi-
cal svstems. being heterogencous, massively distributed, and highly complicated.
olten generate nonstationacy and muoliiscale signals, With the rapid acewmulation
of complen data n health scisnces, systems biology, nano-sciences, infonnation
svaters, and physical selences, 1t has become nereasingly important 10 be able to
analvze multiseale and nenstuionary data.



2 INTRODUCTION

Muliiscale signals behave dilfevently, depending opon the scale at which the daa
are examined. How can the behaviors of such signuls on a wide tanye of scules be
gimwltanecusty charactenzed? Chpe strategy we envision is to use existing theories
svnergistically instead of individoally. To make this possible, appropriate scale
ranges whoere cach theory i3 most pertinent need (o be dentified. This 15 a dilficult
task. however, since different theories miay have entirely different foundations. For
example, choos theory 18 mataly concerned abowr apparently irregular behaviors in
a complex system that are generated by nonlinear deterministic interactions with
only a fow degrees of freedom, where noise or witrinsic randomnsss does not play
an iportant tole. Random fractal theory, on the other hand. assumes that the
dynaniics ol the system are inherently random. Theretore, o make this strategy
work, different theories need to be integrated and even gencralized.

The =econd viaal stratesy we envision is o develop mewsures that explicitly
incorporate the concept of seale so that different behaviors of the data on varving
scales can be simuoltaneonsly charscterized by the same seale-dependent measure,
Tn the most ideal scenario, o scale-dependent measure can readily classily different
Lypes of motions based on analysis of short, neisy dadas T this case, one can readily
see that the measure will be able ot onby 1o identify appropriste scale ranges where
different theories, including information thecry, chaos theory, and rundom fractal
theory, are applicable, hut also to antomarically churseterize the behaviors of the
data oo those scale Tanges.

The vision prezented above dictates the sivle and the seope of ihis book, as
depicted in Pz, 1L Specifically, we aim to build an effecive arsenal by synergiy-
teally inegrating approaches based on chaos and random fractal theory, and goiny
beyond this, (o complement conventional approaches such as speciral analysis and
machine leaming techoiges, To make such an integration possible, Tour fmportant
ciforys ave made:

b Wavelecrepresentation of fractalmodels as well as wavelet estimation of (ruc-
tal sealing parameters will be carefully developed. Furthermuore. a new fractal
miendel will be developed. The model provides g new micans o characlerizing
long-range correlations in tine series and o convenient way of modeling non-
Ciaussian statistics. More importantly. it ties together different approsches in
the vast field of rapdom fractal theory {represented by the four snall boxes
undar the “Random Fractal™ box in Tig. 1.1,

2. Fract! scaling break and iruncation of power-law beliavior are related to
specilic features of real dawa 3o thai scale-free fractal belvior as well as
siructures defined by specific scales can be simultancously characterized.

3. A new theoretical framework for signal processing — power-law sensitivity
o irtitkal coaditions (ASTCT — will be developed, o provide chaos and ratddom
fractal theoty g common foundation so that they cao be betier integrated,



4. The scali-dependent Lygpuney capoment (SDLEY, which is a variant of the
finite-size Lyapunov exponent (FSLEY, 1s an excellent mudtscale imeasure,
We shall develop a highly etficient alzorithm for calenbating 1 aad show thai
it can readily classify diflerent (vpes of motions, aptly characterize com-
plex behiiviors of real-world multiscale signals on a wide range of scales,
and, thevetfore, nawrally solve the classic problem ol distimouishing low-
dimensional chaos Trom naise. Fuvthormore, we shall showe that the SDLE
can effectively deal with nenstehonurity and thal existing complexity roea-
suses can be related 1o the value of the SDLE on specilic scales.

To help readers belter understand and appreciate the power of the muterials in
this bouk, nearly every signtlicant comcept or approach presented will be ilhustrated
by applying it w effectively solve reul problems, sometimes with unprecedented
accuracy. burthermore. souree codes. written in variour languages, including For-
trap, C. and Matlab, for many methods are provided togethier with some simulated
and experumnental data.

