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Space–Time: The Next Frontier

This book is about the statistical analysis of data . . . spatio-temporal data. By
this we mean data to which labels have been added showing where and when
they were collected. Good science protocol calls for data records to include
place and time of collection. Causation is the “holy grail” of Science, and
hence to infer cause–effect relationships (i.e., “why”) it is essential to keep
track of “when”; a cause always precedes an effect. Keeping track of “where”
recognizes the importance of knowing the “lay of the land”; and, quite simply,
there would be no History without Geography.

We believe that in order to answer the “why” question, Science should
address the “where” and “when” questions. To do that, spatio-temporal datasets
are needed. However, spatial datasets that do not have a temporal dimension
can occur in many areas of Science, from Archeology to Zoology. The spatial
data may be from a “snapshot” in time (e.g., liver-cancer rates in U.S. counties
in 2009), or they may be taken from a process that is not evolving in time (e.g.,
an iron-ore body in the Pilbara region of Australia). Sometimes, the temporal
component has simply been discarded, and the same may have happened to
the spatial component as well. Also, temporal datasets that do not have a
spatial dimension are not unusual, for analogous reasons. For example, two time
series, one of monthly mean carbon dioxide measurements from the Mauna Loa
Observatory, Hawaii, and the other of monthly surface temperatures averaged
across the globe, do not have a spatial dimension (for different reasons).

Spatio-Temporal Data
Spatio-temporal data were essential to the nomadic tribes of early civilization,
who used them to return to seasonal hunting grounds. On a grander scale,
datasets on location, weather, geology, plants, animals, and indigenous people
were collected by early explorers seeking to map new lands and enrich their
kings and queens. The conquistadors of Mesoamerica certainly did this for
Spain.
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2 SPACE–TIME: THE NEXT FRONTIER

The indigeneous people also made their own maps of the Spanish conquest,
in the form of a lienzo. A lienzo represents a type of historical cartography, a
painting on panels of cloth that uses stylized symbols to tell the history of a
geographical region. The Lienzo de Quauhquechollan is made up of 15 joined
pieces of cotton cloth and is a map that tells the story, from 1527 to 1530, of the
Spanish conquest of the region now known as Guatemala. It has been restored
digitally in a major project by Exploraciones sobre la Historia at the Univer-
sidad Francisco Marroquı́n (UFM) in Guatemala City (see Figure 1.1). This
story of the Spanish conquest in Guatemala is an illustration of complex spatio-
temporal interactions. Reading the lienzo and understanding its correspondence
with the geography of the region required deciphering; see Asselbergs (2008)
for a complete description. The original lienzo dates from about 1530 and
represents a spatio-temporal dataset that is almost 500 years old!

In a sense, we are all analyzers of spatial and temporal data. As we plan our
futures (economically, socially, academically, etc.), we must take into account
the present and seek guidance from the past. As we look at a map to plan a trip,
we are letting its spatial abstraction guide us to our destination. The philosopher
Ludwig Wittgenstein compared language to a city that has evolved over time
(Wittgenstein, 1958): “Our language can be seen as an ancient city: A maze of
little streets and squares, of old and new houses, and of houses with additions
from various periods; and this surrounded by a multitude of new burroughs
with straight and regular streets and uniform houses!”

Graphs of data indexed by time (time series) and remote-sensing images
made up of radiances indexed by pixel location (spatial data) show variability
at a glance. For example, Figure 1.2 shows the Missouri River gage-height lev-
els during the 10-year period, 1988–1997, at Hermann, MO. Figure 1.3 shows
two remotely sensed images of the river taken in September 1992, before a
major flood event, and in September 1993, after the highest crest ever recorded
at Hermann (36.97 ft on July 31, 1993). The top panel of Figure 1.3 shows
the town of Gasconade in the middle of the scene, situated in the “V” where
the Gasconade River joins the Missouri River; Gasconade is at mile 104.4
and eight miles downstream is the river town of Hermann, visible at the very
bottom of the scenes. Notice the intensive agriculture in the river’s flood plain
in September 1992. The bottom panel of Figure 1.3 shows the same region,
one year later, after the severe flooding in the summer of 1993. The inundation
of Gasconade, the floodplain, and the environs of Hermann is stunning. There
is a multiscale process behind all of this that involves where, when, and
how much precipitation occurred upstream, the morphology of the watershed,
microphysical soil properties that determine run-off, the U.S. Army Corps of
Engineers’ construction of levees upstream, and so on. However, by looking
only in the spatial dimension, or only in the temporal dimension, we miss the
dynamical evolution of the flood event as it progressed downstream. Spatio-
temporal data on this portion of the Missouri River, which shows how the river
got from “before” to “after,” would be best illustrated with a movie, showing
a temporal sequence of spatial images before, during, and after the flood.
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Figure 1.2 Time-series levels of gage height at Hermann, MO (mile 96.5 on the Missouri River)
from January 1, 1988 through December 31, 1997. Flood stage is given by the horizontal dashed
line. The highest recorded gage height in the 10-year period was 36.97 ft on July 31, 1993.

