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PARTI
WEB STRUCTURE
MINING

I n the first part of the book we discuss basic ideas and techniques for

extracting text information from the Web, including collecting and indexing

web documents and searching and ranking web pages by their textual content

and hyperlink structure. We first discuss the motivation to organize the web

content and find better ways for web search to make the vast knowledge on

the Web easily accessible. Then we describe briefly the basics of the Web and

explore the approaches taken by web search engines to retrieve web pages

by keyword search. To do this we look into the technology for text analysis

and search developed earlier in the area of information retrieval and extended

recently with ranking methods based on web hyperlink structure.

All that may be seen as a preprocessing step in the overall process of data

mining the web content, which provides the input to machine learning methods

for extracting knowledge from hypertext data, discussed in the second part of

the book.
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WEB CHALLENGES

As originally proposed by Tim Berners-Lee [1], the Web was intended to improve the
management of general information about accelerators and experiments at CERN.
His suggestion was to organize the information used at that institution in a graphlike
structure where the nodes are documents describing objects, such as notes, articles,
departments, or persons, and the links are relations among them, such as “depends on,”
“is part of,” “refers to,” or “uses.” This seemed suitable for a large organization like
CERN, and soon after it appeared that the framework proposed by Berners-Lee was
very general and would work very well for any set of documents, providing flexibility
and convenience in accessing large amounts of text. A very important development
of this idea was that the documents need not be stored at the same computer or
database but rather, could be distributed over a network of computers. Luckily, the
infrastructure for this type of distribution, the Internet, had already been developed.
In short, this is how the Web was born.

Looking at the Web many years later and comparing it to the original proposal
of 1989, we see two basic differences:

1. The recent Web is huge and grows incredibly fast. About 10 years after the
Berners-Lee proposal, the Web was estimated to have 150 million nodes (pages)
and 1.7 billion edges (links). Now it includes more than 4 billion pages, with
about 1 million added every day.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
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2. The formal semantics of the Web is very restricted—nodes are simply web
pages and links are of a single type (e.g., “refer to”). The meaning of the nodes
and links is not a part of the web system; rather, it is left to web page developers
to describe in the page content what their web documents mean and what types
of relations they have with the documents to which they are linked. As there is
neither a central authority nor editors, the relevance, popularity, and authority
of web pages are hard to evaluate. Links are also very diverse, and many have
nothing to do with content or authority (e.g., navigation links).

The Web is now the largest, most open, most democratic publishing system
in the world. From a publishers’ (web page developers’) standpoint, this is a great
feature of the Web—any type of information can be distributed worldwide with no
restriction on its content, and most important, using the developer’s own interpretation
of the web page and link meaning. From a web user’s point of view, however, this is
the worst thing about the Web. To determine a document’s type the user has to read
it all. The links simply refer to other documents, which means again that reading the
entire set of linked documents is the only sure way to determine the document types
or areas. This type of document access is directly opposite to what we know from
databases and libraries, where all data items or documents are organized in various
ways: by type, topic, area, author, year, and so on. Using a library in a “weblike”
manner would mean that one has first to read the entire collection of books (or at least
their titles and abstracts) to find the one in the area or topic that he or she needs. Even
worse, some web page publishers cheat regarding the content of their pages, using
titles or links with attractive names to make the user visit pages that he or she would
never look at otherwise.

At the same time, the Web is the largest repository of knowledge in the world, so
everyone is tempted to use it, and every time that one starts exploring the Web, he or
she knows that the piece of information sought is “out there.” But the big question is
how to find it. Answering this question has been the basic driving force in developing
web search technologies, now widely available through web search engines such
as Google, Yahoo!, and many others. Other approaches have also been taken: Web
pages have been manually edited and organized into topic directories, or data mining
techniques have been used to extract knowledge from the Web automatically.

To summarize, the challenge is to bring back the semantics of hypertext docu-
ments (something that was a part of the original web proposal of Berners-Lee) so that
we can easily use the vast amount of information available. In other words, we need
to turn web data into web knowledge. In general, there are several ways to achieve
this: Some use the existing Web and apply sophisticated search techniques; others
suggest that we change the way in which we create web pages. We discuss briefly
below the three main approaches.

Web Search Engines

Web search engines explore the existing (semantics-free) structure of the Web and try
to find documents that match user search criteria: that is, to bring semantics into the
process of web search. The basic idea is to use a set of words (or terms) that the user
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specifies and retrieve documents that include (or do not include) those words. This
is the keyword search approach, well known from the area of information retrieval
(IR). In web search, further IR techniques are used to avoid terms that are too general
and too specific and to take into account term distribution throughout the entire body
of documents as well as to explore document similarity. Natural language processing
approaches are also used to analyze term context or lexical information, or to combine
several terms into phrases. After retrieving a set of documents ranked by their degree
of matching the keyword query, they are further ranked by importance (popularity,
authority), usually based on the web link structure. All these approaches are discussed
further later in the book.

Topic Directories

Web pages are organized into hierarchical structures that reflect their meaning. These
are known as topic directories, or simply directories, and are available from almost all
web search portals. The largest is being developed under the Open Directory Project
(dmoz.org) and is used by Google in their Web Directory: “the Web organized by
topic into categories,” as they put it. The directory structure is often used in the process
of web search to better match user criteria or to specialize a search within a specific
set of pages from a given category. The directories are usually created manually with
the help of thousands of web page creators and editors. There are also approaches
to do this automatically by applying machine learning methods for classification and
clustering. We look into these approaches in Part II.

Semantic Web

Semantic web is a recent initiative led by the web consortium (w3c.org). Its main ob-
jective is to bring formal knowledge representation techniques into the Web. Currently,
web pages are designed basically for human readers. It is widely acknowledged that
the Web is like a “fancy fax machine” used to send good-looking documents world-
wide. The problem here is that the nice format of web pages is very difficult for
computers to understand—something that we expect search engines to do. The main
idea behind the semantic web is to add formal descriptive material to each web page
that although invisible to people would make its content easily understandable by
computers. Thus, the Web would be organized and turned into the largest knowledge
base in the world, which with the help of advanced reasoning techniques developed in
the area of artificial intelligence would be able not just to provide ranked documents
that match a keyword search query, but would also be able to answer questions and give
explanations. The web consortium site (http://www.w3.org/2001/sw/) provides
detailed information about the latest developments in the area of the semantic web.

Although the semantic web is probably the future of the Web, our focus is on
the former two approaches to bring semantics to the Web. The reason for this is that
web search is the data mining approach to web semantics: extracting knowledge from
web data. In contrast, the semantic web approach is about turning web pages into
formal knowledge structures and extending the functionality of web browsers with
knowledge manipulation and reasoning tools.
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CRAWLING THE WEB

In this and later sections we use basic web terminology such as HTML, URL, web
browsers, and servers. We assume that the reader is familiar with these terms, but for
the sake of completeness we provide a brief introduction to web basics.

Web Basics

The Web is a huge collection of documents linked together by references. The mecha-
nism for referring from one document to another is based on hypertext and embedded
in the HTML (HyperText Markup Language) used to encode web documents. HTML
is primarily a typesetting language (similar to Tex and LaTex) that describes how
a document should be displayed in a browser window. Browsers are computer pro-
grams that read HTML documents and display them accordingly, such as the popular
browsers Microsoft Internet Explorer and Netscape Communicator. These programs
are clients that connect to web servers that hold actual web documents and send those
documents to the browsers by request. Each web document has a web address called
the URL (universal resource locator) that identifies it uniquely. The URL is used by
browsers to request documents from servers and in hyperlinks as a reference to other
web documents. Web documents associated with their web addresses (URLs) are
usually called web pages.

A URL consists of three segments and has the format

<protocol name>://<machine name>/<file name>,

where <protocol name> is the protocol (a language for exchanging information)
that the browser and the server use to communicate (HTTP, FTP, etc.), <machine
name> is the name (the web address) of the server, and <file name> is the directory
path showing where the document is stored on the server. For example, the URL

http://dmoz.org/Computers/index.html

points to an HTML document stored on a file named “index.html” in the folder
“Computers” located on the server “dmoz.org.” It can also be written as

http://dmoz.org/Computers/

because the browser automatically looks for a file named index. html if only a folder
name is specified.

Entering the URL in the address window makes the browser connect to the web
server with the corresponding name using the HyperText Transport Protocol (HTTP).
After a successful connection, the HTML document is fetched and its content is
shown in the browser window. Some intermediate steps are taking place meanwhile,
such as obtaining the server Internet address (called the IP address) from a domain
name server (DNS), establishing a connection with the server, and exchanging com-
mands. However, we are not going into these details, as they are not important for our
discussion here.
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Along with its informational content (formatted text and images), a web page
usually contains URLs pointing to other web pages. These URLs are encoded in
the tag structure of the HTML language. For example, the document index.html at
http://dmoz.org/Computers/ includes the following fragment:

<table border=0>

<tr><td valign=top><ul>

<li><a href="/Computers/Algorithms/"><b>Algorithms</b></a>

<i>(367)</i>

The URL in this HTML fragment, /Computers/Algorithms/, is the text
that appears quoted in the <a> tag preceded by href. This is a local URL, a part
of the complete URL (http://dmoz.org/Computers/Algorithms/), which the
browser creates automatically by adding the current protocol name (http) and server
address (dmoz.org). Here is another fragment from the same page that includes
absolute URLs.

<b>Visit our sister sites</b>

<a href="http://www.mozilla.org/">mozilla.org</a>|

<a href="http://chefmoz.org/">ChefMoz</a>

Another important part of the web page linking mechanism is the anchor, the text
or image in the web page that when clicked makes the browser fetch the web page that
is pointed to by the corresponding link. Anchor text is usually displayed emphasized
(underlined or in color) so that it can be spotted easily by the user. For example, in
the HTML fragment above, the anchor text for the URL http://mozilla.org/ is
“mozilla.org” and that for http://chefmoz.org/ is “ChefMoz.”

The idea of the anchor text is to suggest the meaning or content of the web page
to which the corresponding URL is pointing so that the user can decide whether or
not to visit it. This may appear similar to Berners-Lee’s idea in the original web
proposal to attach different semantics to the web links, but there is an important
difference here. The anchor is simply a part of the web page content and does not
affect the way the page is processed by the browser. For example, spammers may
take advantage of this by using anchor text with an attractive name (e.g., summer
vacation) to make user visit their pages, which may not be as attractive (e.g., online
pharmacy). We discuss approaches to avoid this later.

Formally, the Web can be seen as a directed graph, where the nodes are web
pages and the links are represented by URLs. Given a web page P, the URLs in it are
called outlinks. Those in other pages pointing to P are called inlinks (or backlinks).

Web Crawlers

Browsing the Web is a very useful way to explore a collection of linked web documents
as long as we know good starting points: URLs of pages from the topic or area in
which we are interested. However, general search for information about a specific
topic or area through browsing alone is impractical. A better approach is to have web
pages organized by topic or to search a collection of pages indexed by keywords. The
former is done by topic directories and the latter, by search engines. Hereafter we
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shall see how search engines collect web documents and index them by the words
(terms) they contain. First we discuss the process of collecting web pages and storing
them in a local repository. Indexing and document retrieval are discussed in the next
section.

To index a set of web documents with the words they contain, we need to have
all documents available for processing in a local repository. Creating the index by
accessing the documents directly on the Web is impractical for a number of reasons.
Collecting “all” web documents can be done by browsing the Web systematically
and exhaustively and storing all visited pages. This is done by crawlers (also called
spiders or robots).

Ideally, all web pages are linked (there are no unconnected parts of the web
graph) and there are no multiple links and nodes. Then the job of a crawler is simple:
to run a complete graph search algorithm, such as depth-first or breadth-first search,
and store all visited pages. Small-scale crawlers can easily be implemented and are a
good programming exercise that illustrates both the structure of the Web and graph
search algorithms. There are a number of freely available crawlers from this class that
can be used for educational and research purposes. A good example of such a crawler
is WebSPHINX (http://www.cs.cmu.edu/∼rcm/websphinx/).

