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INVESTIGATION 

OF FORCES AND 
FORCE ACTIONS

Loads deriving from the tasks of a structure produce forces. The tasks of
the structure involve the transmission of the load forces to the supports
for the structure. Applied to the structure, these external load and support
forces produce a resistance from the structure in terms of internal forces
that resist changes in the shape of the structure. This chapter treats the
basic properties and actions of forces.

1.1 PROPERTIES OF FORCES

The idea of force is one of the fundamental concepts of mechanics and
does not yield to simple, precise definition. An accepted definition of
force is that which produces, or tends to produce, motion or a change in
the state of motion of objects. A type of force is the effect of gravity, by
which all objects are attracted toward the center of the earth.

What causes the force of gravity on an object is the mass of the object,
and in U.S. units, this force is quantified as the weight of the body. Grav-
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ity forces are thus measured in pounds (lb), or in some other unit such as
tons (T) or kips (one kilopound, or 1000 pounds). In the metric system,
force is measured in a more purely scientific manner as directly related
to the mass of objects; the mass of an object being a constant, whereas
weight is proportional to the precise value of the acceleration of gravity,
which varies from place to place. Force in metric units is measured in
newtons (N) or in kilonewtons (kN) or in meganewtons (mN), whereas
weight is measured in grams or in kilograms. 

Vectors

A quantity that involves magnitude, direction (vertical, for example), and
sense (up, down, etc.) is a vector quantity, whereas a scalar quantity in-
volves only magnitude and sense. Force, velocity, and acceleration are
vector quantities, whereas energy, time, and temperature are scalar quan-
tities. A vector can be represented by a straight line, leading to the possi-
bility of constructed graphical solutions in some cases; a situation that
will be demonstrated later. Mathematically, a scalar quantity can be rep-
resented completely as �50 or –50, whereas a vector must somehow
have its direction represented as well (50 vertical, horizontal, etc.).

Identifying a Force

In order to completely identify a force, it is necessary to establish the fol-
lowing:

Magnitude, or the amount of the force, which is measured in weight
units such as pounds or tons.

Direction of the force, which refers to the orientation of its path, called
its line of action. Direction is usually described by the angle that the
line of action makes with some reference, such as the horizontal.

Sense of the force, which refers to the manner in which it acts along
its line of action (e.g., up or down, right or left, etc.). Sense is usu-
ally expressed algebraically in terms of the sign of the force, either
plus or minus.

Forces can be represented graphically in terms of these three properties
by the use of an arrow, as shown in Figure 1.1a. Drawn to some scale, the
length of the arrow represents the magnitude of the force. The angle of in-
clination of the arrow represents the direction of the force. The location of
the arrowhead represents the sense of the force. This form of representa-
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tion can be more than merely symbolic, because actual mathematical ma-
nipulations may be performed using the vector representation that the
force arrows constitute. In the work in this book, arrows are used in a sym-
bolic way for visual reference when performing algebraic computations,
and in a truly representative way when performing graphical analyses.

In addition to the basic properties of magnitude, direction, and sense,
some other concerns that may be significant for certain investigations are
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Figure 1.1 Representation of forces and force actions.



The position of the line of action of the force with respect to the lines
of action of other forces or to some object on which the force op-
erates, as shown in Figure 1.1b. For the beam, shifting of the loca-
tion of the load (active force) affects changes in the forces at the
supports (reactions).

The point of application of the force along its line of action may be of
concern in analyzing for the specific effect of the force on an ob-
ject, as shown in Figure 1.1c.

When forces are not resisted, they tend to produce motion. An inher-
ent aspect of static forces is that they exist in a state of static equilibrium,
that is, with no motion occurring. In order for static equilibrium to exist,
it is necessary to have a balanced system of forces. An important consid-
eration in the analysis of static forces is the nature of the geometric
arrangement of forces in a given set of forces that constitute a single sys-
tem. The usual technique for classifying force systems involves consid-
eration of whether the forces in the system are

Coplanar. All acting in a single plane, such as the plane of a vertical
wall.

Parallel. All having the same direction.

Concurrent. All having their lines of action intersect at a common
point.