There is an important statistical characteristic of spatio-temporal data that
is very common, namely that nearby (in space and time) observations tend to
be more alike than those far apart. However, in the case of “competition,” the
opposite may happen (e.g., under big trees only small trees can grow), but
the general conclusion is nevertheless that spatio-temporal data should not be
modeled as being statistically independent. [Tobler, (1970) called this notion
“the first law of Geography.”] Even if spatio-temporal trends are used to
capture the dependence at large scales, there is typically a cascade of smaller
spatio-temporal scales for which a statistical model is needed to capture the
dependence. Consequently, an assumption that spatio-temporal data follow
the “independent and identically distributed” (iid ) statistical paradigm should
typically be avoided. Paradigms that incorporate dependence are needed: The
time series models in Chapter 3 and the spatial process models in Chapter 4
give those paradigms for temporal data and spatial data , respectively.
From Chapter 5 onwards, we are concerned directly with Statistics for
spatio-temporal data .

Uncertainty and the Role of Statistics
Uncertainty is everywhere; as Benjamin Franklin famously said (Sparks, 1840),
“In this world nothing can be said to be certain, except death and taxes.” Not
only is our world uncertain, our attempts to explain the world (i.e., Science)
are uncertain. And our measurements of our (uncertain) world are uncertain.
Statistics is the “Science of Uncertainty,” and it offers a coherent approach to
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Figure 1.3 Images from NASA’s Landsat Thematic Mapper. Each image shows a segment of the
Missouri River near Hermann, MO (mile 96.5, at the bottom of the scene), and Gasconade, MO
(mile 104.4, in the “V” in the middle of the scene). The river flows from west (top of the scene) to
east (bottom of the scene). Top panel: September 1992, before a major flood event. Bottom panel:
September 1993, after a record-breaking flood event in July 1993.

handling the sources of uncertainty referred to above. Indeed, in our work we
use the term Statistical Science interchangeably with Statistics (with a “capital”
S); we use statistics (with a “small” s) to refer to summaries of the data.

In most of this book, we shall express uncertainty through variability, but we
note that other measures (e.g., entropy) could also be used. Just as the physical
and biological sciences have the notions of mass balance and energy balance,
Statistical Science has a notion of variability balance. The total variability is
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modeled with variability due to measurement , variability due to using a (more-
or-less uncertain) model of how the world works, and variability due to uncer-
tainty on parameters that control the measurement and model variabilities.

Although real-world systems may in principle be partially deterministic, our
information is incomplete at each of the stages of observation, summarization,
and inference, and thus our understanding is clouded by uncertainty. Conse-
quently, by the time the inference stage is reached, the lack of certainty will
influence how much knowledge we can gain from the data. Furthermore, if
the dynamics of the system are nonlinear, the processes can exhibit chaos
(Section 3.2.4), even though the theory is based on deterministic dynamical
systems. (In Chapters 3 and 7, we show how model uncertainty in these sys-
tems naturally leads to stochastic dynamical systems that incorporate system,
or intrinsic, noise.)

Data can hold so much potential, but they are an entropic collection of
digits or bits unless they can be organized into a database. With the abil-
ity in a database to structure, search, filter, query, visualize, and summa-
rize, the data begin to contain information . Some of this information comes
from judicious use of statistics (i.e., summaries) with a “small s.” Then, in
going from information to knowledge, Science (and, with it, Statistics with
a “capital S”) takes over. This book makes contributions at all levels of
the data–information–knowledge pyramid, but we generally stop short of the
summit where knowledge is used to determine policy. The methodology we
develop is poised to do so, and we believe that at the interface between Sci-
ence, Statistics, and Policy there is an enormous need for (spatio-temporal)
decision-making in the presence of uncertainty.

In this book, we approach the problem of “scientific understanding in the
presence of uncertainty” from a probabilistic viewpoint, which allows us to
build useful spatio-temporal statistical models and make scientific inferences
for various spatial and temporal scales. Accounting for the uncertainty enables
us to look for possible associations within and between variables in the system,
with the potential for finding mechanisms that extend, modify, or even disprove
a scientific theory.

