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Part I

FUNDAMENTALS

In Part I, we treat the basic ideas and calculation procedures that must be understood in
order to appreciate how solar processes work and how their performance can be predicted.
The first five chapters are basic to the material in Chapter 6. In Chapter 6 we develop
equations for a collector which give the useful output in terms of the available solar
radiation and the losses. An energy balance is developed which says, in essence, that the
useful gain is the (positive) difference between the absorbed solar energy and the thermal
losses.

The first chapter is concerned with the nature of the radiation emitted by the sun
and incident on the earth’s atmosphere. This includes geometric considerations, that is,
the direction from which beam solar radiation is received and its angle of incidence on
various surfaces and the quantity of radiation received over various time spans. The next
chapter covers the effects of the atmosphere on the solar radiation, the radiation data that
are available, and how those data can be processed to get the information that we ulti-
mately want—the radiation incident on surfaces of various orientations.

Chapter 3 notes a set of heat transfer problems that arise in solar energy processes
and is part of the basis for analysis of collectors, storage units, and other components.

The next two chapters treat interaction of radiation and opaque and transparent ma-
terials, that is, emission, absorption, reflection, and transmission of solar and long-wave
radiation. These first five chapters lead to Chapter 6, a detailed discussion and analysis
of the performance of flat-plate collectors. Chapter 7 is concerned with concentrating
collectors and Chapter 8 with energy storage in various media. Chapter 9 is a brief
discussion of the loads imposed on solar processes and the kinds of information that
must be known in order to analyze the process.

Chapter 10 is the point at which the discussions of individual components are brought
together to show how solar process systems function and how their long-term performance
can be determined by simulations. The object is to be able to quantitatively predict system
performance; this is the point at which we proceed from components to systems and see
how transient system behavior can be calculated.

The last chapter in Part I is on solar process economics. It concludes with a method
for combining the large number of economic parameters into two which can be used to
optimize thermal design and assess the effects of uncertainties in an economic analysis.
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Solar Radiation

The sun’s structure and characteristics determine the nature of the energy it radiates into
space. The first major topic in this chapter concerns the characteristics of this energy
outside the earth’s atmosphere, its intensity, and its spectral distribution. We will be
concerned primarily with radiation in a wavelength range of 0.25 to 3.0 �m, the portion
of the electromagnetic radiation that includes most of the energy radiated by the sun.

The second major topic in this chapter is solar geometry, that is, the position of the
sun in the sky, the direction in which beam radiation is incident on surfaces of various
orientations, and shading. The third topic is extraterrestrial radiation on a horizontal
surface, which represents the theoretical upper limit of solar radiation available at the
earth’s surface.

An understanding of the nature of extraterrestrial radiation, the effects of orientation
of a receiving surface, and the theoretically possible radiation at the earth’s surface is
important in understanding and using solar radiation data, the subject of Chapter 2.

1.1 THE SUN

The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 � 109 m
and is, on the average, 1.5 � 1011 m from the earth. As seen from the earth, the sun
rotates on its axis about once every 4 weeks. However, it does not rotate as a solid body;
the equator takes about 27 days and the polar regions take about 30 days for each rotation.

The sun has an effective blackbody temperature of 5777 K.1 The temperature in the
central interior regions is variously estimated at 8 � 106 to 40 � 106 K and the density
is estimated to be about 100 times that of water. The sun is, in effect, a continuous fusion
reactor with its constituent gases as the ‘‘containing vessel’’ retained by gravitational
forces. Several fusion reactions have been suggested to supply the energy radiated by
the sun. The one considered the most important is a process in which hydrogen (i.e.,
four protons) combines to form helium (i.e., one helium nucleus); the mass of the helium
nucleus is less than that of the four protons, mass having been lost in the reaction and
converted to energy.

1 The effective blackbody temperature of 5777 K is the temperature of a blackbody radiating the same amount
of energy as does the sun. Other effective temperatures can be defined, e.g., that corresponding to the blackbody
temperature giving the same wavelength of maximum radiation as solar radiation (about 6300 K).
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Figure 1.1.1 The structure of the sun.

The energy produced in the interior of the solar sphere at temperatures of many
millions of degrees must be transferred out to the surface and then be radiated into space.
A succession of radiative and convective processes occur with successive emission, ab-
sorption, and reradiation; the radiation in the sun’s core is in the x-ray and gamma-ray
parts of the spectrum, with the wavelengths of the radiation increasing as the temperature
drops at larger radial distances.

A schematic structure of the sun is shown in Figure 1.1.1. It is estimated that 90%
of the energy is generated in the region of 0 to 0.23R (where R is the radius of the sun),
which contains 40% of the mass of the sun. At a distance 0.7R from the center, the
temperature has dropped to about 130,000 K and the density has dropped to 70 kg/m3;
here convection processes begin to become important, and the zone from 0.7 to 1.0R is
known as the convective zone. Within this zone the temperature drops to about 5000 K
and the density to about 10�5 kg/m3.

The sun’s surface appears to be composed of granules (irregular convection cells),
with dimensions from 1000 to 3000 km and with cell lifetime of a few minutes. Other
features of the solar surface are small dark areas called pores, which are of the same
order of magnitude as the convective cells, and larger dark areas called sunspots, which
vary in size. The outer layer of the convective zone is called the photosphere. The edge
of the photosphere is sharply defined, even though it is of low density (about 10�4 that
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Figure 1.2.1 Sun-earth relationships.

of air at sea level). It is essentially opaque, as the gases of which it is composed are
strongly ionized and able to absorb and emit a continuous spectrum of radiation. The
photosphere is the source of most solar radiation.

Outside the photosphere is a more or less transparent solar atmosphere, observable
during total solar eclipse or by instruments that occult the solar disk. Above the photo-
sphere is a layer of cooler gases several hundred kilometers deep called the reversing
layer. Outside of that is a layer referred to as the chromosphere, with a depth of about
10,000 km. This is a gaseous layer with temperatures somewhat higher than that of the
photosphere but with lower density. Still further out is the corona, a region of very low
density and of very high (106 K) temperature. For further information on the sun’s struc-
ture see Thomas (1958) or Robinson (1966).

This simplified picture of the sun, its physical structure, and its temperature and
density gradients will serve as a basis for appreciating that the sun does not, in fact,
function as a blackbody radiator at a fixed temperature. Rather, the emitted solar radiation
is the composite result of the several layers that emit and absorb radiation of various
wavelengths. The resulting extraterrestrial solar radiation and its spectral distribution have
now been measured by various methods in several experiments; the results are noted in
the following two sections.

1.2 THE SOLAR CONSTANT

Figure 1.2.1 shows schematically the geometry of the sun-earth relationships. The ec-
centricity of the earth’s orbit is such that the distance between the sun and the earth
varies by 1.7%. At a distance of one astronomical unit, 1.495 � 1011 m, the mean earth-
sun distance, the sun subtends an angle of 32�. The radiation emitted by the sun and its
spatial relationship to the earth result in a nearly fixed intensity of solar radiation outside
of the earth’s atmosphere. The solar constant Gsc is the energy from the sun per unit
time received on a unit area of surface perpendicular to the direction of propagation of
the radiation at mean earth-sun distance outside the atmosphere.
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Before rockets and spacecraft, estimates of the solar constant had to be made from
ground-based measurements of solar radiation after it had been transmitted through the
atmosphere and thus in part absorbed and scattered by components of the atmosphere.
Extrapolations from the terrestrial measurements made from high mountains were based
on estimates of atmospheric transmission in various portions of the solar spectrum. Pi-
oneering studies were done by C. G. Abbot and his colleagues at the Smithsonian Insti-
tution. These studies and later measurements from rockets were summarized by Johnson
(1954); Abbot’s value of the solar constant of 1322 W/m2 was revised upward by Johnson
to 1395 W/m2.

The availability of very high altitude aircraft, balloons, and spacecraft has permitted
direct measurements of solar radiation outside most or all of the earth’s atmosphere.
These measurements were made with a variety of instruments in nine separate experi-
mental programs. They resulted in a value of the solar constant Gsc of 1353 W/m2 with
an estimated error of �1.5%. For discussions of these experiments, see Thekaekara
(1976) or Thekaekara and Drummond (1971). This standard value was accepted by
NASA (1971) and by the American Society of Testing and Materials.

The data on which the 1353-W/m2 value was based have been reexamined by Froh-
lich (1977) and reduced to a new pyrheliometric scale2 based on comparisons of the
instruments with absolute radiometers. Data from Nimbus and Mariner satellites have
also been included in the analysis, and as of 1978, Frohlich recommends a new value of
the solar constant Gsc of 1373 W/m2, with a probable error of 1 to 2%. This was 1.5%
higher than the earlier value and 1.2% higher than the best available determination of
the solar constant by integration of spectral measurements. Additional spacecraft mea-
surements have been made with Hickey et al. (1982) reporting 1373 W/m2 and Willson
et al. (1981) reporting 1368 W/m2. Measurements from three rocket flights reported by
Duncan et al. (1982) were 1367, 1372, and 1374 W/m2. The World Radiation Center
(WRC) has adopted a value of 1367 W/m2, with an uncertainty of the order of 1%. As
will be seen in Chapter 2, uncertainties in most terrestrial solar radiation measurements
are an order of magnitude larger than those in Gsc. A value of Gsc of 1367 W/m2 (1.960
cal /cm2 min, 433 Btu/ft2 h, or 4.921 MJ/m2 h) is used in this book. [See Iqbal (1983)
for more detailed information on the solar constant.]