Using these three considerations, the possible variations are given in
Table 1.1 and illustrated in Figure 1.2. Note that variation 5 in the table
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TABLE 1.1 Classification of Force Systems a

Qualifications

System Variation Coplanar Parallel Concurrent

1 Yes Yes Yes
2 Yes Yes No
3 Yes No Yes
4 Yes No No
5 Nob Yes Yes
6 No Yes No
7 No No Yes
8 No No No

aSee Fig. 1.2.
bNot possible—parallel, concurrent forces are essentially coplanar.



is really not possible because a set of coacting forces that is parallel and
concurrent cannot be noncoplanar; in fact, the forces all fall on a single
line of action and are called collinear.

It is necessary to qualify a set of forces in the manner just illustrated
before proceeding with any analysis, whether it is to be performed alge-
braically or graphically.

1.2 STATIC EQUILIBRIUM

As stated previously, an object is in equilibrium when it is either at rest
or has uniform motion. When a system of forces acting on an object pro-
duces no motion, the system of forces is said to be in static equilibrium.

A simple example of equilibrium is illustrated in Figure 1.3a. Two
equal, opposite, and parallel forces, having the same line of action, P1
and P2, act on a body. If the two forces balance each other, the body does
not move and the system of forces is in equilibrium. These two forces are
concurrent. Put another way, if the lines of action of a system of forces
have a point in common, the forces are concurrent. 

Another example of forces in equilibrium is illustrated in Figure 1.3b.
A vertical downward force of 300 lb acts at the midpoint in the length of
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Figure 1.2 Types of force systems.



a beam. The two upward vertical forces of 150 lb each (the reactions) act
at the ends of the beam. The system of three forces is in equilibrium. The
forces are parallel and, not having a point in common, are nonconcurrent.

1.3 FORCE COMPONENTS AND COMBINATIONS

Individual forces may interact and be combined with other forces in vari-
ous situations. Conversely, a single force may have more than one effect on
an object, such as a vertical action and a horizontal action simultaneously.
This section considers both of these issues: adding up of forces (combina-
tion) and breaking down of single forces into components (resolution).

Resultant of Forces

The resultant of a system of forces is the simplest system (usually a
single force) that has the same effect as the various forces in the system
acting simultaneously. The lines of action of any system of two coplanar
nonparallel forces must have a point in common, and the resultant of the
two forces will pass through this common point. The resultant of two
coplanar, nonparallel forces may be found graphically by constructing a
parallelogram of forces.

In constructing a parallelogram of two forces, the forces are drawn at
any scale (of so many pounds to the inch) with both forces pointing to-
ward, or both forces pointing away, from the point of intersection of their
lines of action. A parallelogram is then produced with the two forces as
adjacent sides. The diagonal of the parallelogram passing through the
common point is the resultant in magnitude, direction, and line of action,
the direction of the resultant being similar to that of the given forces, to-
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Figure 1.3 Equilibrium of forces.



ward or away from the point in common. In Figure 1.4a, P1 and P2 rep-
resent two nonparallel forces whose lines of action intersect at point O.
The parallelogram is drawn, and the diagonal R is the resultant of the
given system. In this illustration note that the two forces point away from
the point in common; hence, the resultant also has its direction away from
point O. It is a force upward to the right. Notice that the resultant of
forces P1 and P2 shown in Figure 1.4b is R; its direction is toward the
point in common.

Forces may be considered to act at any points on their lines of action.
In Figure 1.4c the lines of action of the two forces P1 and P2 are extended
until they meet at point O. At this point the parallelogram of forces is con-
structed, and R, the diagonal, is the resultant of forces P1 and P2. In de-
termining the magnitude of the resultant, the scale used is, of course, the
same scale used in drawing the given system of forces.

Example 1. A vertical force of 50 lb and a horizontal force of 100 lb,
as shown in Figure 1.4d, have an angle of 90° between their lines of ac-
tion. Determine the resultant.

Solution: The two forces are laid off from their point of intersection at 
a scale of 1 in. � 80 lb. The parallelogram is drawn, and the diagonal is
the resultant. Its magnitude scales approximately 112 lb, its direction is
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Figure 1.4 Consideration of the resultant of a set of forces.



upward to the right, and its line of action passes through the point of in-
tersection of the lines of action of the two given forces. By use of a pro-
tractor, it is found that the angle between the resultant and the force of
100 lb is approximately 26.5°.

Example 2. The angle between two forces of 40 and 90 lb, as shown in
Figure 1.4e, is 60°. Determine the resultant.

Solution: The forces are laid off from their point of intersection at a scale
of 1 in. � 80 lb. The parallelogram of forces is constructed, and the re-
sultant is found to be a force of approximately 115 lb, its direction is up-
ward to the right, and its line of action passes through the common point
of the two given forces. The angle between the resultant and the force of
90 lb is approximately 17.5°.

