CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

We currently live in what is often termed the information age. Aided by new
and emerging technologies, data are being collected at unprecedented rates in
all walks of life. For example, in the field of surveying, total station instru-
ments, global positioning system (GPS) equipment, digital metric cameras,
and satellite imaging systems are only some of the new instruments that are
now available for rapid generation of vast quantities of measured data.

Geographic Information Systems (GISs) have evolved concurrently with
the development of these new data acquisition instruments. GISs are now
used extensively for management, planning, and design. They are being ap-
plied worldwide at all levels of government, in business and industry, by
public utilities, and in private engineering and surveying offices. Implemen-
tation of a GIS depends upon large quantities of data from a variety of
sources, many of them consisting of observations made with the new instru-
ments, such as those noted above.

Before data can be utilized, however, whether for surveying and mapping
projects, for engineering design, or for use in a geographic information sys-
tem, they must be processed. One of the most important aspects of this is to
account for the fact that no measurements are exact. That is, they always
contain errors.

The steps involved in accounting for the existence of errors in measure-
ments consist of (1) performing statistical analyses of the observations to
assess the magnitudes of their errors and to study their distributions to deter-
mine whether or not they are within acceptable tolerances; and if the obser-
vations are acceptable, (2) adjusting them so that they conform to exact
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geometric conditions or other required constraints. Procedures for performing
these two steps in processing measured data are principal subjects of this
book.

1.2 DIRECT AND INDIRECT MEASUREMENTS

Measurements are defined as observations made to determine unknown quan-
tities. They may be classified as either direct or indirect. Direct measurements
are made by applying an instrument directly to the unknown quantity and
observing its value, usually by reading it directly from graduated scales on
the device. Determining the distance between two points by making a direct
measurement using a graduated tape, or measuring an angle by making a
direct observation from the graduated circle of a theodolite or total station
instrument, are examples of direct measurements.

Indirect measurements are obtained when it is not possible or practical to
make direct measurements. In such cases the quantity desired is determined
from its mathematical relationship to direct measurements. Surveyors may,
for example, measure angles and lengths of lines between points directly and
use these measurements to compute station coordinates. From these coordi-
nate values, other distances and angles that were not measured directly may
be derived indirectly by computation. During this procedure, the errors that
were present in the original direct observations are propagated (distributed)
by the computational process into the indirect values. Thus, the indirect mea-
surements (computed station coordinates, distances, and angles) contain errors
that are functions of the original errors. This distribution of errors is known
as error propagation. The analysis of how errors propagate is also a principal
topic of this book.

1.3 MEASUREMENT ERROR SOURCES

It can be stated unconditionally that (1) no measurement is exact, (2) every
measurement contains errors, (3) the true value of a measurement is never
known, and thus (4) the exact sizes of the errors present are always unknown.
These facts can be illustrated by the following. If an angle is measured with
a scale divided into degrees, its value can be read only to perhaps the nearest
tenth of a degree. If a better scale graduated in minutes were available and
read under magnification, however, the same angle might be estimated to
tenths of a minute. With a scale graduated in seconds, a reading to the nearest
tenth of a second might be possible. From the foregoing it should be clear
that no matter how well the observation is taken, a better one may be possible.
Obviously, in this example, observational accuracy depends on the division
size of the scale. But accuracy depends on many other factors, including the
overall reliability and refinement of the equipment used, environmental con-
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ditions that exist when the observations are taken, and human limitations (e.g.,
the ability to estimate fractions of a scale division). As better equipment is
developed, environmental conditions improve, and observer ability increases,
observations will approach their true values more closely, but they can never
be exact.

By definition, an error is the difference between a measured value for any
quantity and its true value, or

E=Yy B (1.1)

where € is the error in an observation, y the measured value, and p its true
value.

As discussed above, errors stem from three sources, which are classified
as instrumental, natural, and personal:

1. Instrumental errors. These errors are caused by imperfections in instru-
ment construction or adjustment. For example, the divisions on a
theodolite or total station instrument may not be spaced uniformly.
These error sources are present whether the equipment is read manually
or digitally.

