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1
REPRESENTATION AND GEOMETRY
OF MULTIVARIATE DATA

A complete analysis of multidimensional data requires the application of an array of
statistical tools—parametric, nonparametric, and graphical. Parametric analysis is the
most powerful. Nonparametric analysis is the most flexible. And graphical analysis
provides the vehicle for discovering the unexpected.

This chapter introduces some graphical tools for visualizing structure in multidi-
mensional data. One set of tools focuses on depicting the data points themselves,
while another set of tools relies on displaying of functions estimated from those
points. Visualization and contouring of functions in more than two dimensions is
introduced. Some mathematical aspects of the geometry of higher dimensions are
reviewed. These results have consequences for nonparametric data analysis.

1.1 INTRODUCTION

Classical linear multivariate statistical models rely primarily on analysis of the covari-
ance matrix. So powerful are these techniques that analysis is almost routine for
datasets with hundreds of variables. While the theoretical basis of parametric mod-
els lies with the multivariate normal density, these models are applied in practice
to many kinds of data. Parametric studies provide neat inferential summaries and
parsimonious representation of the data.

For many problems second-order information is inadequate. Advanced model-
ing or simple variable transformations may provide a solution. When no simple
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parametric model is forthcoming, many researchers have opted for fully “unpara-
metric” methods that may be loosely collected under the heading of exploratory data
analysis. Such analyses are highly graphical; but in a complex non-normal setting, a
graph may provide a more concise representation than a parametric model, because
a parametric model of adequate complexity may involve hundreds of parameters.

There are some significant differences between parametric and nonparametric
modeling. The focus on optimality in parametric modeling does not translate well
to the nonparametric world. For example, the histogram might be proved to be an
inadmissible estimator, but that theoretical fact should not be taken to suggest his-
tograms should not be used. Quite to the contrary, some methods that are theoretically
superior are almost never used in practice. The reason is that the ordering of algo-
rithms is not absolute, but is dependent not only on the unknown density but also on
the sample size. Thus the histogram is generally superior for small samples regard-
less of its asymptotic properties. The exploratory school is at the other extreme,
rejecting probabilistic models, whose existence provides the framework for defining
optimality.

In this book, an intermediate point of view is adopted regarding statistical effi-
cacy. No nonparametric estimate is considered wrong; only different components of
the solution are emphasized. Much effort will be devoted to the data-based calibra-
tion problem, but nonparametric estimates can be reasonably calibrated in practice
without too much difficulty. The “curse of optimality” might suggest that this is
an illogical point of view. However, if the notion that optimality is all important is
adopted, then the focus becomes matching the theoretical properties of an estimator
to the assumed properties of the density function. Is it a gross inefficiency to use a
procedure that requires only two continuous derivatives when the curve in fact has six
continuous derivatives? This attitude may have some formal basis but should be dis-
couraged as too heavy-handed for nonparametric thinking. A more relaxed attitude
is required. Furthermore, many “optimal” nonparametric procedures are unstable in
a manner that slightly inefficient procedures are not. In practice, when faced with the
application of a procedure that requires six derivatives, or some other assumption that
cannot be proved in practice, it is more important to be able to recognize the signs
of estimator failure than to worry too much about assumptions. Detecting failure at
the level of a discontinuous fourth derivative is a bit extreme, but certainly the effects
of simple discontinuities should be well understood. Thus only for the purposes of
illustration are the best assumptions given.

The notions of efficiency and admissibility are related to the choice of a criterion,
which can only imperfectly measure the quality of a nonparametric estimate. Unlike
optimal parametric estimates that are useful for many purposes, nonparametric esti-
mates must be optimized for each application. The extra work is justified by the extra
flexibility. As the choice of criterion is imperfect, so then is the notion of a single
optimal estimator. This attitude reflects not sloppy thinking, but rather the imperfect
relationship between the practical and theoretical aspects of our methods. Too rigid a
point of view leads one to a minimax view of the world where nonparametric methods
should be abandoned because there exist difficult problems.
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Visualization is an important component of nonparametric data analysis. Data
visualization is the focus of exploratory methods, ranging from simple scatterplots
to sophisticated dynamic interactive displays. Function visualization is a significant
component of nonparametric function estimation, and can draw on the relevant lit-
erature in the fields of scientific visualization and computer graphics. The focus of
multivariate data analysis on points and scatterplots has meant that the full impact
of scientific visualization has not yet been realized. With the new emphasis on
smooth functions estimated nonparametrically, the fruits of visualization will be
attained. Banchoff (1986) has been a pioneer in the visualization of higher dimen-
sional mathematical surfaces. Curiously, the surfaces of interest to mathematicians
contain singularities and discontinuities, all producing striking pictures when pro-
jected to the plane. In statistics, visualization of the smooth density surface in four,
five, and six dimensions cannot rely on projection, as projections of smooth surfaces
to the plane show nothing. Instead, the emphasis is on contouring in three dimensions
and slicing of surfaces beyond. The focus on three and four dimensions is natural
because one and two are so well understood. Beyond four dimensions, the ability to
explore surfaces carefully decreases rapidly due to the curse of dimensionality. For-
tunately, statistical data seldom display structure in more than five dimensions, so
guided projection to those dimensions may be adequate. It is these threshold dimen-
sions from three to five that are and deserve to be the focus of our visualization
efforts.

There is a natural flow among the parametric, exploratory, and nonparametric pro-
cedures that represents a rational approach to statistical data analysis. Begin with a
fully exploratory point of view in order to obtain an overview of the data. If a prob-
abilistic structure is present, estimate that structure nonparametrically and explore
it visually. Finally, if a linear model appears adequate, adopt a fully parametric
approach. Each step conceptually represents a willingness to more strongly smooth
the raw data, finally reducing the dimension of the solution to a handful of interest-
ing parameters. With the assumption of normality, the mind’s eye can easily imagine
the d-dimensional egg-shaped elliptical data clusters. Some statisticians may prefer
to work in the reverse order, progressing to exploratory methodology as a diagnostic
tool for evaluating the adequacy of a parametric model fit.

There are many excellent references that complement and expand on this sub-
ject. In exploratory data analysis, references include Tukey (1977), Tukey and Tukey
(1981), Cleveland and McGill (1988), and Wang (1978).

In density estimation, the classic texts of Tapia and Thompson (1978), Wertz
(1978), and Thompson and Tapia (1990) first indicated the power of the nonpara-
metric approach for univariate and bivariate data. Silverman (1986) has provided a
further look at applications in this setting. Prakasa Rao (1983) has provided a the-
oretical survey with a lengthy bibliography. Other texts are more specialized, some
focusing on regression (Müller, 1988; Härdle, 1990), some on a specific error cri-
terion (Devroye and Györfi, 1985; Devroye, 1987), and some on particular solution
classes such as splines (Eubank, 1988; Wahba, 1990). A discussion of additive models
may be found in Hastie and Tibshirani (1990).
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1.2 HISTORICAL PERSPECTIVE

One of the roots of modern statistical thought can be traced to the empirical discov-
ery of correlation by Galton in 1886 (Stigler, 1986). Galton’s ideas quickly reached
Karl Pearson. Although best remembered for his methodological contributions such
as goodness-of-fit tests, frequency curves, and biometry, Pearson was a strong pro-
ponent of the geometrical representation of statistics. In a series of lectures a century
ago in November 1891 at Gresham College in London, Pearson spoke on a wide-
ranging set of topics (Pearson, 1938). He discussed the foundations of the science
of pure statistics and its many divisions. He discussed the collection of observations.
He described the classification and representation of data using both numerical and
geometrical descriptors. Finally, he emphasized statistical methodology and discov-
ery of statistical laws. The syllabus for his lecture of November 11, 1891, includes
this cryptic note:

Erroneous opinion that Geometry is only a means of popular representation: it is a
fundamental method of investigating and analysing statistical material. (his italics)

In that lecture Pearson described 10 methods of geometrical data representation.
The most familiar is a representation “by columns,” which he called the “his-
togram.” (Pearson is usually given credit for coining the word “histogram” later in
a 1894 paper.) Other familiar-sounding names include “diagrams,” “chartograms,”
“topograms,” and “stereograms.” Unfamiliar names include “stigmograms,” “euthy-
grams,” “epipedograms,” “radiograms,” and “hormograms.”