1.3 SPECTRAL DISTRIBUTION OF EXTRATERRESTRIAL RADIATION

In addition to the total energy in the solar spectrum (i.e., the solar constant), it is useful
to know the spectral distribution of the extraterrestrial radiation, that is, the radiation that
would be received in the absence of the atmosphere. A standard spectral irradiance curve
has been compiled based on high-altitude and space measurements. The WRC standard
is shown in Figure 1.3.1. Table 1.3.1 provides the same information on the WRC spec-
trum in numerical form. The average energy Gsc,� (in W/m2 �m) over small bandwidths
centered at wavelength � is given in the second column. The fraction ƒ0–� of the total
energy in the spectrum that is between wavelengths zero and � is given in the third

2 Pyrheliometric scales are discussed in Section 2.2.
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Figure 1.3.1 The WRC standard spectral irradiance curve at mean earth-sun distance.

column. The table is in two parts, the first at regular intervals of wavelength and the
second at even fractions ƒ0–�. This is a condensed table; more detailed tables are available
elsewhere (see Iqbal, 1983).

Example 1.3.1

Calculate the fraction of the extraterrestrial solar radiation and the amount of that radi-
ation in the ultraviolet (� � 0.38 �m), the visible (0.38 �m � � � 0.78 �m), and the
infrared (� � 0.78 �m) portions of the spectrum.

Solution

From Table 1.3.1a, the fractions of ƒ0–� corresponding to wavelengths of 0.38 and 0.78
�m are 0.064 and 0.544. Thus, the fraction in the ultraviolet is 0.064, the fraction in the
visible range is 0.544 � 0.064 � 0.480, and the fraction in the infrared is 1.0 � 0.544
� 0.456. Applying these fractions to a solar constant of 1367 W/m2 and tabulating the
results, we have:

Wavelength range (�m) 0–0.38 0.38–0.78 0.78–�
Fraction in range 0.064 0.480 0.456
Energy in range (W/m2) 87 656 623 �

1.4 VARIATION OF EXTRATERRESTRIAL RADIATION

Two sources of variation in extraterrestrial radiation must be considered. The first is the
variation in the radiation emitted by the sun. There are conflicting reports in the literature
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Table 1.3.1a Extraterrestrial Solar Irradiance (WRC Spectrum) in Increments of Wavelength a

�
(�m)

Gsc,�

(W/m2 �m)
ƒ0–�

(–)
�

(�m)
Gsc,�

(W/m2 �m)
ƒ0–�

(–)
�

(�m)
Gsc,�

(W/m2 �m)
ƒ0–�

(–)

0.250 81.20 0.001 0.520 1849.7 0.243 0.880 955.0 0.622
0.275 265.0 0.004 0.530 1882.8 0.257 0.900 908.9 0.636
0.300 499.4 0.011 0.540 1877.8 0.271 0.920 847.5 0.648
0.325 760.2 0.023 0.550 1860.0 0.284 0.940 799.8 0.660
0.340 955.5 0.033 0.560 1847.5 0.298 0.960 771.1 0.672
0.350 955.6 0.040 0.570 1842.5 0.312 0.980 799.1 0.683
0.360 1053.1 0.047 0.580 1826.9 0.325 1.000 753.2 0.695
0.370 1116.2 0.056 0.590 1797.5 0.338 1.050 672.4 0.721
0.380 1051.6 0.064 0.600 1748.8 0.351 1.100 574.9 0.744
0.390 1077.5 0.071 0.620 1738.8 0.377 1.200 507.5 0.785
0.400 1422.8 0.080 0.640 1658.7 0.402 1.300 427.5 0.819
0.410 1710.0 0.092 0.660 1550.0 0.425 1.400 355.0 0.847
0.420 1687.2 0.105 0.680 1490.2 0.448 1.500 297.8 0.871
0.430 1667.5 0.116 0.700 1413.8 0.469 1.600 231.7 0.891
0.440 1825.0 0.129 0.720 1348.6 0.489 1.800 173.8 0.921
0.450 1992.8 0.143 0.740 1292.7 0.508 2.000 91.6 0.942
0.460 2022.8 0.158 0.760 1235.0 0.527 2.500 54.3 0.968
0.470 2015.0 0.173 0.780 1182.3 0.544 3.000 26.5 0.981
0.480 1975.6 0.188 0.800 1133.6 0.561 3.500 15.0 0.988
0.490 1940.6 0.202 0.820 1085.0 0.578 4.000 7.7 0.992
0.500 1932.2 0.216 0.840 1027.7 0.593 5.000 2.5 0.996
0.510 1869.1 0.230 0.860 980.0 0.608 8.000 1.0 0.999

a Gsc,� is the average solar irradiance over the interval from the middle of the preceding wavelength interval to
the middle of the following wavelength interval. For example, at 0.600 �m, 1748.8 W/m2 �m is the average
value between 0.595 and 0.610 �m.

Table 1.3.1b Extraterrestrial Solar Irradiance in Equal Increments of Energy

Energy Band
ƒi � ƒi�1

(–)

Wavelength
Range
(�m)

Midpoint
Wavelength

(�m)

Energy Band
ƒi � ƒi�1

(–)

Wavelength
Range
(�m)

Midpoint
Wavelength

(�m)

0.00–0.05 0.300–0.364 0.328 0.50–0.55 0.731–0.787 0.758
0.05–0.10 0.364–0.416 0.395 0.55–0.60 0.787–0.849 0.817
0.10–0.15 0.416–0.455 0.437 0.60–0.65 0.849–0.923 0.885
0.15–0.20 0.455–0.489 0.472 0.65–0.70 0.923–1.008 0.966
0.20–0.25 0.489–0.525 0.506 0.70–0.75 1.008–1.113 1.057
0.25–0.30 0.525–0.561 0.543 0.75–0.80 1.113–1.244 1.174
0.30–0.35 0.561–0.599 0.580 0.80–0.85 1.244–1.412 1.320
0.35–0.40 0.599–0.638 0.619 0.85–0.90 1.412–1.654 1.520
0.40–0.45 0.638–0.682 0.660 0.90–0.95 1.654–2.117 1.835
0.45–0.50 0.682–0.731 0.706 0.95–1.00 2.117–10.08 2.727
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Figure 1.4.1 Variation of extraterrestrial solar radiation with time of year.

on periodic variations of intrinsic solar radiation. It has been suggested that there are
small variations (less than �1.5%) with different periodicities and variation related to
sunspot activities. Willson et al. (1981) report variances of up to 0.2% correlated with
the development of sunspots. Others consider the measurements to be inconclusive or
not indicative of regular variability. Measurements from Nimbus and Mariner satellites
over periods of several months showed variations within limits of �0.2% over a time
when sunspot activity was very low (Frohlich, 1977). Data of Hickey et al. (1982) over
a span of 2.5 years from the Nimbus 7 satellite suggest that the solar constant is decreas-
ing slowly, at a rate of approximately 0.02% per year. See Coulson (1975) or Thekaekara
(1976) for further discussion of this topic. For engineering purposes, in view of the
uncertainties and variability of atmospheric transmission, the energy emitted by the sun
can be considered to be fixed.

Variation of the earth-sun distance, however, does lead to variation of extraterrestrial
radiation flux in the range of �3.3%. The dependence of extraterrestrial radiation on
time of year is shown in Figure 1.4.1. A simple equation with accuracy adequate for
most engineering calculations is given by Equation 1.4.1a. Spencer (1971), as cited by
Iqbal (1983), provides a more accurate equation (�0.01%) in the form of Equation
1.4.1b:

Gon � �
360n

G 1 � 0.033 cos� �sc 365

Gsc(1.000110 � 0.034221 cos B � 0.001280 sin B
� 0.000719 cos 2B � 0.000077 sin 2B)

(1.4.1a)

(1.4.1b)

where Gon is the extraterrestrial radiation incident on the plane normal to the radiation
on the nth day of the year and B is given by

360
B � (n � 1) (1.4.2)

365
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1.5 DEFINITIONS

Several definitions will be useful in understanding the balance of this chapter.

Air Mass m The ratio of the mass of atmosphere through which beam radiation
passes to the mass it would pass through if the sun were at the zenith (i.e., directly
overhead, see Section 1.6). Thus at sea level m � 1 when the sun is at the zenith and
m � 2 for a zenith angle �z of 60�. For zenith angles from 0� to 70� at sea level, to a
close approximation,

1
m � (1.5.1)

cos �z

For higher zenith angles, the effect of the earth’s curvature becomes significant and must
be taken into account.3 For a more complete discussion of air mass, see Robinson (1966),
Kondratyev (1969), or Garg (1982).