2. Natural errors. These errors are caused by changing conditions in the
surrounding environment, including variations in atmospheric pressure,
temperature, wind, gravitational fields, and magnetic fields.

3. Personal errors. These errors arise due to limitations in human senses,
such as the ability to read a micrometer or to center a level bubble. The
sizes of these errors are affected by the personal ability to see and by
manual dexterity. These factors may be influenced further by tempera-
ture, insects, and other physical conditions that cause humans to behave
in a less precise manner than they would under ideal conditions.

1.4 DEFINITIONS

From the discussion thus far, it can be stated with absolute certainty that all
measured values contain errors, whether due to lack of refinement in readings,
instabilities in environmental conditions, instrumental imperfections, or hu-
man limitations. Some of these errors result from physical conditions that
cause them to occur in a systematic way, whereas others occur with apparent
randomness. Accordingly, errors are classified as either systematic or random.
But before defining systematic and random errors, it is helpful to define
mistakes.

1. Mistakes. These are caused by confusion or by an observer’s careless-
ness. They are not classified as errors and must be removed from any
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set of observations. Examples of mistakes include (a) forgetting to set
the proper parts per million (ppm) correction on an EDM instrument,
or failure to read the correct air temperature, (b) mistakes in reading
graduated scales, and (c) blunders in recording (i.e., writing down 27.55
for 25.75). Mistakes are also known as blunders or gross errors.

2. Systematic errors. These errors follow some physical law, and thus these
errors can be predicted. Some systematic errors are removed by follow-
ing correct measurement procedures (e.g., balancing backsight and fore-
sight distances in differential leveling to compensate for Earth curvature
and refraction). Others are removed by deriving corrections based on
the physical conditions that were responsible for their creation (e.g.,
applying a computed correction for Earth curvature and refraction on a
trigonometric leveling observation). Additional examples of systematic
errors are (a) temperature not being standard while taping, (b) an index
error of the vertical circle of a theodolite or total station instrument,
and (c) use of a level rod that is not of standard length. Corrections for
systematic errors can be computed and applied to observations to elim-
inate their effects. Systematic errors are also known as biases.

3. Random errors. These are the errors that remain after all mistakes and
systematic errors have been removed from the measured values. In gen-
eral, they are the result of human and instrument imperfections. They
are generally small and are as likely to be negative as positive. They
usually do not follow any physical law and therefore must be dealt with
according to the mathematical laws of probability. Examples of random
errors are (a) imperfect centering over a point during distance measure-
ment with an EDM instrument, (b) bubble not centered at the instant a
level rod is read, and (c) small errors in reading graduated scales. It is
impossible to avoid random errors in measurements entirely. Although
they are often called accidental errors, their occurrence should not be
considered an accident.

1.5 PRECISION VERSUS ACCURACY

Due to errors, repeated observation of the same quantity will often yield
different values. A discrepancy is defined as the algebraic difference between
two observations of the same quantity. When small discrepancies exist be-
tween repeated observations, it is generally believed that only small errors
exist. Thus, the tendency is to give higher credibility to such data and to call
the observations precise. However, precise values are not necessarily accurate
values. To help understand the difference between precision and accuracy, the
following definitions are given:

1. Precision is the degree of consistency between observations based on
the sizes of the discrepancies in a data set. The degree of precision



1.5 PRECISION VERSUS ACCURACY 5

attainable is dependent on the stability of the environment during the
time of measurement, the quality of the equipment used to make the
observations, and the observer’s skill with the equipment and observa-
tional procedures.

2. Accuracy is the measure of the absolute nearness of a measured quantity
to its true value. Since the true value of a quantity can never be deter-
mined, accuracy is always an unknown.