Beginning 21 years later, Fisher advanced the numerically descriptive portion of
statistics with the method of maximum likelihood, from which he progressed on to the
analysis of variance and other contributions that focused on the optimal use of data
in parametric modeling and inference. In Statistical Methods for Research Workers,
Fisher (1932) devotes a chapter titled “Diagrams” to graphical tools. He begins the
chapter with this statement:

The preliminary examination of most data is facilitated by the use of diagrams.
Diagrams prove nothing, but bring outstanding features readily to the eye; they are
therefore no substitute for such critical tests as may be applied to the data, but are
valuable in suggesting such tests, and in explaining the conclusions founded upon
them.

An emphasis on optimization and the efficiency of statistical procedures has been
a hallmark of mathematical statistics ever since. Ironically, Fisher was criticized
by mathematical statisticians for relying too heavily upon geometrical arguments in
proofs of his results.

Modern statistics has experienced a strong resurgence of geometrical and graphi-
cal statistics in the form of exploratory data analysis (Tukey, 1977). Given the para-
metric emphasis on optimization, the more relaxed philosophy of exploratory data
analysis has been refreshing. The revolution has been fueled by the low cost of graph-
ical workstations and microcomputers. These machines have enabled current work on
statistics in motion (Scott, 1990), that is, the use of animation and kinematic display
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for visualization of data structure, statistical analysis, and algorithm performance. No
longer are static displays sufficient for comprehensive analysis.

All of these events were anticipated by Pearsonand his visionary statistical com-
puting laboratory. In his lecture of April 14, 1891, titled “The Geometry of Motion,”
he spoke of the “ultimate elements of sensations we represent as motions in space
and time.” In 1918, after his many efforts during World War I, he reminisced about
the excitement created by wartime work of his statistical laboratory:

The work has been so urgent and of such value that the Ministry of Munitions has
placed eight to ten computers and draughtsmen at my disposal . . . (Pearson, 1938,
p. 165).

These workers produced hundreds of statistical graphs, ranging from detailed maps of
worker availability across England (chartograms) to figures for sighting antiaircraft
guns (diagrams). The use of stereograms allowed for representation of data with three
variables. His “computers,” of course, were not electronic but human. Later, Fisher
would be frustrated because Pearson would not agree to allocate his “computers” to
the task of tabulating percentiles of the t-distribution. But Pearson’s capabilities for
producing high-quality graphics were far superior to those of most modern statisti-
cians prior to 1980. Given Pearson’s joint interests in graphics and kinematics, it is
tantalizing to speculate on how he would have utilized modern computers.

1.3 GRAPHICAL DISPLAY OF MULTIVARIATE DATA POINTS

The modern challenge in data analysis is to be able to cope with whatever complexi-
ties may be intrinsic to the data. The data may, for example, be strongly non-normal,
fall onto a nonlinear subspace, exhibit multiple modes, or be asymmetric. Dealing
with these features becomes exponentially more difficult as the dimensionality of the
data increases, a phenomenon known as the curse of dimensionality. In fact, datasets
with hundreds of variables and millions of observations are routinely compiled that
exhibit all of these features. Examples abound in such diverse fields as remote sens-
ing, the US Census, geological exploration, speech recognition, and medical research.
The expense of collecting and managing these large datasets is often so great that no
funds are left for serious data analysis. The role of statistics is clear, but too often
no statisticians are involved in large projects and no creative statistical thinking is
applied. The goal of statistical data analysis is to extract the maximum information
from the data, and to present a product that is as accurate and as useful as possible.

1.3.1 Multivariate Scatter Diagrams

The presentation of multivariate data is often accomplished in tabular form, par-
ticularly for small datasets with named or labeled objects. For example, Table B.1
contains economic data spanning the depression years of the 1930s, and Table B.2
contains information on a selected sample of American universities. It is easy enough
to scan an individual column in these tables, to make comparisons of library size,
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for example, and to draw conclusions one variable at a time (see Tufte (1983) and
Wang (1978)). However, variable-by-variable examination of multivariate data can
be overwhelming and tiring, and cannot reveal any relationships among the variables.
Looking at all pairwise scatterplots provides an improvement (Chambers et al., 1983).
Data on four variables of three species of Iris are displayed in Figure 1.1. (A listing
of the Fisher–Anderson Iris data, one of the few familiar four-dimensional datasets,
may be found in several references and is provided with the S package (Becker et al.,
1988)). What multivariate structure is apparent from this figure? The setosa variety
does not overlap the other two varieties. The versicolor and virginica varieties are not
as well separated, although a close examination reveals that they are almost nonover-
lapping. If the 150 observations were unlabeled and plotted with the same symbol,
it is likely that only two clusters would be observed. Even if it were known a priori
that there were three clusters, it would still be unlikely that all three clusters would be
properly identified. These alternative presentations reflect the two related problems
of discrimination and clustering, respectively.

If the observations from different categories overlap substantially or have differ-
ent sample sizes, scatter diagrams become much more difficult to interpret properly.
The data in Figure 1.2 come from a study of 371 males suffering from chest pain
(Scott et al., 1978): 320 had demonstrated coronary artery disease (occlusion or nar-
rowing of the heart’s own arteries) while 51 had none (see Table B.3). The blood fat
concentrations of plasma cholesterol and triglyceride are predictive of heart disease,
although the correlation is low. It is difficult to estimate the predictive power of these
variables in this setting solely from the scatter diagram. A nonparametric analysis
will reveal some interesting nonlinear interactions (see Chapters 5 and 9).

An easily overlooked practical aspect of scatter diagrams is illustrated by these
data, which are integer valued. To avoid problems of overplotting, the data have been
jittered or blurred (Chambers et al., 1983); that is, uniform U(−0.5,0.5) noise is
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FIGURE 1.1 Pairwise scatter diagrams of the Iris data with the three species labeled.
1, setosa; 2, versicolor; 3, virginica.
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FIGURE 1.2 Scatter diagrams of blood lipid concentrations for 320 diseased and 51
nondiseased males.

added to each element of the original data. This trick should be regularly employed
for data recorded with three or fewer significant digits (with an appropriate range on
the added uniform noise). Jittering reduces visual miscues that result from the vertical
and horizontal synchronization of regularly spaced data.

The visual perception system can easily be overwhelmed if the number of points
is more than several thousand. Figure 1.3 displays three pairwise scatterplots derived
from measurements taken in 1977 by the Landsat remote sensing system over a 5 mile
by 6 mile agricultural region in North Dakota with n = 22,932 = 117× 196 pixels
or picture elements, each corresponding to an area approximately 1.1 acres in size
(Scott and Thompson, 1983; Scott and Jee, 1984). The Landsat instrument mea-
sures the intensity of light in four spectral bands reflected from the surface of the
earth. A principal components transformation gives two variables that are commonly
referred to as the “brightness” and “greenness” of each pixel. Every pixel is mea-
sured at regular intervals of approximately 3 weeks. During the summer of 1977, six
useful replications were obtained, giving 24 measurements on each pixel. Using an
agronometric growth model for crops, Badhwar et al. (1982) nonlinearly transformed
this 24-dimensional data to three dimensions. Badhwar described these synthetic vari-
ables, (x1,x2,x3), as (1) the calendar time at which peak greenness is observed, (2) the
length of crop ripening, and (3) the peak greenness value, respectively. The scat-
ter diagrams in Figure 1.3 have also been enhanced by jittering, as the raw data are
integers between (0,255). The use of integers allows compression to eight bits of
computer memory. Only structure in the boundary and tails is readily seen. The over-
plotting problem is apparent and the blackened areas include over 95% of the data.
Other techniques to enhance scatter diagrams are needed to see structure in the bulk
of the data cloud, such as plotting random subsets (see Tukey and Tukey (1981)).

