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Basic Concepts for Experimental
Design and Introductory Regression
Analysis

Some basic concepts and principles in experimental design are introduced in this
chapter, including the fundamental principles of replication, randomization, and
blocking. A brief and self-contained introduction to regression analysis is also
included. Commonly used techniques like simple and multiple linear regression,
least squares estimation, and variable selection are covered.

1.1 INTRODUCTION AND HISTORICAL PERSPECTIVE

Experimentation is one of the most common activities that people engage in. It
covers a wide range of applications from household activities like food prepa-
ration to technological innovation in material science, semiconductors, robotics,
life science, and so on. It allows an investigator to find out what happens to the
output or response when the settings of the input variables in a system are pur-
posely changed. Statistical or often simple graphical analysis can then be used to
study the relationship between the input and output values. A better understand-
ing of how the input variables affect the performance of a system can thereby
be achieved. This gain in knowledge provides a basis for selecting optimum
input settings. Experimental design is a body of knowledge and techniques that
enables an investigator to conduct better experiments, analyze data efficiently,
and make the connections between the conclusions from the analysis and the
original objectives of the investigation.

Experimentation is used to understand and/or improve a system. A system
can be a product or process. A product can be one developed in engineering,
biology, or the physical sciences. A process can be a manufacturing process, a
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process that describes a physical phenomenon, or a nonphysical process such as
those found in service or administration. Although most examples in the book
are from engineering or the physical and biological sciences, the methods can
also be applied to other disciplines, such as business, medicine, and psychology.
For example, in studying the efficiency and cost of a payroll operation, the entire
payroll operation can be viewed as a process with key input variables such as
the number of supervisors, the number of clerks, method of bank deposit, level
of automation, administrative structure, and so on. A computer simulation model
can then be used to study the effects of changing these input variables on cost
and efficiency.

Modern experimental design dates back to the pioneering work of the great
statistician R. A. Fisher in the 1930s at the Rothamsted Agricultural Experimental
Station in the United Kingdom. Fisher’s work and the notable contributions by F.
Yates and D. J. Finney were motivated by problems in agriculture and biology.
Because of the nature of agricultural experiments, they tend to be large in scale,
take a long time to complete, and must cope with variations in the field. Such
considerations led to the development of blocking, randomization, replication,
orthogonality, and the use of analysis of variance and fractional factorial designs.
The theory of combinatorial designs, to which R. C. Bose has made fundamental
contributions, was also stimulated by problems in block designs and fractional
factorial designs. The work in this era also found applications in social science
research and in the textile and woolen industries.

The next era of rapid development came soon after World War II. In attempt-
ing to apply previous techniques to solve problems in the chemical industries,
G. E. P. Box and co-workers at Imperial Chemical Industries discovered that
new techniques and concepts had to be developed to cope with the unique fea-
tures of process industries. The new techniques focused on process modeling
and optimization rather than on treatment comparisons, which was the primary
objective in agricultural experiments. The experiments in process industries tend
to take less time but put a premium on run size economy because of the cost of
experimentation. These time and cost factors naturally favor sequential experi-
mentation. The same considerations led to the development of new techniques for
experimental planning, notably central composite designs and optimal designs.
The analysis for these designs relies more heavily on regression modeling and
graphical analysis. Process optimization based on the fitted model is also empha-
sized. Because the choice of design is often linked to a particular model (e.g., a
second-order central composite design for a second-order regression model) and
the experimental region may be irregularly shaped, a flexible strategy for finding
designs to suit a particular model and/or experimental region is called for. With
the availability of fast computational algorithms, optimal designs (which was
pioneered by J. Kiefer) have become an important part of this strategy.