‘ Real-world complex dala

[— have both struciured and randorn components

= DLelave differently on ditterent seales

— need to charucterize hehwsiors of signals on g
wide range of scalez
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To the Test ol this chapter, we give o lew examples of multiscale plienomena so
that reeders can beder appreciaw the dithcalties and excitement of mulhscale signal
processing. We then highlight a number of multiscale signal processing problems
thar will be discussed in Jdepth Lder inthe ook, Tinally, we outline dwe structure of
the hook.

Before proceeding. we note a subtle bat important distinction between fractal
(und wavelei)-based multiscale analysis methods and multiscale phenomena. As
we shall discuss inrore detail in Chaprer 2, fractal phenomena are situations where
3 part of an ubject or phenomenaen 15 exactly or siatisticallv simifar 1o another part
or 1o the whole, Because of thiz, no specific scales can be defined. Fracral property
can thus be considered as a comman Teatre across vastly diftercot scales: such o
fenture can be consulored as a background. While this can be viewed as a multiscale
phenomenon., it is in faci one of the simplest. Move complicated situations can be
casily envisionad. Fot example. a fracial scaling may be brisken i certain spatio-
tempora) scales determined by the periadicities. Here. the periedicities are piit of
the maltiscale phenomenon but nof part of the fractal pheneenon. As we shall sce
in Chapter 8. exploiting the fractal background and characterizing the fractal scaling
break can he extremiely powerful 1echnigues lor feature identificaiion. oo fact, the
importance of the fracial feature as a backegrouad has motivated vs to discuss random
fractal theory first.

1.1 EXAMPLES OF MULTISCALE PHENOMENA

Multiscale phenormend are ubiguitous in nature and engineering. Some of them are,
unfortunately, catustrophic, One cxarmple is the tsunami thal cocurred in South Asia
at Choistinas 20040 Another example is the gigantic power cutage thatl occurred 1o
North America on August L4, 2003, 1t allected more than 4000 megawatts, was
more than 300 times greater than mathematical models would have predicted. and
cast hetween 54 Mitlon and 56 billion, according to the U.S. Department of Fnergy,
Both events involved scales that, «m the one hand, were so huge that human beings
could not eusily [athomn and. on the other hand, involved the very scales that were
muost relevant o individual life. Below, we consider zix examples. Some of them
are more joviul than isunamis and power outagss.

Viuitiscale phenomena in daily life. When one of the authors. LHE. relocated to
Gainesvilic, Florida. in 2002, he wanted 16 stay in an apartment with & lake view.
Behind the apartment complex bie eventually leased. there were numerons majestic
cyprass trees closely resembhing a small wetland forest. The would-be Like was
in fact a sinkhole, ke many others in the karst topogzraphy of Florida, Tt bad a
dizmeter of aboul balCasnile. Novertheless, ithad been dried for ¢ number of years,
The sitaation completely changed afler hurricane Frances struck Florida i Seprem-
her. 2004, During that hurricana season, a formidable phrase often used in the media
was “dark clomds the size of Texns” Texas i ahout twice the size of Florida, so
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the ratio between the size of the sinkhole behind TRs apartment and the clouds
associated with the ropica) stormm sysieim is on the order of 1077, Obviously, the
sizey of the sinkhole and the cloud sysiom deline two very dilferent saales,

Drring the passage of huiricane Fraoces, within only three days, the waier fevel
in ithe conter of the stkhale rose 4-3 meters. By the spring of 2005, the sinkhple had
fully developed inte o begutiiul lake ceosyvsiom: wetmd plants and trecs blossomed,
alter a few raing, the water swarmed with tiny fisbes: each day at around sunset.
hondreds of egrets flew back wthe lake, calling; dozens of ducks constantly played
on the water, generaling heaptilul waler waves; wrtles appeuared; even alligaiors
came — one day one of them was seen 10 be killing & snake for food. All these
activities covurred on a scale comparabie to or nach smaller than that of the Take,
andd thercfore much smaller than the sive of the clonds accompanying hurricane
Frances. In spite of cuusing devastuiing destmictions G thie cast coast of Hlorida,
hurricane Frances also repleniched and diversified ecosystems inits path. Therefore,
although a ruther rare and exireme event. hwmcane Frances can never be ignored
because 1 made a huge impact on lives long after its passing. An iniportant [esson
to learn from s example i that arare event ay nod simply be treated as an ombier
and 1gnored.