Pairwise scatter diagrams lack one important property necessary for identifying
more than two-dimensional features—strong interplot linkage among the plots. In
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FIGURE 1.3 Pairwise scatter diagram of transformed Landsat data from 22,932 pixels over
a 5 by 6 nautical mile region. The range on all the axes is (0, 255).

principle, it should be possible to locate the same point in each figure, assuming
the data are free of ties. But it is not practical to do so for samples of any size. For
quadrivariate data, Diaconis and Friedman (1983) proposed drawing lines between
corresponding points in the scatterplots of (x1,x2) and (x3,x4) (see Problem 1.2). But a
more powerful dynamic technique that takes full advantage of computer graphics has
been developed by several research groups (McDonald, 1982; Becker and Cleveland,
1987; see the many references in Cleveland and McGill, 1988). The method is called
brushing or painting a scatterplot matrix. Using a pointing device such as a mouse,
a subset of the points in one scatter diagram is selected and the corresponding points
are simultaneously highlighted in the other scatter diagrams. Conceptually, a subset
of points in �d is tagged, for example, by painting the points red or making the points
blink synchronously, and that characteristic is inherited by the linked points in all the
“linked” graphs, including not only scatterplots but also histograms and regression
plots as well. The Iris example in Figure 1.1 illustrates the flavor of brushing with
three tags. Usually the color of points is changed rather than the symbol type. Brush-
ing is an excellent tool for identifying outliers and following well-defined clusters. It
is well-suited for conditioning on some variable, for example, 1 < x3 < 3.

These ideas are illustrated in Figure 1.4 for the PRIM4 dataset (Friedman and
Tukey, 1974; the data summarize 500 high-energy particle physics scattering exper-
iments) provided in the S language. Using the brushing tool in S-PLUS (1990), the
left cluster in the 1–2 scatterplot was brushed, and then the left cluster in the 2–4
scatterplot was brushed with a different symbol. Try to imagine linking the clusters
throughout the scatterplot matrix without any highlighting.
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FIGURE 1.4 Pairwise scatterplots of the transformed PRIM4s data using the ggobi visual-
ization system. Two clumps of points are highlighted by brushing.

There are limitations to the brushing technique. The number of pairwise scat-
terplots is

(d
2

)
, so viewing more than 5 or 10 variables at once is impractical.

Furthermore, the physical size of each scatter diagram is reduced as more variables
are added, so that fewer distinct data points can be plotted. If there are more than
a few variables, the eye cannot follow many of the dynamic changes in the pattern
of points during brushing, except with the simplest of structure. It is, however, an
open question as to the number of dimensions of structure that can be perceived by
this method of linkage. Brushing remains an important and well-used tool that has
proven successful in real data analysis.

If a 2-D array of bivariate scatter diagrams is useful, then why not construct a
3-D array of trivariate scatter diagrams? Navigating the collection of

(d
3

)
trivariate

scatterplots is difficult even with modest values of d. But a single 3-D scatterplot
can easily be rotated in real time with significant perceptual gain compared to three
bivariate diagrams in the scatterplot matrix. Many statistical packages now provide
this capability. The program MacSpin (Donoho et al., 1988) was the first widely used
software of this type. The top middle panel in Figure 1.4 displays a particular ori-
entation of a rotating 3-D scatterplot. The kinds of structure available in 3-D data
are more complex (and hence more interesting) than in 2-D data. Furthermore, the
overplotting problem is reduced as more data points can be resolved in a rotating 3-D
scatterplot than in a static 2-D view (although this is resolution dependent—a 2-D
view printed by a laser device can display significantly more points than is possible
on a computer monitor). Density information is still relatively difficult to perceive,
however, and the sample size definitely influences perception.

Beyond three dimensions, many novel ideas are being pursued (see Tukey and
Tukey (1981)). Six-dimensional data could be viewed with two rotating 3-D scat-
ter diagrams linked by brushing. Carr and Nicholson (1988) have actively pursued
using stereography as an alternative and adjunct to rotation. Some workers report
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that stereo viewing of static data can be more precise than viewing dynamic rotation
alone. Unfortunately, many individuals suffer from color blindness and various depth
perception limitations, rendering some techniques useless. Nevertheless, it is clear
that there is no limit to the possible combinations of ideas one might consider imple-
menting. Such efforts can easily take many months to program without any fancy
interface. This state of affairs would be discouraging but for the fact that a LISP-
based system for easily prototyping such ideas is now available using object-oriented
concepts (see Tierney (1990)). RStudio has made the shiny app available for this pur-
pose as well: see http://shiny.rstudio.com. A collection of articles is devoted to the
general topic of animation (Cleveland and McGill, 1988).

The idea of displaying 2- or 3-D arrays of 2- or 3-D scatter diagrams is perhaps
too closely tied to the Euclidean coordinate system. It might be better to examine
many 2- or 3-D projections of the data. An orderly way to do approximately just
that is the “grand tour” discussed by Asimov (1985). Let P be a d × 2 projection
matrix, which takes the d-dimensional data down to a plane. The author proposed
examining a sequence of scatterplots obtained by a smoothly changing sequence of
projection matrices. The resulting kinematic display shows the n data points mov-
ing in a continuous (and sometimes seemingly random) fashion. It may be hoped
that most interesting projections will be displayed at some point during the first sev-
eral minutes of the grand tour, although for even 10 variables several hours may be
required (Huber, 1985).

Special attention should be drawn to representing multivariate data in the bivariate
scatter diagram with points replaced by glyphs, which are special symbols whose
shapes are determined by the remaining data variables (x3, . . . ,xd). Figure 1.5 displays
the Iris data in such a form following Carr et al. (1986). The length and angle of the
glyph are determined by the sepal length and width, respectively. Careful examination
of the glyphs shows that there is no gap in 4-D between the versicolor and virginica
species, as the angles and lengths of the glyphs are similar near the boundary.

Setosa
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Glyph (length, angle) = (Sepal length, sepal width)

FIGURE 1.5 Glyph scatter diagram of the Iris data.
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FIGURE 1.6 A three-dimensional scatter diagram of the Fisher–Anderson Iris data, omitting
the sepal length variable. From left to right, the 50 points for each of the three varieties of
setosa, versicolor, and virginica are distinguished by symbol type (square, diamond, triangle),
respectively. The symbol is required to indicate the presence of three clusters rather than only
two. The same basic picture results from any choice of three variables from the full set of four
variables.

A second glyph representation shown in Figure 1.6 is a 3-D scatterplot omitting
sepal length, one of the four variables. This figure clearly depicts the structure in
these data. Plotting glyphs in 3-D scatter diagrams with stereography is a more pow-
erful visual tool (Carr and Nicholson, 1988). The glyph technique does not treat
variables “symmetrically” and all variable–glyph combinations could be considered.
This complaint affects most multivariate procedures (with a few exceptions).

All of these techniques are an outgrowth of a powerful system devised to analyze
data in up to nine dimensions called PRIM-9 (Fisherkeller et al., 1974; reprinted in
Cleveland and McGill, 1988). The PRIM-9 system contained many of the capabilities
of current systems. The letters are an acronym for “Picturing, Rotation, Isolation, and
Masking.” The latter two serve to identify and select subsets of the multivariate data.
The “picturing” feature was implemented by pressing two buttons that cycled through
all of the

(9
2

)
pairwise scatter diagrams in current coordinates. An IBM 360 mainframe

was specially modified to drive the custom display system.

1.3.2 Chernoff Faces

Chernoff (1973) proposed a special glyph that associates variables to facial features,
such as the size and shape of the eyes, nose, mouth, hair, ears, chin, and facial out-
line. Certainly, humans are able to discriminate among nearly identical faces very
well. Chernoff has suggested that most other multivariate point methods “seem to be
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FIGURE 1.7 Chernoff faces of the economic dataset spanning 1925–1939.

less valuable in producing an emotional response” (Wang, 1978, p. 6).Whether an
emotional response is desired is debatable. Chernoff faces for the time series dataset
in Table B.1 are displayed in Figure 1.7. (The variable–feature associations are listed
in the table.) By carefully studying an individual facial feature such as the smile over
the sequence of all the faces, simple trends can be recognized. But it is the overall
multivariate impression that makes Chernoff faces so powerful. Variables should be
carefully assigned to features. For example, Chernoff faces of the colleges’ data in
Table B.2 might logically assign variables relating to the library to the eyes rather
than to the mouth (see Problem 1.3). Such subjective judgments should not prejudice
our use of this procedure.