Attention is called to the fact that these two problems have been
solved graphically by the construction of diagrams. Mathematics might
have been employed. For many practical problems, graphical solutions
give sufficiently accurate answers and frequently require far less time.
Do not make diagrams too small, as greater accuracy is obtained by using
larger parallelograms of forces.

Problems 1.3.A–F. By constructing the parallelogram of forces, determine the
resultants for the pairs of forces shown in Figures 1.5a to f.

Components of a Force

In addition to combining forces to obtain their resultant, it is often neces-
sary to replace a single force by its components. The components of a
force are the two or more forces that, acting together, have the same effect
as the given force. In Figure 1.4d, if we are given the force of 112 lb, its
vertical component is 50 lb and its horizontal component is 100 lb. That
is, the 112-lb force has been resolved into its vertical and horizontal com-
ponents. Any force may be considered as the resultant of its components.

Combined Resultants

The resultant of more than two nonparallel forces may be obtained by
finding the resultants of pairs of forces and finally the resultant of the re-
sultants.

Example 3. Let it be required to find the resultant of the concurrent
forces P1, P2, P3, and P4 shown in Figure 1.6.

18 INVESTIGATION OF FORCES AND FORCE ACTIONS



FORCE COMPONENTS AND COMBINATIONS 19

Figure 1.5 Reference for Problem 1.3, part 1.

Figure 1.6 Finding a resultant by successive pairs.



Solution: By constructing a parallelogram of forces, the resultant of P1
and P2 is found to be R1. 

Simarily, the resultant of P3 and P4 is R2. Finally, the resultant of R1 and
R2 is R, the resultant of the four given forces.

Problems 1.3.G–I. Using graphical methods, find the resultant of the systems
of concurrent forces shown in Figure 1.7.

Equilibrant

The force required to maintain a system of forces in equilibrium is called
the equilibrant of the system. Suppose that we are required to investigate
the system of two forces, P1 and P2, as shown in Figure 1.8 The parallel-
ogram of forces is constructed, and the resultant is found to be R. The
system is not in equilibrium. The force required to maintain equilibrium
is force E, shown by the dotted line. E, the equilibrant, is the same as the
resultant in magnitude and direction, but is opposite in sense. The three
forces, P1 and P2 and E, constitute a system in equilibrium.
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Figure 1.7 Reference for Problem 1.3, part 2.

Figure 1.8 Finding an equilibrant.



If two forces are in equilibrium, they must be equal in magnitude, op-
posite in sense, and have the same direction and line of action. Either of
the two forces may be said to be the equilibrant of the other. The result-
ant of a system of forces in equilibrium is zero.

1.4 GRAPHICAL ANALYSIS OF FORCES

Force Polygon

The resultant of a system of concurrent forces may be found by con-
structing a force polygon. To draw the force polygon, begin with a point
and lay off, at a convenient scale, a line parallel to one of the forces, with
its length equal to the force in magnitude and having the same sense.
From the termination of this line, draw similarly another line correspon-
ding to one of the remaining forces, and continue in the same manner
until all the forces in the given system are accounted for. If the polygon
does not close, the system of forces is not in equilibrium, and the line re-
quired to close the polygon drawn from the starting point is the resultant
in magnitude and direction. If the forces in the given system are concur-
rent, the line of action of the resultant passes through the point they have
in common.

If the force polygon for a system of concurrent forces closes, the sys-
tem is in equilibrium and the resultant is zero.

Example 4. Let it be required to find the resultant of the four concur-
rent forces P1, P2, P3, and P4 shown in Figure 1.9a. This diagram is called
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Figure 1.9 Finding a resultant by continuous vector addition of forces.



the space diagram; it shows the relative positions of the forces in a given
system.

Solution: Beginning with some point such as O, shown in Figure 1.9b,
draw the upward force P1. At the upper extremity of the line representing
P1, draw P2, continuing in a like manner with P3 and P4. The polygon
does not close; therefore, the system is not in equilibrium. The resultant
R, shown by the dot-and-dash line, is the resultant of the given system.
Note that its directions is from the starting point O, downward to the
right. The line of action of the resultant of the given system shown in Fig-
ure 1.9a has its line of action passing through the point they have in com-
mon, its magnitude and direction having been found in the force polygon.