A straightforward use of a crawler is to visualize and analyze the structure of
the web graph. We illustrate this with two examples of running the WebSPHINX
crawler. For both runs we start with the Data Mining home page at CCSU at
http://www.ccsu.edu/datamining/. As we want to study the structure of the
web locally in the neighborhood of the starting page, we have to impose some limits
on crawling. With respect to the web structure, we may limit the depth of crawling
[i.e., the number of hops (links) to follow and the size of the pages to be fetched].
The region of the web to be crawled can also be specified by using the URL structure.
Thus, all URLs with the same server name limit crawling within the specific server
pages only, while all URLs with the same folder prefixes limit crawling pages that
are stored in subfolders only (subtree).

Other limits are dynamic and reflect the time needed to fetch a page or the
running time of the crawler. These parameters are needed not only to restrict the web
area to be crawled but also to avoid some traps the crawler may fall into (see the
discussion following the examples). Some parameters used to control the crawling
algorithm must also be passed. These are the graph search method (depth-first or
breadth-first) as well as the number of threads (crawling processes running in parallel)
to be used. Various other limits and restrictions with respect to web page content can
also be imposed (some are discussed in Chapter 2 in the context of page ranking).
Thus, for the first example we set the following limits: depth = 3 hops, page size =
30 kB (kilobytes), page timeout = 3 seconds, crawler timeout = 30 seconds, depth-
first search, threads = 4. The portion of the web graph crawled with this setting is
shown in Figure 1.1. The starting page is marked with its name and URL. Note that
due to the dynamic limits and varying network latency, every crawl, even those with
the same parameters, is different. In the one shown in Figure 1.1, the crawler reached
an interesting structure called a hub. This is the page in the middle of a circle of
multiple pages. A hub page includes a large number of links and is usually some
type of directory or reference site that points to many web pages. In our example
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Figure 1.1 Depth-first web crawling limited to depth 3.

the hub page is KDnuggets.com, one of the most comprehensive and well-organized
repositories of information about data mining.

Another crawl with the same parameters and limits, but using a breadth-first
search, is shown in Figure 1.2. The web graph here is more uniformly covered because
of the nature of the search algorithm—all immediate neighbors of a given page are
explored before going to further pages. Therefore, the breadth-first crawl discovered
another hub page that is closer to the starting point. It is the resources page at CCSU—
Data Mining. In both graphs, the ×’s mean that some limits have been reached or
network exceptions have occurred, and the dots are pages that have not yet been
explored, due to the crawler timeout.

The web graph shown by the WebSPHINX crawler is actually a tree, because
only the links followed are shown and the pages are visited only once. However, the
Web is not a tree, and generally there is more than one inlink to a page (occurrences
of the page URL in other web pages). In fact, these inlinks are quite important
when analyzing the web structure because they can be used as a measure of web
page popularity or importance. Similar to the hubs, a web page with a large number
of inlinks is also important and is called an authority. Finding good authorities is,
however, not possible using the local crawls that we illustrated with the examples
above and generally requires analyzing a much larger portion of the web (theoretically,
the entire Web, if we want to find all inlinks).

Although there is more than one inlink to some of the pages in our example
(e.g., the CCSU or the CCSU—Data Mining home pages are referred to in many other
pages), these links come from the same site and are included basically for navigation
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Figure 1.2 Breadth-first web crawling limited to depth 3.

purposes. Such links do not reflect the actual popularity of the web pages to which
they point. This is a situation similar to self-citation in scientific literature, which is
hardly considered as a good measure of authority. We discuss these issues in more
depth later in the context of page ranking.

Although visualizing the web graph is a nice feature of web crawlers, it is
not the most important. In fact, the basic role of a crawler that is part of a search
engine is to collect information about web pages. This may be web page textual
content, page titles, headers, tag structure, or web links structure. This information
is organized properly for efficient access and stored in a local repository to be used
for indexing and search (see the next section). Thus, a crawler is not only an im-
plementation of a graph search algorithm, but also an HTML parser and analyzer,
and much more. Some of the extended functionalities of web crawlers are discussed
next.

The Web is far from an ideal graph structure such as the one shown in Figures
1.1 and 1.2. Crawling the Web involves interaction with hundreds of thousands of
web servers, designed to meet different goals, provide different services such as
database access and user interactions, generate dynamic pages, and so on. Another
very important factor is the huge number of pages that have to be visited, analyzed, and
stored. Therefore, a web crawler designed to crawl the entire Web is a sophisticated
program that uses advanced programming technology to improve its time and space
efficiency and usually runs on high-performance parallel computers. Hereafter we
provide a brief account of common problems that large-scale crawlers are faced with
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and outline some solutions. We are not going into technical details because this is
aside from our main goal: analyzing the web content.� The process of fetching a web page involves some network latency (sometimes

a “timeout”). To avoid waiting for the current page to load in order to continue
with the next page, crawlers fetch multiple pages simultaneously. In turn, this
requires connecting to multiple servers (usually thousands) at the same time,
which is achieved by using parallel and distributed programming technology
such as multithreading (running multiple clients concurrently) or nonblocking
sockets and event handlers.� The first step in fetching a web page is address resolution, converting the sym-
bolic web address into an IP address. This is done by a DNS server that the
crawler connects. Since multiple pages may be located at a single server, storing
addresses already looked up in a local cache allows the crawler to avoid repeat-
ing DNS requests and consequently, improves its efficiency and minimizes the
Internet traffic.� After fetching a web page it is scanned and the URLs are extracted—these are
the outlinks that will be followed next by the crawler. There are many ways to
specify an URL in HTML. It may also be specified by using the IP address of
the server. As the mapping between server names and IP addresses is many-to-
many,1 this may result in multiple URLs for a single web page. The problem is
aggravated by the fact that browsers are tolerant of pages that have the wrong
syntax. As a result, HTML documents are not designed with enough care and
often include wrongly specified URLs as well as other malicious structures.
All this makes parsing and extracting URLs from HTML documents not an
easy task. The solution is to use a well-designed and robust parser and after
extracting the URLs to convert them into a canonical form. Even so, there
are traps that the crawler may fall into. The best policy is to collect statistics
regularly about each crawl and use them in a special module called a guard. The
purpose of the guard is to exclude outlinks that come from sites that dominate
the crawler collection of pages. Also, it may filter out links to dynamic pages
or forms as well as to nontextual pages (e.g., images, scripts).� Following the web page links may bring the crawler back to pages already
visited. There may also exist identical web pages at different web addresses
(called mirror sites). To avoid following identical links and fetching identical
pages multiple times, the crawler should keep caches for URLs and pages
(this is another reason for putting URLs into canonical form). Various hashing
techniques are used for this purpose.� An important part of the web crawler system is the text repository. Yahoo!
claimed that in August 2005 their index included 20 billion pages [2], 19.2
of them web documents. With an average of 10 kB for a web document, this

1 A server may have more than one IP address, and different host names may be mapped onto a single IP

address. The former is usually done for load balancing of servers that handle a large number of requests,

and the latter, for organizing web pages into more logical host names than the number of IP addresses

available (virtual hosting).
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makes about 200,000 GB (gigabytes) of storage. Managing such a huge repos-
itory is a challenging task. Note that this is the crawler repository, not the
indexed collection of web pages used to answer search queries. The latter is
of comparable size, but even more complicated because of the need for fast
access. The crawler repository is used to store pages, maintain the URL and
document caches needed by the crawler, and provide access for building indices
at the next stage. To minimize storage needs, the web pages are usually com-
pressed, which reduces the storage requirements two- to threefold. For large-
scale crawlers the text repository may be distributed over a number of storage
servers.� The purpose of a web crawler used by a search engine is to provide local ac-
cess to the most recent versions of possibly all web pages. This means that
the Web should be crawled regularly and the collection of pages updated ac-
cordingly. Having in mind the huge capacity of the text repository, the need
for regular updates poses another challenge for the web crawler designers. The
problem is the high cost of updating indices. A common solution is to append
the new versions of web pages without deleting the old ones. This increases
the storage requirements but also allows the crawler repository to be used for
archival purposes. In fact, there are crawlers that are used just for the purposes
of archiving the web. The most popular web archive is the Internet Archive at
http://www.archive.org/.� The Web is a live system, it is constantly changing—new features emerge and
new services are offered. In many cases they are not known in advance, or even
worse, web pages and servers may behave unpredictably as a result of bugs or
malicious design. Thus, the web crawler should be a very robust system that is
updated constantly in order to respond to the ever-changing Web.� Crawling of the Web also involves interaction of web page developers. As
Brin and Page [5] mention in a paper about their search engine Google, they
were getting e-mail from people who noticed that somebody (or something)
visited their pages. To facilitate this interaction there are standards that allow
web servers and crawlers to exchange information. One of them is the robot
exclusion protocol. A file named robots.txt that lists all path prefixes of pages
that crawlers should not fetch is placed in the http root directory of the server
and read by the crawlers before crawling of the server tree.

So far we discussed crawling based on the syntax of the web graph: that is,
following links and visiting pages without taking into account their semantics. This
is in a sense equivalent to uninformed graph search. However, let’s not forget that we
discuss web crawling in the context of web search. Thus, to improve its efficiency,
or for specific purposes, crawling can also be done as a guided (informed) search.
Usually, crawling precedes the phase of web page evaluation and ranking, as the latter
comes after indexing and retrieval of web documents. However, web pages can be
evaluated while being crawled. Thus, we get some type of enhanced crawling that
uses page ranking methods to achieve focusing on interesting parts of the Web and
avoiding fetching irrelevant or uninteresting pages.
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INDEXING AND KEYWORD SEARCH

Generally, there are two types of data: structured and unstructured. Structured data
have keys (attributes, features) associated with each data item that reflect its content,
meaning, or usage. A typical example of structured data is a relational table in a
database. Given an attribute (column) name and its value, we can get a set of tuples
(rows) that include this value. For example, consider a table that contains descriptions
of departments in a school described by a number of attributes, such as subject, pro-
grams offered, areas of specialization, facilities, and courses. Then, by a simple query,
we may get all departments that, for example, have computer labs. In SQL (Struc-
tured Query Language) this query is expressed as select * from Departments

where facilities=`̀ computer lab´́ . A more common situation is, however,
to have the same information specified as a one-paragraph text description for each
department. Then looking for departments with computer labs would be more difficult
and generally would require people to read and understand the text descriptions.

The problem with using structured data is the cost associated with the process
of structuring them. The information that people use is available primarily in unstruc-
tured form. The largest part of it are text documents (books, magazines, newspapers)
written in natural language. To have content-based access to these documents, we
organize them in libraries, bibliography systems, and by other means. This process
takes a lot of time and effort because it is done by people. There are attempts to use
computers for this purpose, but the problem is that content-based access assumes
understanding the meaning of documents, something that is still a research question,
studied in the area of artificial intelligence and natural language processing in partic-
ular. One may argue that natural language texts are structured, which is true as long as
the language syntax (grammatical structure) is concerned. However, the transition to
meaning still requires semantic structuring or understanding. There exists a solution
that avoids the problem of meaning but still provides some types of content-based
access to unstructured data. This is the keyword search approach known from the
area of information retrieval (IR). The idea of IR is to retrieve documents by using
a simple Boolean criterion: the presence or absence of specific words (keywords,
terms) in the documents (the question of meaning here is left to the user who for-
mulates the query). Keywords may be combined in disjunctions and conjunctions,
thus providing more expressiveness of the queries. A keyword-based query cannot
identify the matching documents uniquely, and thus it usually returns a large number
of documents. Therefore, in IR there is a need to rank documents by their relevance
to the query. Relevance ranking is an important difference with querying structured
data where the result of a query is a set (unordered collection) of data items.