One uf the mostuseful parameters Tor characterizing water Tevel change i a river
ot fake 1s the Hurst parameier, named alier the distinguished hydrologist Rurst,
who monitored the water level chimges in Niles tor decades, The Huarst parameter
mmeastires the persistence of correlations, Intuitively, this corresponds to the situation
of the sinkhele behind LBs apartment: when ot is drve o can stay dry for vears,
bat with its current water level, it s unlikely o bocome dry aguin any time soon,
In the pust decade, researchors have found that persisient corrclation is a prevailing
fewrure of network traftic, Can this feature be jenored when designing or exumining
ihe goality of service of o network? The answer is no. We shall have nmweh o say
about the Hurst purameter in genetal and the impact of persistent correlation on
network rattic modeling o8 an example of an application in this hook,

Multiscale phenomena in genomic DNA sequences. TINA s a laree molecule
composcd of foar basic units called nuclestides. Bach nucleotide contains phos-
phate, sugar. and one of the four bases: adenine, guanine, cvtosing, and thymine
cuspaliy denoted A, G, C, and T, The strocture of DINA is deseribed as a double
helix. The two hebices are held together by hyvdrogen honds. Withia the DXNA
double helix, A and G form two and theee hyvdrogen bonds with T und € on the
opposite strand. respectively, The total length of the human DNA 1y estimated o
be 3.2~ W base pairs. The most up-to-date estimate of the number of genes n
hunrans is about 20,000 — 23,000, which is comparable to the number of
ouany other species. Typically, a gene 15 several handred bases long. This is about
1077 — 10 © of the total ength of the hman genome, comparable to the vatio
hetween the size of an ailigator and the sive of the clouds accorpanying hurneane
TFrunces. There are other, shorter lunclional units, such as promoters, enhaneers,
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Figure 1.2, Tubulent How by Da Vinel.

profibitors, and su on, Suine genes or functional vnits conld repeat, exactly o with
shight modificatons (called mutations), after tens of thousands of hases. Therefore.
genosmiic DNA sequences are full of (largely static} inultiscale phenomena,

Muktiscale modeling of fluid motions. Tuscinated by the complex pheomena of
water Aowing and mixing, Leenardo da Vinel mode an exquisite porteait of tosbalent
How of fuld, invelving vortices within vortices over an ever-decreasing scale. See
Fig 1.2 amd

hitp:/Avww efuids.com/eluidy/gadicry/gallery pages/davinci page.htm,

The gentral themie in multiscale modeling of fluid motions 18 the determination
of what information o the finer seaie is needed 10 tormulate an equation for the
“effective” behavior on the coarser scale, In fact, this s alse the central theme
of moltiscale wedeling in many orther fields, such as clowd-resolving modeling for
studving atmospheric phenomena on scales much larger than individua! ciouds,
ard modeling in maicrials science and biochemisiny, where one stives 1w relaie
the functonaliiv of the muderial or organism o it landamental consiituenis, their
chemical natire and geomciric arangement.

Multiscale phenomena in computer networks. Large-scale communications nel-
works, gspectally the lntemied, are among Lthe mostcomplicated sysiems that man has
ever made, with many multiscale aspects. Intuitively speaking, these multiscales
come from the hierarchical design of a protoeol stack. the hierarchical topological
architecture, and the multpurpose and heterogeneous nature of the Internet, More
precisely, there are multiscales in (17 time, manifested by the prevailing tractal, moui-
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tifructal, and long-range-dependent propesties n traffic, (2) space. essentially due
to topology aad geography and again manifested by scale-free properties, (3) state,
e, qucues and windews, and (4 size, e.g., number of nodes and pumber of users,
Also. it hus been observed thai the failure of a siagle rouler may trigger roviing in-
siability, which may be severc enough o instigate a route fap storm. Fuerthermore,
packers may be delivered out ol order or even get dropped, and packet reardering 1y
not g pathological network behavior. As the next-generation Internet apphications
such as remots instrument control and computalional steering ave being develaped,
another facet of complex multiseadle behavior is begiuning to surtace in termis of
iransport dyvnamics. The netwnrking requirements for these nexi-generation appli-
cations helong to (at leasty two broad classes imvedving vasthy disparare time scales.
{11 high bandwidths, typically nmitiples of F0 Gbps, to suppori bulk data transfers,
and ¢2) stable bandwidihs, typically at much lower handwidths such as [0-1H0G
Mbps, 1o support interactive, stearing, and control operations.