In the drawing of the force polygon, the forces may be taken in any se-
quence. In Figure 1.9c a different sequence is taken, but the resultant R is
found to have the same magnitude and direction as previously found in
Figure 1.9b.

Bow’s Notation

Thus far, forces have been identified by the symbols P1, P2, and so on. A
system of identifying forces, known as Bow’s notation, affords many ad-
vantages. In this system letters are placed in the space diagram on each
side of a force, and a force is identified by two letters. The sequence in
which the letters are read is important. Figure 1.10a shows the space di-
agram of five concurrent forces. Reading about the point in common in a
clockwise manner the forces are AB, BC, CD, DE, and EA. When a force
in the force polygon is represented by a line, a letter is placed at each end
of the line. As an example, the vertical upward force in Figure 1.10a is
read AB (note that this is read clockwise about the common point); in the
force polygon (Fig. 1.10b) the letter a is placed at the bottom of the line
representing the force AB and the letter b is at the top. Use capital letters
to identify the forces in the space diagrams and lowercase letters in the
force polygon. From point b in the force polygon, draw force bc, then cd,
and continue with de and ea. Because the force polygon closes, the five
concurrent forces are in equilibrium.

In reading forces, a clockwise manner is used in all the following dis-
cussions. It is important that this method of identifying forces be thor-
oughly understood. To make this clear, suppose that a force polygon is
drawn for the five forces shown in Figure 1.10a, reading the forces in se-
quence in a counterclockwise manner. This will produce the force poly-
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gon shown in Figure 1.10c. Either method may be used, but for consis-
tency, the method of reading clockwise is used here.

Use of the Force Polygon

Two ropes are attached to a ceiling and their lower ends are connected to
a ring, making the arrangement shown in Figure 1.11a. A weight of 100
lb is suspended from the ring. Obviously, the force in the rope AB is 100
lb, but the magnitudes of the forces in ropes BC and CA are unknown.

The forces in the ropes AB, BC, and CA constitute a concurrent force
system in equilibrium (Figure 1.11b). The magnitude of only one of the
forces is known—it is 100 lb in rope AB. Because the three concurrent
forces are in equilibrium, their force polygon must close, and this fact
makes it possible to find their magnitudes. Now, at a convenient scale,
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Figure 1.10 Construction of a force plygon.

Figure 1.11 Solution of a concentric force system.



draw the line ab (Figure 1.11c) representing the downward force AB, 100
lb. The line ab is one side of the force polygon. From point b draw a line
parallel to rope BC; point c will be at some location on this line. Next,
draw a line through point a parallel to rope CA; point c will be at some
position on this line. Because point c is also on the line through b paral-
lel to BC, the intersection of the two lines determines point c. The force
polygon for the three forces is now completed; it is abc, and the lengths
of the sides of the polygon represent the magnitudes of the forces in ropes
BC and CA, 86.6 lb and 50 lb, respectively.

Particular attention is called to the fact that the lengths of the ropes in
Figure 1.11a are not an indication of magnitude of the forces within the
ropes; the magnitudes are determined by the lengths of the corresponding
sides of the force polygon (Figure 1.11c). Figure 1.11a merely deter-
mines the geometric layout for the structure.
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Figure 1.12 Reference for Problem 1.4.



Problems 1.4.A–D. Find the sense (tension or compression) and magnitude of
the internal force in the member indicated in Figure 1.12 using graphical methods.

1.5 GRAPHICAL ANALYSIS OF PLANAR TRUSSES

Planar trusses, composed of linear elements assembled in triangulated
frameworks, have been used for spanning structures in buildings for
many centuries. Investigation for internal forces in trusses is typically
performed by the basic methods illustrated in the preceding sections. In
this section these procedures are demonstrated using both algebraic and
graphical methods of solution.

When we use the so-called method of joints, finding the internal forces
in the members of a planar truss consists of solving a series of concurrent
force systems. Figure 1.13 shows a truss with the truss form, the loads,
and the reactions displayed in a space diagram. Below the space diagram
is a figure consisting of the free body diagrams of the individual joints of
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Figure 1.13 Examples of diagrams used to represent trusses and their actions.



the truss. These are arranged in the same manner as they are in the truss
in order to show their interrelationships. However, each joint constitutes
a complete concurrent planar force system that must have its independ-
ent equilibrium. Solving the problem consists of determining the equi-
librium conditions for all of the joints. The procedures used for this so-
lution will now be illustrated.