IR approaches are applicable to bibliographic databases, collections of journal
and newspaper articles, and other large text document collections that are not well
structured (not organized by content), but require content-based access. In short,
IR is about finding relevant data using irrelevant keys. The Web search engines
rely heavily on IR technology. The web crawler text repository is very much like
the document collection for which the IR approaches have been developed. Thus,
having a web crawler, the implementation of IR-based keyword search for the Web is
straightforward. Because of their internal HTML tag structure and external web link
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Figure 1.3 Directory page for a collection of web documents.

structure, the web documents are richer than simple text documents. This allows search
engines to go further and provide more sophisticated methods for matching keyword
queries with web documents and to do better relevance ranking. In this section we
discuss standard IR techniques for text document processing. The enhancements that
come from the Web structure are discussed in the next sections.

To illustrate the basic keyword search approach to the Web, we consider again
the unstructured version of our example with the departments and make it more
realistic by taking the web page that lists all departments in the school of Arts and
Sciences at CCSU (Figure 1.3). The information about each department is provided
in a separate web page linked to the department name listed on the main page. We
include one of those pages in Figure 1.4 (the others have a similar format).

The first step is to fetch the documents from the Web, remove the HTML tags,
and store the documents as plain text files. This can easily be done by a web crawler
(the reader may want to try WebSPHINX) with proper parameter settings. Then the
keyword search approach can be used to answer such queries as:

1. Find documents that contain the word computer and the word programming.

2. Find documents that contain the word program, but not the word programming.

3. Find documents where the words computer and lab are adjacent. This query is
called proximity query, because it takes into account the lexical distance between
words. Another way to do it is by searching for the phrase computer lab.
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Figure 1.4 Sample web document.

Answering such queries can be done by scanning the content of the documents
and matching the keywords against the words in the documents. For example, the
music department document shown in Figure 1.4 will be returned by the second and
third queries.

Document Representation

To facilitate the process of matching keywords and documents, some preprocessing
steps are taken first:

1. Documents are tokenized; that is, all punctuation marks are removed and the
character strings without spaces are considered as tokens (words, also called
terms).

2. All characters in the documents and in the query are converted to upper or lower
case.

3. Words are reduced to their canonical form (stem, base, or root). For example,
variant forms such as is and are are replaced with be, various endings are re-
moved, or the words are transformed into their root form, such as programs and
programming into program. This process, called stemming, uses morphological
information to allow matching different variants of words.

4. Articles, prepositions, and other common words that appear frequently in text
documents but do not bring any meaning or help distinguish documents are
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TABLE 1.1 Basic Statistics for A&S Documents

Document ID Document Name Words Terms

d1 Anthropology 114 86

d2 Art 153 105

d3 Biology 123 91

d4 Chemistry 87 58

d5 Communication 124 88

d6 Computer Science 101 77

d7 Criminal Justice 85 60

d8 Economics 107 76

d9 English 116 80

d10 Geography 95 68

d11 History 108 78

d12 Mathematics 89 66

d13 Modern Languages 110 75

d14 Music 137 91

d15 Philosophy 85 54

d16 Physics 130 100

d17 Political Science 120 86

d18 Psychology 96 60

d19 Sociology 99 66

d20 Theatre 116 80

Total number of words/terms 2195 1545

Number of different words/terms 744 671

called stopwords. Examples are a, an, the, on, in, and at. These words are
usually removed.

The collection of words that are left in the document after all those steps is dif-
ferent from the original document and may be considered as a formal representation
of the document. To emphasize this difference, we call the words in this collection
terms. The collection of words (terms) in the entire set of documents is called the text
corpus.

Table 1.1 shows some statistics about documents from the school of Arts and
Sciences (A&S) that illustrate this process (the design department is not included be-
cause the link points directly to the department web page). The words are counted after
tokenizing the plain text versions of the documents (without the HTML structures).
The term counts are taken after removing the stopwords but without stemming.

The terms that occur in a document are in fact the parameters (also called
features, attributes, or variables in different contexts) of the document representation.
The types of parameters determine the type of document representation:� The simplest way to use a term as a feature in a document representation is

to check whether or not the term occurs in the document. Thus, the term is
considered as a Boolean attribute, so the representation is called Boolean.
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� The value of a term as a feature in a document representation may be the number
of occurrences of the term (term frequency) in the document or in the entire
corpus. Document representation that includes the term frequencies but not the
term positions is called a bag-of-words representation because formally it is a
multiset or bag (a type of set in which each item may occur numerous times).� Term positions may be included along with the frequency. This is a “complete”
representation that preserves most of the information and may be used to gen-
erate the original document from its representation.

The purpose of the document representation is to help the process of keyword
matching. However, it may also result in loss of information, which generally increases
the number of documents in response to the keyword query. Thus, some irrelevant
documents may also be returned. For example, stemming of programming would
change the second query and allow the first one to return more documents (its original
purpose is to identify the Computer Science department, but stemming would allow
more documents to be returned, as they all include the word program or programs
in the sense of “program of study”). Therefore, stemming should be applied with
care and even avoided, especially for Web searches, where a lot of common words
are used with specific technical meaning. This problem is also related to the issue
of context (lexical or semantic), which is generally lost in keyword search. A partial
solution to the latter problem is the use of proximity information or lexical context.
For this purpose a richer document representation can be used that preserves term
positions. Some punctuation marks can be replaced by placeholders (tokens that are
left in a document but cannot be used for searching), so that part of the lexical structure
of the document, such as sentence boundaries, can be preserved. This would allow
answering queries such as “Find documents containing computer and programming
in the same sentence.” Another approach, called part-of-speech tagging, is to attach
to words tags that reflect their part-of-speech roles (e.g., verb or noun). For example,
the word can usually appears in the stopword list, but as a noun it may be important
for a query.

For the purposes of searching small documents and document collections such
as the CCSU Arts and Sciences directory, direct text scanning may work well. This
approach cannot, however, be scaled up to large documents and/or collections of
documents such as the Web, due to the prohibitive computational cost. The approach
used for the latter purposes is called an inverted index and is central to IR. The idea is
to switch the roles of document IDs and terms. Instead of accessing documents by IDs
and then scanning their content for specific terms, the terms that documents contain
are used as access keys. The simplest form of an inverted index is a document–term
matrix, where the access is by terms (i.e., it is transposed to term–document matrix).

The term–document matrix for our department example has 20 rows, corre-
sponding to documents, and 671 columns, corresponding to all the different terms
that occur in the text corpus. In the Boolean form of this matrix, each cell contains
1 if the term occurs in the document, and 0 otherwise. We assign the documents as
rows because this representation is also used in later sections, but in fact, the table
is accessed by columns. A small part of the matrix is shown in Table 1.2 (instead of
names, document IDs are used).
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TABLE 1.2 Boolean Term–Document Matrix

Document ID lab laboratory programming computer program

d1 0 0 0 0 1

d2 0 0 0 0 1

d3 0 1 0 1 0

d4 0 0 0 1 1

d5 0 0 0 0 0

d6 0 0 1 1 1

d7 0 0 0 0 1

d8 0 0 0 0 1

d9 0 0 0 0 0

d10 0 0 0 0 0

d11 0 0 0 0 0

d12 0 0 0 1 0

d13 0 0 0 0 0

d14 1 0 0 1 1

d15 0 0 0 0 1

d16 0 0 0 0 1

d17 0 0 0 0 1

d18 0 0 0 0 0

d19 0 0 0 0 1

d20 0 0 0 0 0

Using the term–document matrix, answering the keyword search queries is
straightforward. For example, query 1 returns only d6 (Computer Science document),
because it has 1’s in the columns programming and computer, while query 2 returns
all documents with 1’s in the column program, excluding d6, because the latter has
1 in the column programming. The proximity query (number 3), however, cannot be
answered using a Boolean representation. This is because information about the term
positions (offsets) in the document is lost. The problem can be solved by using a
richer representation that includes the position for each occurrence of a term. In this
case, each cell of the term–document matrix contains a list of integers that represent
the term offsets for each of its occurrences in the corresponding document. Table 1.3
shows the version of the term–document matrix from Table 1.2 that includes term
positions. Having this representation, the proximity query can also be answered. For
document d14 (Music department) the matrix shows the following position lists: [42]
for lab and [41] for computer. This clearly shows that the two terms are adjacent and
appear in the phrase computer lab.

The term position lists also show the term frequencies (the length of these lists).
For example, the term computer occurs six times in the Computer Science document
and once in the Biology, Chemistry, Mathematics, and Music documents. Obviously,
this is a piece of information that shows the importance of this particular feature for
those documents. Thus, if computer is the query term, clearly the most relevant docu-
ment returned would be Computer Science. For the other four documents, additional
keywords may be needed to get a more precise relevance ranking. These issues are
further discussed in the next sections.
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TABLE 1.3 Term–Document Matrix with Term Positions

Document ID lab laboratory programming computer program

d1 0 0 0 0 [71]

d2 0 0 0 0 [7]

d3 0 [65,69] 0 [68] 0

d4 0 0 0 [26] [30,43]

d5 0 0 0 0 0

d6 0 0 [40,42] [1,3,7,13,26,34] [11,18,61]

d7 0 0 0 0 [9,42]

d8 0 0 0 0 [57]

d9 0 0 0 0 0

d10 0 0 0 0 0

d11 0 0 0 0 0

d12 0 0 0 [17] 0

d13 0 0 0 0 0

d14 [42] 0 0 [41] [71]

d15 0 0 0 0 [37,38]

d16 0 0 0 0 [81]

d17 0 0 0 0 [68]

d18 0 0 0 0 0

d19 0 0 0 0 [51]

d20 0 0 0 0 0

Implementation Considerations

The Boolean representation of a term–document matrix is simple and can easily be
implemented as a relational table. We use this representation later in the book for the
purposes of document classification and clustering. However, for large document col-
lections (such as those used by search engines) and for incorporating term positions,
the amount of space needed is too large and does not allow straightforward imple-
mentation using a relational database. In these cases more advanced methods such
as B-trees and hash tables are used. The idea is to implement the mappings directly
from terms to documents and term positions. For example, the following structures
can be used for this purpose:

lab → d14/42

laboratory → d3/65, 69

programming → d6/40, 42

computer → d3/68; d4/26; d6/1, 3, 7, 13, 26, 34; d12/17; d14/41

There are two problems associated with this representation:

1. The efficiency of creating the data structure implementing the index

2. The efficiency of updating the index
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Both issues are critical, especially for the indices used by web search engines. To
get an idea of the magnitude of the problem, we provide here some figures from
experiments performed with the GOV2 collection reported at the Text Retrieval Con-
ference 2004-terabyte (TB) track. The GOV2 document collection is 426 GB and
contains 25 million documents taken from the .gov web domain, including HTML
and text, plus the extracted text of PDF, Word, and postscript files. For one of the
submissions to this track (Indri), the index size was 224 GB and took 6 hours to build
on a cluster of six computers. Given these figures, we can also get an idea about
the indices build by web search engines. Assuming a web document collection of
20 billion documents (the size of the document collection that Yahoo! claimed to
index in August 2005), its size can be estimated to be 500 TB (for comparison, the
books in the U.S. Library of Congress contain approximately 20 TB of text). Simple
projection suggests an index size of about 200 TB and an indexing time of 6000
hours (!). This amount of memory can be managed by recent technology. Moreover,
there exist compression techniques that can substantially reduce the memory require-
ments. This indexing time is, however, prohibitive for search engines because the
web pages change at a much quicker rate. The web indices should be built quickly
and, most important, updated at a rate equal to the average rate of updating web
pages.

There is another important parameter in indexing and search: the query time.
It is assumed that this time should be in the range of seconds (typically, less than
a second). The problem is that when the index is compressed, the time to update
it and the access time (query time) both increase. Thus, the concern is to find the
right balance between memory and time requirements (a version of the time–space
complexity trade-off well known in computing).

