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Overview and Introduction

The past few years have witnessed tremendous advances in hyperspectral imaging where statistical
signal processing has played a pivotal role in driving algorithm design and development for hyper-
spectral data exploitation. It has attracted attention of those who come from different disciplinary
areas by exploring new applications and making connections between remote sensing and other
engineering fields. In recent years, there has been a significant increase in participation in various
conferences and venues related to this area, which in turn has provided evidence that hyperspectral
signal and image processing has broken away from traditional spatial domain analysis—based
remote sensing and successfully branched out to stand alone as a single research topic, similar to
signal processing that evolved as a separate area from communications in the late 1970s. On the
contrary issues related to high spectral resolution provided by hyperspectral imaging sensors have
also changed the ways in which algorithms are designed and developed. As a consequence, many
problems such as subpixels and mixed pixels that are generally encountered in hyperspectral image
processing, but do not occur in classical two-dimensional (2D) image processing, have become
major issues for traditional spatial domain-based techniques. This is because the concept of
“seeing-is-believing” by visual inspection, which has been widely used in image processing, can-
not resolve issues of targets that are completely embedded in a single pixel or partially but do not
fully occupy a single pixel, in which case only spectral properties can be used to characterize such
targets for data analysis. Therefore, to distinguish such spectral characterization-based analysis
from the traditional spatial domain—based analysis, the former is referred to as nonliteral analysis
as opposed to the latter termed as /iteral analysis.

Due to complicated environments in real-world problems many uncontrollable parameters are
also beyond our grip. In order to explore insights into algorithm design, the use of synthetic images
to simulate various scenarios to substantiate designed algorithms for performance analysis
becomes an effective proof-of-concept evaluation tool. Such synthetic images can be simulated by
either real image scenes or laboratory data sets for various applications. Unfortunately, such syn-
thetic image-based computer simulations have received little attention in the past. Accordingly,
one of the major features that readers will find in this book is an extensive use of synthetic image-
based experiments in algorithm design and analysis for qualitative as well as quantitative perform-
ance evaluation. Another unique feature of this book is that the algorithms derived and developed
in this book can be implemented with little difficulty via the MATLAB, a widely accepted software
package developed by the MATHWORK for engineering applications. This advantage allows read-
ers to implement their algorithms. To further facilitate this benefit MATLAB codes of many
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popular algorithms developed in this book are also made available in the appendix at the end of this
book. Most importantly, this book has also expanded its use of images in Chang (2003a) to include
two more popular image scenes, Purdue’s Indian Pine test site in Indiana and Cuprite image scene
in Nevada, both of which are available on web site so that they can be used by those who develop
new algorithms, to validate and evaluate their designed algorithm for performance analysis as well
as to conduct their own comparative study. Last but not the least, this book includes an appendix
that compiles many algorithms developed in the Remote Sensing Signal and Image Processing
Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). Such an algo-
rithm compendium should serve as a valuable guide for people who are interested in applications
of hyperspectral data processing.

1.1 Overview

Hyperspectral signal and image processing has become a fast-growing area that bridges communi-
ties of remote sensing and signal/image processing due to the fact that many problems arising in
the former can be reformatted and solved by the latter. A good example is an increasing number of
conferences in both communities and a wide range of publications in both signal and image proc-
essing journals and traditional remote sensing journals. Particularly, in recent years significant
research and development in hyperspectral imaging has resulted in at least hundreds, if not thou-
sands, of publications in various journals. Many new findings have been reported in many annual
meetings and venues such as IEEE International Geoscience and Remote Sensing Symposia; SPIE
conferences on Defense and Security (previously known as AeroSense); Algorithms and Technol-
ogies for Multispectral, Hyperspectral and Ultraspectral Imagery (annually held in April); SPIE
International Symposium on Optical Science & Technology (Remote Sensing Symposium, specifi-
cally Conferences on Satellite Data Compression, Communication, and Processing and Confer-
ences on Imaging Spectrometry, annually held in August); Conference on Imaging Spectrometry;
EOS/SPIE Symposium on Remote Sensing; IEEE GRSS Workshop on Hyperspectral Image and
Signal Processing—Evolution in Remote Sensing (WHISPERS); and so forth. Accordingly, any
attempt to cover in a single book all possible areas in this field would be impossible and unrealistic.
Keeping this reality in mind the book is written based on personal preference and is only focused
on recent works that have been done mostly in RSSIPL at UMBC, but have not been covered in my
previous book (Chang, 2003a). Therefore, there is not much overlap between this book and Chang
(2003a). Hence this book can be considered as a sequel of Chang (2003a). Specifically, this book
takes a rather different yet unique approach compared with that adopted in Chang (2003a), by
treating hyperspectral image processing and hyperspectral signal processing as two separate sub-
jects where the former processes a hyperspectral image as an image cube and the latter considers a
hyperspectral signature as a one-dimensional signal so that no sample correlation such as spectral
correlation among pixels in a hyperspectral image cube can be taken into account and used for
algorithm design. Within this context the topics presented in this book are organized in the follow-
ing order.

I. Preliminaries

A. Hyperspectral Image Processing

II. Endmember Extraction

III. Supervised Linear Hyperspectral Mixture Analysis
IV. Unsupervised Hyperspectral Image Analysis

V. Hyperspectral Information Compression

B. Hyperspectral Signal Processing
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VI. Hyperspectral Signal Coding

VII. Hyperspectral Signal Characterization
C. Applications

Appendix: Algorithm Compendium

Several recent books on hyperspectral imaging are also available in the public domain (Chang.
2003a; 2006b; 2007a; Plaza and Chang, 2007a; Varshney and Arora, 2004) and the subjects cov-
ered in these books are somewhat selective. For example, the book by Varshney and Arora (2004)
is focused on some specific techniques, for example, independent component analysis, support
vector machines, and Markov random field. The book by Chang (2003a) is primarily devoted to
nonliteral statistical signal processing techniques developed for subpixel detection and mixed
pixel classification. The two books edited by Chang (2006b) and (2007a) are collections of most
recent results contributed by researchers who are experts and currently active in hyperspectral
imaging. Another book edited by Plaza and Chang (2007a) intends to target specific topics in
high-performance computing, which has grown rapidly due to the need of processing enormous
data volumes and has also become increasingly important in remote sensing data processing.
Unlike the above-mentioned books this book explores many interesting research topics resulting
from issues that are generally either overlooked or neglected in multispectral imagery as well as
issues that were not addressed or fully explored in Chang (2003a).

1.2 Issues of Multispectral and Hyperspectral Imageries

Because of its low spectral resolution a multispectral image pixel vector usually does not have
information as rich as a hyperspectral image pixel vector does. In this case, multispectral image
processing must rely on image spatial information and correlation to make up insufficient spectral
information resulting from a few discrete spectral bands. Therefore, an early development of mul-
tispectral image processing has focused on spatial domain-based techniques. However, with recent
advent of very high-spectral resolution hyperspectral imaging sensors many material substances
that cannot be resolved by multispectral imaging sensors can now be uncovered by hyperspectral
imagers for data analysis. As a consequence, targets or objects of interest for multispectral and
hyperspectral image analyses are quite different. In multispectral image analysis land cover/land
use is often of major interest. Therefore, the developed techniques generally perform pattern clas-
sification and analysis in the sense that every single pixel of an image must be classified into one of
a number of pattern classes, each of which corresponds to one particular spatial class. On the con-
trary, the objects of interest in hyperspectral image analysis are usually targets with particular spec-
tral characteristics such as man-made targets, anomalies, or rare targets. The targets of these types
generally appear either in a form mixed with a number of material substances or at subpixel level
with targets embedded in a single pixel vector due to their size that is smaller than the ground
sampling distance (GSD). Besides, these types of targets usually appear unexpectedly and their
probabilities of occurrence are also low. Most importantly, their sample pool may also be relatively
small and their sizes may only have limited spatial extent. As a consequence, such targets may not
be easy to be visually identified or inspected with prior knowledge; thus, they can be considered as
insignificant targets but are indeed of major interest from an intelligence or information point of
view. For example, these targets may include special spices in agriculture and ecology, toxic
wastes in environmental monitoring, rare minerals in geology, drug/smuggler trafficking in law
enforcement, military vehicles in combat, abnormality in battlefields, landmines in war zones,
chemical/biological agents in bioterrorism, weapon concealment and mass graves in intelligence
gathering, and so on. Under such circumstances, they can be only detected at mixed or subpixel
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level and traditional spatial domain (i.e., literal)-based image processing techniques may not be
suitable or effective. So, the extraction of such targets must rely on their spectral profiles and the
techniques developed for hyperspectral image analysis should perform farget-based detection, dis-
crimination, classification, identification, recognition, and quantification as opposed to pattern-
based multispectral imaging techniques. As a result, a direct extension of multispectral imaging
techniques to hyperspectral imagery may not be effective in hyperspectral data exploitation
because pattern class information and correlation provided by these targets may be too little to be
used for performing hyperspectral image analysis. In order to address this issue the techniques in
Chang (2003a) are developed directly from a hyperspectral imagery point of view for spectral
detection and classification. This book expands the scope of Chang (2003a) to cover a wider range
of applications including endmember extraction, unsupervised target detection, information com-
pression, and hyperspectral signal coding and characterization, none of which is studied in Chang
(2003a).