Is there any difference berween this cxample and examples 2 and 37 The answer is
yves. Inmudtiscale modeling of fuid motions, the basic equation. the Navier-Stokes
equation, iy known. Therelore, the dynamics of fluid motions can be systematically
studied through a combined upprouch of theorciicul modeling, numerical simuli-
thom, and experimental study However, there is ne fondamenial equation to describe
a DNA sequence or g compuler nebwork.

Multiscale phenomena in sea clutter. Seu clotter 13 the radar backscatier from a
patch of occan surface. The complexity of the sighals comes from two sources: the
rough sea surface, sometimes oscillatory, sometimes turbulent, and the multipath
propagation of the radar backscatier. This can be well appreciated by imagining
radar pulses niassively reflecting from the wavetip of Tig, 1.3, Torbe guantitatne, m
Fig. L4, iwo (L1 s duration sea clucter signals, sampled with o frequency of | KHz,
ace piotted Tu by, o 2 s duration signal is ploted in (e, and an even longer signal
{about 130 8} 15 plotted tu (dy. It is clear that the signal 1s nol purely random. since
the waveform can be fairly smocth on short ome scales (Fig. 4. However, the
signal is highly nonstationary, sinee the lrequency of the signal (Fig 1.40a.0b) us
well as the randomness of the signal (Fig. [4(c.dh change over tme drastically,
Therefore, natve Fourier analysis or deterministic chaotic analysis of sea cluiter may
not he very useful. From Fig. 1.4ie), where XJ™ is the nonoverlapping unning
mican of X over block size s and X isthe sea cluter amplitude data, it can be turther
cotcluded thai neither awtoregressive (AR ) madels nor textbook fracral models can
deseribe the data. This is becsuse AR modebng reguires exponentially decaving
autucorreladen {which amounts ta E"G.?‘(X,}m']) ~ it or a Horst parameter of
1/2; see Chaplers 6 and 8Y, while fractal modeling reqguires the variation berween
Var L_Y}m ! yand o Tollow a power law. However, neither behavior is observed in
Fiz. 1. die). Indeed, although extensive work has been dope on sed cliler, s natae
is still poorly undersond. A i resolt, the important problem of iarget detection
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Fignre 1.3, Schemiatic of 2 ereat wave G tsunami, woodblock priat frorm the [th contury Japangse
artisi Hokusiin supposs tha vur field el chservation includes e wavetip ol lengil soale ot/ fow
mzlers, 10z then olear that the complexiiy of soa clnier is mainly due o massive reflection sl radur

pulzes [Tonn g wayy dwd cven urrbulent aoeun suelus,

within sea cluticr reinains & tremendous challenge, We shall reiumn Lo sea clutier
luter,

Muliiscale and asnstalionary phenomena in heart rate variability (HRV) IRV
i an mpociant dynamical variable i cardiovascul funation. ey maost sallent fea-
fure s spontancous Nuctuation, even if the environmentul paramerers see maintained
constani and no pertirbing influences can be identified. It has been observed that
HRRV i related o various cardiovascular disorders, Therelore, analvsis of HRY iy
very important in medicine. However, s task s very ditficult, since HRY data wie
highly complicated. An cxample for a norial voung subject 1= shown in Fig. 1.3
Evidently. the signal is highly nonstationary and multiscaled. appearing oscillatory
for some period of time (Figs, 1.5chadY), and then varying as a power law for an-
other period of tine (Figs, T.50c.e)). The latter ts an exaniple of the so-called 1/ f
processes. which will be discussed in depth in laier chapters, While: the moltiscale
nature of such signals cannot be fully churacterized by existing meihods, the non-
stationavity of the Jdata iz even more troublesone, sinee it requires the data 1o be
properly segmented before further analysis by methods derived from speciral anal-
vsis, chaes theory, oF random fractal theory, However, automated segwnentation ut
complex biological signals 10 remove undesired oomponents 5 iseli” a significant
open problem, since it is closety related 1o, for exarnple, the challenging tusl of
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Figure Ld.  (abd Two (b1 ¢ duration sea cluller signals; {ova 2 s duration sca clotter <ignal: {d}
the cntie sea cluiter signul (of ghon 130 35, and (@) logy fm? Vael XY w. log, e, whare
X = {X;‘"” : A'i(n.'.} = (X gy = o+ Xemlfe, £ = L2t s the non
overiapping mming mean ol X = 4%, 1 ¢ = 1,2, -} over block size sand X s ibe sea clutier
amplitude duta, To berrer sz the variation vl ¥ar( X, ™) 1 with o, Ve Xf'm’]'_] is muliplicd by
5 exponsnlizhy lasi tsuch as modeled oy an AR