Beam Radiation The solar radiation received from the sun without having been
scattered by the atmosphere. (Beam radiation is often referred to as direct solar radiation;
to avoid confusion between subscripts for direct and diffuse, we use the term beam
radiation.)

Diffuse Radiation The solar radiation received from the sun after its direction has
been changed by scattering by the atmosphere. (Diffuse radiation is referred to in some
meteorological literature as sky radiation or solar sky radiation; the definition used here
will distinguish the diffuse solar radiation from infrared radiation emitted by the atmo-
sphere.)

Total Solar Radiation The sum of the beam and the diffuse solar radiation on a
surface.4 (The most common measurements of solar radiation are total radiation on a
horizontal surface, often referred to as global radiation on the surface.)

Irradiance, W/m2 The rate at which radiant energy is incident on a surface per
unit area of surface. The symbol G is used for solar irradiance, with appropriate subscripts
for beam, diffuse, or spectral radiation.

Irradiation or Radiant Exposure, J/m2 The incident energy per unit area on a
surface, found by integration of irradiance over a specified time, usually an hour or a
day. Insolation is a term applying specifically to solar energy irradiation. The symbol H
is used for insolation for a day. The symbol I is used for insolation for an hour (or other
period if specified). The symbols H and I can represent beam, diffuse, or total and can
be on surfaces of any orientation.

3 An empirical relationship from Kasten and Young (1989) for air mass that works for zenith angles approaching
90� is

exp(�0.0001184h)
m �

�1.634cos(� ) � 0.5057(96.080 � � )z z

where h is the site altitude in meters.
4 Total solar radiation is sometimes used to indicate quantities integrated over all wavelengths of the solar
spectrum.
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Subscripts on G, H, and I are as follows: o refers to radiation above the earth’s
atmosphere, referred to as extraterrestrial radiation; b and d refer to beam and diffuse
radiation; T and n refer to radiation on a tilted plane and on a plane normal to the direction
of propagation. If neither T nor n appears, the radiation is on a horizontal plane.

Radiosity or Radiant Exitance, W/m2 The rate at which radiant energy leaves a
surface per unit area by combined emission, reflection, and transmission.

Emissive Power or Radiant Self-Exitance, W/m2 The rate at which radiant en-
ergy leaves a surface per unit area by emission only.

Any of these radiation terms, except insolation, can apply to any specified wave-
length range (such as the solar energy spectrum) or to monochromatic radiation. Inso-
lation refers only to irradiation in the solar energy spectrum.

Solar Time Time based on the apparent angular motion of the sun across the sky,
with solar noon the time the sun crosses the meridian of the observer.

Solar time is the time used in all of the sun-angle relationships; it does not coincide
with local clock time. It is necessary to convert standard time to solar time by applying
two corrections. First, there is a constant correction for the difference in longitude be-
tween the observer’s meridian (longitude) and the meridian on which the local standard
time is based.5 The sun takes 4 min to transverse 1� of longitude. The second correction
is from the equation of time, which takes into account the perturbations in the earth’s
rate of rotation which affect the time the sun crosses the observer’s meridian. The dif-
ference in minutes between solar time and standard time is

Solar time � standard time � 4 (L � L ) � E (1.5.2)st loc

where Lst is the standard meridian for the local time zone, Lloc is the longitude of the
location in question, and longitudes are in degrees west, that is, 0� � L � 360�. The
parameter E is the equation of time (in minutes) from Figure 1.5.1 or Equation 1.5.36

[from Spencer (1971), as cited by Iqbal (1983)]:

E � 229.2(0.000075 � 0.001868 cos B � 0.032077 sin B

� 0.014615 cos 2B � 0.04089 sin 2B) (1.5.3)

where B is found from Equation 1.4.2 and n is the day of the year. Thus 1 � n � 365.
Note that the equation of time and displacement from the standard meridian are both

in minutes and that there is a 60-min difference between daylight saving time and stan-
dard time. Time is usually specified in hours and minutes. Care must be exercised in
applying the corrections, which can total more than 60 min.

Example 1.5.1

At Madison, Wisconsin, what is the solar time corresponding to 10:30 AM central time
on February 3?

5 To find the local standard meridian, multiply the time difference between local standard clock time and
Greenwich Mean Time by 15.
6 All equations use degrees, not radians
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Figure 1.5.1 The equation of time E in minutes as a function of time of year.

Solution

In Madison, where the longitude is 89.4� and the standard meridian is 90�, Equation 1.5.2
gives

Solar time � standard time � 4(90 � 89.4) � E

� standard time � 2.4 � E

On February 3, n � 34, and from Equation 1.5.3 or Figure 1.5.1, E � �13.5 min, so
the correction to standard time is �11 min. Thus 10:30 AM Central Standard Time is
10:19 AM solar time. �

In this book time is assumed to be solar time unless indication is given otherwise.

1.6 DIRECTION OF BEAM RADIATION

The geometric relationships between a plane of any particular orientation relative to the
earth at any time (whether that plane is fixed or moving relative to the earth) and the
incoming beam solar radiation, that is, the position of the sun relative to that plane, can
be described in terms of several angles (Benford and Bock, 1939). Some of the angles
are indicated in Figure 1.6.1. The angles and a set of consistent sign conventions are as
follows:
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Figure 1.6.1 (a) Zenith angle, slope, surface azimuth angle, and solar azimuth angle for a tilted
surface. (b) Plan view showing solar azimuth angle.

� Latitude, the angular location north or south of the equator, north positive; �90�
� � � 90�

� Declination, the angular position of the sun at solar noon (i.e., when the sun is on
the local meridian) with respect to the plane of the equator, north positive; �23.45�
� � � 23.45�.

	 Slope, the angle between the plane of the surface in question and the horizontal; 0�
� 	 � 180�. (	 � 90� means that the surface has a downward-facing component.)


 Surface azimuth angle, the deviation of the projection on a horizontal plane of the
normal to the surface from the local meridian, with zero due south, east negative,
and west positive; �180� � 
 � 180�.

� Hour angle, the angular displacement of the sun east or west of the local meridian
due to rotation of the earth on its axis at 15� per hour; morning negative, afternoon
positive.

� Angle of incidence, the angle between the beam radiation on a surface and the
normal to that surface.

Additional angles are defined that describe the position of the sun in the sky:
�z Zenith angle, the angle between the vertical and the line to the sun, that is, the

angle of incidence of beam radiation on a horizontal surface.
�s Solar altitude angle, the angle between the horizontal and the line to the sun, that

is, the complement of the zenith angle.

s Solar azimuth angle, the angular displacement from south of the projection of beam

radiation on the horizontal plane, shown in Figure 1.6.1. Displacements east of south
are negative and west of south are positive.

The declination � can be found from the approximate equation of Cooper (1969),
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Table 1.6.1 Recommended Average Days for Months and Values of n by Months a

Month
n for ith

Day of Month

For Average Day of Month

Date n �

January i 17 17 �20.9
February 31 � i 16 47 �13.0
March 59 � i 16 75 �2.4
April 90 � i 15 105 9.4
May 120 � i 15 135 18.8
June 151 � i 11 162 23.1
July 181 � i 17 198 21.2
August 212 � i 16 228 13.5
September 243 � i 15 258 2.2
October 273 � i 15 288 �9.6
November 304 � i 14 318 �18.9
December 334 � i 10 344 �23.0

a From Klein (1977). Do not use for ��� � 66.5�.

284 � n
� � 23.45 sin 360 (1.6.1a)� �365

or from the more accurate equation (error � 0.035�) [from Spencer (1971), as cited by
Iqbal (1983)]

� � (180/�)(0.006918 � 0.399912 cos B � 0.070257 sin B

� 0.006758 cos 2B � 0.000907 sin 2B

� 0.002697 cos 3B � 0.00148 sin 3B) (1.6.1b)

where B is from Equation 1.4.2 and the day of the year n can be conveniently obtained
with the help of Table 1.6.1.

Variation in sun-earth distance (as noted in Section 1.4), the equation of time E (as
noted in Section 1.5), and declination are all continuously varying functions of time of
year. For many computational purposes it is customary to express the time of year in
terms of n, the day of the year, and thus as an integer between 1 and 365. Equations
1.4.1, 1.5.3, and 1.6.1 could be used with noninteger values of n. Note that the maximum
rate of change of declination is about 0.4� per day. The use of integer values of n is
adequate for most engineering calculations outlined in this book.

There is a set of useful relationships among these angles. Equations relating the
angle of incidence of beam radiation on a surface, �, to the other angles are

cos � � sin � sin � cos � � sin � cos � sin � cos �

� cos � cos � cos � cos 	 � cos � sin � sin � cos � cos 	

� cos � sin � sin � sin 	 (1.6.2)
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and

cos � � cos � cos 	 � sin � sin 	 cos(
 � 
) (1.6.3)z z s

The angle � may exceed 90�, which means that the sun is behind the surface. Also, when
using Equation 1.6.2, it is necessary to ensure that the earth is not blocking the sun (i.e.,
that the hour angle is between sunrise and sunset).