Uncertainty and Data
Central to the observation, summarization, and inference (including prediction)
of spatio-temporal processes are data . All data come bundled with error. In
particular, along with the obvious errors associated with measuring, manipulat-
ing, and archiving, there are other errors, such as discrete spatial and temporal
sampling of an inherently continuous system. Consequently, there are always
scales of variability that are unresolvable and that will further “contaminate”
the observations. For example, in Atmospheric Science, this is considered a
form of “turbulence,” and it corresponds to the well known aliasing problem
in time series analysis (e.g., see Section 3.5.1; Chatfield, 1989, p. 126) and
the microscale component of the “nugget effect” in geostatistics [e.g., see the
introductory remarks to Chapter 4 and Cressie (1993, p. 59)].
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Furthermore, spatio-temporal data are rarely sampled at spatial or temporal
locations that are optimal for the analysis of a specific scientific problem. For
instance, in environmental studies there is often a bias in data coverage toward
areas where population density is large, and within a given area the coverage
may be limited by cost. Thus, the location of a measuring site and its temporal
sampling frequency may have very little to do with the underlying scientific
mechanisms. A scientific study should include the design of data locations
and sampling frequencies when framing questions, when choosing statistical-
analysis techniques, and when interpreting results. This task is complicated,
since the data are nearly always statistically dependent in space and time, and
hence most of the traditional statistical methods taught in introductory statistics
courses (which assume iid errors) do not apply or have to be modified.

Uncertainty and Models
Science attempts to explain the world in which we live, but that world is very
complex. A model is a simplification of some well chosen aspects of the world,
where the level of complexity often depends on the question being asked. Prag-
matically, the goal of a model is to predict, and at the same time scientists want
to incorporate their understanding of how the world works into their models.
For example, the motion of a pendulum can be modeled using Newton’s sec-
ond law and the simple gravity pendulum that ignores the effect of friction and
air resistance. The model predicts future locations of the pendulum quite well,
with smaller-order modifications needed when the pendulum is used for precise
time-keeping. Models that are scientifically meaningful, that predict well, and
that are conceptually simple are generally preferred. An injudicious application
of Occam’s razor (or “the law of parsimony”) might elevate simplicity over
the other two criteria. For example, a statistical model based on correlational
associations might be simpler than a model based on scientific theory. The way
to bridge this divide is to focus on what is more or less certain in the scientific
theory and use scientific-statistical relationships to characterize it.

Albert Einstein said: “It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as simple and as few as possible
without having to surrender the adequate representation of a single datum of
experience,” at the Herbert Spencer Lecture delivered at Oxford University
on June 10, 1933; see Einstein (1934). Much later, in the October 1977 issue
of the Reader’s Digest , it appears as if Einstein’s quote was paraphrased to:
“Everything should be made as simple as possible, but not simpler.” Statistics
and its models, including those involving scientific–statistical relationships,
should not be spared from following this advice. Royle and Dorazio (2008,
pp. 414–415) give a succinct discussion of this desire for conceptual simplicity
in a model. As the data become more expansive, it is natural that they might
suggest a more complex model. Clearly, there is a balance to be struck between
too much simplicity, and hence failing to recognize an important signal in the
data, and too much complexity, which results in a nonexistent signal being
“discovered.” One might call this desire for balance the Goldilocks Principle
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of modeling. (Goldilocks and the Three Bears is a nursery tale about a little
girl’s discovery of what is “just right.”)

It is our belief that statistical models used for describing temporal vari-
ability in space should represent the variability dynamically. Models used
in Physics, Chemistry, Biology, Economics, and so on, do this all the time
with difference equations and differential equations to express the evolution-
ary mechanisms. Why should this change when the models beome statistical?
Perhaps it is because there is often an alternative—for example, a model
based on autocorrelations that describe the temporal dependence. However, this
descriptive approach does not directly involve evolutionary mechanisms and,
as a consequence, it pushes understanding of the Physics/Chemistry/Biology/
Economics/etc. into the background. As has been discussed above, there is a
way to have both, in the form of a scientific–statistical model that recognizes
the dynamical scientific aspects of the phenomenon, with their uncertain-
ties expressed through statistical models. Descriptive (correlational) statistical
models do have a role to play when little is known about the etiology of the
phenomenon; this approach is presented in Sections 6.1 and 6.2. Thereafter,
this book adopts a dynamical approach to Statistics for spatio-temporal data.