Figure 1.14 shows a single-span, planar truss subjected to vertical
gravity loads. This example will be used to illustrate the procedures for
determining the internal forces in the truss, that is, the tension and com-
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Figure 1.14 Graphic diagrams for the sample problem.



pression forces in the individual members of the truss. The space diagram
in the figure shows the truss form and dimensions, the support condi-
tions, and the loads. The letters on the space diagram identify individual
forces at the truss joints, as discussed in Section 1.4. The sequence of
placement of the letters is arbitrary, the only necessary consideration
being to place a letter in each space between the loads and the individual
truss members so that each force at a joint can be identified by a two-
letter symbol. 

The separated joint diagram in the figure provides a useful means for
visualization of the complete force system at each joint as well as the in-
terrelation of the joints through the truss members. The individual forces
at each joint are designated by two-letter symbols that are obtained by
simply reading around the joint in the space diagram in a clockwise di-
rection. Note that the two-letter symbols are reversed at the opposite ends
of each of the truss members. Thus, the top chord member at the left end
of the truss is designated as BI when shown in the joint at the left support
( joint 1) and is designated as IB when shown in the first interior upper
chord joint ( joint 2). The purpose of this procedure will be demonstrated
in the following explanation of the graphical analysis. 

The third diagram in Figure 1.14 is a composite force polygon for the
external and internal forces in the truss. It is called a Maxwell diagram
after one of its early promoters, James Maxwell, a British engineer. The
construction of this diagram constitutes a complete solution for the mag-
nitudes and senses of the internal forces in the truss. The procedure for
this construction is as follows.

1. Construct the force polygon for the external forces. Before this can
be done, the values for the reactions must be found. There are
graphic techniques for finding the reactions, but it is usually much
simpler and faster to find them with an algebraic solution. In this
example, although the truss is not symmetrical, the loading is, and
it may simply be observed that the reactions are each equal to one
half of the total load on the truss, or 5000 ÷ 2 � 2500 lb. Because
the external forces in this case are all in a single direction, the force
polygon for the external forces is actually a straight line. Using the
two-letter symbols for the forces and starting with the letter A at the
left end, we read the force sequence by moving in a clockwise di-
rection around the outside of the truss. The loads are thus read as
AB, BC, CD, DE, EF, and FG, and the two reactions are read as GH
and HA. Beginning at A on the Maxwell diagram, the force vector
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sequence for the external forces is read from A to B, B to C, C to
D, and so on, ending back at A, which shows that the force poly-
gon closes and the external forces are in the necessary state of
static equilibrium. Note that we have pulled the vectors for the re-
actions off to the side in the diagram to indicate them more clearly.
Note also that we have used lowercase letters for the vector ends in
the Maxwell diagram, whereas uppercase letters are used on the
space diagram. The alphabetic correlation is thus retained (A to a),
preventing any possible confusion between the two diagrams. The
letters on the space diagram designate open spaces, and the letters
on the Maxwell diagram designate points of intersection of lines.

2. Construct the force polygons for the individual joints. The graphic
procedure for this consists of locating the points on the Maxwell
diagram that correspond to the remaining letters, I through P, on
the space diagram. When all the lettered points on the diagram are
located, the complete force polygon for each joint may be read on
the diagram. In order to locate these points, we use two relation-
ships. The first is that the truss members can resist only forces that
are parallel to the members’ positioned directions. Thus, we know
the directions of all the internal forces. The second relationship is
a simple one from plane geometry: A point may be located at the
intersection of two lines. Consider the forces at joint 1, as shown
in the separated joint diagram in Figure 1.14. Note that there are
four forces and that two of them are known (the load and the reac-
tion) and two are unknown (the internal forces in the truss mem-
bers). The force polygon for this joint, as shown on the Maxwell
diagram, is read as ABIHA. AB represents the load; BI the force in
the upper chord member; IH the force in the lower chord member;
and HA the reaction. Thus, the location of point i on the Maxwell
diagram is determined by noting that i must be in a horizontal di-
rection from h (corresponding to the horizontal position of the
lower chord) and in a direction from b that is parallel to the posi-
tion of the upper chord.