One early application not in a statistics journal was constructed by Hiebert-Dodd
(1982), who had examined the performance of several optimization algorithms on a
suite of test problems. She reported that several referees felt this method of presenta-
tion was too frivolous. Comparing the endless tables in the paper as it appeared to the
Chernoff faces displayed in the original technical report, one might easily conclude
the referees were too cautious. On the other hand, when Rice University administra-
tors were shown Chernoff faces of the colleges’ dataset, they were quite open to its
suggestions and enjoyed the exercise. The practical fact is that repetitious viewing of
large tables of data is tedious and haphazard, and broad-brush displays such as faces
can significantly improve data digestion. Several researchers have noted that Chernoff
faces contain redundant information because of symmetry. Flury and Riedwyl (1981)
have proposed using asymmetrical faces, as did Turner and Tidmore (1980), although
Chernoff has stated he believes the additional gain does not justify such nonrealistic
figures.

1.3.3 Andrews’ Curves and Parallel Coordinate Curves

Three intriguing proposals display not the data points themselves but rather a unique
curve determined by the data vector x. Andrews (1972) proposed representing
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FIGURE 1.8 Star diagram for 4 years of the economic dataset shown in Figure 1.7.

high-dimensional data by replacing each point in �d with a curve s(t) for |t| < π,
where

s(t | x1, . . . ,xd) =
x1√

2
+ x2 sin t+ x3 cos t+ x4 sin2t+ x5 cos2t+ · · · ,

the so-called Fourier series representation. This mapping provides the first “com-
plete” continuous view of high-dimensional points on the plane, because, in principle,
the original multivariate data point can be recovered from this curve. Clearly, an
Andrews’ curve is dominated by the variables placed on the low-frequency terms,
so care should be taken to put the most interesting variables early in the expansion
(see Problem 1.4).

A simple graphical device that treats the d variables symmetrically is the star dia-
gram, which is discussed by Fienberg (1979). The d axes are drawn as spokes on a
wheel. The coordinate data values are plotted on those axes and connected as shown
in Figure 1.8.

Another novel multivariate approach that treats variables in a symmetric fashion is
the parallel coordinates plot, introduced by Inselberg (1985) in a mathematical set-
ting and extended by Wegman (1990) to the analysis of stochastic data. Cartesian
coordinates are abandoned in favor of d axes drawn parallel and equally spaced.
Each multivariate point x ∈ �d is plotted as a piecewise linear curve connecting
the d points on the parallel axes. For reasons shown by Inselberg and Wegman,
there are advantages to simply drawing piecewise linear line segments, rather than
a smoother line such as a spline. The disadvantage of this choice is that points
that have identical values in any coordinate dimension cannot be distinguished in
parallel coordinates. However, with this choice a duality may be deduced between
points and lines in Euclidean and parallel coordinates. In the left frame of Figure 1.9,
six points that fall on a straight line with negative slope are plotted. The right frame
shows those same points in parallel coordinates. Thus a scatter diagram of highly
correlated normal points displays a nearly common point of intersection in parallel
coordinates. However, if the correlation is positive, that point is not “between” the
parallel axes (see Problem 1.6). The location of the point where the lines all intersect
can be used to recover the equation of the line back in Euclidean coordinates (see
Problem 1.8).

A variety of other properties with potential applications are explored by Inselberg
and Wegman. One result is a graphical means of deciding if a point x ∈ �d is on the
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FIGURE 1.9 Example of duality of points and lines between Euclidean and parallel
coordinates. The points are labeled 1 to 6 in both coordinate systems.

inside or the outside of a convex closed hypersurface. If all the points on the hyper-
surface are plotted in parallel coordinates, then a well-defined geometrical outline
will appear on the plane. If a portion of the line segments defining the point x in par-
allel coordinates fall outside the outline, then x is not inside the hypersurface, and
vice versa. One of the more fascinating extensions developed by Wegman is a grand
tour of all variables displayed in parallel coordinates. The advantage of parallel coor-
dinates is that all d of the rotating variables are visible simultaneously, whereas in
the usual presentation, only two of the grand tour variables are visible in a bivariate
scatterplot.

Figure 1.10 displays parallel coordinate plots of the Iris and earthquake data. The
earthquake dataset represents the epicenters of 473 tremors beneath the Mount St.
Helens volcano in the several months preceding its March 1982 eruption (Weaver
et al., 1983). Clearly, the tremors are mostly small in magnitude, increasing in fre-
quency over time, and clustered near the surface, although depth is clearly a bimodal
variable. The longitude and latitude variables are least effective on this plot, because
their natural spatial structure is lost.

1.3.4 Limitations

Tools such as Chernoff faces and scatter diagram glyphs tend to be most valuable
with small datasets where individual points are “identifiable” or interesting. Such
individualistic exploratory tools can easily generate “too much ink” (Tufte, 1983)
and produce figures with black splotches, which convey little information. Parallel
coordinates and Andrews’ curves generate much ink. One obvious remedy is to plot



“9780471697558c01” — 2015/2/11 — 14:44 — page 15 — #15

GRAPHICAL DISPLAY OF MULTIVARIATE DATA POINTS 15

Sepal.length Sepal.width Petal.length Petal.width

Longitude Latitude Depth Day Intensity

FIGURE 1.10 Parallel coordinate plot of the earthquake dataset.

only a subset of the data in a process known as “thinning.” However, plotting random
subsets no longer makes optimal use of all the data and does not result in precisely
reproducible interpretations. Point-oriented methods typically have a range of sample
sizes that is most appropriate: n < 200 for faces; n < 2000 for scatter diagrams.

Since none of these displays is truly d-dimensional, each has limitations. All pair-
wise scatterplots can detect distinct clusters and some two-dimensional structure (if
perhaps in a rotated coordinate system). In the latter case, an interactive supplement
such as brushing may be necessary to confirm the nature of the links among the scat-
terplots (not really providing any higher dimensional information). On the positive
side, variables are treated symmetrically in the scatterplot matrix. But many different
and highly dissimilar d-dimensional datasets can give rise to visually similar scatter-
plot matrix diagrams; hence the need for brushing. However, with increasing number
of variables, individual scatterplots physically decrease in size and fill up with ink
ever faster. Scatter diagrams provide a highly subjective view of data, with poor
density perception and greatest emphasis on the tails of the data.
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1.4 GRAPHICAL DISPLAY OF MULTIVARIATE FUNCTIONALS

1.4.1 Scatterplot Smoothing by Density Function

As graphical exploratory tools, each of the point-based procedures has significant
value. However, each suffers from the problem of too much ink, as the number of
objects (and hence the amount of ink) is linear in the sample size n. To mix metaphors,
point-based graphs cannot provide a consistent picture of the data as n→∞. As Scott
and Thompson (1983) wrote,

the scatter diagram points to the bivariate density function.

In other words, the raw data points need to be smoothed if a consistent view is to be
obtained.

A histogram is the simplest example of a scatterplot smoother. The amount of
smoothness is controlled by the bin width. For univariate data, the histogram with
bin width narrower than min |xi −xj| is precisely a univariate scatter diagram plotted
with glyphs that are tall, thin rectangles. For bivariate data, the glyph is a beam with a
square base. Increasing the bin width, the histogram represents a count per unit area,
which is precisely the unit of a probability density. In Chapter 3, the histogram will
be shown to provide a consistent estimate of the density function in any dimension.

Histograms can provide a wealth of information for large datasets, even well-
known ones. For example, consider the 1979–1981 decennial life table published
by the U.S. and Bureau of the Census (1987). Certain relevant summary statistics are
well-known: life expectancy, infant mortality, and certain conditional life expectan-
cies. But what additional information can be gleaned by examining the mortality
histogram itself? In Figure 1.11, the histogram of age of death for individuals is
depicted. Not surprisingly, the histogram is skewed with a short tail for older ages.
Not as well-known perhaps is the observation that the most common age of death is
85! The absolute and relative magnitude of mortality in the first year of life is made
strikingly clear.

Careful examination reveals two other general features of interest. The first feature
is the small but prominent bump in the curve between the ages of 13 and 27 years.
This “excess mortality” is due to an increase in a variety of risky activities, the most
notable being obtaining a driver’s license. In the right frame of Figure 1.11, compar-
ison of the 1959–1961 (Gross and Clark, 1975) and 1979–1981 histograms shows an
impressive reduction of death in all preadolescent years. Particularly striking is the
60% decline in mortality in the first year and the 3-year difference in the locations of
the modes.