The difference between precision and accuracy can be demonstrated using
distance observations. Assume that the distance between two points is paced,
taped, and measured electronically and that each procedure is repeated five
times. The resulting observations are:

Pacing, Taping, EDM,
Observation p t e
1 571 567.17 567.133
2 563 567.08 567.124
3 566 567.12 567.129
4 588 567.38 567.165
5 557 567.01 567.114

The arithmetic means for these data sets are 569, 567.15, and 567.133,
respectively. A line plot illustrating relative values of the electronically mea-
sured distances denoted by e, and the taped distances, denoted by ¢, is shown
in Figure 1.1. Notice that although the means of the EDM data set and of the
taped observations are relatively close, the EDM set has smaller discrepancies.
This indicates that the EDM instrument produced a higher precision. How-
ever, this higher precision does not necessarily prove that the mean of the
electronically measured data set is implicitly more accurate than the mean of
the taped values. In fact, the opposite may be true if the reflector constant
was entered incorrectly causing a large systematic error to be present in all
the electronically measured distances. Because of the larger discrepancies, it
is unlikely that the mean of the paced distances is as accurate as either of the
other two values. But its mean could be more accurate if large systematic
errors were present in both the taped and electronically measured distances.
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Figure 1.1 Line plot of distance quantities.
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Another illustration explaining differences between precision and accuracy
involves target shooting, depicted in Figure 1.2. As shown, four situations
can occur. If accuracy is considered as closeness of shots to the center of a
target at which a marksman shoots, and precision as the closeness of the shots
to each other, (1) the data may be both precise and accurate, as shown in
Figure 1.2(a); (2) the data may produce an accurate mean but not be precise,
as shown in Figure 1.2(b); (3) the data may be precise but not accurate, as
shown in Figure 1.2(c); or (4) the data may be neither precise nor accurate,
as shown in Figure 1.2(d).

Figure 1.2(a) is the desired result when observing quantities. The other
cases can be attributed to the following situations. The results shown in Figure
1.2(b) occur when there is little refinement in the observational process.
Someone skilled at pacing may achieve these results. Figure 1.2(c) generally
occurs when systematic errors are present in the observational process. For
example, this can occur in taping if corrections are not made for tape length
and temperature, or with electronic distance measurements when using the
wrong combined instrument—reflector constant. Figure 1.2(d) shows results
obtained when the observations are not corrected for systematic errors and
are taken carelessly by the observer (or the observer is unskilled at the par-
ticular measurement procedure).

In general, when making measurements, data such as those shown in Figure
1.2(b) and (d) are undesirable. Rather, results similar to those shown in Figure
1.2(a) are preferred. However, in making measurements the results of Figure
1.2(c) can be just as acceptable if proper steps are taken to correct for the
presence of systematic errors. (This correction would be equivalent to a
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Figure 1.2 Examples of precision versus accuracy.
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marksman realigning the sights after taking shots.) To make these corrections,
(1) the specific types of systematic errors that have occurred in the observa-
tions must be known, and (2) the procedures used in correcting them must
be understood.

1.6 REDUNDANT MEASUREMENTS IN SURVEYING AND
THEIR ADJUSTMENT

As noted earlier, errors exist in all observations. In surveying, the presence
of errors is obvious in many situations where the observations must meet
certain conditions. For example, in level loops that begin and close on the
same benchmark, the elevation difference for the loop must equal zero. How-
ever, in practice, this is hardly ever the case, due to the presence of random
errors. (For this discussion it is assumed that all mistakes have been elimi-
nated from the observations and appropriate corrections have been applied to
remove all systematic errors.) Other conditions that disclose errors in survey-
ing observations are that (1) the three measured angles in a plane triangle
must total 180°, (2) the sum of the angles measured around the horizon at
any point must equal 360°, and (3) the algebraic sum of the latitudes (and
departures) must equal zero for closed polygon traverses that begin and end
on the same station. Many other conditions could be cited; however, in any
of them, the observations rarely, if ever, meet the required conditions, due to
the presence of random errors.

The examples above not only demonstrate that errors are present in sur-
veying observations but also the importance of redundant observations; those
measurements made that are in excess of the minimum number that are
needed to determine the unknowns. For example, two measurements of the
length of a line yield one redundant observation. The first observation would
be sufficient to determine the unknown length, and the second is redundant.
However, this second observation is very valuable. First, by examining the
discrepancy between the two values, an assessment of the size of the error in
the observations can be made. If a large discrepancy exists, a blunder or large
error is likely to have occurred. In that case, measurements of the line would
be repeated until two values having an acceptably small discrepancy were
obtained. Second, the redundant observation permits an adjustment to be made
to obtain a final value for the unknown line length, and that final adjusted
value will be more precise statistically than either of the individual observa-
tions. In this case, if the two observations were of equal precision, the adjusted
value would be the simple mean.