Example 1.6.1

Calculate the angle of incidence of beam radiation on a surface located at Madison,
Wisconsin, at 10:30 (solar time) on February 13 if the surface is tilted 45� from the
horizontal and pointed 15� west of south.

Solution

Under these conditions, n � 44, the declination � from Equation 1.6.1 is �14�, the hour
angle � � �22.5� (15� per hour times 1.5 h before noon), and the surface azimuth angle

 � 15�. Using a slope 	 � 45� and the latitude � of Madison of 43� N, Equation 1.6.2
is

cos � � sin(�14) sin 43 cos 45 � sin(�14) cos 43 sin 45 cos 15

� cos(�14) cos 43 cos 45 cos(�22.5)

� cos(�14) sin 43 sin 45 cos 15 cos(�22.5)

� cos(�14) sin 45 sin 15 sin(�22.5)

cos � � �0.117 � 0.121 � 0.464 � 0.4l8 � 0.068 � 0.817

� � 35� �

There are several commonly occurring cases for which Equation 1.6.2 is simplified.
For fixed surfaces sloped toward the south or north, that is, with a surface azimuth angle

 of 0� or 180� (a very common situation for fixed flat-plate collectors), the last term
drops out.

For vertical surfaces, 	 � 90� and the equation becomes

cos � � �sin � cos � cos 
 � cos � sin � cos 
 cos � � cos � sin 
 sin �

(1.6.4)

For horizontal surfaces, the angle of incidence is the zenith angle of the sun, �z. Its
value must be between 0� and 90� when the sun is above the horizon. For this situation,
	 � 0, and Equation 1.6.2 becomes

cos � � cos � cos � cos � � sin � sin � (1.6.5)z

The solar azimuth angle 
s can have values in the range of 180� to �180�. For north
or south latitudes between 23.45� and 66.45�, 
s will be between 90� and �90� for days
less than 12 h long; for days with more than 12 h between sunrise and sunset, 
s will
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be greater than 90� or less than �90� early and late in the day when the sun is north of
the east-west line in the northern hemisphere or south of the east-west line in the southern
hemisphere. For tropical latitudes, 
s can have any value when � � � is positive in the
northern hemisphere or negative in the southern, for example, just before noon at � �
10� and � � 20�, 
s � �180�, and just after noon 
s � �180�. Thus 
s is negative
when the hour angle is negative and positive when the hour angle is positive. The sign
function in Equations 1.6.6 is equal to �1 if � is positive and is equal to �1 if � is
negative:

cos � sin � � sin �z�1
 � sign(�) cos (1.6.6)� � ��S sin � cos �z

Example 1.6.2

Calculate the zenith and solar azimuth angles for � � 43� at a 9:30 AM on February 13
and b 6:30 PM on July 1.

Solution

a On February 13 at 9:30, � � �14� and � � �37.5�. From Equation 1.6.5,

cos � � cos 43 cos(�14) cos(�37.5) � sin 43 sin(�14) � 0.398z

� � 66.5�z

From Equation 1.6.6

cos 66.5 sin 43 � sin(�14)
�1
 � �1 cos � �40.0�� � ��s sin 66.5 cos 43

b On July 1 at 6:30 PM, n � 182, � � 23.1�, and � � 97.5�. From Equation 1.6.5,

cos � � cos 43 cos 23.1 cos 97.5 � sin 43 sin 23.1z

� � 79.6�z

cos 79.6 sin 43 � sin 23.1
�1
 � �1 cos � 112.0�� � ��s sin 79.6 cos 43 �

Useful relationships for the angle of incidence of surfaces sloped due north or due
south can be derived from the fact that surfaces with slope 	 to the north or south have
the same angular relationship to beam radiation as a horizontal surface at an artificial
latitude of � � 	. The relationship is shown in Figure 1.6.2 for the northern hemisphere.
Modifying Equation 1.6.5 yields

cos � � cos(� � 	) cos � cos � � sin(� � 	) sin � (1.6.7a)

For the southern hemisphere modify the equation by replacing � � 	 by � � 	, con-
sistent with the sign conventions on � and �:
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Figure 1.6.2 Section of earth showing 	, �, �, and � � 	 for a south-facing surface.

cos � � cos(� � 	) cos � cos � � sin(� � 	) sin � (1.6.7b)

For the special case of solar noon, for the south-facing sloped surface in the northern
hemisphere,

� � �� � � � 	� (1.6.8a)noon

and in the southern hemisphere

� � ��� � � � 	� (1.6.8b)noon

where 	 � 0, the angle of incidence is the zenith angle, which for the northern hemi-
sphere is

� � �� � �� (1.6.9a)z,noon

and for the southern hemisphere

� � ��� � �� (1.6.9b)z,noon

Equation 1.6.5 can be solved for the sunset hour angle �s, when �z � 90�:

sin � sin �
cos � � � � �tan � tan � (1.6.10)s cos � cos �

The sunrise hour angle is the negative of the sunset hour angle. It also follows that the
number of daylight hours is given by

2 �1––N � cos (�tan � tan �) (1.6.11)15

A convenient nomogram for determining day length has been devised by Whillier
(1965) and is shown in Figure 1.6.3. Information on latitude and declination for either
hemisphere leads directly to times of sunrise and sunset and day length.

An additional angle of interest is the profile angle of beam radiation on a receiver
plane R that has a surface azimuth angle of 
. It is the projection of the solar altitude
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Figure 1.6.3 Nomogram to determine time of sunset and day length. Adapted from Whillier
(l965b).

angle on a vertical plane perpendicular to the plane in question. Expressed another way,
it is the angle through which a plane that is initially horizontal must be rotated about an
axis in the plane of the surface in question in order to include the sun. The solar altitude
angle �s (i.e., angle EAD) and the profile angle �p (i.e., angle fab) for the plane R are
shown in Figure 1.6.4. The plane adef includes the sun. Note that the solar altitude and
profile angle are the same when the sun is in a plane perpendicular to the surface R (e.g.,
at solar noon for a surface with a surface azimuth angle of 0� or 180�). The profile angle
is useful in calculating shading by overhangs and can be determined from

tan �stan � � (1.6.12)p cos(� � �)s

Example 1.6.3

Calculate the time of sunrise, solar altitude, zenith, solar azimuth, and profile angles for
a 60� sloped surface facing 25� west of south at 4:00 PM solar time on March 16 at a
latitude of 43�. Also calculate the time of sunrise and sunset on the surface.

Solution

The hour angle at sunset is determined using Equation 1.6.10. For March 16, from
Equation 1.6.1 (or Table 1.6.1), � � �2.4�:
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Figure 1.6.4 The solar altitude angle �s (∠EAD) and the profile angle �p (∠fab) for surface R.

�1� � cos [�tan 43 tan(�2.4)] � 87.8�s

The sunrise hour angle is therefore �87.8�. With the earth’s rotation of 15� per hour,
sunrise (and sunset) occurs 5.85 h (5 h and 51 min) from noon so sunrise is at 6:09 AM

(and sunset is at 5:51 PM).
The solar altitude angle �s is a function only of time of day and declination. At

4:00 PM, � � 60�. From Equation 1.6.5, recognizing that cos �z � sin(90 � �z) � sin
�s,

sin � � cos 43 cos(�2.4) cos 60 � sin 43 sin(�2.4) � 0.337s

� � 19.7� and � � 90 � � � 70.3�s z s

The solar azimuth angle for this time can be calculated with Equation 1.6.6:

cos 70.3 sin 43 � sin(�2.4)
�1
 � cos sign(60) � 66.8�� � ��s sin 70.3 cos 43

The profile angle for the surface with 
 � 25� is calculated with Equation 1.6.12:

tan 19.7
�1� � tan � 25.7�� �p cos(66.8 � 25)

The hour angles at which sunrise and sunset occur on the surface are calculated from
Equation 1.6.2 with � � 90� (cos � � 0):

0 � sin(�2.4) sin 43 cos 60 � sin(�2.4) cos 43 sin 60 cos 25

� [cos(�2.4) cos 43 cos 60 � cos(�2.4) sin 43 sin 60 cos 25] cos �

� [cos(�2.4) sin 60 sin 25] sin �
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or

0 � 0.008499 � 0.9077 cos � � 0.3657 sin �

which, using sin2 � � cos2 � � 1, has two solutions: � � �68.6� and � � 112.4�.
Sunrise on the surface is therefore 68.6/15 � 4.57 h before noon, or 7:26 AM. The time
of sunset on the collector is the actual sunset since 112.4� is greater than 87.8� (i.e.,
when � � 90� the sun has already set). �

Solar azimuth and altitude angles are tabulated as functions of latitude, declination,
and hour angle by the U.S. Hydrographic Office (l940). Highly accurate equations are
available from the National Renewable Energy Laboratory’s website. Information on the
position of the sun in the sky is also available with less precision but easy access in
various types of charts. Examples of these are the Sun Angle Calculator (l951) and the
solar position charts (plots of �s or �z vs. 
s for various �, �, and �) in Section 1.9 and
Appendix H. Care is necessary in interpreting information from other sources, since
nomenclature, definitions, and sign conventions may vary from those used here.