These facts are remarkable when placed in the context of the mortality histogram
constructed by John Graunt from the Bills of Mortality during the plague years.
Graunt (1662) estimated that 36% of individuals died before attaining their sixth birth-
day! Graunt was a contemporary of the better-known William Petty, to whom some
credit for these ideas is variously ascribed, probably without cause. The circumstantial
evidence that Graunt actually invented the histogram while looking at these mortal-
ity data seems quite strong, although there is reason to infer that Galileo had used



“9780471697558c01” — 2015/2/11 — 14:44 — page 17 — #17

GRAPHICAL DISPLAY OF MULTIVARIATE FUNCTIONALS 17

Age of death

N
um

be
r 

pe
r 

10
0,

00
0

1960

0 20 40 60 80 100

0

500

1000

1500

2000

2500

3000

Age of death
Sq

rt
 (

nu
m

be
r 

pe
r 

10
0,

00
0)

0 20 40 60 80 100

0

10

20

30

40

50

60

2009
1997
1980
1960

FIGURE 1.11 Histogram of the U.S. mortality data in 1960. Rootgrams (histograms plotted
on a square-root scale) of the mortality data for 1960, 1980, and 1997.

histogram-like diagrams earlier. Hald (1990) recounts a portion of Galileo’s Dialogo,
published in 1632, in which Galileo summarized his observations on the star that
appeared in 1572. According to Hald, Galileo noted the symmetry of the “observa-
tion errors” and the more frequent occurrence of small errors than large errors. Both
points suggest Galileo had constructed a frequency diagram to draw those conclusions.

Many large datasets are in fact collected in binned or histogram form. For
example, elementary particles in high-energy physics scattering experiments are man-
ifested by small bumps in the frequency curve. Good and Gaskins (1980) considered
such a large dataset (n = 25,752) from the Lawrence Radiation Laboratory (LRL)
(see Figure 1.12). The authors devised an ingenious algorithm for estimating the
odds that a bump observed in the frequency curve was real. This topic is covered
in Chapter 9.

Multivariate scatterplot smoothing of time series data is also easily accomplished
with histograms. Consider a univariate time series and smooth both the raw data {xt}
as well as the lagged data {xt,xt+1}. Any strong elliptical structure present in the
smoothed lagged-data diagram provides a graphical version of the first-order auto-
correlation coefficient. Consider the Old Faithful geyser dataset listed in Table B.6.
These data are the durations in minutes of 107 eruptions of the Old Faithful geyser
(Weisberg, 1985). As there was a gap in the recording of data between midnight
and 6 a.m., there are only 99 pairs {xt,xt+1} available. The univariate histogram
in Figure 1.13 reveals a simple bimodal structure—short and long eruption dura-
tions. The most notable feature in the bivariate (smoothed) histogram is the missing
fourth bump corresponding to the short-short duration sequence. Clearly, graphs of
f̂ (xt+1|xt)would be useful for improved prediction compared to a regression estimate.

For more than two dimensions, only slices are available for viewing with histogram
surfaces. Consider the Landsat data again. Divide the (jittered) data into four pieces
using quartiles of x1, which is the time of peak greenness. Examining a series of
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FIGURE 1.13 Histogram of {xt} for the Old Faithful geyser dataset, and a bivariate
histogram of the lagged data (xt,xt+1).

bivariate pictures of (x2,x3) for each quartile slice provides a crude approximation
of the four-dimensional surface f̂ (x1,x2,x3) (see Figure 1.14). The histograms are
all constructed on the subinterval [−5,100]× [−5,100]. Compare this representation
of the Landsat data to that in Figure 1.3. From Figure 1.3, it is clear that most of
the outliers are in the last quartile of x1. How well can the relative density levels
be determined from the scatter diagrams? Visualization of a smoothed histogram of
these data will be considered in Section 1.4.3.

1.4.2 Scatterplot Smoothing by Regression Function

The term scatterplot smoother is most often applied to regression data. For bivariate
data, either a nonparametric regression line can be superimposed upon the data, or
the points themselves can be moved toward the regression line. Tukey (1977) presents
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FIGURE 1.14 Bivariate histogram slices of the trivariate Landsat data. Slicing was per-
formed at the quartiles of variable x1.

the “3R” smoother as an example of the latter. Suppose that the n data points, {xt}, are
measured on a fixed time scale. The 3R smoothing algorithm replaces each point {xt}
with the median of the three points {xt−1,xt,xt+1} recursively until no changes occur.
This algorithm is a powerful filter that removes isolated outliers effectively. The 3R
smoother may be applied to unequally spaced data or repeated data. Tukey also pro-
poses applying a Hanning filter, by which x̃t ← 0.25× (xt−1 +2xt +xt+1). This filter
may be applied several times as necessary. In Figure 1.15, the Tukey smoother (S
function smooth) is applied to the gas flow dataset given in the Table B.5. Observe
how the single potential outlier at x = 187 is totally ignored. The least-squares fit is
shown for reference.

The simplest nonparametric regression estimator is the regressogram. The x-axis
is binned and the sample averages of the responses are computed and plotted over the
intervals. The regressogram for the gas flow dataset is also shown in Figure 1.15. The
Hanning filter and regressogram are special cases of nonparametric kernel regression,
which is discussed in Chapter 8.

The gas flow dataset is part of a larger collection taken at seven different pressures.
A stick-pin plot of the complete dataset is shown in Figure 1.16 (the 74.6 psia data
are second from the right). Clearly, the accuracy is affected by the flow rate, while
the effect of psia seems small. These data will be revisited in Chapter 8.

1.4.3 Visualization of Multivariate Functions

Visualization of functions of more than two variables has not been common in statis-
tics. The Landsat example in Figure 1.14 hints at the potential that visualization of
4-D surfaces would bring to the data analyst. In this section, effective visualization
of surfaces in more than three dimensions is introduced.
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FIGURE 1.16 Complete 3-D view of the gas flow dataset.

Displaying a three-dimensional perspective plot of the surface f (x, y) of a bivariate
function requires one more dimension than the corresponding bivariate contour rep-
resentation (see Figure 1.17). There are trade-offs. The contour representation lacks
the exact detail and visual impact available in a perspective plot; however, perspective
plots usually have portions obscured by peaks and present less precise height infor-
mation. One way of expressing the difference is to say that a contour plot displays,
loosely speaking, about 2.6–2.9 dimensions of the entire 3-D surface (more, as more
contour lines are drawn). Some authors claim that one or the other representation is
superior, but it seems clear that both can be useful for complicated surfaces.
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FIGURE 1.17 Perspective plot of bivariate normal density with a “floating” representation
of the corresponding contours.

The visualization advantage afforded by a contour representation is that it lives
in the same dimension as the data, whereas a perspective plot requires an additional
dimension. Hence with trivariate data, the third dimension can be used to present a
3-D contour. In the case of a density function, the corresponding 3-D contour plot
comprises one or more α-level contour surfaces, which are defined for x ∈ �d by

α-Contour : Sα = {x : f (x) = αfmax}, 0 ≤ α≤ 1 ,

where fmax is the maximum or modal value of the density function.
For normal data, the general contour surfaces are hyper-ellipses defined by the

easily verified equation (see Problem 1.14):

(x−μ)TΣ−1(x−μ) =−2logα. (1.1)

A trivariate contour plot of f (x1,x2,x3) would generally contain several “nested”
surfaces, {S0.1,S0.3,S0.5,S0.7,S0.9}, for example. For the independent standard nor-
mal density, the contours would be nested hyperspheres centered on the mode. In
Figure 1.18, three contours of the trivariate standard normal density are shown in
stereo. Many if not most readers, will have difficulty crossing their eyes to obtain
the stereo effect. But even without the stereo effect, the three spherical contours are
well-represented.

How effective is this in practice? Consider a smoothed histogram f̂ (x,y,z) of 1000
trivariate normal points with Σ = I3. Figure 1.19 shows surfaces of nine equally
spaced bivariate slices of the trivariate estimate. Each slice is approximately bivari-
ate normal but without rescaling. Of course, the surfaces are not precisely bivariate
normal, due to the finite size of the sample.