m=  When e sutwenerclation of the dits deca
T A N N e
process), Var{ X e Tlere ¥ ari X,

P RS TREN Lo S . - . .
e i 1 ar{ X Y e~ a7 Thowever. this is notl the cose. [hercfore. neither AR modeling nor

1 deciys nucl faster, A fractab process wonld

ideal texlbook fractal theory con be rewdily appbed here.

accurately delccting wansitions from normal 10 abnermal states in phivsiological

clata.

1.2 EXAMPLES OF CHALLENGING PROBLEMS TO BE PURSUED

i thiz hook, a wide range of important problems will be discussed in depth. As a
prelude, we deserthe HY of them in this seciion.

P’1: Can economic time series be modcled by low-ditensionat noisy chaos?

Since lote 1980s, considerable efforts have been made to determing whether i
recular economic tme series are chaolic or random. By analyzing rea! as wel) as
simulated ceonomic drme series using the neurad network-based Tyupunoy capa-
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nent estimalor, a nuwmber of recent siudics have suggested thai the world cconomy
may not be characterized by low-dimensional chaos, since the loreest Lvaponoy
exponent Is negutive, As will be explained in Chapter 13, the sum of the positive
Lyapunoyv cxponcnis gives o Ught upner bound of Kolimogorov-Sinat (K S} chiropy,
kS entropy characierizes the rate of creation of information in a dynamical system.
Tt iy 2era, positive. and infinite for regular, chasotic. and randoin motions, respec-
tively. Therclore, a pegalive largest Lyapunoy Cxponent in ¢conomis me seris
amounts 1 negative KS eatropy and thus implies regilar econemic dynainics. But
coonomy is anything bue sinple! How may we resolve this difemma” Ap answer
will be provided in Chapter 13,

P'2: Network teatfic modeling

Diata runsfer actoss a nebwork s a very complicaled process owing 1o interacnons
wnong a huge number of corelated or uncorrelated vsers. congestion. rovting in-
stability, packet reordering, and many other factors, Traditionally, network waffc
s modeled by Poissun or Markovian maodels. Recently, ivhas been found th lony-
runge dependence (LRDY is 4 prevailing feature of real network puffic, However,
it is still being debated which type of model. Poisson or Markovian tvpe, LRD, or
multifraciad. should he used o gvaluaie the perforinance of a nerworl It would be
very desirable o develop a general framework that net only includes all the traffic
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maodels deveioped so fir as special cases, but also aceurately and parsimoniously
models real network traffic. Can such a goal be reiched? A sarprisingly simiple
agwwer wilt be given in Chaprer 10

3 Network intrusion and worm detection

Enterprise aetworks arc facing cver-incrensing sceurily threats from various 1ypes
ol intrusions and worns, May the conicepts and methods develeped in this book be
wseful for protecting against these probiems? A surprisingly simple and cilecuve
solution will be presented in Sec. 13.1.2.

I"4: Sea clutter modeling and target detection within sea clutter

Accurate modeling ol zea clutter and robust detection of Jow observable targets
within sea clutler are important problems in remete sensing and radas signal pro-
cessing applications. Tor example. they may be helptul in improving navigation
safery and fucilitaing environinental mooitoring. As we have seen in Fig. 1 4, sea
chutter data are lighly complicated. Can seme concept or method developed 1n this
book provide beiter models for sea clutter? The answer is yes. [n fact, we will find
that many of the new concepls and meihads developed in the book are wselul for
this difticuls task.