Relevance Ranking

The Boolean keyword search is simple and efficient, but it returns a set (unordered
collection) of documents. As we mentioned earlier, information retrieval queries are
not well defined and cannot uniquely identify the resulting documents. The average
size of a web search query is two terms. Obviously, such a short query cannot specify
precisely the information needs of web users, and as a result, the response set is
large and therefore useless (imagine getting a list of a million documents from a web
search engine in random order). One may argue that users have to make their queries
specific enough to get a small set of all relevant documents, but this is impractical. The
solution is to rank documents in the response set by relevance to the query and present
to the user an ordered list with the top-ranking documents first. The Boolean term–
document matrix cannot, however, provide ordering within the documents matching
the set of keywords. Therefore, additional information about terms is needed, such
as counts, positions, and other context information. One straightforward approach
is to incorporate the term count (frequencies). This is done in the term frequency–
inverse document frequency (TFIDF) framework used widely in IR and Web search.
Other approaches using positions and lexical and web context are discussed in later
sections.
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Vector Space Model

The vector space model defines documents as vectors (or points) in a multidimensional
Euclidean space where the axes (dimensions) are represented by terms. Depending
on the type of vector components (coordinates), there are three basic versions of this
representation: Boolean, term frequency (TF), and term frequency–inverse document
frequency (TFIDF).

Assume that there are n documents d1, d2, . . . , dn and m terms t1, t2, . . . , tm .
Let us denote as nij the number of times that term ti occurs in document d j . In
a Boolean representation, document d j is represented as an m-component vector
�d j = (d1

j d2
j · · · dm

j ), where2

di
j =

{
0 if nij = 0
1 if nij > 0

For example, in Table 1.2 the documents from our department collection are repre-
sented in five-dimensional space, where the axes are lab, laboratory, programming,
computer, and program. In this space the Computer Science document is represented
by the Boolean vector

�d6 = (0 0 1 1 1)

As we mentioned earlier, the Boolean representation is simple, easy to compute, and
works well for document classification and clustering. However, it is not suitable for
keyword search because it does not allow document ranking. Therefore, we focus
here on the TFIDF representation.

In the term frequency (TF) approach, the coordinates of the document vector �d j

are represented as a function of the term counts, usually normalized with the document
length. For each term ti and each document d j , the TF (ti ,d j ) measure is computed.
This can be done in different ways; for example:� Using the sum of term counts over all terms (the total number of terms in the

document):

TF (ti , d j ) =
⎧⎨⎩0 if nij = 0

nij∑m

k=1
nkj

if nij > 0

� Using the maximum of the term count over all terms in the document:

TF (ti , d j ) =
⎧⎨⎩0 if nij = 0

nij

maxk nkj
if nij > 0

� Using a log scale to condition the term count (this approach is used in the
Cornell SMART system [3]):

TF (ti , d j ) =
{

0 if nij = 0
1 + log(1 + log nij) if nij > 0

2 For compactness of presentation here and throughout the book, we interchange the row and column

notation for vectors where appropriate.
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This approach does not use the document length; rather, the counts are just
smoothed by the log function.

In the Boolean and TF representations, each coordinate of a document vector
is computed locally, taking into account only the particular term and document. This
means that all axes are considered to be equally important. However, terms that occur
frequently in documents may not be related to the content of the document. This is
the case with the term program in our department example. Too many vectors have
1’s (in the Boolean case) or large values (in TF) along this axis. This in turn increases
the size of the resulting set and makes document ranking difficult if this term is used
in the query. The same effect is caused by stopwords such as a, an, the, on, in, and at
and is one reason to eliminate them from the corpus.

The basic idea of the inverse document frequency (IDF) approach is to scale
down the coordinates for some axes, corresponding to terms that occur in many
documents. For each term ti the IDF measure is computed as a proportion of documents
where ti occurs with respect to the total number of documents in the collection. Let
D = ⋃n

1 d j be the document collection and Dti the set of documents where term ti
occurs. That is, Dti = {d j |ni j > 0}. As with TF, there are a variety of ways to compute
IDF; some take a simple fraction |D|/|Dti |, others use a log function such as

IDF(ti ) = log
1 + |D|
|Dti |

In the TFIDF representation each coordinate of the document vector is computed as
a product of its TF and IDF components:

di
j = TF(ti , d j )IDF(ti )

To illustrate the approach we represent our department documents in the TFIDF
framework. First we need to compute the TF component for each term and each
document. For this purpose we use a term–document matrix with term positions (Table
1.3) to get the counts ni j , which are equal to the length of the lists with positions.
These counts then have to be scaled with the document lengths (the number of terms
taken from Table 1.1). The result of this is shown in Table 1.4, where the vectors are
rows in the table (the first column is the vector name and the rest are its coordinates).

Note that the coordinates of the document vectors changed their scale, but
relative to each other they are more or less the same. This is because the factors used
for scaling down the term frequencies are similar (documents are similar in length).
In the next step, IDF will, however, change the coordinates substantially.

Using the log version of the IDF measure, we get the following factors for each
term (in decreasing order):

lab laboratory programming computer program

3.04452 3.04452 3.04452 1.43508 0.559616

These numbers reflect the specificity of each term with respect to the document col-
lection. The first three get the biggest value, as they occur in only one document each.
The term computer occurs in five documents and program in 11. The document vector
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TABLE 1.4 Document Vectors with TF Coordinates

Document ID TF Coordinates

�d1 0 0 0 0 0.012
�d2 0 0 0 0 0.010
�d3 0 0.022 0 0.011 0
�d4 0 0 0 0.017 0.034
�d5 0 0 0 0 0.011
�d6 0 0 0.026 0.078 0.039
�d7 0 0 0 0 0.033
�d8 0 0 0 0 0.013
�d9 0 0 0 0 0
�d10 0 0 0 0 0
�d11 0 0 0 0 0
�d12 0 0 0 0.015 0
�d13 0 0 0 0 0
�d14 0.011 0 0 0.011 0.011
�d15 0 0 0 0 0.037
�d16 0 0 0 0 0.010
�d17 0 0 0 0 0.012
�d18 0 0 0 0 0
�d19 0 0 0 0 0.015
�d20 0 0 0 0 0

TF components are now multiplied by the IDF factors. In this way the vector coordi-
nates corresponding to rare terms (lab, laboratory, and programming) increase, and
those corresponding to frequent ones (computer and program) decrease. For example,
the Computer Science (CS) document vector with TF only is

�d6 = (0 0 0.026 0.078 0.039)

whereas after applying IDF, it becomes

�d6 = (0 0 0.079 0.112 0.022)

In this vector the term computer is still the winner (obviously, the most important
term for CS), but the vector is now stretched out along the programming axis, which
means that the term programming is more relevant to identifying the document than
the term program (quite true for CS, having in mind that program also has other
non-CS meanings).

Document Ranking

In the Boolean model the query terms are simply matched against the document
vectors, and the documents that match the query exactly are returned. In the TFIDF
model, exact matching is not possible; therefore, we need some proximity measure
between the query and the documents in the collection. The basic idea is to represent
the query as a vector (called a query vector) in the document vector space and then



SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

24 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

to use the metric properties of vector spaces. For this purpose we first consider the
keyword query as a document. For example, the query that is supposed to return all
documents containing the terms computer and program is represented as a document
q = {computer, program}. As each term occurs once, its TF component is 1

2
(normal-

ized with the document length of 2). Thus, the TF vector in five-dimensional space is

�q = (0 0 0 0.5 0.5)

which after scaling with IDF becomes

�q = (0 0 0 0.718 0.28)

When we specify a Boolean query we usually assume that the terms are equally impor-
tant for the document we are looking for. However, it appears that the importance of
the keywords depends on the document collection. Thus, the search engine automati-
cally adjusts the importance of each term in the query. For example, the term computer
seems to be more important than program simply because program is a more com-
mon term (occurs in more documents) in this particular collection. The situation may
change if we search a different collection of documents (e.g., in the area of CS only).

Given a query vector �q and document vectors �d j , j = 1, 2, . . . , 20, the objective
of a search engine is to order (rank) the documents with respect to their proximity to
�q . The result list should include a number of top-ranked documents. There are several
approaches to this type of ranking. One option is to use the Euclidean norm of the
vector difference ‖�q − �d j‖, defined as

‖�q − �d j‖ =
√√√√ m∑

i=1

(
qi − di

j

)2

This measure is, in fact, the Euclidian distance between the vectors considered as
points in Euclidean space, and being a metric function, it has some nice properties,
such as the triangle inequality. However, it depends greatly on the length of the vectors
to be compared. This property is not in agreement with one of the basic assumptions
in IR: that similar documents (in terms of their relevance to the query) also have to
be close in the vector space. For example, a large and a small document will be at a
great distance even though they may both be relevant to the same query. To avoid this,
the document and the query vectors are normalized to unit length before taking the
vector difference. This approach still has a drawback because queries are very short
and when scaled down with the query length (typically, 2), their vectors tend to be at
a great distance from large documents.

Another approach is to use the cosine of the angle between the query vector and
the document vectors. When the vectors are normalized, this measure is equivalent
to the dot product �q · �d j , defined as

�q · �d j =
m∑

i=1

qi di
j

This measure, known as cosine similarity, is the one used primarily in IR and web
search.
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TABLE 1.5 Cosine Similarity and Distances with �q = (0 0 0 0.932 0.363)

Document ID TFIDF Coordinates (Normalized) �q · �d j (rank)a |�q − �d j | (rank)a

�d1 0 0 0 0 1 0.363 1.129
�d2 0 0 0 0 1 0.363 1.129
�d3 0 0.972 0 0.234 0 0.218 1.250
�d4 0 0 0 0.783 0.622 0.956 (1) 0.298 (1)
�d5 0 0 0 0 1 0.363 1.129
�d6 0 0 0.559 0.811 0.172 0.819 (2) 0.603 (2)
�d7 0 0 0 0 1 0.363 1.129
�d8 0 0 0 0 1 0.363 1.129
�d9 0 0 0 0 0 0 1
�d10 0 0 0 0 0 0 1
�d11 0 0 0 0 0 0 1
�d12 0 0 0 1 0 0.932 0.369
�d13 0 0 0 0 0 0 1
�d14 0.890 0 0 0.424 0.167 0.456 (3) 1.043 (3)
�d15 0 0 0 0 1 0.363 1.129
�d16 0 0 0 0 1 0.363 1.129
�d17 0 0 0 0 1 0.363 1.129
�d18 0 0 0 0 0 0 1
�d19 0 0 0 0 1 0.363 1.129
�d20 0 0 0 0 0 0 1

a The rank is shown only for documents that include both terms (computer and program)

Table 1.5 illustrates the query processing and document ranking approach dis-
cussed so far with the department example. The query is “computer AND program,”
represented by the normalized query vector �q = (0 0 0 0.932 0.363). The docu-
ment vectors are generated from those shown in Table 1.4 by applying IDF scaling
and normalization. The last two columns show the cosine similarity (dot product) and
the distance (norm of the vector difference) between those vectors and the query vec-
tor. The documents that include both terms (computer and program) are emphasized
and their ranking is shown in parentheses.

First let us look at the document vectors. Those with just one nonzero coordinate
look like Boolean vectors. This is because of the normalization step, which scales
the coordinates so that the vector norm is equal to 1. Another interesting effect due
to normalization is demonstrated by vectors �d6 and �d12. Both documents include
the term computer, but the TFIDF component for computer in �d6 is lower than the
one in �d12. The explanation is that the normalization step scaled up the computer
coordinate of �d12 to 1 because that was the only nonzero coordinate, whereas the
same coordinate of �d6 was scaled down due to the presence of two other nonzero
coordinates. Generally, this shows the importance of the choice of terms to represent
documents. In this particular case the problem is caused by the limited number of
terms used (only five). One straightforward solution is to use all 671 terms that occur
in the entire document collection. However, in large collections the number of terms
is usually tens of thousands, and most important, they are not distributed uniformly
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over the documents. Moreover, the documents are of different lengths, which again
may cause a lot of 0’s in the document vectors. All this results in extremely sparse
distribution of the document vectors, especially those collected from the Web. In this
respect the sparsely populated Table 1.5 seems to represent well the general situation
with document vector space.