1.3 Divergence of Hyperspectral Imagery from Multispectral Imagery

The hyperspectral imagery has changed the way we think of multispectral imagery. This is because
we now have hundreds of contiguous spectral bands available at our disposal. So, one major issue
is how to effectively use and take advantage of spectral information provided by these hundreds of
spectral bands for various applications in data exploitation, for example, target detection, discrimi-
nation, classification, quantification, and identification. This interesting issue can be addressed by
the following two interesting examples. The first example uses real-to-complex analysis to illus-
trate why it is inappropriate to simply extend multispectral imaging techniques to process hyper-
spectral imagery. The second example uses the well-known pigeon-hole principle in discrete
mathematics (Epp, 1995) to illustrate how hyperspectral imagery can be addressed by a rationale
completely different from that used for multispectral imagery.

1.3.1 Misconception: Hyperspectral Imaging is a Natural Extension
of Multispectral Imaging

While dealing with hyperspectral imagery there is a general consensus that hyperspectral imagery
is a natural extension of multispectral imagery based on an assumption that a hyperspectral image
has more spectral bands for data collection than a multispectral image does. As a result, it may lead
to a misconception that hyperspectral imaging problems can be solved by multispectral imaging
techniques by simply taking advantage of its expanded spectral bands. A similar misconception
also occurs in hyperspectral data compression where researchers in data compression community
consider a hyperspectral data as an image cube so that 3D image compression processing tech-
niques developed for videos can be simply applied to hyperspectral imagery as a 3D image cube
without extra precaution (see Part V: Chapters 19-23). Unfortunately, over the past few years these
misconceptions have somewhat directed the way we design and develop hyperspectral imaging
techniques.

To understand the fundamental difference between multispectral imaging and hyperspectral
imaging, we use a simple mathematical example to illustrate a similar misconception, which is
finding derivatives in real analysis and complex analysis. Since real variables can be considered as
real parts of complex variables, this may lead to a brief that real analysis is a special case of com-
plex analysis, which is certainly not true. One piece of clear evidence is derivatives. When a deriv-
ative is calculated in the real line, the direction with respect to which a derivative is calculated
along the real axis is constrained either to the left or to the right. However, the direction along
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which a derivative is calculated by complex analysis can be along any curve in the complex plane.
As a result, calculating a complex derivative is more sophisticated than simply extending the way
derivatives are calculated in real analysis. A natural extension of real derivatives is partial deriva-
tives in complex analysis along two axes: x-axis and y-axis. However, it is not true for any deriva-
tive calculated in the complex plane. This is because the direction along which the derivative is
calculated is not only limited to x- and y-axes but it must also take into account all directions that
are more likely curves instead of lines. When such a derivative occurs it is called total differentia-
ble or analytic and must satisfy the so-called Cauchy—Riemann equation that allows a differentia-
ble complex variable to be expanded as a power series which is much stronger than only
derivatives. This simple example explains why complex analysis is not a natural extension of real
analysis and a direct extension of real derivatives to complex derivatives as partial derivatives can
only achieve limited success to some extent. This example sheds some light on a similar key differ-
ence between multispectral and hyperspectral images. In its early days multispectral imagery has
been used in remote sensing mainly for land cover/land use classification in agriculture, disaster
assessment and management, ecology, environmental monitoring, geology, geographical informa-
tion system (GIS), and so on. In these applications, low spectral resolution multispectral imagery
may provide sufficient information for data analysis and the techniques developed for multispectral
image processing are primarily based on pattern classes that take advantage of spatial correlation
to perform various tasks. Compared to multispectral imagery, hyperspectral imagery utilizes hun-
dreds of contiguous spectral bands to perform target-class analysis. This is the major difference
between hyperspectral imagery and multispectral imagery. Specifically, the objects of interest in
hyperspectral imagery are no longer patterns of large areas as considered in multispectral imagery.
Instead, hyperspectral image analysts are interested in those objects that cannot be visualized by
inspection or with prior knowledge due to limited extent of their spatial presence. As a result,
hyperspectral imaging is generally developed to perform target class—based image analysis where
image background is usually of no interest. Such examples include anomaly detection, endmember
extraction, man-made target detection, and so on, where the spatial information provided by these
objects of interest is generally very little. So, if the hyperspectral imagery is treated as a natural
extension of the multispectral imagery, its success can be very limited due to its use of spatial
information to perform pattern class—based image analysis rather than target class—based image
analysis, a similar dilemma that also occurs between real and complex derivatives. Accordingly,
we must reinvent the wheel and re-design and develop new hyperspectral imaging techniques
rather than directly derive those adopted from multispectral image techniques. One promising
approach is the use of the following pigeon-hole principle described in the following section.

1.3.2 Pigeon-Hole Principle: Natural Interpretation of Hyperspectral Imaging

Suppose that there are p pigeons flying into L pigeon holes (nests) with L < p. According to the
pigeon-hole principle, there exists at least one pigeon hole that must accommodate at least two or
more pigeons. Now, assume that L is the total number of spectral bands and p is the number of
targets of interest. By virtue of the pigeon-hole principle, we can interpret a pigeon hole as a spec-
tral band while a pigeon is considered as a target (or an object) of interest. With this interpretation
if L > p, a spectral band can be used to detect, discriminate, and classify a distinct target. Since
there are hundreds of spectral bands available from hyperspectral imagery, technically speaking,
hundreds of spectrally distinct targets can be accommodated by these spectral bands, namely one
target by one particular spectral band. In order to materialize this idea, three issues need to be
addressed. First, the number of spectral bands, L, must be greater than or equal to the number of
targets of interest, p, that is, L > p. This seems always true for hyperspectral imagery, but is not
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necessarily valid for multispectral imagery, where L < p in the latter is usually true. For example,
3-band SPOT multispectral data may have difficulty with classifying more than three target sub-
stances present in the data using the pigeon-hole principle. However, the benefit of L > p also
gives rise to a challenging issue known as “curse of dimensionality” (Duda and Hart, 1973), that
is, “what is the true value of p if L > p.” This has been a long-standing issue for any hyperspectral
image analyst to resolve because it is nearly impossible to know the exact value of p in real-world
problems. Moreover, even if the value of p can be provided by prior knowledge it may not be
reliable due to many unexpected factors that cannot be known a priori. In multivariate data analy-
sis, the value of p is described by the so-called intrinsic dimensionality (ID) (Fukunaga, 1990),
which is defined as the minimum number of parameters used to specify the data. However, this
concept is only of theoretical interest. No method has been proposed regarding how to find it in the
literature. A common strategy is to estimate the p on a trial-and-error basis. A similar problem is
also encountered in passive array processing where the number of signal sources, p, arriving at a
linear array of sensors is of major interest. In order to estimate this number, two criteria, an infor-
mation criterion (AIC) suggested by Akaike (1974) and minimum description length developed by
Schwarz (1978) and Rissanen (1978), have been widely used to estimate the value of p.
Unfortunately, a key assumption made on these criteria is that the noise must be independent and
identically distributed, a fact that is usually not a valid assumption in hyperspectral images as
shown in Chang (2003a) and Chang and Du (2004). In order to cope with this dilemma, a new
concept called virtual dimensionality (VD) was coined and suggested by Chang (2003a) to esti-
mate the number of spectrally distinct signatures in hyperspectral imagery. It is also based on the
pigeon-hole principle where VD is used to estimate the number of pigeons with the total number of
spectral bands interpreted as the number of pigeon holes. The last issue to be addressed is that once
a spectral band is being used to accommodate one target, it cannot be used again to accommodate
another distinct target. One way to do so is to perform orthogonal subspace projection (OSP)
developed by Harsanyi and Chang (1994) on a space linearly spanned by the already found targets
to find an orthogonal complement space from which only new targets can be generated. Equiva-
lently speaking, the spectral bands used to accommodate previous targets cannot be used again to
accommodate a new target. Through a series of such OSP operations no two distinct targets will be
specified and accommodated by a single spectral band. In other words, all the found targets must
be accommodated in separate mutual orthogonal subspaces. In terms of the pigeon-hole principle it
implies that no two pigeons will be allowed to fly into a single pigeon hole. Here, one remark is
noteworthy. When it says that one target is accommodated and specified by one spectral band, it
simply means that the target can be best spectrally characterized by this particular band compared
to other bands. So, this band is chosen to be its identity like its fingerprint or DNA. If two targets
happen to have the same band being used for their best spectral characterization then there is no
way to discriminate one from the other. In this case, it implies that two pigeons fly into the same
pigeon hole. More specifically, one pigeon hole is used to accommodate two flying-in pigeons,
both of which reside in a single pigeon hole.

Once these three issues, that is, (1) L > p, (2) determination of p, and (3) no two distinct target
signatures to be accommodated by a single spectral band, are resolved, the idea of applying the
pigeon-hole principle to hyperspectral data exploitation can be realized and becomes feasible.
More specifically, using spectral bands as a means to perform detection, discrimination, classifica-
tion, and identification without accounting for spatial information or correlation provides an alter-
native approach, to be called nonliteral analysis as opposed to the spatial domain-based approach,
to be called literal analysis. Such a nonliteral analysis is particularly important for two types of
targets. One is that targets are small or insignificant due to their limited spatial presence and cannot
be effectively captured by spatial correlation or information. The other is that targets of the same
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type are spatially separated so that their spatial correlation is actually very weak and little in which
case the spatial domain-based literal analysis may have difficulty in finding them spatially corre-
lated. The only way to group them together is based on their spectral characteristics regardless of
where they are spatially located.