Nearby Things Tend to Be More Alike. . .
A simple and sometimes effective forecast of tomorrow’s weather is to use
today’s observed weather. This “persistence” forecast is based on observing
large autocorrelations between successive days. Such dependence behavior in
“nearby” temporal data is also seen in “nearby” spatial data, such as in stud-
ies of the environment. Statistics for spatio-temporal data presents the next
frontier; this book steps forward into new territories and revisits old ones.
It reviews and extends different aspects of statistical methodology based on
spatio-temporal dependencies: exploratory data analysis, marginal/conditional
models in discrete/continuous time, optimal inference (including parameter esti-
mation and process prediction), model diagnostics and evaluation, and so forth.
One fundamental scientific problem that arises is understanding the evolution
of processes over time, particularly in environmental studies (e.g., the evolution
of sea-ice coverage in the Arctic; changes in sea level; time trends in precip-
itation). Proper inference to determine if evolutionary components (natural or
anthropogenic) are real requires a spatio-temporal statistical methodology.

The scientific method involves observation, inspiration, hypothesis gener-
ation, experimentation (to support or refute the current scientific hypothesis),
inference, more inspiration, more hypothesis generation, and so forth. In a
sense, everything begins with observation, but it is quickly apparent to a sci-
entist that unless data are obtained in a more-or-less controlled manner (i.e.,
using an experimental design), proper inference can be difficult. This is the
fundamental difference between “observation” and “experimentation.” Under-
standing the role of dependencies when the data are spatial or temporal, or
both, provides an important perspective on working with experimental data
versus observational data.
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Experimental Data
Earth’s population is many billions, and the demand for sustenance is great
and continuous. The planet’s ability to produce food on a massive scale largely
came from fundamental experiments in crop science in the early twentieth
century. Fisher (1935) developed a statistical theory of experimental design,
based on the three principles of blocking, randomization, and replication, for
choosing high-yielding, insect-resistant crops adapted to local conditions. He
developed a vocabulary that is used today in scientific experiments of all types:
response (e.g., wheat yields), treatments (e.g., varieties of wheat), factors (e.g.,
soil type, field aspect, growing season), levels of factors (e.g., for the soil-type
factor, the levels might be sand, gravel, silt, clay, peat), plot (experimental
unit that receives a single treatment), block (collection of plots with the same
factor/level combination), randomization (random assignment of treatments to
plots), replication (number of responses per treatment), and so on.

Data from designed experiments, when analyzed appropriately, allow
stronger (almost) causative inferences, which incubate further scientific
inspiration and hypothesis generation, and so forth, through the cycle. In
the right hands, and with a component of luck, this cycle leads to great
breakthroughs [e.g., the discovery of penicillin in 1928 by Alexander Fleming;
see, e.g., Hare (1970)]. Even small breakthroughs are bricks that are laid on
the knowledge pyramid.

Space and time are fundamental factors of any experiment. For example,
“soil type” is highly spatial and “growing season” is highly temporal. Pro-
tocol for any well designed experiment should involve recording the loca-
tion and time at which each datum was collected, because so many factors
(known or unknown) correlate with them. After the experiment has been per-
formed, spatial and temporal information can be used as proxies for unknown,
unaccounted-for factors that may later become “known” as the experiment pro-
ceeds. From this point of view, the natural place to put spatial and temporal
effects in the statistical model is in the mean. But, there is an alternative . . . .

In R. A. Fisher’s pathbreaking work on design of experiments in agricultural
science, he wrote (Fisher, 1935, p. 66): “After choosing the area we usually
have no guidance beyond the widely verified fact that patches in close prox-
imity are commonly more alike, as judged by the yield of crops, than those
which are further apart.” Spatial variability, which to Fisher came in the form
of plot-to-plot variability, is largely due to physical properties of the soil and
environmental properties of the field. Fisher avoided the confounding of treat-
ment effect with plot effect with the inspirational introduction of randomization
into the scientific method. It was a brilliant insertion of more uncertainty into
a place in the experiment where uncertainty abounds, leaving the more certain
parts of the experiment intact. Fisher’s idea has had an enormous effect on all
our lives. For example, any medicine we have taken to treat our ailments and
illnesses has gone through rigorous testing, to which the randomized clinical
trial is central (where a “plot” is often the patient).
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Randomization comes with a price. It allows valid inference on the treat-
ments through a simple expression for the mean response, but the variances
and covariances of the responses are affected too. Under randomization of the
assignment of treatments to plots, the notions of “close proximity” and “far
apart” have been hustled out the back door. Can we get spatial dependence
back into the statistical analysis of responses, resulting in more efficient infer-
ences for treatment effects? The answer to this is a resounding “Yes”; see the
introduction to Chapter 4.