Each of the specific conditions cited in the first paragraph of this section
involves one redundant observation. For example, there is one redundant ob-
servation when the three angles of a plane triangle are observed. This is true
because with two observed angles, say A and B, the third could be computed
as C = 180° — A — B, and thus observation of C is unnecessary. However,
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measuring angle C enables an assessment of the errors in the angles and also
makes an adjustment possible to obtain final angles with statistically improved
precisions. Assuming that the angles were of equal precision, the adjustment
would enforce a 180° sum for the three angles by distributing the total dis-
crepancy in equal parts to each angle.

Although the examples cited here are indeed simple, they help to define
redundant measurements and to illustrate their importance. In large surveying
networks, the number of redundant observations can become extremely large,
and the adjustment process is somewhat more involved than it is for the simple
examples given here.

Prudent surveyors always make redundant observations in their work, for
the two important reasons indicated above: (1) to make it possible to assess
errors and make decisions regarding acceptance or rejection of observations,
and (2) to make possible an adjustment whereby final values with higher
precisions are determined for the unknowns.

1.7 ADVANTAGES OF LEAST SQUARES ADJUSTMENT

As indicated in Section 1.6, in surveying it is recommended that redundant
observations always be made and that adjustments of the observations always
be performed. These adjustments account for the presence of errors in the
observations and increase the precision of the final values computed for the
unknowns. When an adjustment is completed, all observations are corrected
so that they are consistent throughout the survey network [i.e., the same values
for the unknowns are determined no matter which corrected observation(s)
are used to compute them].

Many different methods have been derived for making adjustments in sur-
veying; however, the method of least squares should be used because it has
significant advantages over all other rule-of-thumb procedures. The advan-
tages of least squares over other methods can be summarized with the fol-
lowing four general statements: (1) it is the most rigorous of adjustments; (2)
it can be applied with greater ease than other adjustments; (3) it enables
rigorous postadjustment analyses to be made; and (4) it can be used to per-
form presurvey planning. These advantages are discussed further below.

Least squares adjustment is rigorously based on the theory of mathematical
probability, whereas in general, the other methods do not have this rigorous
base. As described later in the book, in a least squares adjustment, the fol-
lowing condition of mathematical probability is enforced: The sum of the
squares of the errors times their respective weights is minimized. By enforcing
this condition in any adjustment, the set of errors that is computed has the
highest probability of occurrence. Another aspect of least squares adjustment
that adds to its rigor is that it permits all observations, regardless of their
number or type, to be entered into the adjustment and used simultaneously
in the computations. Thus, an adjustment can combine distances, horizontal
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angles, azimuths, zenith or vertical angles, height differences, coordinates,
and even GPS observations. One important additional asset of least squares
adjustment is that it enables “relative weights” to be applied to the obser-
vations in accordance with their estimated relative reliabilities. These relia-
bilities are based on estimated precisions. Thus, if distances were observed
in the same survey by pacing, taping, and using an EDM instrument, they
could all be combined in an adjustment by assigning appropriate relative
weights.

Years ago, because of the comparatively heavy computational effort in-
volved in least squares, nonrigorous or ‘‘rule-of-thumb’ adjustments were
most often used. However, now because computers have eliminated the com-
puting problem, the reverse is true and least squares adjustments are per-
formed more easily than these rule-of-thumb techniques. Least squares
adjustments are less complicated because the same fundamental principles are
followed regardless of the type of survey or the type of observations. Also,
the same basic procedures are used regardless of the geometric figures in-
volved (e.g., triangles, closed polygons, quadrilaterals, or more complicated
networks). On the other hand, rules of thumb are not the same for all types
of surveys (e.g., level nets use one rule and traverses use another), and they
vary for different geometric shapes. Furthermore, the rule of thumb applied
for a particular survey by one surveyor may be different from that applied by
another surveyor. A favorable characteristic of least squares adjustments is
that there is only one rigorous approach to the procedure, and thus no matter
who performs the adjustment for any particular survey, the same results will
be obtained.