Interestingly, the pigeon-hole principle also sheds light on differentiation of hyperspectral imag-
ery from multispectral imagery. Through the relationship between the total number of spectral
bands, L, and the number of signal sources to be accommodated, p, discussed above, a multiple-
band remote sensing image can be considered as a hyperspectral image if L > p and a multi-
spectral image otherwise (i.e., L < p). More details of this interpretation can be found in
Chapter 31.

Furthermore, VD can be also interpreted by the pigeon-hole principle, and its potential in hyper-
spectral data exploitation has been demonstrated in many applications, for example, linear spectral
mixture analysis (Chang, 2006c), dimensionality reduction (Wang and Chang, 2006a, 2006b), band
selection (Chang and Wang, 2006), and so on. Chapter 5 will revisit VD for more details.

1.4 Scope of This Book

While writing this book it is important to consider hyperspectral image processing and hyperspec-
tral signal processing as two different research areas and treat them separately. When hyperspectral
data are processed as image cubes, it is called hyperspectral image processing where data samples
are image pixel vectors and both spectral and spatial correlation among image pixel vectors can be
made available for data processing. On the other hand, when hyperspectral data are processed as
signatures it is called hyperspectral signal processing where a signature is a one-dimensional sig-
nal, which represents its spectral profile over a range of wavelengths for signature characterization.
In this case, only interband spectral correlation within the signature is available for data processing
and no other information such as sample spatial or spectral correlation used in hyperspectral image
processing is available for signature processing. Such hyperspectral signals include data obtained
from laboratories, databases, and spectral libraries where no data sample spatial/spectral correla-
tion is available. Therefore, techniques developed for hyperspectral image processing may not be
directly applicable to hyperspectral signal processing and vice versa. Unfortunately, it seems that
there is no concern in distinguishing one from another when it comes to algorithm design. This
book is believed to be the first to do so by treating hyperspectral image processing and hyperspec-
tral signal processing in two separate categories: Category A: Hyperspectral Image Processing
treated in Parts II-V; Category B: Hyperspectral Signal Processing treated in Parts VI-VIL

In order to make this book self-contained, preliminaries are also included as Part I to cover basic
knowledge that provides readers with necessary background required to read this book. In particu-
lar, it integrates many scattering results into different chapters so that readers can follow through
materials easily without looking for other references. Each chapter in Part I can be read indepen-
dently with little interruption while also keeping the flow and all the chapters coherent each other.

Part II is endmember extraction that is one of most crucial tasks in hyperspectral data exploita-
tion and has recently become increasingly important due to significantly improved high spatial and
spectral resolution provided by hyperspectral imaging sensors. According to the definition given
by Schowengerdt (1997), an endmember is an idealized, pure signature for a class, more specifi-
cally, spectral class. For multispectral imagery, an endmember may nowhere be found since most
data sample vectors may be heavily mixed due to low spatial and spectral resolution. As a result,
the importance of endmember extraction has been overlooked and not been a major subject in
multispectral image analysis. By contrast, with recent advances of hyperspectral imaging sensors
many subtle material substances that cannot be resolved by multispectral imagery can be now
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revealed by hyperspectral imagery. These substances are generally not known a priori and can be
only diagnosed by high spectral resolution. Endmembers are considered to be one of such sub-
stances. In general, their existence in image data cannot be detected visually. Most importantly,
once endmembers are present, their spatial extent is relatively limited. Besides, their sample pools
are also very small. Accordingly, they may appear as anomalies. In this case, spatial characteristics
offer little advantage in finding endmembers. In the past, the image classification in multispectral
image processing has been often performed by pattern classification (land use/land cover classifi-
cation) where each image pixel must be classified into a particular class in accordance with a cer-
tain classification criterion. However, endmembers are generally rare. Unless they are treated and
extracted as targets of interest, their detection and extraction is very challenging. Additionally,
because of the lack of spatial patterns specified by endmembers the effectiveness of endmember
detection or extraction will be very likely to be compromised by spatial-based pattern classification
techniques. In order to address this issue, Chang (2003a) has focused on target classification than
on pattern classification, in which case only targets of interest are of major concern where image
background is only used for suppression. However, such an important issue of endmember extrac-
tion was not investigated and explored in Chang (2003a), when this subject was not mature but
now will be one of the major subjects in this book studied in great detail in Part II.

Part III revisits supervised linear spectral mixture analysis (SLSMA), which was discussed in
great length in Chang (2003a). This part rederives a least squares-based orthogonal subspace pro-
jection (LSOSP) from the signal-to-noise ratio (SNR)-based orthogonal subspace projection so that
LSOSP and OSP essentially operate the same matched filter subject to a constant k, which
accounts for least squares estimation error. More specifically, LSOSP performs as an estimator by
including the k, while OSP operates as a detector by setting k = 1. By using different matched
signatures LSOSP and OSP can interpret many commonly used operators such as constrained
energy minimization (CEM) in Chang (2003a) and RX detector developed by Reed and Yu (1990).
Furthermore, OSP and LSOSP can be extended in three different directions. One is to replace the
least squares error criterion with Fisher’s ratio to derive Fisher’s LSMA (FLSMA). Another is to
impose weight constraints on spectral bands to derive weighted abundance-constrained LSMA
(WAC-LSMA). Finally, a third direction introduces a nonlinear kernel into LSMA to derive ker-
nel-based LSMNA (KLSMA).

Part IV extends SLSMA developed in Part III to unsupervised LSMA (ULSMA) where prior
knowledge of signature information is not available. Under such circumstance two major issues
that do not occur in supervised analysis need to be addressed. One is how many signature sources
of interest to be used for LSMA and the second is how to find them. Once these issues are resolved
ULSMA becomes SLSMA where approaches presented in Part III are readily applied.

Part V is hyperspectral information compression. One challenging issue in processing hyper-
spectral imagery is its huge data volume, which may result in high computational cost of data
processing, long delay of data transmission and communications, and difficult management of
data storage and archiving. Another is how to compress spectral information resulting from highly
correlated spectral bands without sacrificing vital information. The first issue can be addressed by
developing techniques reducing data size, referred to as data reduction/compression, while the sec-
ond issue can only be addressed by developing techniques removing redundant information,
referred to as information compression. These two types of compression are completely different
and should be dealt with separately. Unfortunately, many hyperspectral data compression tech-
niques have not taken this distinction into account. But, it is important to differentiate information
compression from data compression since the compression ratio used in data compression is meas-
ured by data size, which does not imply compression of information. In other words, information
compression is determined by various applications with specific information required to be
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retained during a compression process. This type of information compression can be considered as
exploitation-based lossy compression. To address this issue, the commonly used terminology,
hyperspectral data compression, is referred to as hyperspectral information compression in this
book and can be interpreted as exploitation-based lossy hyperspectral compression, which includes
two major spectral compression techniques, spectral dimensionality reduction and spectral band
selection, each of which will be discussed in great detail in Part V.

Up to now the hyperspectral data considered in previous parts are image cubes where all
the data sample vectors are image pixel vectors. However, in many situations the hyperspec-
tral data may only be obtained as signature vectors by nonimage sensors or from spectral
libraries or databases. In this case, the data to be dealt with is a one-dimensional hyperspec-
tral signal as a signature vector rather than as a pixel vector in three-dimensional image cube.
So, Category B in this book is primarily focused on hyperspectral signal processing, which
consists of two parts, Part VI and Part VII. Part VI considers hyperspectral signal coding
where information compression is performed on a hyperspectral signature vector to capture
its unique spectral profile to serve its fingerprint for signature discrimination, detection, clas-
sification, and identification. In other words, instead of considering image data as a 3D image
cube, the idea of hyperspectral signal coding is to explore spectral characteristics and further
to capture changes in the spectral profile within a single signature vector as spectral marks so
that a single signature vector can be encoded by its fingerprint as a code word to represent its
identity. On the other hand, hyperspectral signal coding can also be considered as quantiza-
tion that discretizes hundreds of spectral values into a finite set of discrete values. So, it can
be viewed as an analog-to-digital (A/D) converter and intends to find the best possible repre-
sentation of a hyperspectral signature vector for a given bit rate. For a multispectral signature
vector the spectral resolution is low and only a few spectral values are available for quantiza-
tion. So, signature coding may not be effective to characterize spectral signature properties.
This may no longer be true for a hyperspectral signature vector where hundreds of contigu-
ous spectral bands may provide sufficient information for spectral characterization. Interest-
ingly, hyperspectral signature coding has never been of major interest in hyperspectral data
analysis. This part investigates three types of hyperspectral signal coding: binary coding, vec-
tor coding, and progressive coding, where the binary coding can be viewed as memoryless
coding as opposed to the vector coding and progressive coding, which can be regarded as
memory coding. Comparing the hyperspectral signature coding in Part VI that makes hard
decisions on the spectral profile of a signature vector, Part VII presents techniques that make
soft decisions on a signature vector to perform hyperspectral signature analysis in the sense
of hyperspectral signature characterization. In this case, the knowledge of a reference signa-
ture is generally required for a hyperspectral signature vector to be characterized.
Unfortunately, hyperspectral signature analysis via spectral characterization has not received
much attention in the last few years. Part VII investigates this issue by developing three dif-
ferent approaches: band selection for signature characterization, Kalman filter for
signature estimation, and wavelets for signature representation.

The last category of this book is Category C: Applications, which show how hyperspectral
imaging techniques can be applied to various problems such as size estimation of subpixel
targets, concealed target detection, and how to take advantage of hyperspectral imaging tech-
niques to resolve issues of multispectral imagery. Specifically, a new application of hyper-
spectral imaging to magnetic resonance imaging is included to demonstrate its utility in
medical imaging.