Table 1.5 shows the similarity of all document vectors with the query vec-
tor. However, to answer the query (computer AND program), only the documents
that include both keywords need to be considered. They are �d4 (Chemistry), �d6 (Com-
puter Science), and �d14 (Music), in the order of their ranking. Interestingly, both
measures, maximum dot product and minimum distance, agree on the relevance of
these documents to the query. We would also like to have these three documents
ranked at the top among all documents. Another desired property would be the ex-
istence of a cutoff value that would allow us to distinguish the exact Boolean match
with all keywords. However, this is not the case here. The ordering of documents that
do not match both keywords is indicative for the differences between the two proxim-
ity measures. The cosine similarity ordering seems more natural, while the distance
ranking looks peculiar. For example, at distance 1 to the query the documents are
represented by all-zero vectors [i.e., none of the terms used in the representation (the
dimensions) occur in those documents]. Strangely, one of the matches with the query
( �d14) is farther from the query than the all-zero vectors. There is a similar situation
with cosine similarity: Document vector �d12, with just one nonzero component (the
one that matches one of the keywords), has the second-highest score among all the
documents, but obviously this is an exception. In general, the cosine similarity mea-
sure seems more stable with respect to the choice of terms, which in turn may explain
why it is the preferred proximity measure for IR systems.

The results above suggest that terms have to be chosen such that the zero-valued
coordinates of the vectors are minimized. One approach to achieving this is to use
terms with high TF scores. For example, the term counts may be taken on the entire
corpus and then the top frequency terms chosen as dimensions of the vector space.
In this way we can have more nonzero components in each vector. However, as we
have already seen, these frequent terms do not reflect the content and meaning of a
document. In fact, the important terms are the more document-specific terms (i.e.,
those with high IDF scores). Thus, the question is how to balance the TF and IDF
contributions when we choose terms (features) to represent documents. In a more
general context, this problem, called feature selection, plays an important role in
document classification and clustering. In later chapters we shall discuss it in more
detail.

Relevance Feedback

Keyword queries are often incomplete or ambiguous. The response from such queries
may not return the relevant documents that match user information needs or may
include many irrelevant documents. So queries have to be specialized and refined,
which is usually done through advanced search options, available in most search
engines. This means, however, that the user needs to know more about the document
searched, which contradicts the basic philosophy of information retrieval, which is
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about search for information, not documents. The relevance feedback approach refines
the query automatically using user feedback as to the relevance of the result. This
can be done by providing some type of rating for each document in the result list.
In the initial response these ratings may be the document ranks or simply binary
labels indicating the relevance or irrelevance for each document. For example, the
top 10 documents in the ranked list may be considered as relevant and the rest as
irrelevant.

After the initial response the user evaluates the actual relevance of each doc-
ument (e.g., by reading its content) and is provided with the option to change the
relevance suggested by the system. This information, called relevance feedback, is
then sent back to the search engine and the query is repeated. At this point the rel-
evance feedback is used to adjust the original query vector. This can be done using
Rocchio’s method, a simple and popular technique known from early IR systems
and used recently in related areas, such as machine learning. The idea is to update
the query vector using a linear combination of the previous query vector �q and the
document vectors �d j of relevant and irrelevant documents. That is,

�q ′ = α �q + β
∑

d j ∈D+

�d j − γ
∑

d j ∈D−

�d j

where α, β, and γ are adjustable parameters and D+ and D− are the sets of relevant
and irrelevant documents provided by the user. These sets can also be determined
automatically (the approach is then called pseudorelevance feedback): for example,
by assuming that the top 10 documents returned by the original query belong to
D+ and the rest to D−. Because the set of irrelevant documents is usually much
larger, we may want not to use D− (i.e., set γ = 0). Also, not all terms have to be
included in the equation. The reason is that terms with high TF may occur in many
documents and thus contribute too much to the corresponding component of the query
vector. This would shift the focus to unimportant terms and may call up documents
that are more irrelevant. To avoid this, terms are ordered in decreasing order by
their IDF score, and a given number of terms from the top of the list (e.g., 10) are
chosen.

To illustrate the approach, let us try to improve the search results shown in
Table 1.5. Let α = 1, β = 0.5, γ = 0, and D+ be the set of three relevant documents
returned by the original query. Let us also use only the top three terms from the list
sorted by IDF score (lab, laboratory, and programming), thus excluding computer
and program, which occur in more documents and have lower IDF scores (see the
earlier table showing the IDF scores). The new query vector is computed as

�q ′ = �q + 0.5 ( �d4 + �d6 + �d14)

=

⎛⎜⎜⎜⎜⎝
0
0
0
0.932
0.363

⎞⎟⎟⎟⎟⎠ + 0.5

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

0.

0
0
0
0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
0
0
0.559
0
0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
0.89
0
0
0
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ =

⎛⎜⎜⎜⎜⎝
0.445
0
0.28
0
0.363

⎞⎟⎟⎟⎟⎠
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Note that the last two coordinates of the document vectors are replaced with 0’s, as
we decided to exclude these terms due to low IDF scores. Before the second run the
query vector is normalized to �q ′ = (0.394 0 0.248 0.824 0.321). The resulting list
of documents ranked by cosine similarity (shown in parentheses in Table 1.5) is now
d6(0.863), d4(0.846), and d14(0.754). This ranking seems a little more natural because
the Computer Science document (d6), which has a higher count for the term computer
(the more important query term), is now ranked before the Chemistry document (d4),
which has a smaller count for the same term. Also, the incorrectly ranked document
from the original query d12 (now with cosine similarity 0.824) is one position down.

The general effect of pseudorelevance feedback is that the query becomes more
similar to the relevant documents returned from the original query. Consequently,
on the second run the relevant documents’ vectors are grouped around bigger and
more homogeneous vectors (with more uniform distribution of terms, such as d6 in
the example), and those with scattered terms (e.g., d12) are pushed away. When the
user provides the feedback, the group of relevant vectors may be moved toward a
user-specified set of relevant vectors.

Relevance feedback is a standard technique in classical IR. However, it is not
popular for web search mainly because web users generally expect instant results
from their queries. Also, user feedback would increase the computational cost for
handling the millions of queries that search engines have to deal with every second.
The reason we include the discussion of relevance feedback here is that it contributes
further to better understanding the vector space model and the TFIDF framework.

There also exist probabilistic approaches to relevance feedback that try to model
the mapping between queries and relevant documents using statistical techniques.
Basically, these techniques assume term independence (with respect to other terms,
queries, and document relevance) and calculate conditional probabilities for document
relevance. We are not discussing these approaches here because similar ones exist in
the more general context of document classification, where the document relevance
can be seen as a category (class) label of a document and machine learning techniques
can be used to learn mappings between queries and documents, considering user
feedback as a training set of examples. We discuss some of these techniques in later
chapters.

Advanced Text Search

The commonly used text search queries include only individual terms, and by default
most search engines assume that all of the terms specified must occur in the documents
returned (they are implicitly AND-ed). Advanced search options also allow the use
of “OR” or “NOT” Boolean operators. All these constraints can be implemented
easily during the retrieval phase, when documents are looked up in the inverted
index. After (or while) obtaining a set of documents that satisfy the Boolean Query,
the TFIDF measure is used to compute the proximity of the document vectors to the
query vector. This allows the documents retrieved to be ordered by relevance to the
query.

Another advanced search option is phrase search. Documents that include given
phrases can be retrieved using the standard term-based inverted index, as it also
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contains term position information. We have illustrated this with the phrase computer
lab (see Table 1.3) found in the Music document (d14) because computer and lab
occurred in successive positions (41 and 42) in that particular document.

Ranking documents retrieved by phrase search is, however, more difficult. Using
combinations of the TFIDF measures of the terms that occur in the phrase is not
appropriate because these measures are computed independently for the individual
terms. So we need the TF and IDF values for the phrase itself. Once we have those
measures, phrases can be added as new dimensions to the document vector space,
and cosine similarity can be used for relevance ranking. Thus, the question is how to
identify potentially useful phrases from a given corpus. A collection of phrases that
occur in a corpus is called a phrase dictionary.

The phrase dictionary may be built manually or derived from the corpus au-
tomatically. Most approaches use statistical methods first to extract possible phrases
and then linguistic tools or manual editing to refine the phrase dictionary. Phrases
typically consist of two or three words. In a large corpus two or three words may
occur together by chance or they may be a pattern (i.e., a phrase). The statistical
approach tries to answer this question by estimating the probabilities of occurrences
of the terms individually and as a phrase. For example, if two terms t1 and t2 are in-
dependent, the probability of their cooccurrence is P(t1 t2) = P(t1)P(t2). However if
“t1 t2” is a phrase, the probability P(t1 t2) would significantly differ from the product
P(t1)P(t2). Statistical tests such as likelihood ratio are used to determine this.

Phrases provide context for terms, but they play the same role as that played
by individual terms: They add new features to the document model (dimensions in
vector space). Another, richer context for terms is provided by tagging. We have
already mentioned part-of-speech tagging, where words are associated with their role
in the sentence and the same words with different tags are used as dimensions in
vector space. This approach allows queries to be more specific and unambiguous.

So far we have assumed that keywords in queries can match exactly words
that occur in documents. In practice, however, various languages and dialects are
used and words are often misspelled. Thus, if only exact matching is used, many
relevant documents may be missed. Generally, there are two approaches to solving this
problem. One is to extend the process of stemming with some conflation mechanism
that may handle misspelling and dialects. The difficulties with this approach are that
such mechanisms are developed mostly for English and other Western languages.
Also, a lot of common words are used with specific technical meaning.

The other approach is to try to find the closest match of the query term to
terms in the inverted index. This can be done by approximate string matching. One
popular approach for this is to decompose words into subsequences of characters with
fixed length called n-grams (or q-grams). For example, the word program may be
represented by a sequence of 2-grams as {pr, ro, og, gr, ra, am} and its misspelling
prorgam as {pr, ro, or, rg, ga, am}. So they overlap in three of the six 2-grams and
may be considered close.

To use n-grams in keyword search, the query term is first looked up in a index
of n-grams (n is usually 2 to 4) and is slightly modified so that a set of variant terms
is obtained. Then the inverted index is used with each one those terms. The closest
match is determined by comparing the relevance of the documents retrieved.
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Using the HTML Structure in Keyword Search

So far we have ignored the rich HTML structure of web documents. However, HTML
tags provide a lot of context information that may be very useful in keyword search.
Basically, the tags that add to or modify the meaning of web page text are important
for this purpose. These are:� Titles and metatags that provide meta information about the web page. For

example, the following fragments from the Music page (Figure 1.4) provide
information about the title of the page, its authors, and the software used to
create it:

<title>Music</title>

<meta name="Author" content="John Smith ">

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

This information is included in the “head” area of the web page, and with the
exception of the title is not displayed by the browser.� Headings and font modifiers used to separate or emphasize parts of the text
(e.g., <h2> · · · </h2>, <strong> · · · </strong>, <font> · · · </font>, <p>, <br>).
For example, the title of the web page is generated with the following structure:

<h2 align="center">

<font color="#000080"><big>Music</big></font>

</h2>� Anchor text. For example, the following anchor occurs in the department direc-
tory page (Figure 1.3):

<a href="ASLinks/Chairs.html" target="_top">

<font color="#000000">

Department Chairs, Locations, Phone Numbers<br>

</font></a>

The anchor text here explains briefly the content of the page to which it links.