The remaining points on the Maxwell diagram are found by the same
process, using two known points on the diagram to project lines of known
direction whose intersection will determine the location of an unknown
point. Once all the points are located, the diagram is complete and can be
used to find the magnitude and sense of each internal force. The process
for construction of the Maxwell diagram typically consists of moving
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from joint to joint along the truss. Once one of the letters for an internal
space is determined on the Maxwell diagram, it may be used as a known
point for finding the letter for an adjacent space on the space diagram.
The only limitation of the process is that it is not possible to find more
than one unknown point on the Maxwell diagram for any single joint.
Consider joint 7 on the separated joint diagram in Figure 1.14. To solve
this joint first, knowing only the locations of letters a through h on the
Maxwell diagram, it is necessary to locate four unknown points: l, m, n,
and o. This is three more unknowns than can be determined in a single
step, so three of the unknowns must be found by using other joints.

Solving for a single unknown point on the Maxwell diagram corre-
sponds to finding two unknown forces at a joint, because each letter on
the space diagram is used twice in the force identification for the internal
forces. Thus, for joint 1 in the previous example, the letter I is part of the
identity of forces BI and IH, as shown on the separated joint diagram. The
graphic determination of single points on the Maxwell diagram, there-
fore, is analogous to finding two unknown quantities in an algebraic so-
lution. As discussed previously, two unknowns are the maximum that can
be solved for the equilibrium of a coplanar, concurrent force system,
which is the condition of the individual joints in the truss.

When the Maxwell diagram is completed, the internal forces can be
read from the diagram as follows:

1. The magnitude is determined by measuring the length of the line
in the diagram, using the scale that was used to plot the vectors for
the external forces.

2. The sense of individual forces is determined by reading the forces
in clockwise sequence around a single joint in the space diagram
and tracing the same letter sequences on the Maxwell diagram.

Figure 1.15a shows the force system at joint 1 and the force polygon
for these forces as taken from the Maxwell diagram. The forces known
initially are shown as solid lines on the force polygon, and the unknown
forces are shown as dashed lines. Starting with letter A on the force sys-
tem, we read the forces in a clockwise sequence as AB, BI, IH, and HA.
Note that on the Maxwell diagram, moving from a to b is moving in the
order of the sense of the force—that is, from tail to end of the force vec-
tor that represents the external load on the joint. With this sequence on
the Maxwell diagram, this force sense flow will be a continuous one.
Thus, reading from b to i on the Maxwell diagram is reading from tail to
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Figure 1.15 Graphic solutions for joints 1, 2, and 3.



head of the force vector, which indicates that force BI has its head at the
left end. Transferring this sense indication from the Maxwell diagram to
the joint diagram indicates that force BI is in compression; that is, it is
pushing, rather than pulling, on the joint. Reading from i to h on the
Maxwell diagram shows that the arrowhead for this vector is on the right,
which translates to a tension effect on the joint diagram.

Having solved for the forces at joint 1 as described, the fact that the
forces in truss members BI and IH are known can be used to consider the
adjacent joints, 2 and 3. However, it should be noted that the sense re-
verses at the opposite ends of the members in the joint diagrams. Refer-
ring to the separated joint diagram in Figure 1.14, note that if the upper
chord member shown as force BI in joint 1 is in compression, its arrow-
head is at the lower left end in the diagram for joint 1, as shown in Fig-
ure 1.15a. However, when the same force is shown as IB at joint 2, its
pushing effect on the joint will be indicated by having the arrowhead at
the upper right end in the diagram for joint 2. Similarly, the tension ef-
fect of the lower chord is shown in joint 1 by placing the arrowhead on
the right end of the force IH, but the same tension force will be indicated
in joint 3 by placing the arrowhead on the left end of the vector for
force HI.

If the solution sequence of solving joint 1 and then joint 2 is chosen,
it is now possible to transfer the known force in the upper chord to joint 2.
Thus, the solution for the five forces at joint 2 is reduced to finding three
unknowns because the load BC and the chord force IB are now known.
However, it is still not possible to solve joint 2 because there are two un-
known points on the Maxwell diagram (k and j) corresponding to the
three unknown forces. An option, therefore, is to proceed from joint 1 to
joint 3, at which there are presently only two unknown forces. On the
Maxwell diagram the single unknown point j can be found by projecting
vector IJ vertically from i and projecting vector JH horizontally from
point h. Because point i is also located horizontally from point h, this
shows that the vector IJ has zero magnitude, because both i and j must be
on a horizontal line from h in the Maxwell diagram. This indicates that
there is actually no stress in this truss member for this loading condition
and that points i and j are coincident on the Maxwell diagram. The joint
force diagram and the force polygon for joint 3 are as shown in Figure
1.15b. In the joint force diagram, place a zero, rather than an arrowhead,
on the vector line for IJ to indicate the zero stress condition. In the force
polygon in Figure 1.15b, the two force vectors are slightly separated for
clarity, although they are actually coincident on the same line.
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Having solved for the forces at joint 3, proceed to joint 2, because there
remain only two unknown forces at this joint. The forces at the joint and
the force polygon for joint 2 are shown in Figure 1.15c. As for joint 1,
read the force polygon in a sequence determined by reading clockwise
around the joint: BCKJIB. Following the continuous direction of the
force arrows on the force polygon in this sequence, we can establish the
sense for the two forces CK and KJ.