To conclude this book, an appendix is also included for readers’ reference. It is an algorithm
compendium that compiles important algorithms developed in the RSSIPL at UMBC.
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1.5 Book’s Organization

This book is organized in accordance with the order laid out by seven parts in three categories
presented in the previous section. Each part can be read independently while keeping sufficient
correlation with other parts.

1.5.1 Part I: Preliminaries

The preliminaries in Part I help readers grasp sufficient knowledge to follow this book without
difficulty. It consists of six chapters.

Chapter 2 is Fundamentals of Subsample and Mixed Sample Analyses. It uses a simple example
to illustrate issues of subsamples and mixed samples encountered in detection and classification. It
then walks through various approaches using hard and soft decisions for subsample detection and
mixed sample classification. It includes many techniques currently being used and available in the
literature.

Chapter 3 introduces Three-Dimensional Receiver Operating Characteristics (3D ROC)
Analysis that can be used as an evaluation tool for soft decision-making performance for
hyperspectral target detection and classification. An ROC curve is defined as a curve plotted
based on detection probability versus false alarm probability. An analysis that uses ROC curves
to evaluate the effectiveness of a Neyman—Pearson detector is called ROC analysis. A major
advantage of ROC analysis is that there is no need of specifying a particular cost function. For
example, least squares error or signal-to-noise ratio may be a good criterion for detection of
problems in signal processing and communications, but may not be appropriate to measure
image quality or classification accuracy. This is essentially true when it comes to design of
computer-aided diagnostic systems where their effectiveness is measured by their end users in
which case the cost function is generally human errors. Furthermore, ROC analysis is devel-
oped for detection in the context of binary hypothesis testing problems. In chemical/biological
warfare (CBW) defense, estimation of chemical/biological (CB) agent abundance is more criti-
cal than CB agent detection since the lethal level of concentration of different CB agents poses
different threats. The detection-based ROC curves cannot address this need. Chapter 3 is
included to resolve this issue where a 3D ROC analysis is developed by creating a third dimen-
sion to specify target abundance so that a 3D-ROC curve can be generated and plotted based
on three parameters, detection probability, Pp, false alarm probability, P, and threshold 7.
Consequently, the traditional detection-based ROC curves, referred to as 2D ROC curves,
become a special case of 3D ROC curves. As noted, most hyperspectral imaging techniques
are actually derived from various aspects of estimation, which produce abundance fractions of
signatures of interest such as linear spectral mixture analysis. In order to evaluate their per-
formance for quantitative analysis the estimated abundance fractions must be converted to
hard decisions via a threshold 7. The 3D ROC analysis provides a feasible tool for this
purpose.

Chapter 4 is Design of Synthetic Image Experiments. One of major difficulties in algorithm
design is how to evaluate various algorithms objectively and impartially on a fair common ground.
In doing so, the first concern is the data to be used for experiments that must be available and
assessable for those who are interested in comparing their designed algorithms to others. This can
be done by using data sets in the public domain. A second concern is that the experiments should
be repeatable for performance assessment. A third and most important one is design of experi-
ments that should have controllable parameters to generate desired ground truth to address issues
to be investigated. Chapter 4 takes advantage of real image scenes available on web site to simulate
synthetic images with various scenarios that can be designed for this purpose.
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Chapter 5 is Virtual Dimensionality of Hyperspectral Data that revisits a recently developed
concept called virtual dimensionality defined in Chapter 17 of Chang (2003a) as the number of
spectrally distinct signatures in hyperspectral imagery. VD has been found to be very useful in
many applications (Chang, 2006a, 2006b) such as DR in Wang and Chang (2006a), BS in Chang
and Wang (2006), and endmember extraction in Wang and Chang (2006b). Accordingly, a new
way of reinterpreting VD becomes imperative. Chapter 5 is a result of such an effort where VD is
explored for new interpretation and various techniques are also developed to estimate VD for dif-
ferent applications.

Chapter 6 is Data Dimensionality Reduction. It provides a comprehensive study and survey on
many popular and commonly used dimensionality reduction (DR) techniques, which can be treated
in two separate categories: dimensionality reduction by transform (DRT) and DR by band selection
(DRBS). Specifically, DRT comprises two types of transforms: component analysis (CA)-based
transforms, which are derived from statistics of various orders including 2nd order statistics-based
principal components analysis (PCA), 3rd order statistics-based skewness, 4th order statistics-
based kurtosis and statistical independency-based independent component analysis (ICA) and fea-
ture extraction (FE)-based transforms, Fisher’s ratio-based linear discriminant analysis (FLDA),
and linear mixture model-based OSP. As an alternative to DRT, DRBS selects an appropriate
subset of bands from the original band set to replace the high-dimensional original data set with
a low-dimensional data set represented by selected bands. So, technically speaking, DRBS per-
forms data reduction, not data compression, by reducing band dimensionality without processing
data in the sense that selected bands form a new data cube with all the unselected bands being
discarded. While both DRT and DRBS accomplish the same goal, they present different ratio-
nales in DR. The former is developed to compact data information in low dimensions via a
transform, while the latter represents the original high-dimensional data by its low-dimensional
data via band selection. As a consequence, the effectiveness of DR and BS is measured by the
transform used for DR and criteria used for BS. Nevertheless, DRT and DRBS do share the
same fundamental issue, that is, “how many dimensions are required to be retained after DRT?”
and “how many bands are needed for DRBS to faithfully represent the original data?.” Interest-
ingly, such an issue has been either overlooked or intentionally avoided in the past because
finding an effective criterion for determination of the number of dimensions to be retained or
bands to be selected is extremely challenging. Figure 1.1 lists six chapters in Part I to provide
background knowledge for follow-up chapters.

3D ROC Analysis,

—| Fundamentals, Chapter 2 |<— PART I: PRELIMINARIES >
Chapter 3

v Y v

Design of Synthetic —b| VD, Chapter 5 I—P| DR, Chapter 6

Images, Chapter 4
T

v

Supervised LSMA PART Unsupervised Target
11 Analysis, PART IV

Endmember
Extraction, PART IT

A

Figure 1.1 Six chapters in Part I to provide background knowledge.
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1.5.2 Part II: Endmember Extraction

Endmembers are probably one of most important features in hyperspectral data exploitation since
they represent pure signatures used to specify distinct spectral classes. So, finding endmembers
becomes a very crucial preprocessing step for hyperspectral image analysis. This is particularly
true for linear spectral mixture analysis (LSMA) that requires a set of basic material constituents,
referred to as image endmembers to form a linear mixing model to unmix data in terms of abun-
dance fractions of these endmembers. However, the prior knowledge of such image endmembers is
usually not available a priori. Therefore, endmember extraction comes to play a key role in finding
such image endmembers. Unfortunately, the research in endmember extraction has not received
much attention in early days until recently. This may be partly due to the fact that many research
efforts in remote sensing image processing have been directed to design and development of super-
vised methods where the necessary prior knowledge is assumed provided a priori. In this case,
there is no need of finding endmembers. Second, because of low spectral or spatial resolution most
image pixels appear in a mixed form rather than as pure pixels. Consequently, the presence of
endmembers is considered to be very rare. From a land use/land cover’s point of view there may
be few endmembers that have little impact on image classification. However, from a viewpoint of
intelligence endmembers provide crucial and critical information since their existence is
unexpected. Specifically, when they appear, only a small population will be present and cannot be
identified by prior knowledge. Additionally, the low probability of their occurrence also makes
their detection very difficult. Part II is devoted to this topic. Most importantly, it develops various
algorithms of different forms for endmember extraction.

Basically, an endmember extraction algorithm (EEA) can be categorized into simultaneous
EEA (SM-EEA) and sequential EAA (SQ-EEA) depending upon how it generates endmembers.
An SM-EEA generates a required number of endmembers all together compared to an SQ-EEA,
which generates one endmember at a time until it reaches a required number of endmembers. On
the other hand, based on how initial conditions are used for initialization, an EEA can be also
categorized into initialization-driven EEA (ID-EEA) and random EEA (REEA). These two types
of EEAs adopt completely opposite philosophies. An ID-EEA selects a specific set of initial end-
members to avoid randomness caused by the use of random initial endmembers compared to an
REEA, which converts the disadvantage resulting from random nature of initial endmembers to an
advantage of making an EEA immune to random initial conditions. In order to treat EEAs system-
atically and logically, Chapter 7 first considers SM-EEAs followed by SQ-EEAs in Chapter 8, ID-
EEAs in Chapter 9, and REEA in Chapter 10. Finally, Part II is concluded by Chapter 11, which
explores relationships among various EEAs studied in Chapters 7—10. Figure 1.2 outlines the orga-
nization of five chapters in Part II.