1.7 ANGLES FOR TRACKING SURFACES

Some solar collectors ‘‘track’’ the sun by moving in prescribed ways to minimize the
angle of incidence of beam radiation on their surfaces and thus maximize the incident
beam radiation. The angles of incidence and the surface azimuth angles are needed for
these collectors. The relationships in this section will be useful in radiation calculations
for these moving surfaces. For further information see Eibling et al. (l953) and Braun
and Mitchell (l983).

Tracking systems are classified by their motions. Rotation can be about a single axis
(which could have any orientation but which in practice is usually horizontal east-west,
horizontal north-south, vertical, or parallel to the earth’s axis) or it can be about two
axes. The following sets of equations (except for Equations 1.7.4) are for surfaces that
rotate on axes that are parallel to the surfaces. Figure 1.7.1 shows extraterrestrial radiation
on a fixed surface with slope equal to the latitude and also on surfaces that track the sun
about a horizontal north-south or east-west axis at a latitude of 45� at the summer and
winter solstices. It is clear that tracking can significantly change the time distribution of
incident beam radiation. Tracking does not always result in increased beam radiation;
compare the winter solstice radiation on the north-south tracking surface with the radi-
ation on the fixed surface. In practice the differences will be less than indicated by the
figure due to clouds and atmospheric transmission.

For a plane rotated about a horizontal east-west axis with a single daily adjustment
so that the beam radiation is normal to the surface at noon each day,

2 2cos � � sin � � cos � cos � (1.7.1a)

The slope of this surface will be fixed for each day and will be

	 � �� � �� (1.7.1b)

The surface azimuth angle for a day will be 0� or 180� depending on the latitude and
declination:
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Figure 1.7.1 Extraterrestrial solar radiation for � � 45� on a stationary collector at � � 45� on
north-south (N-S) and east-west (E-W) single-axis tracking collectors. The three dotted curves are
for the winter solstice and the three solid curves are for the summer solstice.

0� if � � � � 0
� � (1.7.1c)�180� if � � � � 0

For a plane rotated about a horizontal east-west axis with continuous adjustment to
minimize the angle of incidence,

2 2 1 / 2cos � � (1 � cos � sin 	) (1.7.2a)

The slope of this surface is given by

tan � � tan � �cos � � (1.7.2b)z s

The surface azimuth angle for this mode of orientation will change between 0� and 180�
if the solar azimuth angle passes through �90�. For either hemisphere,

0� if �� � � 90s� � (1.7.2c)�180� if �� � 
 90s

For a plane rotated about a horizontal north-south axis with continuous adjustment
to minimize the angle of incidence,

2 2 2 1 / 2cos � � (cos � � cos � sin 	) (1.7.3a)z

The slope is given by

tan � � tan � �cos(� � � )� (1.7.3b)z s

The surface azimuth angle � will be 90� or �90� depending on the sign of the solar
azimuth angle:
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90� if � � 0s� � (1.7.3c)��90� if � � 0s

For a plane with a fixed slope rotated about a vertical axis, the angle of incidence
is minimized when the surface azimuth and solar azimuth angles are equal. From Equa-
tion 1.6.3, the angle of incidence is

cos � � cos � cos � � sin � sin � (1.7.4a)z z

The slope is fixed, so

� � const (1.7.4b)

The surface azimuth angle is

� � � (1.7.4c)s

For a plane rotated about a north-south axis parallel to the earth’s axis with contin-
uous adjustment to minimize �,

cos � � cos � (1.7.5a)

The slope varies continuously and is

tan �
tan � � (1.7.5b)

cos �

The surface azimuth angle is

sin � sin �z s�1� � tan � 180C C (1.7.5c)1 2cos �� sin �

where

cos �� � cos � cos � � sin � sin � cos � (1.7.5d)z z s

sin � sin �z s�10 if tan � 
 0� � sC �1 cos �� sin � (1.7.5e)�
�1 otherwise

�1 if � 
 0sC � (1.7.5f)�2 �1 if � � 0s

For a plane that is continuously tracking about two axes to minimize the angle of inci-
dence,

cos � � 1 (1.7.6a)

� � � (1.7.6b)z

� � � (1.7.6c)s

Example 1.7.1

Calculate the angle of incidence of beam radiation, the slope of the surface, and the
surface azimuth angle for a surface at a � � 40�, � � 21� and 	 � 30� (2:00 PM) and
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b � � 40�, � � 21�, and � � 100� if it is continuously rotated about an east-west axis
to minimize �.

Solution

a Use Equations 1.7.2 for a surface moved in this way. First calculate the angle of
incidence:

�1 2 2 1 / 2� � cos (1 � cos 21 sin 30) � 27.8�

Next calculate �z from Equation 1.6.5:

�1� � cos (cos 40 cos 21 cos 30 � sin 40 sin 21) � 31.8�z

We now need the solar azimuth angle 
s, which can be found from Equation 1.6.6:

cos 31.8 sin 40 � sin 21
�1
 � sign(30) cos � 62.3�� � ��s sin 31.8 cos 40

Then from Equation 1.7.2b

�1	 � tan (tan 31.8 �cos 62.3�) � 16.1�

From Equation 1.7.2c, with 
s � 90, 
 � 0.

b The procedure is the same as in part a:

�1 2 2 1 / 2� � cos (1 � cos 21 sin 100) � 66.8�

�1� � cos (cos 40 cos 21 cos 100 � sin 40 sin 21) � 83.9�z

cos 83.9 sin 40 � sin 21
�1
 � cos sign(100) � 112.4�� � ��s sin 83.9 cos 40

The slope is then

�1	 � tan (tan 83.9 �cos 112.4�) � 74.3�

And since �
s� � 90, 
 will be 180�. (Note that these results can be checked using
Equation 1.6.5.) �

1.8 RATIO OF BEAM RADIATION ON TILTED SURFACE TO THAT ON
HORIZONTAL SURFACE

For purposes of solar process design and performance calculations, it is often necessary
to calculate the hourly radiation on a tilted surface of a collector from measurements or
estimates of solar radiation on a horizontal surface. The most commonly available data
are total radiation for hours or days on the horizontal surface, whereas the need is for
beam and diffuse radiation on the plane of a collector.

The geometric factor Rb, the ratio of beam radiation on the tilted surface to that on
a horizontal surface at any time, can be calculated exactly by appropriate use of Equation
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Figure 1.8.1 Beam radiation on horizontal
and tilted surfaces.

1.6.2. Figure 1.8.1 indicates the angle of incidence of beam radiation on the horizontal
and tilted surfaces. The ratio GbT /Gb is given by7

G G cos � cos �b,T b,nR � � � (1.8.1)b G G cos � cos �b b,n z z

and cos � and cos �z are both determined from Equation 1.6.2 (or from equations derived
from Equation 1.6.2).

Example 1.8.1

What is the ratio of beam radiation to that on a horizontal surface for the surface and
time specified in Example 1.6.1?

Solution

Example 1.6.1 shows the calculation for cos �. For the horizontal surface, from Equation
1.6.5,

cos � � sin(�14) sin 43 � cos(�14) cos 43 cos(�22.5) � 0.491z

And from Equation 1.8.1

cos � 0.818
R � � � 1.67b cos � 0.491z �

The optimum azimuth angle for flat-plate collectors is usually 0� in the northern
hemisphere (or 180� in the southern hemisphere). Thus it is a common situation that 

� 0� (or 180�). In this case, Equations 1.6.5 and 1.6.7 can be used to determine cos �z

and cos �, respectively, leading in the northern hemisphere, for 
 � 0�, to

cos(� � 	)cos � cos � � sin(� � 	) sin �
R � (1.8.2)b cos � cos � cos � � sin � sin �

In the southern hemisphere, 
 � 180� and the equation is

cos(� � 	) cos � cos � � sin(� � 	) sin �
R � (1.8.3)b cos � cos � cos � � sin � sin �

A special case of interest is Rb,noon, the ratio for south-facing surfaces at solar noon. From
Equations 1.6.8a and 1.6.9a, for the northern hemisphere,

7 The symbol G is used in this book to denote rates, while I is used for energy quantities integrated over an
hour. The original development of Rb by Hottel and Woertz (1942) was for hourly periods; for an hour (using
angles at the midpoint of the hour), Rb � IbT / Ib.
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Figure 1.8.2(a) cos � versus � � 	 and cos �z versus � for hours 11 to 12 and 12 to 1 for
surfaces tilted toward the equator. The columns on the right show dates for the curves for north
and south latitudes. In south latitudes, use ���. Adapted from Whillier (1975).

cos�� � � � 	�
R � (1.8.4a)b,noon cos�� � ��

For the southern hemisphere, from Equations 1.6.8b and 1.6.9b,

cos��� � � � 	�
R � (1.8.4b)b,noon cos��� � ��

Hottel and Woertz (1942) pointed out that Equation 1.8.2 provides a convenient
method for calculating Rb for the most common cases. They also showed a graphical
method for solving these equations. This graphical method has been revised by Whillier
(1975), and an adaptation of Whillier’s curves is given here. Figures 1.8.2(a–e) are plots
of both cos �z as a function of � and cos � as a function of � � 	 for various dates
(i.e., declinations). By plotting the curves for sets of dates having (nearly) the same
absolute value of declination, the curves ‘‘reflect back’’ on each other at latitude 0�. Thus
each set of curves, in effect, covers the latitude range of �60� to 60�.