HTML tags have two basic uses in web search. First, the terms that occur in their
context may be tagged and indexed accordingly. For this purpose the main index can
be extended with tagged terms, or separate indices can be built for faster access. This
will allow web documents to be retrieved by specific parts of their HTML structure.
For example, Google advanced search options allow specifying exactly where the
terms should occur in the page: in the title, in the text (excluding the title), in the page
URL, or in links (anchor text) pointing to the page. Some of these HTML structures
may even replace full text indexing. For example, one of the early versions of Google
built at Stanford University indexed only the titles of 16 million web pages and was
very successful because of the small and efficient index (and also because of the use
of hyperlink-based ranking, which we discuss later). However, the lack of authority
and editorial control on web publishing allows many web pages to have no titles, or
titles that are irrelevant to the page content. The same is true for other tags generally
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supposed to provide metainformation about the web page. All this made the designers
of web search engines take the full-text indexing approach.

The other use of HTML tags is for relevance ranking. The specific HTML scope
where keyword terms occur in a document may affect its ranking. This can be achieved
by assigning different weights to terms occurring in different HTML structures. These
weights are then used to modify the corresponding TFIDF components of the query
and document vectors, which in turn affect their cosine similarity and consequently
the relevance ranking of the documents in the response. Typically, words in titles,
emphasized text, heading, and anchors may get higher scores and thus increase the
relevance score of the documents in which they occur. This approach was popular
in the early search engines and worked well for providing more natural relevance
ranking. The reason for this is that these are techniques used in traditional typesetting
and, more recently, in web page design to emphasize important words and phrases
that have high relevance to the document content and meaning.

With the appearance of spam, however, HTML tags became a tool for making
search engines index web pages with content irrelevant to the indexed terms or for
getting top ranking in search engines. One popular way to achieve this was to include
in the web page invisible words (text with the same foreground and background
color) that will be indexed by search engines but will not be seen by web users.
Metatags were also used by spammers to get top ranking in search engines because the
metainformation they include is not displayed by browsers but is taken into account for
relevance ranking. All this shifted the emphasis of search engines from the HTML tags
to the page hyperlink structure. We discuss link-based ranking in detail in Chapter 2.

Still, one HTML structure plays a significant role in web page indexing and
search. This is the anchor tag, which actually implements the main feature of the web
pages, the hyperlinks. As we mentioned earlier, the purpose of web search is to access
unstructured data by content. The discussion so far was focused on the approaches to
model the web page content. Hyperlinks and especially, anchor text provide additional
content description of web pages. For example, the anchor text “Department Chairs,
Locations, Phone Numbers” (from the A&S directory page shown in Figure 1.4)
includes the term phone, which in fact is not present in the content of the page to
which it points (http://www.artsci.ccsu.edu/ASLinks/Chairs.html). The
latter contains a table in which the phone numbers are listed in a column named “Ext.”
Obviously, when crawled and indexed, this page will not be included in the index entry
for the term phone and consequently cannot be retrieved by keyword search with the
term phone. However, this term may be taken from the anchor text that points to the
page and is included in the set of terms representing the document. Weight that would
increase the TFIDF score of the document vector along this dimension may also be
assigned to such external terms, because they are often more relevant to the page
content than are terms from the original page. The reason for this is that the pages
that link to a particular page provide independent and authoritative judgment about
its content. In some cases the anchor text may be used for indexing instead of the
actual page content. For example, the web page with the phone numbers mentioned
above can be indexed by all the terms that occur in the anchor text pointing to it:
department, chairs, locations, phone, and numbers. More terms may be collected
from other pages pointing to it. This idea was implemented in one of the first search



SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

32 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

engines, the World Wide Web Worm system [4], and later used by Lycos and Google.
This allows search engines to increase their indices with pages that have never been
crawled, are unavailable, or include nontextual content that cannot be indexed, such
as images and programs. As reported by Brin and Page [5] in 1998, Google indexed
24 million pages and over 259 million anchors.

EVALUATING SEARCH QUALITY

Information retrieval systems do not have formal semantics (such as that of databases),
and consequently, the query and the set of documents retrieved (the response of the
IR system) cannot be mapped one to one. Therefore, some measures are used to
evaluate the degree of fitness (accuracy) of the response. A standard benchmark for
this purpose is the recall-precision measure, which is also used in related areas (such
as machine learning and data mining).

Assume that there is a set of queries Q and a set of documents D, and for each
query q ∈ Q submitted to the system we have:� The response set of documents (retrieved documents) Rq ⊆ D� The set of relevant documents Dq selected manually from the entire collection

of documents D (i.e., Dq ⊆ D)

The proportion of retrieved relevant documents to all retrieved documents is
called precision and is defined as

precision =
∣∣Dq ∩ Rq

∣∣∣∣Rq

∣∣
Clearly, the value of the precision is between 0 and 1: where 0 is the worst case—no
relevant documents are retrieved—and 1 is the best case—all documents retrieved
are relevant. Precision 1 is not, however, all that an ideal IR system should provide,
because there may be relevant documents that are not retrieved. Recall is the measure
that accounts for this. It represents the proportion of relevant documents retrieved to
all relevant documents. Formally,

recall =
∣∣Dq ∩ Rq

∣∣∣∣Dq

∣∣
Again, the best case is 1—all relevant documents are retrieved—and the worst case
is 0—no relevant documents are retrieved.

Recall and precision determine the relationship between two sets of documents:
relevant (Dq ) and retrieved (Rq ). Ideally, these sets coincide (precision and recall are
both 1), but this never happens in real systems. Generally, there is some overlap
(Dq ∩ Rq ⊂ Dq ) which we would like to maximize, or the set retrieved is too large
(Dq ⊂ Rq ) and we want to exclude from it documents that are irrelevant. Interestingly,
achieving the maximum value for each of the two measures individually is trivial. By
using a very general query (e.g., a query including terms that occur in all documents),
the response set will be the entire collection of documents D, and thus the recall
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will be 1. However, the precision will be low because all irrelevant documents will
also be included in the response. Inversely, with a very restrictive query, a small
subset of relevant-only documents may be retrieved easily. For example, one of the
relevant documents may be used as a query, and then the precision will be 1. These
observations suggest that there is an important trade-off between precision and recall.
A plot of precision against recall generally slopes down with increasing recall. Thus,
a better IR system will have its recall–precision curve above that of a poorer system.

The set-valued recall–precision framework is oversimplified and is commonly
used only to illustrate the general idea or in areas where ranking is not possible. Real
IR systems, such as web search engines, return thousands of documents. Considering
them as a set as well as computing the set Dq is practically impossible. Obviously, the
document ranks have to be taken into consideration. For this purpose we modify the
setting as follows. Consider that the response to a query q is now not a set but a list
Rq = (d1, d2, . . . , dm) of ranked documents (highest ranks first). Then using the set
of relevant documents Dq , for each document di ∈ Rqwe can compute its relevance
ri as a Boolean value. That is,

ri =
{

1 if di ∈ Dq

0 otherwise

We also add a parameter k ≥ 0 that represents the number of documents from the top
of the list Rq that we consider. Thus, we define precision at rank k as

precision (k) = 1

k

k∑
i=1

ri

and recall at rank k as

recall (k) = 1

|Dq |
k∑

i=1

r i

If we fix k and consider the top k elements from Rq as a set, the new measures work
exactly the same as the set-based measures. The parameter k allows us to see how
recall and precision change with increasing k (i.e., decreasing rank). The average
precision is the measure that accounts for this:

average precision = 1

|Dq |
|D|∑
k=1

rk × precision (k)

The average precision is a useful measure that combines precision and recall and also
evaluates document ranking. The maximal value of average precision is 1, reached
when all relevant documents are retrieved and ranked in the response list before any
irrelevant documents. Note that the sum goes over all documents in the collection D.
Although the system provides ranking only for the documents in the response list Rq ,
we assume that all documents in D are ordered by their rank. In practice, to compute
the average precision we first go over the ranked documents from the response list Rq

and then continue with the rest of the documents from D. Also, we assume that ri ’s
are computed for all documents in D. Thus, the maximum of 1 is reached when Rq
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TABLE 1.6 Document Ranking, Relevance, Recall, and Precision

k Document Index rk recall (k) precision (k)

1 4 1 0.333 1

2 12 0 0.333 0.5

3 6 1 0.667 0.667

4 14 1 1 0.75

5 1 0 1 0.6

6 2 0 1 0.5

7 3 0 1 0.429

8 5 0 1 0.375

9 7 0 1 0.333

10 8 0 1 0.3

11 15 0 1 0.273

12 16 0 1 0.25

13 17 0 1 0.231

14 19 0 1 0.214

15 9 0 1 0.2

16 10 0 1 0.188

17 11 0 1 0.176

18 13 0 1 0.167

19 18 0 1 0.158

20 20 0 1 0.15

includes all relevant documents. It may also include irrelevant ones, but they should
occur after the relevant documents.

To generate a plot of precision against recall, interpolated precision is used.
First, the actual recall levels recall(k) are computed for each k corresponding to a
relevant document from set Dq , that is, for those k’s for which rk = 1. Then for each
standard value of recall ρ (e.g., ρ = 0, 0.1, 0.2, . . . , 1) the interpolated precision is
the maximum precision computed for recall levels greater than or equal to ρ (inter-
polated precision is defined as 0 for recall 0). To get the average performance of an
IR system on a set of queries Q at each level of recall, the interpolated precision is
averaged over all q ∈ Q.

Let us illustrate the recall–precision evaluation technique with our department
example. The initial data needed for this purpose include the ranking of all documents
and the corresponding rk’s. As the ranking shown in Table 1.5 is nearly perfect, we
modify it a bit to get a more interesting situation. The new ranking that we are going
to evaluate here is based purely on the cosine similarity (the original ranking was
done only on documents that include both keywords). The relevant documents that
form the list Rq (determined manually) are d4 (Chemistry), d6 (Computer Science),
and d14 (Music): that is, those that include both computer and program. Thus, we
rank all documents in the collection as shown in Table 1.6.

As the recall values increase with k, the precision interpolated at each standard
recall level ρ is computed as the maximum precision in all rows, starting with the first
one (from the top) in which the actual recall value is greater than or equal to ρ. Thus,
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Figure 1.5 Interpolated precision against recall before and after relevance feedback.

for recall levels of 0, 0.1, 0.2, and 0.3, the interpolated precision of 1 is computed
as the maximum precision on rows 1 to 20. For recall levels 0.4, 0.5, and 0.6, the
interpolated precision is 0.75 (maximum precision on rows 3 to 20), and it is also 0.75
for levels 0.7 to 1 (maximum precision on rows 4 to 20). The plot of the precision
interpolated against recall computed as described is shown on the left in Figure 1.5.
For comparison the right side of the figure shows the precision against recall for
the ranking produced by Rocchio’s method as described in the section “Relevance
Feedback” (the sequence of rk’s starts with 1, 1, 0, 1, 0, . . . ). The curve on the right of
the figure is above that on the left, which indicates that relevance feedback improves
the performance of an IR system.

Let us also compute the average precision for the two rankings shown in Figure
1.5. We use Table 1.6 and average the precision in the rows where rk = 1(rows 1, 3,
and 4). Thus, for the original ranking we have

average precision = 1
3
(1 + 0.667 + 0.75) = 0.806

The relevance feedback swaps the values of r2 and r3 and changes the precisions
accordingly. Thus, we have

average precision = 1
3
(1 + 1 + 0.75) = 0.917

Clearly, the average precision also indicates that the relevance feedback improves
document ranking.