PART II: ENDMEMBER EXTRACTION

v v
_| SM-EEA, Chapter 7 |<7| SQ-EEA, Chapter 8 |
l [ |
v Vv
| ID-EEA, Chapter9| | REEA, Chapter 10 |

v v v

| Exploration on Relationships and Correlation among EEAs, Chapter 11 ‘

Figure 1.2 Organization of five chapters in Part II.
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1.5.3 Part I1I: Supervised Linear Hyperspectral Mixture Analysis

Supervised linear hyperspectral mixture analysis (SLSMA) is probably the most widely used
hyperspectral imaging technique to perform various tasks for data analysis. It makes an assumption
that a data sample vector can be described by a linear mixing model as a linear mixture of a finite
number of known basic signature constituents called image endmembers, from which it can be
unmixed via a specific linear spectral unmixing technique into abundance fractions of these image
endmembers. Since SLSMA has been previously treated in the book by Chang (2003a), the five
chapters, Chapters 12—15 presented in this book, can be considered as an expansion of SLSMA
and complement to the LSMA discussed in Chang (2003a). Chapter 12 revisits the orthogonal
subspace projection originally developed by Harsanyi and Chang (1994). In particular, when only
partial knowledge such as desired target information is provided with no prior background knowl-
edge, OSP can be implemented as the constrained energy minimization developed in Harsanyi’s
dissertation (1993). If no prior knowledge is available, then OSP can be implemented as RX detec-
tor (Reed and Yu, 1990) for anomaly detection. Chapter 13 presents a third approach to SLSMA,
Fisher’s linear spectral mixture analysis (FLSMA), which replaces the signal-to-noise ratio
criterion used by OSP or least squares error (LSE) used by LSOSP with the criterion of Fisher’s
ratio. Chapter 14 further extends OSP and FLSMA to WAC-LSMA by replacing the commonly
used LSE with weighted LSE. While Chapters 13 and 14 extend SLSMA via imposing constraints
on the used linear mixing model, Chapter 15 derives kernel-based LSMA, which extends SLSMA
techniques to their kernel-based counterparts via nonlinear functions. Figure 1.3 outlines the orga-
nization of four chapters in Part III.

1.5.4 Part IV: Unsupervised Hyperspectral Analysis

One of major tasks in hyperspectral imaging is target detection and classification. Due to its high
spectral resolution, targets of interest are generally different from those in multispectral
imagery. For example, endmembers and anomalies that generally do not contribute much to land
cover/land use classification are actually crucial in hyperspectral image analysis. Other targets of
interest in hyperspectral data analysis also include rare minerals in geology, special spices in agricul-
ture and ecology, drug trafficking in law enforcement, combat vehicles in battlefield, man-made
targets in intelligent analysis, and so on. Realistically, most of such targets generally appear as either
mixed pixels or subpixels. So, the major goal of Part IV is to extend the SLSMA in Part III to
ULSMA where two main issues that do not occur in the SLSMA need to be addressed in ULSMA.
One is the number of signature sources of interest, p. The other is how to find these signature
sources once the value of the p is determined. Since the first issue can be addressed by the concept
of VD developed in Chapter 5, the main theme of Part IV is primarily focused on the second issue.

PART III: SUPERVISED LINEAR HYPERSPECTRAL MIXTURE ANALYSIS

v v

Unconstrained Constrained
algorithms algorithms
6 ; A ‘ i
OSP KLSMA WACLSMA FLSMA

Chapter 12 [®| Chapter 15 Chapter 14 Chapter 13

Figure 1.3 Organization of four chapters in Part III.
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Chapter 16 investigates two types of hyperspectral measures: signature-based and correlation-
weighted measures, both of which can be used to discriminate and identify unknown signature
vectors for unsupervised data analysis. The former includes the spectral angle mapper (SAM),
Euclidean distance, spectral information divergence (SID), and orthogonal projection divergence
(OPD), while the latter uses the sample spectral correlation as a weighting factor to measure signa-
ture similarity for discrimination and identification.

Chapter 17 extends SLSMA to ULSMA. In doing so, two approaches are developed to find
unknown image endmembers, referred to as virtual signatures (VSs). The first one is to implement
LSMA techniques in an unsupervised manner on the original data and its sphered data to find two
sets of VSs corresponding to background and target signatures, respectively. A second approach is
to use components analysis methods where PCA and ICA are implemented to find unknown back-
ground and target signatures, respectively.

Due to substantial amount of information provided by hundreds of contiguous spectral bands it
is interesting to know how much information can be extracted from a single hyperspectral image
pixel vector as well as how to process the extracted pixel information for data analysis. In tradi-
tional image processing the only image pixel information is uniquely specified by its gray-level
value. In multispectral image processing with only tens of discrete spectral bands in use, the spec-
tral information provided by a multispectral image pixel is generally very limited compared to that
provided by a hyperspectral image pixel. So, the issue in exploration of information extraction
from a single hyperspectral image pixel vector has not received much interest as it should. Very
little work has been done in the past. For example, an endmember itself provides vital information
of a particular spectral class. Another example is an anomaly that provides information in identify-
ing unknown targets. While an endmember is specifically defined, the definition of anomaly seems
vague with a general understanding that an anomaly is a target whose spectral signature is distinct
from those of pixels in its surrounding neighborhood. However, how large should a surrounding
neighborhood be for a pixel vector to be qualified as anomalous pixel vector? So far, there is no
answer to it. More generally, for a given pixel vector, how can we characterize the pixel vector as a
subpixel vector or a mixed pixel vector or an anomalous pixel vector or a pixel vector of some
other type? Besides, can an endmember be a pure pixel vector, in which case it is referred to as
endmember pixel vector or vice versa? Can a pixel be both an anomalous pixel vector and an
endmember pixel vector? As a complete opposite to anomaly, how can we view a pixel vector if
the spectral signatures of pixel vectors in its proximity are very similar and close to each other?
Interestingly, these issues have never been investigated on a single pixel vector basis. So, Chapter
18 investigates the issue of “what spectral information can be extracted from a single hyperspectral
image pixel vector?” Figure 1.4 outlines the organization of two chapters in Part I'V.

PART IV: UNSUPERVISED HYPERSPECTRAL ANALYSIS

Hyperspectral Measures Unsupervised Linear Hyperspectral
Chapter 16 Mixture Analysis, Chapter 17

Pixel Vector Information Extracted from Hyperspectral Imagery
Chapter 18

Figure 1.4 Organization of three chapters in Part IV.
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1.5.5 Part V: Hyperspectral Information Compression

Data compression has received increasing interest in hyperspectral data analysis because of the
vast amount of data volumes needed to be processed and significant redundancy resulting from
high interband spectral correlation. Since a hyperspectral image can be viewed as a 3D image
cube, a common practice is a direct application of 3D compression techniques available in
image/video processing to hyperspectral imagery so as to achieve so-called hyperspectral data
compression. Unfortunately, there are several issues arising from such an approach. One is how
to deal with spectral compression from very high spectral resolution provided by a hyperspec-
tral imaging sensor. The reason why the hyperspectral imagery is called “hyperspectral” is due
to its wealthy spectral information, which offers unique spectral characterization that cannot be
provided by spatial information, particularly, the spectral profile information provided by sub-
pixels and mixed pixels across its acquired wavelength range by hundreds of spectral channels.
Therefore, from a hyperspectral imagery point of view, spectral information is usually more
important and crucial than spatial information when it comes to hyperspectral image analysts.
When hyperspectral compression is performed, extra care must be taken of in order to preserve
spectral characteristics and properties. For example, when targets of interest are rare such as
anomalies and endmembers, their spatial extent is generally very small and limited. Thus, the
spatial correlation resulting from such targets will be too little to be used for spatial compres-
sion. In this case a direct spatial compression without taking into account spectral properties of
these targets may result in significant loss of information that characterizes these targets. As a
consequence, blindly applying 3D compression techniques to hyperspectral data may not be
able to achieve effective compression from an exploitation perspective. Accordingly, a more
appropriate approach is to consider “information” compression rather than “data” compression
since the compression is performed based on preservation of the information of interest instead
of reduction in data size. More specifically, an effective technique in compressing data size
does not necessarily imply that it is also effective in compressing information to be retained.
To resolve this dilemma, an effective means of compressing hyperspectral imagery may be one
that performs compression in a two-stage process that carries out spectral compression in the
first stage to preserve crucial spectral information to avoid being compromised by the follow-
up spatial compression in the second stage (Ramakrishna et al., 2005a, 2005b). Such a two-
stage compression is referred to as hyperspectral information compression or exploitation-based
lossy hyperspectral data compression in this book as opposed to lossy hyperspectral data com-
pression, commonly referred in the literature. Five chapters are presented in Part V and outlined
in Figure 1.5.

Chapter 19 reviews issues arising in data compression commonly used in the literature and fur-
ther introduces a new concept of hyperspectral information compression or exploitation-based
lossy hyperspectral data compression where various approaches can be derived for different appli-
cations in data exploitation. This chapter is followed by two new approaches to hyperspectral
information compression developed in Chapters 20 and 21, which develop techniques to process
spectral dimensions and band dimensions in a progressive manner, referred to as progressive spec-
tral dimensionality process (PSDP) and progressive band dimensionality process (PBDP), respec-
tively. In order to more effectively determine spectral and band dimensionality to be used for
material classification Chapter 22 presents a new idea of dynamic dimensionality allocation
(DDA). By taking advantage of PBDP in Chapter 21 and DDA in Chapter 22 a new approach to
band selection, called progressive band selection (PBS), is further developed and presented in
Chapter 23.
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PART V: HYPERSPECTRAL INFORMATION COMPRESSION
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Figure 1.5 Organization of three chapters in Part V.