Observational Data
Organisms are born, live, reproduce, and die, but they can produce harmful
by-products that may threaten their own well-being as well as the well-being of
other organisms around them. (The species Homo sapiens is unique in many of
its abilities, including its ability to have a major impact on all other organisms
on Earth.) Variability within organisms can be large (e.g., within H. sapiens),
as can variability between their environments. Thus, it can be very difficult to
conduct controlled experiments on Earth’s ecology and environment.

Observational data come from a “wilder side” of Science. The environment
(such as climate, air and water quality, radioactive contamination, etc.) is a part
of our lives that often will not submit to blocking, randomization, and replica-
tion. We cannot control when it rains, nor can we observe two Los Angeles,
one with smog and one without. We can look for two like communities, one
with contaminated water and one without; and we can look at health records
before and after a toxic emission. However, any inference is tentative because
the two factors, space and time, are not controlled for. Collecting samples
from ambient air presents a philosophical problem because the parcel of air
is unique when it passes the monitoring site; it evolves as the changes in air
pressure move it around, and it will never come back to allow us the luxury of
obtaining an independent, identically distributed observation. (If these obser-
vations are used to study the effect of air quality on human health, there is the
further problem that the ambient air is not actually what individuals breathe
in their homes or their workplaces; this introduces even more uncertainty into
the study.)

In the environmental and life sciences, classical experimental design can
struggle to keep up with the questions being asked, but they still need to
be answered. And, as we have discussed just above, uncertainty is likely
to be higher without experimental control. Thus, Statistical Science has
a crucial role to play, although it does not fit neatly into the blocking–
randomization–replication framework. Even when one is able to “block” the
human subjects on age and sex, say, it may be that an unknown genetic factor
will determine how a patient responds to a given treatment. (Personalized
medicine has as one of its goals to make the unknown genetic factor known.)
In epidemiological studies, controls may be randomly matched with cases, but
the cases are in no way assigned randomly to neighborhoods. And, although
duplicate chemical assays allow for assessment of measurement error in a
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study on stream pollution, replication of a water parcel from the stream
is impossible. In such circumstances, Statistics is even more relevant, and
we advocate that the scientific method invoke the principle of expressing
uncertainty through probabilities .

In the environmental sciences, proximity in space and time is a particularly
relevant factor. The word “environ” means “around” in French. While ecology
is the study of organisms, the environment is the surroundings of organisms.
“Nearby” is a relative notion, relative to the spatial and temporal scales of
the phenomenon under study. For example, in the spatial case, a toxic-waste-
disposal site may directly affect a neighborhood of a few square miles; a
coal-burning power plant may directly affect a heavily populated region of
many tens of square miles, and an increase in greenhouse gases will affect the
whole planet. Clearly, a global effect is felt locally in many ways, from a longer
growing season in Alberta, Canada, to a redistribution of beachfront property
in Florida, USA. The point we wish to make here is that a quantity like global
mean temperature is a largely uninformative summary of how daily lives of
a community will be affected by a warmer planet, which means that environ-
mental studies of the globe must recognize the importance of local variability.
Furthermore, how the spatial variability behaves dynamically (i.e., the spatio-
temporal variability) is key to understanding the causes of global warming and
what to do about it. Finally, we state the obvious, that political boundaries
cannot hold back a one-meter rise in sea level; our environment is ultimately
a global resource and its stewardship is an international responsibility.

Einsteinian Physics
Einstein’s theory of relativity (e.g., Bergmann, 1976) demonstrated that space
and time are interdependent and inseparable. In contrast, our book is almost
exclusively concerned with phenomena that reside in a classical Newtonian
framework (e.g., Giancoli, 1998). We include a brief discussion of space and
time within Einstein’s framework, to indicate that modifications would be
needed for, say, spatio-temporal astronomical data.

Einstein proposed a “thought experiment,” a version of which we now give.
Think of a boxcar being pulled by a train traveling at velocity v, and place
a source of light at the center of the moving boxcar. An observer on the
train sees twin pulses of light arrive at the front and rear end of the boxcar,
simultaneously . A stationary observer standing by the train tracks sees one
pulse arrive at the rear end of the boxcar before its twin arrives at the front
end. That is, the reference frame of the observer is extremely important to
the temporal notions of simultaneity/before/after. What ties together space and
time is movement (velocity) of the boxcar.