As will be seen in later chapters, solar process performance calculations are very
often done on an hourly basis. The cos �z plots are shown for the midpoints of hours
before and after solar noon, and the values of Rb found from them are applied to those
hours. (This procedure is satisfactory for most hours of the day, but in hours that include
sunrise and sunset, unrepresentative values of Rb may be obtained. Solar collection in
those hours is most often zero or a negligible part of the total daily collector output.
However, care must be taken that unrealistic products of Rb and beam radiation Ib are
not used.)
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Figure 1.8.2(b) cos � versus � � 	 and cos �z versus � for hours 10 to 11 and 1 to 2.

Figure 1.8.2(c) cos � versus � � 	 and cos �z versus � for hours 9 to 10 and 2 to 3.
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Figure 1.8.2(d) cos � versus � � 	 and cos �z versus � for hours 8 to 9 and 3 to 4.

Figure 1.8.2(e) cos � versus � � 	 and cos �z versus � for hours 7 to 8 and 4 to 5.
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To find cos �z, enter the chart for the appropriate time with the date and latitude of
the location in question. For the same date and latitude cos � is found by entering with
an abscissa corresponding to � � 	. Then Rb is found from Equation 1.8.1. The dates
on the sets of curves are shown in two sets, one for north (positive) latitudes and the
other for south (negative) latitudes.

Two situations arise, for positive values or for negative values of � � 	. For positive
values, the charts are used directly. If � � 	 is negative (which frequently occurs when
collectors are sloped for optimum performance in winter or with vertical collectors), the
procedure is modified. Determine cos �z as before. Determine cos � from the absolute
value of � � 	 using the curve for the other hemisphere, that is, with the sign on the
declination reversed.

Example 1.8.2

Calculate Rb for a surface at latitude 40� N at a tilt 30� toward the south for the hour 9
to 10 solar time on February 16.

Solution

Use Figure 1.8.2(c) for the hour �2.5 h from noon as representative of the hour from
9 to 10. To find cos �z, enter at a latitude of 40� for the north latitude date of February
16. Here cos �z � 0.45. To find cos �, enter at a latitude of � � 	 � 10� for the same
date. Here cos � � 0.73. Then

cos � 0.73
R � � � 1.62b cos � 0.45z

The ratio can also be calculated using Equation 1.8.2. The declination on February 16
is �13�:

cos 10 cos(�13) cos(�37.5) � sin 10 sin(�13) 0.722
R � � � 1.61b cos 40 cos(�13) cos(�37.5) � sin 10 sin(�13) 0.448 �

Example 1.8.3

Calculate Rb for a latitude 40� N at a tilt of 50� toward the south for the hour 9 to 10
solar time on February 16.

Solution

As found in the previous example, cos �z � 0.45. To find cos �, enter at an abscissa of
�10�, using the curve for February 16 for south latitudes. The value of cos � from the
curve is 0.80. Thus Rb � 0.80/0.45 � 1.78. Equation 1.8.2 can also be used:

cos 10 cos(�13) cos(�37.5) � sin(�10) sin(�13) 0.800
R � � � 1.79b cos 40 cos(�13) cos(�37.5) � sin 40 sin(�13) 0.448 �

It is possible, using Equation 1.8.2 or Figure 1.8.2, to construct plots showing the
effects of collector tilt on Rb for various times of the year and day. Figure 1.8.3 shows
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Figure 1.8.3 Ratio Rb for a surface with slope 50� to south at latitude 40� for various hours from
solar noon.

such a plot for a latitude of 40� and a slope of 50�. It illustrates that very large gains in
incident beam radiation are to be had by tilting a receiving surface toward the equator.

Equation 1.8.1 can also be applied to other than fixed flat-plate collectors. Equations
1.7.1 to 1.7.6 give cos � for surfaces moved in prescribed ways in which concentrating
collectors may move to track the sun. If the beam radiation on a horizontal surface is
known or can be estimated, the appropriate one of these equations can be used in the
numerator of Equation 1.8.1 for cos �. For example, for a plane rotated continuously
about a horizontal east-west axis to maximize the beam radiation on the plane, from
Equation 1.7.2a, the ratio of beam radiation on the plane to that on a horizontal surface
at any time is

2 2 1 / 2(1 � cos � sin �)
R � (1.8.5)b cos � cos � cos � � sin � sin �

Some of the solar radiation data available are beam radiation on surfaces normal to
the radiation, as measured by a pyrheliometer.8 In this case the useful ratio is beam
radiation on the surface in question to beam radiation on the normal surface; simply R�b
� cos �, where � is obtained from Equations 1.7.1 to 1.7.6.

1.9 SHADING

Three types of shading problems occur so frequently that methods are needed to cope
with them. The first is shading of a collector, window, or other receiver by nearby trees,

8 Pyrheliometers and other instruments for measuring solar radiation are described in Chapter 2.



30 Solar Radiation

Figure 1.9.1 Solar position plot for �45� latitude. Solar altitude angle and solar azimuth angle
are functions of declination and hour angle, indicated on the plots by dates and times. The dates
shown are for northern hemisphere; for southern hemisphere use the corresponding dates as indi-
cated in Figure 1.8.2. See Appendix H for other latitudes.

buildings, or other obstructions. The geometries may be irregular, and systematic cal-
culations of shading of the receiver in question may be difficult. Recourse is made to
diagrams of the position of the sun in the sky, for example, plots of solar altitude �s

versus solar azimuth 
s, on which shapes of obstructions (shading profiles) can be su-
perimposed to determine when the path from the sun to the point in question is blocked.
The second type includes shading of collectors in other than the first row of multirow
arrays by the collectors on the adjoining row. The third includes shading of windows by
overhangs and wingwalls. Where the geometries are regular, shading is amenable to
calculation, and the results can be presented in general form. This will be treated in
Chapter 14.

At any point in time and at a particular latitude, �, �, and � are fixed. From the
equations in Section 1.6, the zenith angle �z or solar altitude angle �s and the solar
azimuth angle 
s can be calculated. A solar position plot of �z and �s versus 
s for
latitudes of �45� is shown in Figure 1.9.1. Lines of constant declination are labeled by
dates of mean days of the months from Table 1.6.1. Lines of constant hour angles labeled
by hours are also shown. Plots for latitudes from 0 to �70� are included in Appen-
dix H.

The angular position of buildings, wingwalls, overhangs, or other obstructions can
be entered on the same plot. For example, as observed by Mazria (1979) and Anderson
(1982), if a building or other obstruction of known dimensions and orientation is located
a known distance from the point of interest (i.e., the receiver, collector, or window), the
angular coordinates corresponding to altitude and azimuth angles of points on the ob-
struction (the object azimuth angle 
o and object altitude angle �o) can be calculated
from trigonometric considerations. This is illustrated in Examples 1.9.1 and 1.9.2. Al-
ternatively, measurements of object altitude and azimuth angles may be made at the site
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of a proposed receiver and the angles plotted on the solar position plot. Instruments are
available to measure the angles.

Example 1.9.1

A proposed collector site at S is 10.0 m to the north of a long wall that shades it when
the sun is low in the sky. The wall is of uniform height of 2.5 m above the center of the
proposed collector area. Show this wall on a solar position chart with a the wall oriented
east-west and b the wall oriented on a southeast-to-northwest axis displaced 20� from
east-west.

Solution

In each case, we pick several points on the top of the wall to establish the coordinates
for plotting on the solar position plot.

a Take three points indicated by A, B, and C in the diagram with A to the south and
B 10 m and C 30 m west of A. Points B� and C� are taken to the east of A with the
same object altitude angles as B and C and with object azimuth angles changed only in
sign.

For point A, the object azimuth 
oA is 0�. The object altitude angle is

2.5
tan � � , � � 14.0�oA oA10

For point B, SB � (102 � 102)1 / 2 � 14.1 m,

2.5
tan � � , � � 10.0�oB oB14.1

10
tan 
 � , 
 � 45.0�oB oB10
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For point C, SC � (102 � 302)1 / 2 � 31.6 m,

2.5
tan � � , � � 4.52�oC oC31.6

30
tan 
 � , 
 � 71.6�oC oC10

There are points corresponding to B and C but to the east of A; these will have the
same object azimuth angles except with negative signs. The shading profile determined
by these coordinates is independent of latitude. It is shown by the solid line on the plot
for � � 45�. Note that at object azimuth angles of 90�, the object distance becomes
infinity and the object altitude angle becomes 0�.