1.5.6 Part VI: Hyperspectral Signal Coding

So far, data processing discussed in all the previous chapters, Chapters 7-23, is considered as
hyperspectral image processing because the considered data are image data cubes and the
techniques are developed to process hyperspectral data as an image cube with data samples treated
as image pixel vectors. However, due to the use of hundreds of spectral channels a hyperspectral
data sample vector already contains spectral information that can be used for data analysis without
relying on sample spectral correlation provided by image structures. So, instead of considering a
data sample vector as an image pixel vector in an image cube, a data sample vector can also be
processed as a one-dimensional signal, referred to as a hyperspectral signal or signature vector
rather than as a hyperspectral image pixel vector. In this case a hyperspectral signal is a
spectral signature of a material substance specified by hundreds of spectral channels across a
certain range of wavelengths. In this book, both hyperspectral signal and signature vector will be
used interchangeably as appropriate. The data processing of hyperspectral signals or signature
vectors is called hyperspectral signal processing to distinguish it from hyperspectral image proc-
essing discussed in previous chapters. The only difference between hyperspectral image processing
and hyperspectral signal processing is that the former takes advantage of statistics resulting from
spectral correlation among pixel vectors in an image cube, while the latter processes a
hyperspectral signal as an individual 1D signal such as signatures from spectral libraries or data-
bases without accounting for spectral correlation among sample signals. As a result, when a hyper-
spectral signal is processed, the information available for processing is only the spectral
information within the signal without referencing spectral correlation with other signals. Accord-
ingly, 1D hyperspectral signal processing is primarily used as signal discrimination, detection,
classification, representation, and identification. Having this clear distinction in mind, Part VI and
Part VII are devoted to hyperspectral signal processing with an understanding that no sample spec-
tral correlation is available to be used for data processing.

The main focus of Part VI is on signal coding that encodes a hyperspectral signal as a code word
for its discrete representation. How fine and accurate such discrete representation of a hyperspec-
tral signal can be is determined by the total number of bits used for encoding. Three types of
encoding methods are developed in this part. One is binary coding in Chapter 24, which performs
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PART VI: HYPERSPECTRAL SIGNAL CODING

v v

Binary Coding, Chapter 24 Progressive Coding, Chapter 26
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Figure 1.6 Organization of three chapters in Part VI.

memoryless coding. Another is vector coding in Chapter 25, which takes advantage of memory to
perform signature coding. A third one discussed in Chapter 26 is progressive coding, which enco-
des a hyperspectral signal stage by stage in a progressive manner. Figure 1.6 outlines the organiza-
tion of three chapters in Part VI.

1.5.7 Part VII: Hyperspectral Signal Feature Characterization

While the hyperspectral signal coding considered in Part VI converts a hyperspectral signal to a
codeword as its discrete representation so that different hyperspectral signatures can be discrimi-
nated and identified via their encoded code words, Part VII can be considered as a counterpart of
Part VI to perform hyperspectral signal characterization by converting a hyperspectral signal as a
continuous representation. Three major techniques are developed: OSP-based variable-number
variable-band selection (VNVBS) in Chapter 27 for hyperspectral signals, Kalman filter-based
techniques in Chapter 28 for hyperspectral signal estimation, and wavelet-based techniques in
Chapter 29 for hyperspectral signal representation. Figure 1.7 outlines the organization of these
three chapters in Part VII.

1.5.8 Applications

This book concludes with applications of hyperspectral data processing in various areas.

1.5.8.1 Chapter 30: Applications of Target Detection

The subpixel target detection discussed in Chapter 2 has major interests in many applications.
Since the size of a subpixel target is smaller than pixel resolution specified by ground sampling
distance, it is embedded in a single pixel vector and cannot be visualized by inspection. Therefore,

PART VII: HYPERSPECTRAL SIGNAL FEATURE CHARACTERIZATION
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Figure 1.7 Organization of three chapters in Part VIL.
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it looks like that the best we can do for a subpixel target is detection and finding the size of a
subpixel target seems out of reach. Chapter 30 provides a means of doing so. Specifically, the size
of a subpixel target can be calculated by multiplying the pixel resolution with the estimated abun-
dance fraction of the subpixel target embedded in a pixel vector. Consequently, finding the true size
of a subpixel target is equivalent to accurately estimating the abundance fraction of a subpixel
target.

Many problems addressed by target detection assume that the targets to be detected are exposed,
in which case it makes detection easy and more effective. However, in remote sensing targets of
interest may be hidden under natural environments due to terrain characteristics such as shadow
and shade. On the other hand, in many military and intelligence applications, the targets of interest
may be concealed weapons or combat vehicles, which are camouflaged or canvassed. Detecting
such concealed targets generally presents a great challenge in an unknown image scene due to the
fact that the prior knowledge about targets of interest and background is not available. The second
part of Chapter 30 develops an approach to detection of unknown concealed targets. It comprises
three successive stage processes: (1) band selection procedure in the first stage; (2) band ratio
approach in the second stage; and (3) automatic target detection in the third stage. The objective of
the band selection is to select an appropriate set of band images for the band ratio transformation
and the selected bands are subsequently ratioed to form a desired set of images used for subsequent
automatic target detection carried out in the third stage.

1.5.8.2 Chapter 31: Nonlinear Dimensionality Expansion to Multispectral Imagery

The data processing techniques developed in this book are mainly derived from a perspective of
how to process hyperspectral imagery. Their applications to multispectral imagery may not be
immediately obvious and trivial. Specifically, the pigeon-hole principle described in Section 1.3
that holds for hyperspectral imagery is no longer true for multispectral imagery and virtual
dimensionality. In order for a hyperspectral imaging technique to be applied to multispectral
imagery, it hinges on two key issues, how to define a hyperspectral image and a multispectral
image as well as how to distinguish one from another. Interestingly, the pigeon-hole principle
once again proves to be a valuable means of doing so. When there are few pigeon holes than
pigeons, it implies that few spectral bands than signal sources can be used for signal discrimina-
tion in which case the image is defined as a multispectral image. Otherwise, it is a hyperspectral
image. Such definitions seem controversial in the first place. As a matter of fact, similar defini-
tions can be found in ICA. That is, if the number of data sample vectors is fewer than the number
of signal sources to be separated, an ICA is defined as an over-complete ICA. Otherwise, an ICA
is defined as an under-complete ICA. The definitions of over-complete ICA and under-complete
ICA shed light on how to distinguish multispectral image from hyperspectral images. In ICA a
data sample vector represents a linear mixture of random signal sources to be separated. This is
similar to viewing a data sample vector as a linear mixture of signal sources to be present in the
data. So, LSMA used to unmix a multispectral image tries to solve an over-complete linear spec-
tral unmixing problem, while LSMA used to unmix a hyperspectral image intends to solve an
under-complete linear spectral unmixing problem. By virtue of this interpretation, this chapter
develops two approaches to conversion of a hyperspectral imaging technique to a multispectral
imaging technique by nonlinear dimensionality expansion (NDE). One is band dimensionality
expansion, which implements a band expansion process (BEP) to create new additional images
from the original set of spectral images via nonlinear functions. The other is kernel-based
method that kerenlizes LSMA-based techniques via nonlinear kernels to solve linear nonsepar-
ability issue arising in multispectral image analysis.
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1.5.8.3 Chapter 32: Multispectral Magnetic Resonance Imaging

Recently, a new application of hyperspectral imaging techniques in multispectral imagery, mag-
netic resonance (MR) image analysis, has been investigated where MR images can be considered
as multispectral images and each image acquired by a particular MR pulse sequence can be consid-
ered as a spectral band image. As a result, MR images are actually an image cube collected by
particularly designed MR image pulse sequences. With this interpretation Chapter 32 extends
results in Chapter 31 to MR image analysis.

1.6 Laboratory Data to be Used in This Book

Three sets of laboratory data will be used for experiments in this book, two of which were collected
by the airborne visible infrared imaging spectrometer (AVIRIS) and the third one is a gas data set.

1.6.1 Laboratory Data

One data set to be used in this book is the one used in Harsanyi and Chang (1994). It is AVIRIS
reflectance data shown in Figure 1.8, which has five field reflectance spectra, blackbrush, creosote
leaves, dry grass, red soil, and sagebrush with spectral coverage from 0.4 to 2.5 wm and 158 bands
after the water bands are removed.

1.6.2 Cuprite Data

Another useful laboratory data that is available on the web site http://speclab.cr.usgs.gov/ is the
reflectance spectra of five USGS ground-truth mineral spectra: alunite (A), buddingtonite (B),
calcite (C), kaolinite (K), and muscovite (M) shown in Figure 1.9. Each of the five mineral
spectral signatures is collected by 224 spectral bands at spectral resolution of 10 nm in the
range of 0.4-2.5 pm.

1.6.3 NIST/EPA Gas-Phase Infrared Database

A third data set is one provided by the National Institute of Standards and Technology (NIST)
and also available on the web sites http://www.nist.gov/srd/nist35.htm and webbook.nist.gov/
chemistry. This data set was also used for the study in Kwan ez al. (2006). It contains the nine

Creosote leayes
b,

Sagebrush J

06t & Dry grass |

—1 Red soil

N
~

Reflectance

02

0 50 100 150
Band number

Figure 1.8 Spectra of five AVIRIS reflectances. (See the color version of this figure in Color Plates section).
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Figure 1.9 Five USGS ground-truth mineral spectra.

Table 1.1 Nine gas agent data signatures

Signature no. Signature name

Sy 2-Chloroethymethyl sulfide

Sy Diethyl ethylphosphonate

S3 Ethanol

S4 Freon 114

Ss n-Butyl bromide

S Bis-2-ethyl-1-hexyl phosphonate
S7 Benzyl benzoate

Sg Dibenzyl ether

So Piperidine

gas agents labeled by {si}?:l listed in Table 1.1 with their spectral signatures shown in Fig-
ure 1.10. This data set is included particularly for signal processing algorithm design and
development for hyperspectral signal processing to investigate hyperspectral signature analysis
and characterization in Part VI and Part VII.