Einsteinian physics assumes that the velocity of light c, is a universal
constant (which is approximately 3 × 105 km/s), regardless of the frame of
reference. Thus, for any frame of reference, the distance traveled by a pulse
of light is equal to the time taken to travel that distance multiplied by c. That
this relationship holds under any spatio-temporal coordinate system means that
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for Einsteinian physics, space and time are inextricably linked. Other physical
properties are modified too. The length of an object measured in the moving
frame, moving with velocity v, is always smaller than or equal to the length
of the object measured in the stationary frame, by a factor of {1 − (v/c)2}1/2.
A similar factor shortens a time interval in a moving frame, leading to the
famous conclusion that the crew of a spaceship flying near the speed of light
would return in a few (of their) years to find that their generation on Earth
had become old.

Einstein’s theory of relativity is most certainly important for some phenom-
ena, but in this book we shall stay within scales of space and time where
the physical laws of Newton can be assumed. We work with a coordinate sys-
tem that is a Cartesian product of three-dimensional space and one-dimensional
time, while respecting the directionality of the temporal coordinate. Our models
of spatio-temporal processes attempt to capture the complex statistical depen-
dencies that can arise from the evolution of phenomena at many spatial and
temporal scales .

Change-of-Support
The global/regional/local scales of spatio-temporal variability lead to a phe-
nomenon we shall call change-of-support. In the spatial case, it is known as
downscaling/upscaling, or the ecological effect, or the modifiable areal unit
problem. It is in fact a manifestation of Simpson’s paradox (Simpson, 1951).
Simpson’s paradox, which has a perfectly rational probabilistic explanation,
essentially says the following: In a two-way cross-tabulation, the variables (A
and B , say) can exhibit a positive statistical dependence, yet when a third vari-
able (C , say) enters and expands the data to a three-way cross-tabulation, the
statistical dependence between A and B can be negative for each value of C !

For example, consider the data reported in Charig et al. (1986) and discussed
by Meng (2009), on the treatment of kidney stones. Open surgery had a success
rate of 78%, not as good as the ultrasound treatment’s success rate of 83%.
However, for small stones (<2-cm mean diameter), the success rate for open
surgery was 93% and that for ultrasound was 87%. That is, open surgery did
better than ultrasound for small stones. Surely, for large stones (≥2-cm mean
diameter), open surgery would do worse, to account for its inferior success
rate based on the results given above for all stones (78% versus ultrasound’s
83%). Not so! For large stones, the success rate for open surgery was 73% and
that for ultrasound was 69%, again in favor of open surgery . This is a sober
reminder to all scientists to respect the “lurking variable,” manifested here as
the size of a patient’s kidney stone.

Similarly, in a temporal setting, a causal statistical model built at a 3-monthly
scale may have little or no relevance to the mechanisms in play at the daily
scale. Day trading on stock markets, based on economic relationships estimated
from quarterly trade figures, would probably lead to financial ruin. In a spatial
setting, regional climate data may warn, correctly, of a future drought in the
Northwest United States (states of Washington and Oregon). However, local
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orographic effects may favor certain parts of the Willamette Valley in Oregon
to the point where above-average rainfall is consistently received there. That
is, rather than size of kidney stone, think of Simpson’s paradox in terms of
size of region (space) or length of period (time). See Cressie (1998a) for a
discussion of change-of-support in a spatio-temporal setting.

As we have mentioned, aggregations over time are subject to the change-
of-support effect, but there is less discussion of it in the time series literature
because time series are often already downscaled to answer the questions of
interest. In contrast, spatial aggregation is ubiquitous: In the United States,
federal decisions (e.g., carbon “cap and trade”) are made at a continental scale,
state decisions (e.g., California’s clean-air regulations) are made at a regional
scale, and city-wide decisions (e.g., the water-conservation policy in the city of
Tucson, Arizona) are made at a local scale. These decisions are based on data
that come from a variety of spatial scales; however, an inappropriate statistical
analysis that does not respect the change-of-support effect could lead to the
adoption of inappropriate policies. Our goal in this book is to build spatio-
temporal statistical models to explain the variability in observable phenomena.
While change-of-support should always be respected, there is less of a chance
it will cause difficulties when scientifically based dynamical models are used.