It is possible to proceed from one end and to work continuously across
the truss from joint to joint to construct the Maxwell diagram in this ex-
ample. The sequence in terms of locating points on the Maxwell diagram
would be i-j-k-l-m-n-o-p, which would be accomplished by solving the
joints in the following sequence: 1,3,2,5,4,6,7,9,8. However, it is advisable
to minimize the error in graphic construction by working from both ends
of the truss. Thus, a better procedure would be to find points i-j-k-l-m,
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working from the left end of the truss, and then to find points p-o-n-m,
working from the right end. This would result in finding two locations for
m, whose separation constitutes the error in drafting accuracy.

Problems 1.5.A, B. Using a Maxwell diagram, find the internal forces in the
truss in Figure 1.16.

1.6 ALGEBRAIC ANALYSIS OF PLANAR TRUSSES

Graphical solution for the internal forces in a truss using the Maxwell di-
agram corresponds essentially to an algebraic solution by the method of
joints. This method consists of solving the concentric force systems at the
individual joints using simple force equilibrium equations. The process
will be illustrated using the previous example.

As with the graphic solution, first determine the external forces, con-
sisting of the loads and the reactions. Then proceed to consider the equi-
librium of the individual joints, following a sequence as in the graphic 
solution. The limitation of this sequence, corresponding to the limit of
finding only one unknown point in the Maxwell diagram, is that only two
unknown forces at any single joint can be found in a single step. (Two
conditions of equilibrium produce two equations.) Refer to Figure 1.17;
the solution for joint 1 is as follows.

The force system for the joint is drawn with the sense and magnitude
of the known forces shown, but with the unknown internal forces repre-
sented by lines without arrowheads because their senses and magnitudes
initially are unknown. For forces that are not vertical or horizontal, replace
the forces with their horizontal and vertical components. Then consider
the two conditions necessary for the equilibrium of the system: The sum
of the vertical forces is zero and the sum of the horizontal forces is zero.

If the algebraic solution is performed carefully, the sense of the forces
will be determined automatically. However, it is recommended that
whenever possible the sense be predetermined by simple observations of
the joint conditions, as will be illustrated in the solutions.

The problem to be solved at joint 1 is as shown in Figure 1.17a. In Fig-
ure 1.17b the system is shown with all forces expressed as vertical and
horizontal components. Note that although this now increases the num-
ber of unknowns to three (IH, BIv, and BIh), there is a numeric relation-
ship between the two components of BI. When this condition is added to
the two algebraic conditions for equilibrium, the number of usable rela-
tionships totals three, so that the necessary conditions to solve for the
three unknowns are present.
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The condition for vertical equilibrium is shown at (c) in Figure 1.17.
Because the horizontal forces do not affect the vertical equilibrium, the
balance is between the load, the reaction, and the vertical component of
the force in the upper chord. Simple observation of the forces and the
known magnitudes makes it obvious that force BIv must act downward,
indicating that BI is a compression force. Thus, the sense of BI is estab-
lished by simple visual inspection of the joint, and the algebraic equation
for vertical equilibrium (with upward force considered positive) is

�Fv � 0 � �2500 – 500 – BIv

From this equation, BIv is determined to have a magnitude of 2000 lb.
Using the known relationships between BI, BIv, and BIh, the values of these
three quantities can be determined if any one of them is known. Thus:
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BI BIv BIh——— � ——— � ———
1.000 0.555 0.832

from which

0.832
BIh � �———� (2000) � 3000 lb 

0.555

and

1.000
BI � �———� (2000) � 3606 lb 

0.555 

The results of the analysis to this point are shown at (d ) in Figure 1.17,
from which it may be observed that the conditions for equilibrium of the
horizontal forces can be expressed. Stated algebraically (with force sense
toward the right considered positive), the condition is

�Fh � 0 � IH – 3000

from which it is established that the force in IH is 3000 lb.
The final solution for the joint is then as shown at (e) in the figure. On

this diagram the internal forces are identified as to sense by using C to in-
dicate compression and T to indicate tension.