Except that the frequency range of s, is 550-3846 cm ™' acquired by 825 bands, all the {si}?zz
has frequency range of 450-3966 cm ™' acquired by 880 bands, giving each signature a spectral
resolution of about 4 cm™ ' per band.

1.7 Real Hyperspectral Images to be Used in this Book

Three real hyperspectral image data sets are frequently used in this book for experiments. Two are
AVIRIS real image data sets, Cuprite in Nevada and Purdue’s Indian Pine test site in Indiana. A
third image data set is HYperspectral Digital Imagery Collection Experiment (HYDICE) image
scene. Each of these three data sets is briefly described as follows.

1.7.1 AVIRIS Data

Two AVIRIS data sets presented in this section are Cuprite data and Purdue’s data, which can be
used for different purposes in applications. The Cuprite data set is generally used for endmember
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Figure 1.10 Spectral signatures of nine chemical/infrared data signatures. (See the color version of this fig-
ure in Color Plates section).

extraction and target detection, while the Purdue’s data set is mainly used for land cover/land use
classification.

1.7.1.1 Cuprite Data

One of the most widely used hyperspectral image scenes available in the public domain is Cuprite
mining site, Nevada, as shown in Figure 1.11(a). It is an image scene of 20 m spatial resolution
collected by 224 bands using 10 nm spectral resolution in the range of 0.4-2.5 pm. The center
region shown in Figure 1.11(b), cropped from the image scene in Figure 1.10(a), has size of 350 x
350 pixel vectors.

Since it is well understood mineralogically and has reliable ground truth, this scene has been
studied extensively. Two data sets for this scene, reflectance and radiance data, are also available
for study. There are five pure pixels in Figure 1.11(a, b) that can be identified to be corresponding
to five different minerals, alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and muscovite
(M) labeled by A, B, C, K, and M, respectively, in Figure 1.12(b) with their corresponding reflec-
tance and radiance spectra shown in Figure 1.12(c, d).

These five pure pixels are carefully verified using laboratory spectra provided by the USGS
(available from http://speclab.cr.usgs.gov) and selected by comparing their reflectance spectra
in Figure 1.12(c) against the lab reflectance data in Figure 1.9. Figure 1.12(e) also shows an altera-
tion map for some of the minerals, which is generalized from ground map provided by the USGS
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Figure 1.11 Cuprite image scene, (a) original Cuprite image scene; (b) the image cropped from the center
region of the original scene in (a) (350 x 350). (See the color version of this figure in Color Plates section).

and obtained by Tricorder SW version 3.3. It should be noted that this radiometrically calibrated
and atmospherically corrected data set available from http://aviris.jpl.nasa.gov is provided in
reflectance units with 224 spectral channels where the data has been calibrated and atmo-
spherically rectified using the ACORN software package. It is recommended that bands 1-3,
105-115, and 150-170 be removed prior to data processing due to their low water absorption and
low SNR. As a result, a total of 189 bands are used for experiments as shown in Figure 1.11(c, d).
The steps to produce spectra in Figure 1.12(c, d) can be described as follows:

1. Download from http://speclab.cr.usgs.gov/ the laboratory reflectance data.

2. Use spectral angle mapper (SAM) as a spectral similarity measure to identify the five pixels in
Figure 1.12(a) that correspond to the five reflectances obtained in step 1 by the following
procedure:
¢ Remove noisy bands from the five reflectance data.
¢ Remove bands with abnormal readings from the spectral library.
¢ In order to measure spectral similarity, there is still a need of removing several bands to

account for compatibility.

It should be noted that the ground truth is not stored in a “file.” The locations of the five minerals
are identified by comparing their reflectance spectra against their corresponding lab reflectances in
the spectral library.
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Figure 1.12 (a) Spectral band number 170 of the Cuprite AVIRIS image scene; (b) spatial positions of five
pure pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and musco-
vite (M); (c) reflectances of five minerals marked in (b) in wavelengths; (d) radiances of five minerals marked
in (b) in bands; and (e) alteration mineral map available from USGS. (See the color version of this figure in

Color Plates section).
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Figure 1.13 AVIRIS image scene: Purdue Indiana Pine test site. (a) Nine bands selected from the Purdue
Indiana Pine test site; (b) a USGS quadrangle map of the test site; (c) ground truth of Purdue Indiana Pine test
site; and (d) ground truth of each of 17 classes. (See the color version of this figure in Color Plates section).
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1.7.1.2 Purdue’s Indiana Indian Pine Test Site

Another most widely used real AVIRIS image data set is Purdue’s Indiana Indian Pine test site,
which has 20 m spatial resolution and 10 nm spectral resolution in the range of 0.4-2.5 pm with
size of 145 x 145 pixel vectors taken from an area of mixed agriculture and forestry in North-
western Indiana, USA. The data set is available on the web site http://cobweb.ecn.purdue.edu/
~biehl/MultiSpec/documentation.html (both download link and ground truth are provided) and
was recorded in June 1992 with 220 bands with water absorption bands, bands 104-108 and 150-
162 removed and leaving only 202 bands. Figure 1.13(a) shows nine bands selected from the web
site and a USGS quadrangle map of the test site provided in Figure 1.13(b).

According to the ground truth provided in Figure 1.13(c) there are 17 classes in this image scene
shown in Figure 1.13(d) including the background labeled by class 17, which has a wide variety of
targets such as highways, railroad, houses/buildings, and vegetation that may not be of interest in
agricultural applications but may be of great interest in other applications such as anomaly detec-
tion. The total number of data samples in the scene is 145 x 145 = 21, 025. Table 1.2 lists labels of
each of 17 classes where the numeral in parenthesis under each of 17 classes in Figure 1.13(d) is
the number of data samples in that particular class.

Due to the early season of harvest when the data were collected, some cultivated land has very
little canopy cover. For example, the corn area can be divided into three classes based on how
much is left on the land, which are corn-no till, -min, and corn (class 2—4). The soybean area also
can be divided into soybean-no till, -min, and -clean (class 10—12). The grass is mixed with four
other materials, which are classified as grass/pasture, grass/trees, grass/pasture-mowed, and bldg-
grass-green-drives (class 5, 6, 7, 15). Actually, it is believed that the grass is also mixed in the
background. According to Figure 1.13(c, d) (Landgrebe, 2003), the GIS map in Figure 1.13(b)
provides the information of “land use” classes instead of “land cover” classes. It means that not
every pixel in the map is supposed to be classified into their belonging classes. Additionally, also
based on the USGS quadrangle map in Figure 1.13(b), there are dual lane highways (U.S. 52 and
231) and a railroad crossed near the top. The other is Jackson highway, which is near to the middle
of the scene. All of them are in the NW-SE direction. Figure 1.13(b) also indicates some houses or
buildings by small rectangular dots (Landgrebe, 1998). With this information it is believed that
there are at least four classes included in the background: railroad (iron), highway (concrete),
houses/buildings (concrete, painted wood, or other materials), and vegetation (grass). The number
of classes for such unlabeled areas is important for the unsupervised classification when the total
number of classes in the scene is assumed to be unknown.

There are many reasons to select the Purdue Indiana Indian Pine test site for experiments. First
of all, it is a well-known image scene available on web site and has been studied extensively.
Another is that the pixels in this image scene are heavily mixed. Many algorithms or methods
claiming to work well on classification are very likely to break down for this image scene. To the
author’ best knowledge, most work on this image scene reported in the literature has selected

Table 1.2 Labels of 17 classes

Class 1 Alfalfa Class 7 Grass/pasture-mowed Class 13 Wheat

Class 2 Corn-no till Class 8 Hay-windrowed Class 14 Woods

Class 3 Corn-min Class 9 Oats Class 15 Bldg-grass-green-drives
Class 4 Corn Class 10 Soybean-no till Class 16 Stone-steel towers
Class 5 Grass/pasture Class 11 Soybean-min Class 17 Background

Class 6 Grass/trees Class 12 Soybean-clean
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particular areas for study and also supervised based on the provided ground truth. Very little has
been done in classification of the entire scene either supervisedly or unsupervisedly. Most interest-
ingly, according to our detailed analysis on the scene, we have found that it is almost impossible to
classify all the 17 classes in the image scene even though the complete knowledge of the ground
truth provided in Figure 1.13(c, d) is used for classification. This is because pixels in the same class
are mixed so badly that values among their spectral signatures measured by any spectral similarity
measure vary in a relatively wide range in which pixels in the same class may be classified into
different classes and pixels in different classes may be considered to belong to the same class.
From the ground truth provided in Table 1.2, it can be expected that the signatures of three sub-
classes of corn are close to each other, so are the four subclasses of grass and three subclasses of
soybean. However, the relationships among other pairs are still not known. In order to know how
much mixing is involved, the signature for each class is calculated by averaging all samples with the
same label according to the ground-truth map in Figure 1.12(c). Then the SAM is used to measure
how close one class is similar to the other. It has been shown in Liu (2005) that corn and soybean
classes (2—4, 10-12) are similar, which account for 6552 pixels, 63% of 10,366 labeled pixels. Simi-
larity also appears in two sets of classes: class 1, 7, 8 and class 6, 9, 13. Surprisingly, the four classes
of grass (5, 6, 7, 15), which account for 1650 pixels, are not similar to each other. Additionally, using
SAM to measure spectral similarity among 16 classes, it is found that classes 5, 14, 16 seem to be
the three most distinct classes and can be classified very easily. It is reasonable and makes sense
because class 5 contains chlorophyll, class 14 is wood, and class 16 comprises man-made objects.
With our tremendous experience of working on this image scene, excluding two classes (class 17
that is considered to be the background and class 9 that is considered to be too small) it is found that
the spectral signatures of the pixels in the six classes (class 2, class 3, class 4, class 7, class 9, and
class 11) are very close in terms of SAM or SID (spectral information divergence in Chang (2003a)).
Similarly, the pixels in the three classes (class 8, class 10, and class 15) also have very similar spec-
tral signatures. Hence distinguishing one from another is very difficult. The pixels in the three clas-
ses (class 13, class 5, and class 14) have less similar signatures but still present some difficulty with
classification. The most dissimilar classes are class 1, class 6, and class 12 that are considered to be
easy to classify. By taking into account all the things considered above, we can expect that the
classification of this image scene is a great challenge to any hyperspectral imaging algorithm.