A natural question to pose is: Why not plot the corresponding sequence of con-
ditional densities, f̂ (x,y|z = z0), rather than the slices, f̂ (x,y,z0)? If this were done,
all the surfaces in Figure 1.19 would be nearly identical. (Theoretically, the condition



“9780471697558c01” — 2015/2/11 — 14:44 — page 22 — #22

22 REPRESENTATION AND GEOMETRY OF MULTIVARIATE DATA

X Y

Z

X Y

Z

FIGURE 1.18 Stereo representation of three α-contours of a trivariate normal density.
Gently crossing your eyes should allow the two frames to fuse in the middle.
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FIGURE 1.19 Sequence of bivariate slices of a trivariate smoothed histogram.

densities are all exactly N(02, I2).) If the goal is to understand the 4-D density surface,
then the sequence of conditional densities overemphasizes the (visual) importance
of the tails and obscures information about the location of the “center” of the data.
Furthermore, as nonparametric estimates in the tail will be relatively noisy, the esti-
mates will be especially rough upon normalization (see Figure 1.20). For these
reasons, it seems best to look at slices and to reserve normalization for looking at
conditional densities that are particularly interesting.

Several trivariate contour surfaces of the same estimated density are displayed
in Figure 1.21. Clearly, the trivariate contours give an improved “big picture”—just
as a rotating trivariate scatter diagram improves on three static bivariate scatter dia-
grams. The complete density estimate is a 4-D surface, and the trivariate contour view
in the final frame of Figure 1.21 may present only 3.5 dimensions, while the series
of bivariate slices may yield a bit more, perhaps 3.75 dimensions, but without the
visual impact. Examine the 3-D contour view for the Landsat data in the first frame
of Figure 7.8 in comparison to Figures 1.3 and 1.14. The structure is quite complex.
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FIGURE 1.20 Normalized slices in the left tail of the smoothed histogram.

The presentation of clusters is stunning and shows multiple modes and multiple
clusters. This detailed structure is not apparent in the scatterplot in Figure 1.3.

Depending on the nature of the variables, slicing can be attempted with four-,
five-, or six-dimensional data. Of special importance is the 5-D surface generated by
4-D data, for example, space–time variables such as the Mount St. Helens data in
Figure 1.10. These higher dimensional estimates can be animated in a fashion similar
to Figure 1.19 (see Scott and Wilks (1990)).

In the 4-D case, the α-level contours of interest are based on the slices:

Sα,t = {(x,y,z) : f (x,y,z, t) = αfmax},

where fmax is the global maximum over the 5-D surface. For a fixed choice of α,
as the slice value t changes continuously, the contour shells will expand or contract
smoothly, finally vanishing for extreme values of t. For example, a single theoretical
contour of the N(0, I4) density would vanish outside a symmetric interval around the
origin, but within that interval, the contour shell would be a sphere centered on the
origin with greatest diameter when t = 0. With several α-shells displayed simultane-
ously, the contours would be nested spheres of different radii, appearing at different
values of t, but of greatest diameter when t = 0.

One particularly interesting slice of the smoothed 5-D histogram estimate of the
entire Iris dataset is shown in Figure 1.22. The α = 4% contour surface reveals two
well-separated clusters. However, the α= 10% contour surface is trimodal, revealing
the true structure in this dataset even with only 150 points. the virginica and versicolor
data may not be separated in the point cloud but apparently can be separated in the
density cloud.

The 3-D contour slices in Figure 1.22 were assembled from a 2-D contouring algo-
rithm, then projected into the plane. The sequence of 2-D contour slices is shown in
Figure 1.23. Study these two diagrams and think about the possibilities for exploring
the entire five-dimensional surface.

To emphasize the potential value of additional variables, we conclude this vignette,
we examine the Iris data excluding the sepal width variable. Figure 1.24 displays a
3-D scatterplot, as well as contours of the smoothed histogram at levels α= 0.17 and
α= 0.44. A litle study supports the speculation that the data might contain a hybrid
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FIGURE 1.21 Trivariate normal examples.

species of the versicolor and virginica species. With such a small sample, that may
be an embellishment.

With more than four variables, the most appropriate sequence of slicing is not
clear. With five variables, bivariate contours of (x4,x5)may be drawn; then a sequence
of trivariate slices may be examined tracing along one of these bivariate contours.
With more than five or six variables, deciding where to slice at all is a diffi-
cult problem because the number of possibilities grows exponentially. That is why
projection-based methods are so important (see Chapter 7).

1.4.3.1 Visualizing Multivariate Regression Functions The same graphical rep-
resentation can be applied to regression surfaces. However, the interpretation can
be more difficult. For example, if the regression surface is monotone, the α-level
contours of the surface will not be “closed” and will appear to “float” in space. If
the regression surface is a simple linear function such as ax+ by+ cz, then a set of
trivariate α-contours will simply be a set of parallel planes. Practical questions arise
that do not appear for density surfaces. In particular, what is the natural extent of the
regression surface; that is, for what region in the design space should the surface be
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FIGURE 1.22 Two α-level contour surfaces from a slice of a five-dimensional averaged
shifted histogram estimate, based on all 150 Iris data points. The displayed variables x, y, and
z are sepal length, petal length and width, respectively, with the sepal width variable sliced at
t = 3.4 cm. The (outer) darker α = 4% contour reveals only two clusters, while the (inner)
lighter α= 10% contour reveals the three clusters.

x = 4 x = 4.15 x = 4.3 x = 4.45 x = 4.6 x = 4.75 x = 4.9 x = 5.05

x = 5.2 x = 5.35 x = 5.5 x = 5.65 x = 5.8

x = 5.95 x = 6.1 x = 6.25

x = 6.4 x = 6.55 x = 6.7 x = 6.85 x = 7 x = 7.15 x = 7.3 x = 7.45

FIGURE 1.23 A detailed breakdown of the 3-D contours shown in Figure 1.22 taken from
the ASH estimate f̂ (x,y,z, t = 3.4) as the sepal length, x, ranges from 4.00 to 7.45 cm.
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FIGURE 1.24 Analysis of three of the four Iris variables, omitting sepal width entirely,
which should be compared to the slice shown in Figure 1.22. The middle contour (α = 0.17)
is superimposed upon the contour (α= 0.44) in the right frame to help locate the shells.

+ + + + +

− + + + −

− − − − −

FIGURE 1.25 A portion of a bivariate contour at the α = 0 level of a smooth function
measured on a regular grid and using linear interpolation (dotted lines).

plotted? Perhaps one answer is to limit the plot to regions where there is sufficient
data, that is, where the density of design points is above a certain threshold.

1.4.4 Overview of Contouring and Surface Display

Suppose that a general bivariate function f (x,y) (taking on positive and negative
values) is sampled on a regular grid, and the α = 0 contour S0 is desired; that is,
S0 = {(x,y) : f (x,y) = 0}. Label the values of the grid as +, 0, or − depending on
whether f > 0, f = 0, or f < 0, respectively. Then the desired contour is shown in
Figure 1.25. The piecewise linear approximation and the true contour do not match
along the bin boundaries since the interpolation is not exact.

However, bivariate contouring is not as simple a task as one might imagine. Usu-
ally, the function is sampled on a rectangular mesh, with no gradient information
or possibility for further refinement of the mesh. If too coarse a mesh is chosen,
then small local bumps or dips may be missed, or two distinct contours at the same
level may be inadvertently joined. For speed and simplicity, one wants to avoid hav-
ing to do any global analysis before drawing contours. A local contouring algorithm
avoids multiple passes over the data. In any case, global analysis is based on certain
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FIGURE 1.26 Simple stereo representation of four 3-D nested shells of the earthquake data.

smoothness assumptions and may fail. The difficulties and details of contouring are
described more fully in Section A.1.

There are several varieties of 3-D contouring algorithms. It is assumed that the
function has been sampled on a lattice, which can be taken to be cubical without loss
of generality. One simple trick is to display a set of 2-D contour slices that result
from intersecting the 3-D contour shell with a set of parallel planes along the lattice
of the data, as was done in Figures 1.18 and 1.22. In this representation, a single
spherical shell becomes a set of circular contours (Figure 1.26). This approach has
the advantage of providing a shell representation that is “transparent” so that multiple
α-level contour levels may be visualized. Different colors can be used for different
contour levels (see Scott (1983, 1984, 1991a), Scott and Thompson (1983), Härdle
and Scott (1988), and Scott and Hall (1989)).