As with the graphic solution, proceed to consider the forces at joint 3.
The initial condition at this joint is as shown at (a) in Figure 1.18, with
the single known force in member HI and the two unknown forces in IJ
and JH. Because the forces at this joint are all vertical and horizontal,
there is no need to use components. Consideration of vertical equilibrium
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makes it obvious that it is not possible to have a force in member IJ.
Stated algebraically, the condition for vertical equilibrium is

�Fv � 0 � IJ (because IJ is the only force)

It is equally obvious that the force in JH must be equal and opposite
to that in HI because they are the only two horizontal forces. That is,
stated algebraically

�Fv � 0 � JH – 3000

The final answer for the forces at joint 3 is as shown at (b) in Figure
1.18. Note the convention for indicating a truss member with no internal
force.

Now proceed to consider joint 2; the initial condition is as shown at
(a) in Figure 1.19. Of the five forces at the joint only two remain un-
known. Following the procedure for joint 1, first resolve the forces into
their vertical and horizontal components, as shown at (b) in Figure 1.19. 

Because the sense of forces CK and KJ is unknown, use the procedure
of considering them to be positive until proven otherwise. That is, if they
are entered into the algebraic equations with an assumed sense, and the
solution produces a negative answer, then the assumption was wrong.
However, be careful to be consistent with the sense of the force vectors,
as the following solution will illustrate.

Arbitrarily assume that force CK is in compression and force KJ is in
tension. If this is so, the forces and their components will be as shown at
(c) in Figure 1.19. Then consider the conditions for vertical equilibrium;
the forces involved will be those shown at (d) in Figure 1.19, and the
equation for vertical equilibrium will be

�Fv � 0 � – 1000 � 2000 – CKv – KJv

or

0 � � 1000 – 0.555CK – 0.555KJ (1.6.1)

Now consider the conditions for horizontal equilibrium; the forces
will be as shown at (e) in Figure 1.19, and the equation will be
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�Fh � 0 � � 3000 – CKh � KJh 

or

0 � � 3000 – 0.832CK � 0.832KJ (1.6.2)

Note the consistency of the algebraic signs and the sense of the force
vectors, with positive forces considered as upward and toward the right.
Now solve these two equations simultaneously for the two unknown
forces as follows

1. Multiply equation (1.6.1) by 0.832/0.555

0.832 0.832 0.832
0 � �———� (� 1000) � �———� (– 0.555CK) � �———� (– 0.555KJ)

0.555 0.555 0.555

or

0 � � 1500 – 0.832CK – 0.832KJ

2. Add this equation to equation (1.6.2) and solve for CK.

4500
0 � � 4500 – 1.664CK, CK � ——— � 2704 lb

1.664

Note that the assumed sense of compression in CK is correct be-
cause the algebraic solution produces a positive answer. Substitut-
ing this value for CK in equation (1.6.1),

0 � � 1000 – 0.555(2704) – 0.555(KJ)

and
–500

KJ � ——— � �901 lb
0.555

Because the algebraic solution produces a negative quantity for KJ,
the assumed sense for KJ is wrong and the member is actually in com-
pression.
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The final answers for the forces at joint 2 are as shown at (g) in Fig-
ure 1.19. In order to verify that equilibrium exists, however, the forces are
shown in the form of their vertical and horizontal components at ( f ) in
the illustration.

When all of the internal forces have been determined for the truss, the
results may be recorded or displayed in a number of ways. The most di-
rect way is to display them on a scaled diagram of the truss, as shown in
Figure 1.20a. The force magnitudes are recorded next to each member
with the sense shown as T for tension or C for compression. Zero stress
members are indicated by the conventional symbol consisting of a zero
placed directly on the member.

When you are solving by the algebraic method of joints, the results
may be recorded on a separated joint diagram as shown in Figure 1.20b.
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If the values for the vertical and horizontal components of force in slop-
ing members are shown, it is a simple matter to verify the equilibrium of
the individual joints.

Problem 1.6.A, B. Using the algebraic method of joints, find the internal forces
in the truss in Figure 1.16.
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