The relatively recent emphasis on variation reduction has provided a new
source of inspiration and techniques in experimental design. In manufacturing, the
ability to make many parts with few defects is a competitive advantage. Therefore
variation reduction in the quality characteristics of these parts has become a
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major focus of quality and productivity improvement. G. Taguchi advocated the
use of robust parameter design to improve a system (i.e., a product or process)
by making it less sensitive to variation, which is hard to control during normal
operating or use conditions of the product or process. The input variables of a
system can be divided into two broad types: control factors, whose values remain
fixed once they are chosen, and noise factors, which are hard to control during
normal conditions. By exploiting the interactions between the control and noise
factors, one can achieve robustness by choosing control factor settings that make
the system less sensitive to noise variation. This is the motivation behind the new
paradigm in experimental design, namely, modeling and reduction of variation.
Traditionally, when the mean and variance are both considered, variance is used
to assess the variability of the sample mean as with the t test or of the treatment
comparisons as with the analysis of variance. The focus on variation and the
division of factors into two types led to the development of new concepts and
techniques in the planning and analysis of robust parameter design experiments.
The original problem formulation and some basic concepts were developed by G.
Taguchi. Other basic concepts and many sound statistical techniques have been
developed by statisticians since the mid-1980s.

Given this historical background, we now classify experimental problems into
five broad categories according to their objectives.

1. Treatment Comparisons. The main purpose is to compare several treatments
and select the best ones. For example, in the comparison of six barley varieties,
are they different in terms of yield and resistance to drought? If they are indeed
different, how are they different and which are the best? Examples of treat-
ments include varieties (rice, barley, corn, etc.) in agricultural trials, sitting posi-
tions in ergonomic studies, instructional methods, machine types, suppliers, and
so on.

2. Variable Screening. If there is a large number of variables in a system but
only a relatively small number of them is important, a screening experiment can
be conducted to identify the important variables. Such an experiment tends to
be economical in that it has few degrees of freedom left for estimating error
variance and higher-order terms like quadratic effects or interactions. Once the
important variables are identified, a follow-up experiment can be conducted to
study their effects more thoroughly. This latter phase of the study falls into the
category discussed next.

3. Response Surface Exploration. Once a smaller number of variables is iden-
tified as important, their effects on the response need to be explored. The rela-
tionship between the response and these variables is sometimes referred to as a
response surface. Usually the experiment is based on a design that allows the lin-
ear and quadratic effects of the variables and some of the interactions between the
variables to be estimated. This experiment tends to be larger (relative to the num-
ber of variables under study) than the screening experiment. Both parametric and
semiparametric models may be considered. The latter is more computer-intensive
but also more flexible in model fitting.
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4. System Optimization. In many investigations, interest lies in the optimiza-
tion of the system. For example, the throughput of an assembly plant or the yield
of a chemical process is to be maximized; the amount of scrap or number of
reworked pieces in a stamping operation is to be minimized; or the time required
to process a travel claim reimbursement is to be reduced. If a response surface
has been identified, it can be used for optimization. For the purpose of finding
an optimum, it is, however, not necessary to map out the whole surface as in a
response surface exploration. An intelligent sequential strategy can quickly move
the experiment to a region containing the optimum settings of the variables. Only
within this region is a thorough exploration of the response surface warranted.

5. System Robustness. Besides optimizing the response, it is important in qual-
ity improvement to make the system robust against noise (i.e., hard-to-control)
variation. This is often achieved by choosing control factor settings at which the
system is less sensitive to noise variation. Even though the noise variation is
hard to control in normal conditions, it needs to be systematically varied during
experimentation. The response in the statistical analysis is often the variance (or
its transformation) among the noise replicates for a given control factor setting.

1.2 A SYSTEMATIC APPROACH TO THE PLANNING
AND IMPLEMENTATION OF EXPERIMENTS

In this section, we provide some guidelines on the planning and implementation
of experiments. The following seven-step procedure summarizes the important
steps that the experimenter must address.

1. State Objective. The objective of the experiment needs to be clearly stated.
All stakeholders should provide input. For example, for a manufactured product,
the stakeholders may include design engineers who design the product, process
engineers who design the manufacturing process, line engineers who run the man-
ufacturing process, suppliers, lineworkers, customers, marketers, and managers.