The recall–precision framework is a useful method for evaluating IR system
performance. It is, however, important to note that it has its limitations. As we already
mentioned for large document collections such as the Web, it is not possible to use
the response set Rq explicitly. For example, a Web search with the query that we
have used for our small collection of 20 documents, computer program, submitted to
Google returns about 504 million documents (!). Of course, the recall and precision
can be computed on the first 10 or 20 documents, which is still useful. There is
another critical issue, however, that may require a different approach. The classical
IR recall–precision evaluation is based entirely on the document content (the TFIDF
vector space model). As we shall see in Chapter 2, other measures, such as popularity
and authority, are also important and have to be taken into account.
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SIMILARITY SEARCH

We have assumed that web user information needs are represented by keyword queries,
and thus document relevance is defined in terms of how close a query is to documents
found by the search engine. Because web search queries are usually incomplete
and ambiguous, many of the documents returned may not be relevant to the query.
However, once a relevant document is found, a larger collection of possibly relevant
documents may be found by retrieving documents similar to the relevant document.
This process, called similarity search, is implemented in some search engines (e.g.,
Google) as an option to find pages similar or related to a given page. The intuition
behind similarity search is the cluster hypothesis in IR, stating that documents sim-
ilar to relevant documents are also likely to be relevant. In this section we discuss
mostly approaches to similarity search based on the content of the web documents.
Document similarity can also be considered in the context of the web link struc-
ture. The latter approach is discussed briefly in the section “Authorities and Hubs” in
Chapter 2.

Cosine Similarity

The query-to-document similarity which we have explored so far is based on the vec-
tor space model. Both queries and documents are represented by TFIDF vectors, and
similarity is computed using the metric properties of vector space. It is also straight-
forward to compute similarity between documents. Moreover, we may expect that
document-to-document similarity would be more accurate than query-to-document
similarity because queries are usually too short, so their vectors are extremely sparse
in the highly dimensional vector space. Thus, given a document d and a collection
D, the problem is to find a number (usually, 10 or 20) of documents di ∈ D which
have the largest value of cosine similarity to d: that is, the maximum value of the dot
product �d. �di .

In similarity search we are not concerned with a small query vector, so we are
free to use more (or all) dimensions of the vector space to represent our documents.
In this respect it will be interesting to investigate how the dimensionality of vector
space affects the similarity search results. This issue is related to feature selection,
a problem that we mentioned earlier and will revisit later. Generally, several options
can be explored:

� Using all terms from the corpus. This is the easiest option but may cause
problems if the corpus is too large (such as the document repository of a web
search engine).� Selecting terms with high TF scores (usually based on the entire corpus). This
approach prefers terms that occur frequently in many documents and thus makes
documents look more similar. However, this similarity is not indicative of doc-
ument content.� Selecting terms with high IDF scores. This approach prefers more document-
specific terms and thus better differentiates documents in vector space. However,
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it results in extremely sparse document vectors, so that similarity search is too
restricted to closely related documents.� Combining the TF and IDF criteria. For example, a preference may be given
to terms that maximize the product of their TF (on the entire corpus) and TDF
scores. As this is the same type of measure used in the vector coordinates (the
difference is that the TF score in the vector is taken on the particular document),
the vectors will be better populated with nonzero coordinates. We explore this
option when we discuss document clustering and classification later in the book.

Let us illustrate the similarity search basics with our department example. We
shall represent all documents as TFIDF vectors with different dimensionality (to
examine the effect of feature selection). For this purpose we create two lists, including
all 671 terms in the corpus (see the basic statistics in Table 1.1), one ordered by their
global (for the corpus) frequency scores and another ordered by their IDF scores. The
two halves of Table 1.7 give us an idea of what these lists look like. The left half
shows the 10 most frequent terms along with their frequencies, IDF scores, and the
number of documents in which they occur. The right half shows the terms with the
top 10 IDF scores, their frequency counts, and the number of documents in which
they occur.

In fact, the table shows the beginning and end of the frequency-ordered list
of terms and illustrates nicely the basic properties of the IDF measure. The highest-
frequency terms usually occur in many documents and have low IDF scores. Using
these terms as dimensions of vector space would make all documents too similar.
On the other hand, each of the top IDF-scored terms occurs in one document only
(these are, in fact, the department names). Obviously, in a 20-dimensional vector
space created with the top 20 terms from this list, the documents will be represented
by orthogonal vectors and thus will be perfectly differentiated. However, in such a
space all vectors will be equally dissimilar one to another (with cosine similarity 0).

To further illustrate the observations above, increasingly large samples are taken
from the top of the TF list, the IDF list, and the TF∗IDF list (ordered by the product of
TF and IDF) and the documents are ordered by their cosine similarity to the Computer

TABLE 1.7 Term Frequencies and IDF Scores

Term Count IDF Docs. Term IDF Count Docs.

department 65 0.049 20 english 3.045 5 1

study 28 0.049 20 psychology 3.045 5 1

students 26 0.336 15 chemistry 3.045 6 1

ba 22 0.272 16 communication 3.045 6 1

website 21 0.049 20 justice 3.045 7 1

location 21 0.049 20 criminal 3.045 8 1

programs 21 0.405 14 theatre 3.045 8 1

832 20 0.100 19 anthropology 3.045 9 1

phone 20 0.049 20 sociology 3.045 10 1

chair 20 0.049 20 music 3.045 12 1
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TABLE 1.8 Experiments with Cosine Similarity

Sample i/ �di · �d6 (Indices of Documents Ordered by �di · �d6)

100 TF 17/0.23, 3/0.20, 4/0.18, 12/0.17, 14/0.05

200 TF 12/0.19, 17/0.19, 4/0.16, 3/0.13, 14/0.08

300 TF 17/0.21, 12/0.19, 4/0.17, 3/0.13, 14/0.08

400 TF 17/0.21, 12/0.19, 4/0.17, 3/0.13, 14/0.13

500 TF 17/0.21, 12/0.20, 4/0.17, 3/0.13, 14/0.13

600 TF 17/0.24, 4/0.22, 12/0.2, 3/0.16, 14/0.13

100–500 IDF 20/0, 19/0, 18/0, 17/0, 16/0

600 IDF 12/0.08, 14/0.05, 2/0.03, 15/0.03, 17/0.02

100 TF*IDF 17/0.42, 12/0.22, 4/0.20, 3/0.09, 1/0.07
200 TF*IDF 17/0.26, 12/0.14, 4/0.14, 1/0.06, 2/0.05

300 TF*IDF 17/0.16, 4/0.13, 12/0.12, 1/0.06, 2/0.05

400 TF*IDF 17/0.16, 4/0.13, 12/0.08, 1/0.06, 2/0.04

500 TF*IDF 17/0.17, 12/0.13, 4/0.12, 1/0.06, 3/0.05

600 TF*IDF 17/0.19, 12/0.19, 4/0.18, 3/0.14, 14/0.10

671 ALL 17/0.24, 4/0.22, 12/0.20, 3/0.16, 14/0.13

Science document ( �d6). Table 1.8 summarizes the results. The results from TF and
TF∗IDF sampling generally look more stable with increasing sample size and tend
toward the results obtained from the complete set of features. This comes as no
surprise, because with many frequent terms the document vectors are well populated
with nonzero coordinates, so that adding new features does not change similarity
values very much. The situation with IDF sampling is different. With 100 to 500
features, all vectors are orthogonal (the dot product with �d6 is 0). With 600 features
the vectors are somewhat more populated, but many are still orthogonal. They are
also very sparsely populated; for example, the 600-dimensional IDF query vector �d6

has only 43 nonzero coordinates.
Another interesting observation is based on the similarity values. Because all

vectors are normalized to unit length, the dot product values can be compared directly,
even for vectors with different number of coordinates. Thus, the similarity values may
be used as an objective measure of the quality of feature selection. Not surprisingly,
the highest values are achieved with the 100 TF*IDF sample (shown in boldface).
This is an additional argument that a good balance between TF and IDF measures
could bring the best results.

Jaccard Similarity

There is an alternative to cosine similarity, which appears to be more popular in the
context of similarity search (we discuss the reason for this later). It takes all terms that
occur in the documents but uses the simpler Boolean document representation. The
idea is to consider only the nonzero coordinates (i.e., those that are 1) of the Boolean
vectors. The approach uses the Jaccard coefficient, which is generally defined (not
only for Boolean vectors) as the percentage of nonzero coordinates that are different in
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the two vectors. In our particular case the similarity between two Boolean document
vectors sim( �d1, �d2) is defined as the proportion of coordinates that are 1 in both �d1

and �d2 to those that are 1 in �d1 or �d2. Thus, formally,

sim ( �d1, �d2) =

∣∣∣{ j |d j
1 = 1 ∧ d j

2 = 1}
∣∣∣∣∣∣{ j |d j

1 = 1 ∨ d j
2 = 1}

∣∣∣
As each 1 in the document vector represents a term that occurs in the document,
this formula can be rewritten using sets of terms. Thus, we arrive at an alternative
formulation of the Jaccard coefficient defined on sets. Let us denote the set of terms
that occur in document d as T (d). Then the similarity between two documents sim
(d1, d2) is defined as

sim (d1, d2) = |T (d1) ∩ T (d2)|
|T (d1) ∪ T (d2)|

sim (d1, d2) has some nice properties that are important in the context of a similarity
search. For example, the similarity reaches its maximum (1) if the two documents are
identical [i.e., sim (d, d) = 1] and is symmetrical [i.e., sim (d1, d2) = sim (d2, d1)].
However, it is not a formal metric (distance function), as it does not satisfy the triangle
equality. Note, however, that 1 − sim (d1, d2) is a metric called the Jaccard metric.

Direct computation of the Jaccard coefficient is straightforward, but with large
documents and collections it may lead to a very inefficient similarity search. Also,
finding similar documents at query time is impractical because it may take quite a long
time. Therefore, some optimization techniques are used and most of the similarity
computation is done offline (i.e., for each document from the collection, a number
of nearest documents are precomputed). The inverted index provides a good deal
of information that may be used for this purpose. The idea is to create a list of all
document pairs sorted by the similarity of the documents in each pair. Then the k
most similar documents to a given document d are those that are paired with d in the
first k pairs from the list. Theoretically, the number of document pairs is n (n − 1)/2
for n documents. However, two simple heuristics may drastically reduce the number
of candidate pairs:

1. Frequent terms that occur in many documents (say, more than 50% of the
collection) are eliminated because they cause even loosely related documents
to look similar.

2. Only documents that share at least one term are used to form a pair.

Let us illustrate the basic steps of precomputing document similarity with our
department collection. To simplify the discussion, in the first two steps we use the five-
column term–document matrix shown in Table 1.2. In step 3, however, we compute
the Jaccard coefficient using the complete set of terms for each document.

1. For each term, create a set of documents that includes the term. At this point
we eliminate three terms (lab, laboratory, and programming) because their
respective sets include only one document (no document pair can be created).
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Thus, we end up with (for brevity, only the document indices are shown)

[(program, {1,2,4,6,7,8,14,15,16,17,19}), (computer, {3,4,6,12,14})]
(One may decide to eliminate program, due to its high frequency, but we leave
it, because otherwise the example would be trivial.)

2. Create pairs of documents from each set in item 1, store them in a single file,
and sort the file by the frequency counts of the pairs. The result of this step is a
list of 78 pairs (counts follow the slash): [(4,6)/2, (4,14)/2, (6,14)/2, (1,2)/1,
(1,4)/1, (1,6)/1, . . . ]. Thus, counts represent the number of terms shared by the
documents in the pair. At this point more candidate pairs can be eliminated by
setting a threshold for the minimal number of shared terms.

3. Compute the similarity between the documents in each pair and sort the list of
pairs accordingly. The beginning of the sorted list is as follows:

[(7,15)/0.208, (1,17)/0.196, (15,19)/0.192, (8,17)/0.189, (3,12)/0.186,

(17,19)/0.185, (12,15)/0.185, (12,17)/0.18, (1,19)/0.178, (4,14)/0.176,

(6,12)/0.175, (3,4)/0.173, (12,19)/0.170, (4,19)/0.168, (7,17)/0.159,

(8,19)/0.158, (8,7)/0.156, (8,12)/0.153, (1,14)/0.145, (1,15)/0.142,

(7,12)/0.141, (1,12)/0.140, (4,7)/0.137, (15,17)/0.136, (4,6)/0.136,

(4,12)/0.136, (7,14)/0.136, (6,14)/0.135, (12,14)/0.135, . . .]