The sun is obscured by the wall only during times shown in the diagram. The wall
does not cast a shadow on point S at any time of day from late March to mid-September.
For December 10, it casts a shadow on point S before 9:00 AM and after 3:00 PM.

b The obstruction of the sky does not show east-west symmetry in this case, so five
points have been chosen as shown to cover the desirable range. Point A is the same as
before, that is, �oA � 14.0�, 
oA � 0�.

Arbitrarily select points on the wall for the calculation. In this case the calculations
are easier if we select values of the object azimuth angle and calculate from them the
corresponding distances from the point to the site and the corresponding �o. In this case
we can select values of 
o for points B, C, D, and E of 45�, 90�, �30�, and �60�.

For point B, with 
oB � 45�, the distance SB can be calculated from the law of sines:

sin 70 sin(180 � 45 � 70)
� , SB � 10.4 m

SB 10

2.5
tan � � , � � 13.5�oB oB10.4

For point D, with 
oD � �30�, the calculation is
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sin 110 sin(180 � 110 � 30)
� , SD � 14.6 m

SD 10

2.5
tan � � , � � 9.7�oD oD14.6

The calculations for points C and E give �oC � 5.2� at 
oC � 90� and �oE � 2.6�
at 
oE � �60.0�.

The shading profile determined by these coordinates is plotted on the solar position
chart for � � 45� and is shown as the dashed line. In this case, the object altitude angle
goes to zero at azimuth angles of �70� and 110�. In either case, the area under the curves
represents the wall, and the times when the wall would obstruct the beam radiation are
those times (declination and hour angles) in the areas under the curves. �

There may be some freedom in selecting points to be used in plotting object coor-
dinates, and the calculation may be made easier (as in the preceding example) by selecting
the most appropriate points. Applications of trigonometry will always provide the nec-
essary information. For obstructions such as buildings, the points selected must include
corners or limits that define the extent of obstruction. It may or may not be necessary to
select intermediate points to fully define shading. This is illustrated in the following
example.

Example 1.9.2

It is proposed to install a solar collector at a level 4.0 m above the ground. A rectangular
building 30 m high is located 45 m to the south, has its long dimension on an east-west
axis, and has dimensions shown in the diagram. The latitude is 45�. Diagram this building
on the solar position plot to show the times of day and year when it would shade the
proposed collector.

Solution

Three points that will be critical to determination of the shape of the image are the top
near corners and the top of the building directly to the south of the proposed collector.
Consider first point A. The object altitude angle of this point is determined by the fact
that it is 45 m away and 30 � 4 � 26 m higher than the proposed collector:

26
tan � � , � � 30.0�oA oA45

The object azimuth angle 
oA is 0� as the point A is directly to the south.
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For point B, the distance SB is (452 � 522)1 / 2 � 68.8 m. The height is again 26 m.
Then

26
tan � � , � � 20.7�oB oB68.8

The object azimuth angle 
oB is

52
tan 
 � , 
 � 49.1�oB oB45

The calculation method for point C is the same as for B. The distance SC � (452

� 82)1 / 2 � 45.7 m:

26
tan � � , � � 29.6�oC oC45.7

8
tan 
 � , 
 � 10.1�oC oC45

Note again that since point C lies to the east of south, 
oC is by convention negative.
The shading profile of the building can be approximated by joining A and C and A

and B by straight lines. A more precise representation is obtained by calculating inter-
mediate points on the shading profile to establish the curve. In this example, an object
altitude angle of 27.7� is calculated for an object azimuth angle of 25�.

These coordinates are plotted and the outlines of the building are shown in the figure.
The shaded area represents the existing building as seen from the proposed collector site.
The dates and times when the collector would be shaded from direct sun by the building
are evident.

�

Implicit in the preceding discussion is the idea that the solar position at a point in
time can be represented for a point location. Collectors and receivers have finite size,
and what one point on a large receiving surface ‘‘sees’’ may not be the same as what
another point sees. The problem is often to determine the amount of beam radiation on
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Figure 1.9.2 (a) Cross section of a long overhang showing projection, gap, and height. (b) Section
showing shading planes.

a receiver. If shading obstructions are far from the receiver relative to its size, so that
shadows tend to move over the receiver rapidly and the receiver is either shaded or not
shaded, the receiver can be thought of as a point. If a receiver is partially shaded, it can
be considered to consist of a number of smaller areas, each of which is shaded or not
shaded. Or integration over the receiver area may be performed to determine shading
effects. These integrations have been done for special cases of overhangs and wingwalls.

Overhangs and wingwalls are architectural features that are applied to buildings to
shade windows from beam radiation. The solar position charts can be used to determine
when points on the receiver are shaded. The procedure is identical to that of Example
1.9.1; the obstruction in the case of an overhang and the times when the point is shaded
from beam radiation are the times corresponding to areas above the line. This procedure
can be used for overhangs of either finite or infinite length. The same concepts can be
applied to wingwalls; the vertical edges of the object in Example 1.9.2 correspond to
edges of wingwalls of finite height.

An overhang is shown in cross section in Figure 1.9.2(a) for the most common
situation of a vertical window. The projection P is the horizontal distance from the plane
of the window to the outer edge of the overhang. The gap G is the vertical distance from
the top of the window to the horizontal plane that includes the outer edge of the overhang.
The height H is the vertical dimension of the window.

The concept of shading planes was introduced by Jones (1980) as a useful way of
considering shading by overhangs where end effects are negligible. Two shading planes
are labeled in Figure 1.9.2(b). The angle of incidence of beam radiation on a shading
plane can be calculated from its surface azimuth angle 
 and its slope 	 � 90 � � by
Equation 1.6.2 or equivalent. The angle � of shading plane 1 is tan�1[P / (G � H)] and
that for shading plane 2 is tan�1(P /G). Note that if the profile angle �p is less than 90
� �, the outer surface of the shading plane will ‘‘see’’ the sun and beam radiation will
reach the receiver.9

Shading calculations are needed when flat-plate collectors are arranged in rows.10

Normally, the first row is unobstructed, but the second row may be partially shaded by

9 Use of the shading plane concept will be discussed in Chapters 2 and 14.
10 See Figure 12.1.2(c) for an example.
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Figure 1.9.3 Section of two rows of a multirow collector array.

the first, the third by the second, and so on. This arrangement of collectors is shown in
cross section in Figure 1.9.3.

For the case where the collectors are long in extent so the end effects are negligible,
the profile angle provides a useful means of determining shading. As long as the profile
angle is greater than the angle CAB, no point on row N will be shaded by row M. If the
profile angle at a point in time is CA�B� and is less than CAB, the portion of row N
below point A� will be shaded from beam radiation.

Example 1.9.3

A multiple-row array of collectors is arranged as shown in the figure. The collectors are
2.10 m from top to bottom and are sloped at 60� toward the south. At a time when the
profile angle (given by Equation 1.6.12) is 25�, estimate the fraction of the area of the
collector in row N that will be shaded by the collectors in row M. Assume that the rows
are long so end effects are not significant.

Solution

Referring to the figure, the angle BAC is tan�1(2.87 � 1.05)/1.82 � 45�, and since �p

is 25�, shading will occur.
The dimension AA� can be calculated:

1.82
AC � � 2.57 m

sin 45

∠CAA� � 180 � 45 � 60 � 75�, ∠CA�A � 180 � 75 � 20 � 85�

From the law of sines,
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2.57 sin 20
AA� � � 0.88 m

sin 85

The fraction of collector N that is shaded is 0.88/2.10 � 0.42. �

1.10 EXTRATERRESTRIAL RADIATION ON A HORIZONTAL SURFACE

Several types of radiation calculations are most conveniently done using normalized ra-
diation levels, that is, the ratio of radiation level to the theoretically possible radiation
that would be available if there were no atmosphere. For these calculations, which are
discussed in Chapter 2, we need a method of calculating the extraterrestrial radiation.