Objects in a Dynamical Spatial Environment
There are two major ways to view, and hence to model, the evolving spatial
environment in which we live. The object view of the world sees individual
objects located in a spatial domain and interacting through time with each
other, often as a function of their distance apart. Thus, a household and its
characteristics make up a unit of interest to census enumerators. This micro-
datum is typically unavailable to social scientists, for confidentiality reasons.
Consequently, the census data that are released are typically the number of
objects in small areas, but not their locations. That is, a set of count data from
small areas is released, which is simply an aggregated version of the object
view of the world. The geographical extent (i.e., spatial support) of a small
area can be stored in a Geographical Information System (GIS) as a polygon,
and hence the spatial relationships between small areas and their associated
counts are preserved in a GIS. [A GIS is a suite of hardware and software
tools that feature linked georeferencing in its database management and in its
visualization; e.g., Burrough and McDonnell (1998).]

Alternatively, the field view of the world loses sight of the objects and
potentially has a (multivariate) datum at every spatial location in the domain
of interest. Building on the census-enumeration example discussed above, we
can define a field as the object density, in units of number per unit area, at any
location. This is purely a mathematical construct because, at a given location,
either there is an object present or there is not. Such a density can be estimated
from a moving window, such that at any location the estimated density is the
number of objects per unit area in the window at that location.

A useful way to think of the object view versus the field view is to imagine
yourself in a helicopter taking off from a clearing in a field of corn. As the
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helicopter ascends, at some point it is no longer interesting to think of objects
(e.g., corn plants), but rather to think of a field, literally and statistically (e.g.,
in units of bushels per acre). Then the temporal aspect is captured through the
field’s dynamical evolution during the growing season.

Sometimes the field view is the result of an aggregation of the object view,
such as for population-density data. Other times, the field view is all that is
of interest, such as for rainfall data where there is typically no interest in the
individual raindrops. Again, a GIS is a convenient way to store data for a field,
along with the spatial support to which a datum refers. Most of the exposition
in this book (with the exception of Sections 4.2, 4.3, 4.4, and Section 6.6)
is based on the field view. In general, spatio-temporal data may consist of
measurements of both the field type and the object type. Modeling these data
with coherent, spatio-temporal, random processes is the next frontier.

Uncertainty and the Role of Conditional Probabilities
The era of building (marginal) probability models directly for the data is com-
ing to a close. A model of this sort defines a likelihood, from which inference
on unknown parameters can be made. However, the likelihood does not directly
recognize that data are a noisy, incomplete version of the scientific process of
interest (see Section 2.1). This can be resolved by building a conditional prob-
ability model for the data, given the process, and then a separate probability
model for the (hidden) process itself. From this perspective, it is clear that the
likelihood is based on a marginal probability model of the data, where the
scientific mechanisms are partially hidden by integration.

A lot of ink has been devoted to whether frequentist or Bayesian probability
models are better. We believe that the bigger issue is whether marginal-
probability or conditional-probability models should be used, and we are
decidedly in the conditional-probability camp. As Statistics has become more
a Science than a branch of Mathematics, conditional-probability modeling
has shown its power to express uncertainties in all aspects of a scientific
investigation. Such models have been called hierarchical statistical models
(sometimes referred to as latent models or multilevel models); see Section 2.1.

Bayes’ Theorem is a fundamental result in probability theory that allows an
inverse calculation of the conditional probability of the unknowns (process and
parameters) given the data (Bayes, 1763). Inference on the unknowns is based
on this conditional probability distribution (called the posterior distribution),
but the formula depends on a normalizing constant that is typically intractible
(see Section 2.1).

Breakthroughs in the last 20 years have shown how an analytical derivation
of the normalizing constant can be avoided by a judicious use of, for example,
a Monte Carlo sampler from a Markov chain whose stationary distribution is
the posterior distribution (see Section 2.3). This has made feasible the statistical
analysis of scientific problems in the presence of uncertainty, based on hierar-
chical statistical models that can be of great complexity. But this comes with
great responsibility; just because we can handle a lot of complexity, it does
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not mean that we should. This echoes our earlier comments at the beginning
of this chapter, when discussing the Goldilocks Principle of model building.