P35 Furklamental error bounds for nane- and lault-tolerant computations

In the emerging nunclechnologles. faulty components may be an integral part of
a system. For the svslem o be reliable, the error of the building blocks has to be
smaller than a threshold. Therefore, finding oxact ervor thresholds for noisy gates
is one of the most challenging problers in fault-tolerant computaiions. We will
show in Chapter 12 that biturcaiion theory oflfers an amazingly effective approach
o solve this problent

Po6: Neural information processing

Mankind’s desire (0 widerstand newcal tnformation processing has heen exuremely
ysefulin develfoping modern computing nachiges, While such s desire wilt certainly
mativate the development of new bo-inspired computations, undersianding neural
informarion processing has become mereasingly pressing owing 1o the recent great
interest in braln-machine interfaces and deep brain stimulation. In Secs. §.9.2 wd
.52, we will show how the various tvpes of fractal analysis methads developed in
the book can belp understand nevronal firng patterns.

P7: Protein coding seguence identification in genomic DNA sequences

Gene finding i< ong of the most important tasks in the stndy of genomes. Indices
that cun discriminate DINA sequences’ coding and noncoding regions are crucial
elements of a successiul gene identification algorithm. Cag muliiscale analysis of
genome sequences help comstruct novel codon indices? The answer is ves as we
shall see in Chapter 8.
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P8: Analysis of HRV
Wo have seen in Frg. 1.5 that HRY data are nonstationny and multiscaled. Cao
mudtiscale complexity measares readily deal with nonstacionarity in HRV data, find
the hidden differences in HIRV data voder healthy and disease conditions, and shed
new Heht on the dynamics of the cardiovascular system? An elegant answer will
be given in Chapler 15,

P9: EEG analysis
Electroencephialegraphic {EEG) signals provide a wealth of informartion about brain
dymamics, espectaly related (o cognitive processes and pathologies of the briin
such as epileptic seisures, To understond the natire of brain dynanuics gz well as
tor develop novel methods for the diagnosis of brain pathologics. o number of com-

plexity meusures from information theory, chaos theory, and rundom fractal theory
have been used o anulyze EEG signals. Smce these three thearies have differem
Foundations, il has not been casy (0 compare studics based on difterent complexity
measures. Canmuliscale complexity measores offer o unifying framework to over-
comg this difficolty and, more importantly, o offer new and more effective means
ol providing a warning aboul pathologiceal states such as epileptic seizures? Again,
an elegant answer will be given in Chapter 15.

110: Modeling of torbulence

Turbulence i a prevailing phenomenon in geophysics, astrophysics, plasma physics.
chemtical engingering. and eovivonmental engineering. Tt is perhaps the greatest
unsolved problem in classical physics. Multifractal models, pioneered by B. Man-
delbrot, are among the most successful in describing inrermitteney i rurbulence.
In Sce. 9.4, we will present a number of muktifractal models for the intermittency
phenemenon of wrbulence in a coherent way.