2. Choose Response. The response is the experimental outcome or observa-
tion. There may be multiple responses in an experiment. Several issues arise in
choosing a response. Responses may be discrete or continuous. Discrete responses
can be counts or categories—for example, binary (good, bad) or ordinal (easy,
normal, hard). Continuous responses are generally preferable. For example, a
continuous force measurement for opening a door is better than an ordinal (easy,
normal, hard to open) judgment; the recording of a continuous characteristic is
preferred to the recording of the percent that the characteristic is within its speci-
fications. Trade-offs may need to be made. For example, an ordinal measurement
of force to open a door may be preferable to delaying the experiment until a
device to take continuous measurements can be developed. Most importantly,
there should be a good measurement system for measuring the response. In fact,
an experiment called a gauge repeatability and reproducibility (R&R) study can
be performed to assess a continuous measurement system (AIAG, 1990). When
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there is a single measuring device, the variation due to the measurement system
can be divided into two types: variation between the operators and variation
within the operators. Ideally, there should be no between-operator variation and
small within-operator variation. The gauge R&R study provides estimates for
these two components of measurement system variation. Finally, the response
should be chosen to increase understanding of mechanisms and physical laws
involved in the problem. For example, in a process that is producing under-
weight soap bars, soap bar weight is the obvious choice for the response in
an experiment to improve the underweight problem. By examining the process
more closely, there are two subprocesses that have a direct bearing on soap bar
weight: the mixing process that affects the soap bar density and the forming pro-
cess that impacts the dimensions of the soap bars. In order to better understand
the mechanism that causes the underweight problem, soap bar density and soap
bar dimensions are chosen as the responses. Even though soap bar weight is not
used as a response, it can be easily determined from its density and dimensions.
Therefore, no information is lost in studying the density and dimensions. Such a
study may reveal new information about the mixing and forming subprocesses,
which can in turn lead to a better understanding of the underweight problem.
Further discussions on and other examples of the choice of responses can be
found in Phadke (1989) and León, Shoemaker, and Tsui (1993).

The chosen responses can be classified according to the stated objective.
Three broad categories will be considered in this book: nominal-the-best,
larger-the-better, and smaller-the-better. The first one will be addressed in
Section 4.10, and the last two will be discussed in Section 6.2.

3. Choose Factors and Levels. A factor is a variable that is studied in the
experiment. In order to study the effect of a factor on the response, two or more
values of the factor are used. These values are referred to as levels or settings.
A treatment is a combination of factor levels. When there is a single factor,
its levels are the treatments. For the success of the experiment, it is crucial that
potentially important factors be identified at the planning stage. There are two
graphical methods for identifying potential factors. First, a flow chart of the pro-
cess or system is helpful to see where the factors arise in a multistage process. In
Figure 1.1, a rough sketch of a paper pulp manufacturing process is given which
involves raw materials from suppliers, a chemical process to make a slurry which
is passed through a mechanical process to produce the pulp. Involving all the
stakeholders is invaluable in capturing an accurate description of the process or
system. Second, a cause-and-effect diagram can be used to list and organize the
potential factors that may impact the response. In Figure 1.2, a cause-and-effect
diagram is given which lists the factors thought to affect the product quality of an
injection molding process. Traditionally, the factors are organized under the head-
ings: Man, Machine, Measurement, Material, Method, and Environment (Mother
Nature for those who like M’s). Because of their appearance, cause-and-effect
diagrams are also called fishbone diagrams. Different characteristics of the fac-
tors need to be recognized because they can affect the choice of the experimental
design. For example, a factor such as furnace temperature is hard to change. That



6 BASIC DESIGN CONCEPTS AND REGRESSION ANALYSIS

Initial pH

Suppliers

Chemical
Phase

Temperature

Raw
Materials

Treatment
Time

Liquid/Wood
Ratio

Slurry
Concentration

Mechanical
Phase

Refiner Plate
Gap

Pulp

SO2
Concentration

Figure 1.1. Flow chart, pulp manufacturing process.
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Figure 1.2. Cause-and-effect diagram, injection molding experiment.

is, after changing the temperature setting, it may take a considerable amount of
time before the temperature stabilizes at the new setting. A factor may also be
hard to set so that the actual level used in the experiment may be different than
the intended level. For example, the actual impact force of a pellet projected at
an automobile windshield can only be set within 3 psi of the intended impact
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force. Other factors that may be hard or impossible to control are referred to as
noise factors. Examples of noise factors include environmental and customer use
conditions. (An in-depth discussion of noise factors will be given in Section 11.3.)