More visually pleasing surfaces can be drawn using the marching cubes algorithm
(Lorensen and Cline, 1987). The overall contour surface is represented by a large
number of connected triangular planar sections, which are computed for each cubical
bin and then displayed. Depending on the pattern of signs on the eight vertices of each
cube in the data lattice, up to six triangular patches are drawn within each cube (see
Figure 1.27). In general, there are 28 cases (each corner of the cube being either above
or below the contour level). Taking into consideration certain symmetries reduces this
number. By scanning through all the cubes in the data lattice, a collection of triangles
is found that defines the contour shell. Each triangle has an inner and outer surface,
depending on the gradient of the density function. The inner and outer surfaces may
be distinguished by color shading. A convenient choice is various shades of red for
surfaces pointing toward regions of higher (hotter) density, and shades of blue toward
regions of lower (cooler) density; see the cover jacket of this book for an example.
Each contour is a patchwork of several thousand triangles. Smoother surfaces may be
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+ +
+

FIGURE 1.27 Examples of marching cube contouring algorithm. The corners with values
above the contour level are labeled with a+ symbol.

obtained by using higher-order splines, but the underlying bin structure information
would be lost.

In summary, visualizing trivariate functions directly is a powerful adjunct to data
analysis. The gain of an additional dimension of visible structure without resort to
slices greatly improves the ability of a data analyst to perceive structure. The same
visualization applies to slices of density function with more than three variables.
A demonstration tape that displays 4-D animation of Sα,t contours as α and t vary
is available (Scott and Wilks, 1990).

1.5 GEOMETRY OF HIGHER DIMENSIONS

The geometry of higher dimensions provides a few surprises. In this section, a few
standard figures are considered. This material is available in scattered references (see
Kendall (1961), for example).

1.5.1 Polar Coordinates in d Dimensions

In d dimensions, a point x can be expressed in spherical polar coordinates by a
radius r, a base angle θd−1 ranging over (0,2π), and d− 2 angles θ1, . . . ,θd−2 each
ranging over (−π/2,π/2) (see Figure 1.28). Let sk = sinθk and ck = cosθk. Then the
transformation back to Euclidean coordinates is given by

x1 = r c1 c2 · · ·cd−3 cd−2 cd−1

x2 = r c1 c2 · · ·cd−3 cd−2 sd−1

x3 = r c1 c2 · · ·cd−3 sd−2

...

xj = r c1 · · ·cd−jsd−j+1

...

xd = r s1 .
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FIGURE 1.28 Polar coordinates (r,θ1,θ2) of a point P in �3.

After some work (see Problem 1.11), the Jacobian of this transformation may be
shown to be

J = rd−1cd−2
1 cd−3

2 · · ·cd−2 . (1.2)

1.5.2 Content of Hypersphere

The volume of the d-dimensional hypersphere {x :
∑d

i=1 x2
i ≤ a2} is given by

Vd(a) = ∫
∑d

i=1 x2
i ≤a2

1 dx

=

a

∫
0

dr

π/2

∫
−π/2

dθ1

π/2

∫
−π/2

dθ2 · · ·
2π

∫
0

dθd−1rd−1cd−2
1 cd−3

2 · · ·cd−2 .

This can be simplified using the identity

π/2

∫
−π/2

cosk θ dθ = 2

π/2

∫
0

cosk θ dθ = 2

π/2

∫
0

cosk θ
d(cos2 θ)

−2cosθ sinθ
,

which, using the change of variables u = cos2 θ,

=

1

∫
0

uk/2 du

u1/2(1−u)1/2
= B

(
1
2 ,

k+1
2

)
=

Γ
(

1
2

)
Γ
(

k+1
2

)
Γ
(

k+2
2

) .
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As Γ
(

1
2

)
=
√
π,

Vd(a) = 2π
ad

d
·
Γ
(

1
2

)
Γ
(

d−1
2

)
Γ
(

d
2

) ·
Γ
(

1
2

)
Γ
(

d−2
2

)
Γ
(

d−1
2

) · · ·
Γ
(

1
2

)
Γ(1)

Γ
(

3
2

)

=
adπd/2

d
2Γ

(
d
2

) =
adπd/2

Γ
(

d
2 +1

) . (1.3)

1.5.3 Some Interesting Consequences

1.5.3.1 Sphere Inscribed in Hypercube Consider the hypercube [−a,a]d and an
inscribed hypersphere with radius r = a. Then using (1.3), the fraction of the volume
of the cube contained in the hypersphere is given by

fd =
Volume sphere
Volume cube

=
adπd/2/Γ

(
d
2 +1

)
(2a)d

=
πd/2

2d Γ
(

d
2 +1

) .

For lower dimensions, the fraction fd is as shown in Table 1.1. It is clear that the center
of the cube becomes less important. As the dimension increases, the volume of the
hypercube concentrates in its corners. This distortion of space (at least to our three-
dimensional way of thinking) has many potential consequences for data analysis.

1.5.3.2 Hypervolume of a Thin Shell Wegman (1990) demonstrates the distortion
of space in another setting. Consider two spheres centered on the origin, one with
radius r and the other with slightly smaller radius r− ε. Consider the fraction of the
volume of the larger sphere in between the spheres. By Equation (1.3),

Vd(r)−Vd(r− ε)

Vd(r)
=

rd − (r− ε)d

rd
= 1−

(
1− ε

r

)d
−−−→
d→∞

1 .

Hence, virtually all of the content of a hypersphere is concentrated close to its surface,
which is only a (d − 1)-dimensional manifold. Thus for data distributed uniformly
over both the hypersphere and the hypercube, most of the data fall near the boundary
and edges of the volume. Most statistical techniques exhibit peculiar behavior if the
data fall in a lower dimensional subspace. This example illustrates one important
aspect of the curse of dimensionality, which is discussed in Chapter 7.

TABLE 1.1 Fraction of the Volume of a Hypercube Lying in the
Inscribed Hypersphere

Dimension (d) 1 2 3 4 5 6 7

Fraction volume (fd) 1 0.785 0.524 0.308 0.164 0.081 0.037
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1.5.3.3 Tail Probabilities of Multivariate Normal The preceding examples make
it clear that if we are trying to view uniform data over the hypercube in �10, most
(spherical) neighborhoods will be empty!

Let us examine what happens if the data follow the standard d-dimensional normal
distribution:

fd(x) = (2π)−d/2e−xT x/2 .

Clearly, the origin (mode) is the most likely point and the equiprobable contours are
spheres. Consider the spherical contour, S0.01(x), where the density value is only 1%
of the value at the mode. Now

f (x)
f (0)

= e−xT x/2 and −2log
f (x)
f (0)

=

d∑
i=1

x2
i ∼ χ2(d) ;

therefore, the probability that a point is within the 1% spherical contour may be
computed as

Pr

(
f (x)
f (0)

≥ 1
100

)
= Pr

(
χ2(d)≤−2log

1
100

)
. (1.4)

Equation (1.4) gives the probability a random point will not fall in the “tails” or,
in other words, will fall in the medium- to high-density region. In Table 1.2, these
probabilities are tabulated for several dimensions. Around five or six dimensions, the
probability mass of a multivariate normal begins a rapid migration into the extreme
tails. In fact, more than half of the probability mass is in a very low-density region for
10-dimensional data. Silverman (1986) has dramatized this in 10 dimensions by not-
ing that Prob(‖x‖ ≥ 1.6) = 0.99. In very high dimensions, virtually the entire sample
will be in the tails in a sense consistent with low-dimensional intuition. Table 1.2 is
also applicable to normal data with a general full-rank covariance matrix, except that
the contour is a hyper-ellipsoid.