1.7.2 HYDICE Data

The HYDICE image scene shown in Figure 1.14(a) has a size of 200 x 74 pixel vectors along with
its ground truth provided in Figure 1.14(b) where the center and boundary pixels of objects are
highlighted by red and yellow, respectively. The upper part contains fabric panels with size 3, 2,
and 1 m? from the first column to the third column. Since the spatial resolution of the data is
1.56 m?, the panels in the third column are considered as subpixel objects. The lower part contains
different vehicles with sizes of 4 m x 8 m (the first four vehicles in the first column) and 6 m x 3 m
(the bottom vehicle in the first column) and three objects in the second column (the first two have
size of 2 pixels and the bottom one has size of 3 pixels, respectively). In this particular scene, there
are three types of targets with different sizes, small-size targets (panels of three different sizes, 3, 2,
and 1 m?), and large-size targets (vehicles of two different sizes, 4m x 8 m and 6 m x 3 m and
three objects of 2-pixel and 3-pixel sizes) that can be used to validate and test anomaly detection
performance.

Figure 1.14(c) shows an enlarged HYDICE scene from the same flight for visual assessment. It
has a size of 33 x 90 pixel vectors with 10 nm spectral resolution and 1.56 m spatial resolution
where five vehicles lined up vertically to park along the tree line in the field where the red (R) pixel
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Figure 1.14 HYDICE vehicle scene. (a) Image scene; (b) ground-truth map; (c) five vehicles; and (d) ground
truth of (c). (See the color version of this figure in Color Plates section).

vectors (shown as dark pixels) in Figure 1.14(d) show the center pixel of the vehicles, while the
yellow (Y) pixels (shown as bright pixels) are vehicle pixels mixed with background pixels.

A third enlarged HYDICE image scene shown in Figure 1.15(a) is also cropped from the upper
part of the image scene in Figure 1.14(a, b) marked by a square.

It has a size of 64 x 64 pixel vectors with 15 panels in the scene. This particular image scene
has been well studied in Chang (2003a). Within the scene there is a large grass field background,
a forest on the left edge, and a barely visible road running on the right edge of the scene. Low
signal/high noise bands: bands 1-3 and bands 202-210; and water vapor absorption bands: bands
101-112 and bands 137-153 were removed. The spatial resolution is 1.56 m, and spectral resolu-
tion is 10nm. There are 15 panels located in the center of the grass field and are arranged in a
5 x 3 matrix as shown in Figure 1.15(b), which provides the ground-truth map of Figure 1.15(a).
Each element in this matrix is a square panel and denoted by p; with row indexed by i =1, ...,
5 and column indexed by j = 1, 2, 3. For eachrow i = 1, ..., 5, the three panels were painted
by the same material but have three different sizes. For each column j = 1, 2, 3, the five panels
have the same size but were painted by five different materials. It should be noted that the panels
in rows 2 and 3 are made by the same material with different paints, so did the panels in rows 4
and 5. Nevertheless, they were still considered as different materials. The sizes of the panels in
the first, second, and third columns are 3m X 3m, 2m X 2m, and 1 m x 1 m, respectively. So, the
15 panels have 5 different materials and 3 different sizes. Figure 1.15(b) shows the precise spatial
locations of these 15 panels where red pixels (R pixels, i.e., dark pixels) are the panel center
pixels and the pixels in yellow (Y pixels, i.e., bright pixels) are panel pixels mixed with back-
ground. The 1.56 m spatial resolution of the image scene suggests that the panels in the second
and third columns, denoted by pi2, P13, P22, P23> P32> P33> P42> P43> P52, Ps3 in Figure 1.15(b) are
one pixel in size. Additionally, except the panel in the first row and first column, denoted by pi;
which also has a size of one pixel, all other panels located in the first column are two-pixel
panels, which are the panels in the second row with two pixels lined up vertically, denoted by
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Figure 1.15 (a) A HYDICE panel scene that contains 15 panels; (b) ground-truth map of spatial locations of
the 15 panels. (See the color version of this figure in Color Plates section).

P211 and pyyq; the panel in the third row with two pixels lined up horizontally, denoted by p3q;
and ps;o; the panel in the fourth row with two pixels also lined up horizontally, denoted by p4;;
and p41; and the panel in the fifth row with two pixels lined up vertically, denoted by ps;; and
Ps21- Since the size of the panels in the third column is 1 m x 1 m, they cannot be seen visually
from Figure 1.15(a) due to its size being smaller than the 1.56 m pixel resolution.

Figure 1.16 plots the five panel spectral signatures obtained from Figure 1.15(b), where the ith
panel signature, denoted by p; was generated by averaging the red panel center pixels in row i.
These panel signatures will be used to represent target knowledge of the panels in each row.

According to visual inspection and ground truth in Figure 1.15(a, b) there are also four back-
ground signatures shown in Figure 1.17, which can be identified and marked by interferer, grass,
tree, and road. These four signatures along with five panel signatures in Figure 1.16 can be used to

form a 9-signature matrix for a linear mixing model to perform supervised linear spectral mixture
analysis.
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Figure 1.16 Spectra of py, p2, p3, P4» and ps.
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Figure 1.17 Areas identified by ground truth and marked by three background signatures, grass, tree, road
plus an interferer. (See the color version of this figure in Color Plates section).

1.8 Notations and Terminologies to be Used in this Book

Since this book primarily deals with real hyperspectral data, the image pixels are generally mixed
and not necessarily pure. The term “endmember” is not used here; instead, a general term
“signature” or “signature vector” is used. In addition, because we are only interested in target analy-
sis, the term “targets” instead of “materials” is also used throughout this book. In order to make a
distinction between a target pixel and its spectral signature vector, we use notation “t” to represent
the target pixel vector, “r” for an image pixel vector, and “s” or “m” to indicate its spectral signa-
ture vector. We also use bold uppercase for matrices and bold lowercase for vectors. The italic upper
case “L” will be used for the total number of spectral bands, K for the sample spectral covariance
matrix, and R for the sample spectral correlation matrix. Also, §*(r) is used to represent a detector
or classifier that operates on an image pixel vector r where the superscript “+” in §*(r) specifies
what type of a detector or classifier to be used. It should be noted that §*(r) is a real-valued function
that takes a form of inner product of a filter vector w with r, that is, §*(r) = (w*)"r with the filter
vector w* specified by a particular detector or classifier. We also use “a”and & to represent the
abundance vector and its estimate where the notation “hat” over “a” indicates “estimate.”

«o: Abundance vector

«: Estimate of the abundance vector o
a: jth abundance fraction

@&;: Estimate of the jth abundance fraction, o;
A: Weighting or mixing matrix

A,: Area under an ROC curve

B;: /th band image

b;: /th band image represented as a vector
C: Total number of classes

C;: jth class

d: Desired signature vector

D: Desired signature matrix

D,: Eigenvalue diagonal matrix

8: Detector or classifier

A: Database

€: Error threshold

e;: jth endmember
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I: Identity matrix

1(x): Self-information of x

k(.,.): Kernel function

K: Total number of skewers used in PPI

K: Sample covariance matrix

\: Eigenvalue of sample covariance matrix, K

A: Eigenvalue of sample correlation matrix, R

[: Index of band number

L: Total number of spectral channels or bands

A: Eigenvector matrix

p: Global sample mean

v;: Global mean of the jth class

m(.,.): Spectral measure

my;: jth signature vector

M: Signature or endmember matrix

n: Noise vector

N: Total number of image pixel vectors in a band image, i.e., N = n,n,
n.: Number of columns in a band image of a hyperspectral image
np: Number of desired signatures in D

n,: Number of rows in a band image of a hyperspectral image
np: Number of interferers

nt: Number of training samples

ny: Number of undesired signatures in U

nyp: Value estimated by the VD

p: Number of endmembers

Pp: Detection power or probability

Pr: False alarm probability

Pg: Projector to reject undesired target signatures in U

q: Number of dimensions to be retained after dimensionality reduction
¢: Number of spectral bands required to be selected by band selection
r: Image pixel vector

R: Sample correlation matrix

o Variance

Sg: Between-class scatter matrix

Sw: Within-class scatter matrix

t: Target signature

7: Threshold

w: Weight vector

W: Weight matrix

U: Undesired signature matrix

v: Eigenvector

VD.,.: The value of the VD obtained by the criterion specified by algorithm “x”
&: Transform used to perform dimensionality reduction

W Interference matrix

z: Projection vector

<.,.>: Inner product