Least squares has the advantage that after an adjustment has been finished,
a complete statistical analysis can be made of the results. Based on the sizes
and distribution of the errors, various tests can be conducted to determine if
a survey meets acceptable tolerances or whether the observations must be
repeated. If blunders exist in the data, these can be detected and eliminated.
Least squares enables precisions for the adjusted quantities to be determined
easily and these precisions can be expressed in terms of error ellipses for
clear and lucid depiction. Procedures for accomplishing these tasks are de-
scribed in subsequent chapters.

Besides its advantages in adjusting survey data, least squares can be used
to plan surveys. In this application, prior to conducting a needed survey,
simulated surveys can be run in a trial-and-error procedure. For any project,
an initial trial geometric figure for the survey is selected. Based on the figure,
trial observations are either computed or scaled. Relative weights are assigned
to the observations in accordance with the precision that can be estimated
using different combinations of equipment and field procedures. A least
squares adjustment of this initial network is then performed and the results
analyzed. If goals have not been met, the geometry of the figure and the
observation precisions are varied and the adjustment performed again. In this
process different types of observations can be used, and observations can be
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added or deleted. These different combinations of geometric figures and ob-
servations are varied until one is achieved that produces either optimum or
satisfactory results. The survey crew can then proceed to the field, confident
that if the project is conducted according to the design, satisfactory results
will be obtained. This technique of applying least squares in survey planning
is discussed in later chapters.

1.8 OVERVIEW OF THE BOOK

In the remainder of the book the interrelationship between observational errors
and their adjustment is explored. In Chapters 2 through 5, methods used to
determine the reliability of observations are described. In these chapters, the
ways that errors of multiple observations tend to be distributed are illustrated,
and techniques used to compare the quality of different sets of measured
values are examined. In Chapters 6 through 9 and in Chapter 13, methods
used to model error propagation in observed and computed quantities are
discussed. In particular, error sources present in traditional surveying tech-
niques are examined, and the ways in which these errors propagate throughout
the observational and computational processes are explained. In the remainder
of the book, the principles of least squares are applied to adjust observations
in accordance with random error theory and techniques used to locate mis-
takes in observations are examined.

PROBLEMS

1.1  Describe an example in which directly measured quantities are used to
obtain an indirect measurement.

1.2 Identify the direct and indirect measurements used in computing trav-
erse station coordinates.

1.3  Explain the difference between systematic and random errors.

1.4  List possible systematic and random errors when measuring:
(a) a distance with a tape.
(b) a distance with an EDM.
(c) an angle with a total station.
(d) the difference in elevation using an automatic level.

1.5  List three examples of mistakes that can be made when measuring an
angle with total station instruments.
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PROBLEMS 11

Identify each of the following errors as either systematic or random.
(a) Reading a level rod.

(b) Not holding a level rod plumb.

(c) Leveling an automatic leveling instrument.

(d) Using a level rod that has one foot removed from the bottom of
the rod.

In your own words, define the difference between precision and
accuracy.

Identify each of the following errors according to its source (natural,
instrumental, personal):

(a) Level rod length.

(b) EDM-reflector constant.

(¢) Air temperature in an EDM observation.

(d) Reading a graduation on a level rod.

(e) Earth curvature in leveling observations.

(f) Horizontal collimation error of an automatic level.

The calibrated length of a particular line is 400.012 m. A length of
400.015 m is obtained using an EDM. What is the error in the
observation?

In Problem 1.9, if the length observed is 400.007 m, what is the error
in the observation?

Why do surveyors measure angles using both faces of a total station
(i.e., direct and reversed)?

Give an example of compensating systematic errors in a vertical angle
observation when the angle is measured using both faces of the
instrument.

What systematic errors exist in taping the length of a line?
Discuss the importance of making redundant observations in surveying.

List the advantages of making adjustments by the method of least
squares.