1.3 OUTLINE OF THE BOOK

We have discussed the purpose and the basie structure of the book itn Fig. 1.,
To fucilitate our discoussions, Chapter 2 18 a conceptual cliapter consisting of two
sections describing fractal and chaos theories. Since fractal theory will be teaed
formally starting with Chapter 5, the section on fractal theory m Chapter 2 will he
guite bref the section on chaos theory, however, will be fairly detailed becausc this
theory will not be treated Lo depth vnti! Chapter 13, The rest of the strucrure of the
brok is largely determined by our own experience in analvzing complicated time
series arising from ticlds as diverse as device physics, radar engineering, fluid me-
chanics, geophysics, physiology, nenroscience, vision seience, amd blointormuatics,
among muny others. Our view is that random fractals, when vsed properly. can be
tremendously helpful, especially o formiug new hypotheses. Theretore, we shul!
spend a lot of time discusung signal processing techniques using randem fractal
thenry.
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To fucilitate the discussion on random fractial theory, Chapter 3 reviews the hasics
of probability theory and stochastic processes. The correlation structure of the Larer
will be emphasized a0 that comparisons between stochaste processes with shorf
memory and fractal processes with long meimary can be made i later chaplers.
Chapter 4 briefly discusses Fougier transform and wavelet multivesolution analysis,
wilh the hope that after this treatment, readers will find complicated sigrals to be
friendly. Chopter 5 briefly resumes the Jiscussion of Sec. 2.1 and discusacs the
basics of fractal geometry. Chapter 6 discusses self-similar stochaste pricesses, in
particular the fractional Brownian motion {iBm} processes. Chaprer 7 discusses a
duterentivpe of ractal processes, the Levy motions, which are memoryless bot have
heavy-tatled features. Bevond Chapter 7, we focus on vanous iechnigues of signal
processing: Chapter 8 discusses siruclwre-function—hased multiiractal eehnigue
and vanous methods for assessing long memories tron o time series together with
a number of applications. The lutter inclode topics as diverse us network traffic
raodeling, detection of low observible objects within sea clutter radar returns, gene
iinding from DNA sequences, and so on. Chapter 9 discusses a differen (ype of
multifractal, the moltiplicative cascade muoltifractal. Fractal analysis colminares in
Chapler 10, where a new meodel is presented. This 15 a wonderful model, since
il “elues™ logether the soucture-function-based fractal analysis and the cascade
madel. When one i~ oot sure which type of fractal mode] should be used o analyze
data, this model may greatly simplify the job. Chapter |1 discusses madels for
cenerating heavy-tailed distributions and long-range correlotions, In Chapter 12,
we switch to o completely Jdifferent topic — bifwrcation theory — and apply it o
solve the difficnlt problem of finding exact error tweshold values for fault-tolerant
computatioms. In Chapter 13, we discuss the basics of chaos theory and chaotic time
series analysis, 1o Chapter 14, we extend the discussion in Chapter [3 and consider
g now ibeoretical framework, the power-law sensirivity to initiul conditions, 10
provide chaos theory and randoon fractal theory with a common foundation. Finally,
i Chapier 15, we discuss an excelleni multizscale measure — (he scale-dependent
Lyapunay exponent — and its numerous applications.

Complex tirmne serles snalyvsis s o vory diverse field. Tor case ol ilusivating the
practical vse of many concepts and methods, we have included miany of our own
works. some published. sime appearing bere for ihe lirst tirne, as examples, This,
however, does nor mean that owr own contribution (o this ficld 15 very significant.
We must emphasize that cven thaugh the wopics covered in this book are very broad,
they are still just a subset of the many interesting issues and methods developed
for complex tune series analysis. For cxample, fascinating topics such as chaas
control and chans-based noise reduction and prediction are not touched on at all.
Furthermuore, we may not have covered all aspects of the chosen topics. Some
of the omissions are Intentionadl, since thiy book is designed o he useful not only
e people 1o the field but alss as an introduction 6 the teld — cspeaially (o be
used asz a texthook, Of course, some of the uninlentional omussions are due 1o
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our izoorance. While we apelogize if some of important works are not properly
reported hepe, we bope that readers will search for relevant literature on uderesting
wpics using the Literature seurch method discassed i Chapler 3, Fmnally, readecs are
strongly encovraged to woik on the homework prablems mthe end of cach chupler,
especially those reloted to computer simwdations. Only by doing this can they traly
appreciate the beauty as well ay the fimitation of an unfamiliar new concept.

1.4 BIBLIOGRAPHIC NOTES

I the past two decades, o munber of excellent books on chaos and fractal theories
have been published. Ao incomplete List includes [33, 36, 136, 198, 294,387 on
fractal theory, [331.435] on siableTaws, 25,45, 106,206, 250,330,404 404 41 5 475]
ot chues theory, and [1, 249 vo chaotic time series analysis, 1o particular, 249
can be comsidercd complementary to this book. A collection of siznificant early
papers can be tound i | 3311,

Tn Sce. 1.3, we stated that topics including chaos control. synchremization in
chaotic systems, chans-based aoise reduction and prediction would not be touched
on in the book. Reuders inerested in chaos control are referred w the comprehen-
sive book by Oft 3304, those fotercsied in chaos synchronization are refermed W
[338], and thosc interested in prediction from data are relemed (o [249] Lor chaos-
hasad approaches and w [213] for the Kaliwan filtering approach. For prediction
of a dviamical system with known equations but only partial knowledge of hu-
tal conditions, we refer readers o [77]. Finally, readers wishing to pursue the
pliysical mechanisms of self-similarity and incomplete self-similarity are sfrongly
encouraged to reud the cxguisite book by Barenblart f31].