Hierarchical Statistical Modeling
Hierarchical statistical modeling represents a way to express uncertainties
through well defined levels of conditional probabilities. We follow Berliner’s
(1996) terminology: At the top level is the data model , which expresses the
distribution of the data given a hidden process. This hidden process can be
thought of as the “true process,” uncorrupted by any measurement of it. At the
level directly underneath the data model is the process model, which models
scientific uncertainty in the hidden (“true”) process through a probability dis-
tribution of the phenomenon of interest. It is quite possible that the process
model is itself made up of submodels whose uncertainties are also expressed
at sublevels through conditional probabilities. In a sense, the whole approach
is a sort of analysis-of-variance decomposition that is more general than the
usual additive decomposition given in standard textbooks (e.g., Scheffé, 1959).
The result is a hierarchical model (HM); see Section 2.1.

The components of a HM are conditional probability distributions that, when
multiplied together, yield the joint probability distribution of all quantities in
the model. The quantities in which we are interested could be as simple as
random variables and as complicated as space–time stochastic processes of
random sets.

Of course, all the conditional probability distributions specified in the HM
typically depend on unknown parameters. If a lower level (underneath the data
model and the process model) is established by specifying the joint probability
distribution of all the unknown parameters, then the HM qualifies to be called
a Bayesian Hierarachical Model (BHM). This probability model at the lowest
level, which we call the parameter model , completes the sequence: data model
(top level) followed by process model (second level) followed by parameter
model (bottom level); see Section 2.1.1. An alternative approach to specifying
the parameter model is to estimate the parameters using the data. This might
be called an Empirical Hierarchical Model (EHM), although historically it has
often been called an empirical-Bayesian model; see Section 2.1.2. We prefer
the nomenclature EHM, to contrast it with BHM.

Uncertainty and the Role of Statistics, Revisited
It is worth reflecting on how far we have come in this discussion of statis-
tical modeling. We are not rejecting R. A. Fisher’s paradigm of controlled
scientific experiments; on the contrary, such experiments allow the statistician
and scientist to build the suite of conditional probability models needed for
hierarchical statistical modeling. For example, when water quality is measured
through chemical assays, it is common to send duplicates and “blanks” (i.e.,
pure water) through the laboratory to gain knowledge about the measurement
error in the data model. Furthermore, periodic recalibration of instruments
guards against instrument drift over time and possible bias in the measurement
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errors. In agriculture, uniformity trials (where crops are grown but no treat-
ments are applied to those crops) enable the scientist to build realistic, often
spatial, process models. The HM paradigm enables a coherent use of all data
and, using models of spatio-temporal statistical dependence, allows inference
on parts where there are no data at all! Scientific relationships incorporated into
the process and parameter models can mitigate the paucity of data. Further-
more, there is a self-correcting mechanism in hierarchical statistical modeling;
when there is little known about the scientific relationships or there are poor-
quality or few data available, then inferences have very low precision. That is,
a signal in the process may be there, but if scientific knowledge or the data
are limited, the HM approach will not let us discover it.

Looking at this from another angle, the best scientists collect the best data
to build the best (conditional-probability) models to make the most precise
inferences in the shortest amount of time. In reality, compromises at every
stage may be needed, and we could add that the best scientists make the best
compromises!

We conclude by saying that Science cannot be done “by the numbers.” Good
scientists require just as much inspiration as good artists, and indeed there is
a view that they are symbiotic (Shlain, 1991; Osserman, 1995). To this we
add Statistics, and particularly hierarchical statistical modeling, where data,
Science, and uncertainty join forces.

Summary of the Book
This is a four-color book where not only is color used in the figures, but
it is also used strategically in the text. Where appropriate, the data model
is in green, the process model is in blue, the parameter model is in purple,
and the posterior distribution is in red. Chapter 1 has introduced the broad
philosophy of Statistics (with a capital “S”) and its role in the scientific method.
This is formalized in Chapter 2, where more notation, more methodology, and
more statistical concepts are introduced. Readers have a choice at this point.
Those unfamiliar with Statistics for temporal data could read Chapter 3, which
reviews the fundamentals of temporal processes (i.e., dynamical systems and
time series). Those unfamiliar with Statistics for spatial data could read Chapter
4, which reviews the fundamentals of spatial random processes. Those who are
familiar with both could “Pass Go” and proceed to Chapter 5.

Chapter 5 introduces spatio-temporal statistical methodology through data,
recognizing its roots in Science. Chapter 6 reviews the statistical models
that have been used for analyzing spatio-temporal data. This book features
dynamical spatio-temporal statistical models (DSTMs), and Chapter 7 gives
a comprehensive exposition of them in the context of hierarchical statisti-
cal models. Implementation and inference for DSTMs in the hierarchical-
modeling framework are presented in Chapter 8. Finally, a number of examples
that illustrate Statistics for spatio-temporal data are given in the sections of
Chapter 9.