Having done this computation, we are now able to answer similarity search
queries very quickly. For example, to find the documents most similar to document
6 (computer science), we go through the list from left to right and report (in the
order of occurrence) the other document in each pair that contains 6. Thus, we get
12 (Mathematics), 4 (Chemistry), and 14 (Music) for the part of the list that is shown
above (the corresponding pairs are shown in boldface). The complete list of documents
most similar to document 6 is [12,4,14,17,3,15,19,7,2,1,16,8].

It is interesting to compare these results with the TFIDF similarity results shown
in Table 1.7. The closest match is with the list produced with all features, where the
five most similar documents are the same but are ranked differently ([17,4,12,3,14]).
Which of the two rankings is more trustworthy? The ranking produced by the cosine
similarity may look a bit strange, because it picks the Political Science document
(17), whereas generally, Computer Science as a subject may be considered closer to
Mathematics (12). Obviously, the documents in both pairs, (6,17) and (6,12), share a
lot of terms, but in TFIDF ranking not only is the term overlap taken into account but
the TF and IDF measures as well. They bring more information into the similarity
ranking process, which allows more accurate computation of similarity to be done,
For example, both the Computer Science and Political Science documents have five
occurrences of the term science, while Computer Science and Mathematics have one
occurrence of the term sciences. Also, the term science has a relatively high IDF
score. All this is taken into account by the cosine similarity measure but is simply
ignored by the Jaccard measure.

There have been studies that compare the two measures for various tasks and
in various domains. In many areas the two measures show comparable results (see,
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e.g., [6]). It seems, however, that for the purpose of document similarity search, the
Jaccard measure is preferable. The reason for this is primarily scalability, which is
an issue in large document collections such as the Web. There exist methods for
approximate computation of the Jaccard coefficient that work quite well in these
cases. Broder [7] proposed a method for estimating the resemblance between two
documents using a set representation of document subsequences called shingles (see
the next section). In fact, his method estimates the Jaccard coefficient on two sets
by representing them as smaller sets called sketches, which are then used instead of
the original documents to compute the Jaccard coefficient. Sketches are created by
choosing a random permutation, which is used to generate a sample for each document.
Most important, sketches have a fixed size for all documents. In a large document
collection each document can be represented by its sketch, thus substantially reducing
the storage requirements as well as the running time for precomputing similarity
between document pairs. The method was evaluated by large-scale experiments with
clustering of all documents on the Web [8]. Used originally in a clustering framework,
the method also suits very well the similarity search setting.

Document Resemblance

So far we have discussed two approaches to document modeling: the TFIDF vector
and set representations. Both approaches try to capture document semantics using
the terms that documents contain as descriptive features and ignoring any informa-
tion related to term positions, ordering, or structure. The only relevant information
used for this purpose is whether or not a particular term occurs in the documents
(the set-of-words approach) and the frequency of its occurrence (the bag-of-words
approach). For example, the documents “Mary loves John” and “John loves Mary”
are identical, because they include the same words with the same counts, although
they have different meanings. The idea behind this representation is that content is
identified with topic or area but not with meaning (that is why these approaches are
also called syntactic). Thus, we can say that the topic of both documents is people
and love, which is the meaning of the terms that occur in the documents.

Assume, however, that the task is to find identical or nearly identical documents,
or documents that share phrases, sentences, or paragraphs. Obviously, set-based rep-
resentation is not appropriate for such tasks. In a similarity search a query may return
many copies of the same document (sometimes with slight modifications) that are
stored at different web locations (mirror sites). Such pages may also be fetched mul-
tiple times by the web crawler if it keeps track only of the URLs of pages that have
been visited. To avoid such situations, some mechanism for detecting duplicates or
near duplicates of documents is needed. Detecting shared sentences, paragraphs, or
other structures of text is a useful technique for identifying cases of plagiarism or
studying stylistic properties of texts. Some figures obtained in the clustering study
of the Web that we mentioned earlier [8] illustrate the magnitude of the problem.
Among the 30 million web pages that were analyzed, there were 2.1 million clusters
containing only identical documents (5.3 million documents).

There is a technique that extends the set-of-words approach to sequences of
words. The idea is to consider the document as a sequence of words (terms) and
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extract from this sequence short subsequences of fixed length called n-grams or
shingles. The document is then represented as a set of such n-grams. For example, the
document “Mary loves John” can be represented by the set of 2-grams {[Mary, loves],
[loves, John]} and “John loves Mary” by {[John, loves], [loves, Mary]}. Now these
four 2-grams are the features that represent our documents. In this representation
the documents do not have any overlap. We have already mentioned n-grams as a
technique for approximate string matching but they are also popular in many other
areas where the task is detecting subsequences such as spelling correction, speech
recognition, and character recognition.

Shingled document representation can be used for estimating document re-
semblance. Let us denote the set of shingles of size w contained in document d as
S(d ,w). That is, the set S(d ,w) contains all w-grams obtained from document d. Note
that T (d) = S(d ,1), because terms are in fact 1-grams. Also, S(d,|d|) = d (i.e., the
document itself is a w-gram, where w is equal to the size of the document). The resem-
blance between documents d1 and d2 is defined by the Jaccard coefficient computed
with shingled documents:

rw(d1,d2) = |S(d1,w) ∩ S(d2,w)|
|S(d1,w) ∪ S(d2,w)|

The same technique for precomputing document similarity can be used with the
shingled document representation. The advantage here is that after obtaining doc-
ument pairs along with those that are too dissimilar, we can also eliminate those
that are too similar in terms of resemblance [with large values of rw(d1,d2)]. In
this way, duplicates or near duplicates can be eliminated from the similarity search
results.

Although the number of shingles needed to represent each document is roughly
the same as the number of terms needed for this purpose, the storage requirements for
shingled document representation increase substantially. A straightforward represen-
tation of w-word shingles as integers with a fixed number of bits results in a w-fold
increase in storage. For example, if the term IDs are represented by 32-bit numbers, a
four-word shingle will take 128 bits. There are, however, hashing (or fingerprinting)
techniques that can be used to reduce the storage requirements. Each shingle may be
hashed into a number with a fixed number of bits using a fingerprinting function (see
[7]). Then instead of the complete set of shingles S(d,w) for each document, only
shingles with 0 modulo p (some suitable prime number) are kept. Let L(d) be the
set of shingles that are S(d ,w) that are 0 modulo p. Then the estimated value of the
resemblance between documents d1 and d2 is

re(d1,d2) = |L(d) ∩ L(d2)|
|L(d1) ∪ L(d2)|

L(d) is a smaller set of shingles called a sketch of document d. By choosing a proper
value for p, the storage for L(d), and consequently the storage needed for precom-
puting resemblance for pairs of documents, can be reduced. Of course, this comes at
the expense of less accurate estimation of resemblance.
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EXERCISES

1. Use the WebSPHINX crawler (http://www.cs.cmu.edu/∼rcm/websphinx/, also

available from the book series Web site www.dataminingconsultant.com), to collect

the department web pages listed in the department directory page (Figure 1.3). Use the

following parameters:� Starting URL: http://www.artsci.ccsu.edu/Departments.htm� Crawl: the Web (or the server)� Depth: 1 hop

a. Save the pages as separate files in a directory (action: save, on pages: text). The crawler

creates a directory tree automatically and saves the web pages as HTML documents.

See how the directory structure matches the URL structure of the corresponding pages.

b. Convert the web documents into text documents. For example, use the “Save As . . . ”

option of the Internet Explorer with “Save as type: Text File (*.txt).”

c. Save all documents in a single file (action: concatenate, on pages: text). Convert it to

text format [as done in part (b)] and examine its content.

2. Download and install the Weka data mining system (http://www.cs.waikato.

ac.nz/∼ml/weka/). Read the documentation and try some examples to familiarize

yourself with its use (e.g., the weather data provided with the installation).

3. Create a data file in ARFF format (see a description of the format at http://

www.cs.waikato.ac.nz/∼ml/weka/). Follow the steps below.

a. Use the concatenation of the web documents (Exercise 1c) and create a text file where

each document is represented on a separate line in plain text format. For example, this

can be done by loading the concatenation in MS Word and then saving the file in plain

text format without line breaks.
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b. Enclose the document content in quotation marks (“) and add the document name at

the beginning of each line and a file header at the beginning of the file:

@relation departments_string

@attribute document_name string

@attribute document_content string

@data

Anthropology, " Anthropology consists of four ...

...

This representation uses two attributes: document-name and document-
content, both of type string. An example of such a data file is

“Departments-string.arff,” available from the book series Web site,

www.dataminingconsultant.com. Note that the representation in “Departments-

string.arff” uses an additional class attribute (see Chapter 5), which is defined in the

file header, and its values are added at the end of each line in the data section (after

@data).

c. Load the file in the Weka system using the “Open file” button in “Preprocess” mode.

After successful loading the system shows some statistics about the number of at-

tributes, their type, and the number of instances (rows in the data section or documents).

d. Choose the StringToNominal filter and apply it to the first attribute, document name.

Then choose the StringToWordVector filter and apply it with “outputWordCounts =
true” (you may also change the setting of “onlyAlphabeticTokens” and “useStoplist”

to see how the results change).

e. Now you have a document–term matrix loaded in Weka. Use the “Edit” option to

see it in a tabular format, where you can also change its content or copy it to other

applications (e.g., MS Excel). Once created in Weka the table can be stored in an

ARFF file through the “Save” option. Figure E1.3e shows a screenshot of a part of the

document–term table.

f. Weka can also show some interesting statistics about the terms. In the visualization

area (preprocess mode), change the class to document name. Then you will see the

distribution of terms over documents as bar diagrams. The screenshot in Figure E1.3f

shows some of these diagrams.

g. Examine the diagrams (the color indicates the document) and find the most specific

terms for each document. For example, compare the diagrams of anthropology and

chair and explain the difference. Which one is more representative, and for which

document?

4. Similar to Exercise 3, create the Boolean and TFIDF representation of the doc-

ument collection. Examples of these representations are provided in the files

“Departments-binary.arff” and “Departments-TFIDF.arff,” available from the book Web

site, www.dataminingconsultant.com.

a. To obtain the Boolean representation, apply the NumericToBinary filter to the word-

count representation. What changed in the diagrams?

b. For the TFIDF representation, use the original string representation and apply the

StringToWordVector filter with IDFTransform = true. Examine the document–term

table and the diagrams. Explain why some columns (e.g., chair and website) are

all zero. See these columns in the book versions of the same document collection:
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Figure E1.3e

Figure E1.3f
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“Departments-book-binary.arff” and “Departments-book-TFIDF.arff” (also available

from the book Web site). Why are the Weka and the book versions slightly different?

(See what is behind the “More” button of the StringToWordVector parameter setting

window.)

5. Collect web documents from other domains (use the WebSPHINX crawler or web search)

and follow the preceding steps to create ARFF data files for the term-count, Boolean,

and TFIDF representations. Then load the files into Weka and analyze the document

collections by examining the document–term table or the term distribution diagrams.

6. Find proper sets of keywords and evaluate the precision and recall provided by Google

when searching documents in the CCSU A&S collection.

a. Use the keywords computer and program with advanced search limited within the

server domain. The query will be

computer program site:www.artsci.ccsu.edu

b. Using the query results, create a table similar to Table 1.6. Then compute the interpo-

lated precision for different recall levels and create charts similar to those in Figure

1.5.

c. Compare the charts based on the results from Google search with those based on cosine

similarity (Figure 1.5).

d. Use fewer or more terms and create the corresponding charts. Try terms with different

IDF scores (use Figure 1.6). Compute the average precision. Analyze the results.

e. Use terms that occur in all 20 documents (e.g., department, phone, chair). Explain

why these documents are not always among the top 20 in the result list. Which docu-

ments occur in the top?

f. Search for specific web pages (e.g., department Web sites) in wider domains (e.g.,

www.ccsu.edu) or in the entire Web. Use a different number of keywords and compute

the precision and recall. Analyze the results.