At any point in time, the solar radiation incident on a horizontal plane outside of
the atmosphere is the normal incident solar radiation as given by Equation 1.4.1 divided
by Rb:

360n
G � G 1 � 0.033 cos cos � (1.10.1)� �o sc z365

where Gsc is the solar constant and n is the day of the year. Combining Equation 1.6.5
for cos �z with Equation 1.10.1 gives Go for a horizontal surface at any time between
sunrise and sunset:

360n
G � G 1 � 0.033 cos (cos � cos � cos � � sin � sin �) (1.10.2)� �o sc 365

It is often necessary for calculation of daily solar radiation to have the integrated
daily extraterrestrial radiation on a horizontal surface, Ho. This is obtained by integrating
Equation 1.10.2 over the period from sunrise to sunset. If Gsc is in watts per square meter,
Ho in joules per square meter is

24 � 3600G 360nscH � 1 � 0.033 cos� �o � 365

��s� cos � cos � sin � � sin � sin � (1.10.3)� �s 180

where �s is the sunset hour angle, in degrees, from Equation 1.6.10.
The monthly mean11 daily extraterrestrial radiation is a useful quantity. For lati-Ho

tudes in the range �60 to �60 it can be calculated with Equation 1.10.3 using n and �
for the mean day of the month12 from Table 1.6.1. Mean radiation Ho is plotted as a
function of latitude for the northern and southern hemispheres in Figure 1.10.1. The
curves are for dates that give the mean radiation for the month and thus show ValuesH .o

11 An overbar is used throughout the book to indicate a monthly average quantity.
12 The mean day is the day having Ho closest to H .o
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Figure 1.10.1 Extraterrestrial daily radiation on a horizontal surface. The curves are for the mean
days of the month from Table 1.6.1.
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Table 1.10.1 Monthly Average Daily Extraterrestrial Radiation, MJ/m2

� Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

90 0.0 0.0 1.2 19.3 37.2 44.8 41.2 26.5 5.4 0.0 0.0 0.0
85 0.0 0.0 2.2 19.2 37.0 44.7 41.0 26.4 6.4 0.0 0.0 0.0
80 0.0 0.0 4.7 19.6 36.6 44.2 40.5 26.1 9.0 0.6 0.0 0.0
75 0.0 0.7 7.8 21.0 35.9 43.3 39.8 26.3 11.9 2.2 0.0 0.0
70 0.1 2.7 10.9 23.1 35.3 42.1 38.7 27.5 14.8 4.9 0.3 0.0
65 1.2 5.4 13.9 25.4 35.7 41.0 38.3 29.2 17.7 7.8 2.0 0.4
60 3.5 8.3 16.9 27.6 36.6 41.0 38.8 30.9 20.5 10.8 4.5 2.3
55 6.2 11.3 19.8 29.6 37.6 41.3 39.4 32.6 23.1 13.8 7.3 4.8
50 9.1 14.4 22.5 31.5 38.5 41.5 40.0 34.1 25.5 16.7 10.3 7.7
45 12.2 17.4 25.1 33.2 39.2 41.7 40.4 35.3 27.8 19.6 13.3 10.7
40 15.3 20.3 27.4 34.6 39.7 41.7 40.6 36.4 29.8 22.4 16.4 13.7
35 18.3 23.1 29.6 35.8 40.0 41.5 40.6 37.3 31.7 25.0 19.3 16.8
30 21.3 25.7 31.5 36.8 40.0 41.1 40.4 37.8 33.2 27.4 22.2 19.9
25 24.2 28.2 33.2 37.5 39.8 40.4 40.0 38.2 34.6 29.6 25.0 22.9
20 27.0 30.5 34.7 37.9 39.3 39.5 39.3 38.2 35.6 31.6 27.7 25.8
15 29.6 32.6 35.9 38.0 38.5 38.4 38.3 38.0 36.4 33.4 30.1 28.5
10 32.0 34.4 36.8 37.9 37.5 37.0 37.1 37.5 37.0 35.0 32.4 31.1
5 34.2 36.0 37.5 37.4 36.3 35.3 35.6 36.7 37.2 36.3 34.5 33.5
0 36.2 37.4 37.8 36.7 34.8 33.5 34.0 35.7 37.2 37.3 36.3 35.7

�5 38.0 38.5 37.9 35.8 33.0 31.4 32.1 34.4 36.9 38.0 37.9 37.6
�10 39.5 39.3 37.7 34.5 31.1 29.2 29.9 32.9 36.3 38.5 39.3 39.4
�15 40.8 39.8 37.2 33.0 28.9 26.8 27.6 31.1 35.4 38.7 40.4 40.9
�20 41.8 40.0 36.4 31.3 26.6 24.2 25.2 29.1 34.3 38.6 41.2 42.1
�25 42.5 40.0 35.4 29.3 24.1 21.5 22.6 27.0 32.9 38.2 41.7 43.1
�30 43.0 39.7 34.0 27.2 21.4 18.7 19.9 24.6 31.2 37.6 42.0 43.8
�35 43.2 39.1 32.5 24.8 18.6 15.8 17.0 22.1 29.3 36.6 42.0 44.2
�40 43.1 38.2 30.6 22.3 15.8 12.9 14.2 19.4 27.2 35.5 41.7 44.5
�45 42.8 37.1 28.6 19.6 12.9 10.0 11.3 16.6 24.9 34.0 41.2 44.5
�50 42.3 35.7 26.3 16.8 10.0 7.2 8.4 13.8 22.4 32.4 40.5 44.3
�55 41.7 34.1 23.9 13.9 7.2 4.5 5.7 10.9 19.8 30.5 39.6 44.0
�60 41.0 32.4 21.2 10.9 4.5 2.2 3.1 8.0 17.0 28.4 38.7 43.7
�65 40.5 30.6 18.5 7.9 2.1 0.3 1.0 5.2 14.1 26.2 37.8 43.7
�70 40.8 28.8 15.6 5.0 0.4 0.0 0.0 2.6 11.1 24.0 37.4 44.9
�75 41.9 27.6 12.6 2.4 0.0 0.0 0.0 0.8 8.0 21.9 38.1 46.2
�80 42.7 27.4 9.7 0.6 0.0 0.0 0.0 0.0 5.0 20.6 38.8 47.1
�85 43.2 27.7 7.2 0.0 0.0 0.0 0.0 0.0 2.4 20.3 39.3 47.6
�90 43.3 27.8 6.2 0.0 0.0 0.0 0.0 0.0 1.4 20.4 39.4 47.8

of Ho for any day can be estimated by interpolation. Exact values of for all latitudesHo

are given in Table 1.10.1.

Example 1.10.1

What is Ho, the day’s solar radiation on a horizontal surface in the absence of the at-
mosphere, at latitude 43� N on April 15?
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Solution

For these circumstances, n � 105 (from Table 1.6.1), � � 9.4� (from Equation 1.6.1),
and � � 43�. From Equation 1.6.10

cos � � �tan 43 tan 9.4 and � � 98.9�s s

Then from Equation 1.10.3, with Gsc � 1367 W/m2,

24 � 3600 � 1367 360 � 105
H � 1 � 0.033 cos� �o � 365

� � 98.9
� cos 43 cos 9.4 sin 98.9 � sin 43 sin 9.4� �180

2� 33.8 MJ/m

From Figure 1.10.1(a), for the curve for April, we read Ho � 34.0 MJ/m2, and from
Table 1.10.1 we obtain Ho � 33.8 MJ/m2 by interpolation. �

It is also of interest to calculate the extraterrestrial radiation on a horizontal surface
for an hour period. Integrating Equation 1.10.2 for a period between hour angles �1 and
�2 which define an hour (where �2 is the larger),

12 � 3600 360n
I � G 1 � 0.033 cos� �o sc� 365

�(� � � )2 1� cos � cos � (sin � � sin � ) � sin � sin � (1.10.4)� �2 1 180

(The limits �1 and �2 may define a time other than an hour.)

Example 1.10.2

What is the solar radiation on a horizontal surface in the absence of the atmosphere at
latitude 43� N on April 15 between the hours of 10 and 11?

Solution

The declination is 9.4� (from the previous example). For April 15, n � 105. Using
Equation 1.10.4 with �1 � �30� and �2 � �15�,

12 � 3600 � 1367 360 � 105
I � 1 � 0.033 cos� �o � 365

�[�15 � (�30)]
� cos 43 cos 9.4[sin(�15) � sin(�30)] � sin 43 sin 9.4� �180

2� 3.79 MJ/m �
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The hourly extraterrestrial radiation can also be approximated by writing Equation
1.10.2 in terms of I, evaluating � at the midpoint of the hour. For the circumstances of
Example 1.10.2, the hour’s radiation so estimated is 3.80 MJ/m2. Differences between
the hourly radiation calculated by these two methods will be slightly larger at times near
sunrise and sunset but are still small. For larger time spans, the differences become larger.
For example, for the same circumstances as in Example 1.10.2 but for the 2-h span from
7:00 to 9:00, the use of Equation 1.10.4 gives 4.58 MJ/m2, and Equation 1.10.2 for
8:00 gives 4.61 MJ/m2.

1.11 SUMMARY

In this chapter we have outlined the basic characteristics of the sun and the radiation it
emits, noting that the solar constant, the mean radiation flux density outside of the earth’s
atmosphere, is 1367 W/m2 (within �1%), with most of the radiation in a wavelength
range of 0.3 to 3 �m. This radiation has directional characteristics that are defined by a
set of angles that determine the angle of incidence of the radiation on a surface. We have
included in this chapter those topics that are based on extraterrestrial radiation and the
geometry of the earth and sun. This is background information for Chapter 2, which is
concerned with effects of the atmosphere, radiation measurements, and data manipulation.
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