1.5.3.4 Diagonals in Hyperspace Pairwise scatter diagrams essentially project
the multivariate data onto all the two-dimensional faces. Consider the hypercube
[−1,1]d and let any of the diagonal vectors from the center to a corner be denoted by
v. Then v is any of the 2d vectors of the form (±1,±1, . . . ,±1)T . The angle between

TABLE 1.2 Probability Mass Not in the “Tail” of a Multivariate Normal Density

d 1 2 3 4 5 6 7 8 9 10 15 20

1000p 998 990 973 944 899 834 762 675 582 488 134 20
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a diagonal vector v and a Euclidean coordinate axis ej = (0, . . . ,0,1,0, . . . ,0)T is
given by

cosθd =
〈v, ej〉√

〈v, v〉〈ej,ej〉
=

±1√
d
−−−→
d→∞

0 ,

where 〈u, v〉= uTv, so that θd →π/2 as d →∞. Thus the diagonals are nearly orthog-
onal to all coordinate axes for large d. Hence, any data cluster lying near a diagonal in
hyperspace will be mapped into the origin in every paired scatterplot, while a cluster
along a coordinate axis should be visible in some plot.

Thus the choice of coordinate system in high dimensions is critical in data analy-
sis and intuition is highly dependent on a good choice. Real data structures may be
missed due to overstriking. The general conclusion is that one- to two-dimensional
intuition is valuable but not infallible when continuing on to higher dimensions.

1.5.3.5 Data Aggregate Around Shell Returning to independent multivariate nor-
mal data, the mode is at the origin x= 0d. How far is a random point X from the origin
for moderate to large dimensions d? Let Z ∼ N(0,1); then

√
XtX =

√√√√ d∑
j=1

X2
j =

√
χ2(d)≈

√
d+Z

√
2d =

√
d
√

1+Z
√

2/d

≈
√

d

(
1+

1
2

Z
√

2/d

)
=
√

d+
1√
2

Z ∼ N

(√
d,

1
2

)
.

Thus while the highest density region is near the origin, virtually all (99.7%) of the
data lie within a distance ±3/

√
2 = ±2.12 of the hypersphere with radius

√
d. This

is the data version of the volume result in Section 1.5.3.2.

1.5.3.6 Nearest Neighbor Distances The derivation in Section 1.5.3.5 also
addresses the question of the distribution of the closest pair of points in a random
sample. As a conservative estimate, imagine one data point at the mode x = 0d and
compute the distribution of the distance from the origin to the closest of n sample
points. Let Di denote the distance the sample Xi is from the origin, and let D denote
the minimum of {Di}. Then

Pr(D ≤ c) = 1−Pr(D > c) = 1−Pr(D1 > c,D2 > c, . . . ,Dn > c)

= 1−Pr(D1 > c)n = 1−Pr(D2
1 > c2)n = 1−Pr(χ2

d > c2)n

= 1−
(
1−Pr(χ2

d ≤ c2)
)n

.

Thus applying Leibniz’s rule,

fD(c) =
d
dc

Pr(D ≤ c) = n
(
1−Pr(χ2

d ≤ c2)
)n−1 ×2cfχ2

d
(c2) . (1.5)



“9780471697558c01” — 2015/2/11 — 14:44 — page 33 — #33

PROBLEMS 33

0 2 4 6 8
Distance to origin

0

1

2

3

4

5

6

7

9

16
25 36 49 64 81 100

n= 104

(Dimension)

0 2 4 6 8
Distance to origin

0

1

2

3

4

5

6

7 9

16

25
36 49 64 81 100

n= 106

(Dimension)

FIGURE 1.29 Densities of distance of closest point to the origin for sample sizes n = 104

and 106, for various dimensions 9 ≤ d ≤ 100.

In Figure 1.29, this density is displayed for a sample of size n = 104 and several
values of d. When d > 25, the closest pair of points is never closer than two units.
Thus data in high dimensions are very sparse. A histogram bin will almost always be
empty, or contain just one point. Increasing the sample size to 106 does not change
the distribution very much. The sparseness of data in high dimensions is known as
the curse of dimensionality (Bellman, 1961). This phenomenon will influence our
thinking when analyzing data in more than five or six dimensions.

As a side note, there is a benefit to the curse of dimensionality in the field of
biometrics. The uniqueness of fingerprints and other physical measurements (iris
scans, for example) in a very large population is of much interest. What this anal-
ysis suggests is that if a feature space can be transformed into a reasonable number
of independent measurements, and individuals may be viewed as independent sam-
ples from N(0d, Id), then unique identification is feasible with sufficiently accurate
measurements of the features (see Kent and Millett (2002). )

PROBLEMS

1.1 A class of challenging data problems have a “hole” in them.
(a) Devise a simple way of creating radially symmetric trivariate data with

a “hole” in it; that is, a region where the probability data points lie goes
smoothly to zero at the center. Hint: Invent a rejection rule based on the
distance a trivariate normal point is from the origin.

(b) Study a pairwise scatter diagram of 5000 trivariate data with either a
“large” or a “small” hole in the middle. When does the hole become
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difficult to discern? Use “o” and “.” as plotting symbols. Plot a histogram
of (x2

1 + x2
2 + x2

3)
1/2 and see if the hole is apparent.

1.2 Try the Diaconis–Friedman idea of linked bivariate scatter diagrams using the
Iris data. Draw the scatterplots side-by-side and try connecting all points or random
subsets. Evaluate your findings.

1.3 Use Chernoff faces on the college data in Table B.2. Try to assign variables
to facial features in a memorable way. Compare your subjective choices of variables
with those of others. You will notice that if one variable is near the extreme value
of the data, it may distort that facial feature to such a degree that it is impossible to
recognize the levels of other variables controlling different aspects of that feature.
How should that influence your choice of variables for the mouth and eyes?

1.4 Display Andrews, curves for the economic dataset in Table B.1 for several per-
mutations of the variables. How do these curves reflect the onset of the Depression
after 1929?

1.5 Research problem: Generalize Andrews’ representation so that the represen-
tation of a multidimensional point is a trajectory in the three-dimensional rectangle
[−π,π]2 × [0,1].

1.6 Plot in parallel coordinates random samples of bivariate normal data with cor-
relations ranging from −1 to 1. When the correlation ρ = +1, where does the point
of intersection fall? Can you guess how trivariate correlated normal data will appear
in parallel coordinates? Try it.

1.7 Investigate the appearance in parallel coordinates of data with clusters. For
example, generate bivariate data with clusters centered at (0, 0) and (3, 3). Try cen-
ters at (0, 0) and (3, 0). Try centers of three clusters at (0, 0), (1, 0), and (2, 0), where
the data in each cluster have ρ=−0.9. The last example shows the duality between
clusters and holes.

1.8 Prove that points falling on a straight line in Euclidean coordinates intersect in
a point in parallel coordinates. What is the one exception? Superimposing Euclidean
coordinates upon the parallel axes as shown in the right frame of Figure 1.9, find the
(Euclidean) coordinates of the intersection point.

1.9 Investigate the literature for other ideas of data representation, including the
star diagram, linear profile, weathervane, polygon star, and Kleiner–Hartigan faces.

1.10 What are the possible types of intersection of two planes (2-D) in four-space?
Hint: Consider the two planes determined by pairs of coordinate axes (see Wegman
(1990)).

1.11 Show that the Jacobian equals what is claimed in Equation (1.2). Hint: See
Anderson (2003, p. 285). Interestingly, the signs of the determinant do not alternate
as the dimension d increases, but go in pairs.

1.12 Verify Equation (1.3) for the well-known cases of a circle and a sphere.
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1.13 Think of another way to represent high-dimensional data. Try using some
other set of orthogonal functions for Andrews’ curves (step functions, Legendre poly-
nomials, or others). How sensitive is your method to permutations of the coordinate
axes?

1.14 Show that the α-level contours of a multi-normal density are given by
Equation (1.1). Use some of the techniques in Appendix A to display some contours
when d = 3 with correlated and uncorrelated random variables.

1.15 (Problem 1.10 continued) What are the possible types of intersections of a
k1-dimensional subspace and a k2-dimensional subspace in d dimensions? Think
about the intersection of other types of hypersurfaces.

1.16 What fraction of a d-dimensional hypersphere lies in the inscribed
d-dimensional hypercube? Find numerical values for dimensions up to 10.

1.17 Examine parallel coordinate plots of commonly observed bivariate and trivari-
ate structure, including correlation and clustering. Summarize your findings.

1.18 Verify Equation (1.5) by simulation. What does Figure 1.29 look like for
the world population of n = 7.2× 109? How many features would be required for
a reliable biometrics system for the entire globe?