Factors may be quantitative and qualitative. Quantitative factors like temper-
ature, time, and pressure take values over a continuous range. Qualitative factors
take on a discrete number of values. Examples of qualitative factors include oper-
ation mode, supplier, position, line, and so on. Of the two types of factors, there
is more freedom in choosing the levels of quantitative factors. For example, if
temperature (in degrees Celsius) is in the range 100–200◦C, one could choose
130◦C and 160◦C for two levels or 125◦C, 150◦C, and 175◦C for three levels. If
only a linear effect is expected, two levels should suffice. If curvature is expected,
then three or more levels are required. In general, the levels of quantitative fac-
tors must be chosen far enough apart so that an effect can be detected but not
too far so that different physical mechanisms are involved (which would make
it difficult to do statistical modeling and prediction). There is less flexibility in
choosing the levels of qualitative factors. Suppose there are three testing meth-
ods under comparison. All three must be included as three levels of the factor
“testing method,” unless the investigator is willing to postpone the study of one
method so that only two methods are compared in a two-level experiment.

When there is flexibility in choosing the number of levels, the choice may
depend on the availability of experimental plans for the given combination of
factor levels. In choosing factors and levels, cost and practical constraints must
be considered. If two levels of the factor “material” represent expensive and
cheap materials, a negligible effect of material on the response will be welcomed
because the cost can be drastically reduced by replacing the expensive material by
the cheap alternative. Factor levels must be chosen to meet practical constraints.
If a factor level combination (e.g., high temperature and long time in an oven)
can potentially lead to disastrous results (e.g., burned or overbaked), it should be
avoided and a different plan should be chosen.

4. Choose Experimental Plan. Use the fundamental principles discussed in
Section 1.3 as well as other principles presented throughout the book. The
choice of the experimental plan is crucial. A poor design may capture little
information which no analysis can rescue. On the other hand, if the experiment
is well planned, the results may be obvious so that no sophisticated analysis is
needed.

5. Perform the Experiment. The use of a planning matrix is recommended.
This matrix describes the experimental plan in terms of the actual values or
settings of the factors. For example, it lists the actual levels such as 50 or 70 psi
if the factor is pressure. To avoid confusion and eliminate potential problems
of running the wrong combination of factor levels in a multifactor experiment,
each of the treatments, such as temperature at 30◦C and pressure at 70 psi,
should be put on a separate piece of paper and given to the personnel performing
the experiment. It is also worthwhile to perform a trial run to see if there will
be difficulties in running the experiment, namely, if there are problems with
setting the factors and measuring the responses. Any deviations from the planned
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experiment need to be recorded. For example, for hard-to-set factors, the actual
values should be recorded.

6. Analyze the Data. An analysis appropriate for the design used to collect
the data needs to be carried out. This includes model fitting and assessment of
the model assumptions through an analysis of residuals. Many analysis methods
will be presented throughout the book.

7. Draw Conclusions and Make Recommendations. Based on the data analysis,
conclusions are presented which include the important factors and a model for
the response in terms of the important factors. Recommended settings or levels
for the important factors may also be given. The conclusions should refer back to
the stated objectives of the experiment. A confirmation experiment is worthwhile,
for example, to confirm the recommended settings. Recommendations for further
experimentation in a follow-up experiment may also be given. For example, a
follow-up experiment is needed if two models explain the experimental data
equally well and one must be chosen for optimization.

For further discussion on the planning of experiments, see Coleman and Mont-
gomery (1993), Knowlton and Keppinger (1993), and Barton (1997).

1.3 FUNDAMENTAL PRINCIPLES: REPLICATION,
RANDOMIZATION, AND BLOCKING

There are three fundamental principles that need to be considered in the design
of an experiment: replication, randomization, and blocking. Other principles
will be introduced later in the book as they arise.

An experimental unit is a generic term that refers to a basic unit such as
material, animal, person, machine, or time period, to which a treatment is applied.
By replication, we mean that each treatment is applied to experimental units
that are representative of the population of units to which the conclusions of the
experiment will apply. It enables the estimation of the magnitude of experimental
error (i.e., the error variance) against which the differences among treatments
are judged. Increasing the number of replications, or replicates, decreases the
variance of the treatment effect estimates and provides more power for detecting
differences in treatments. A distinction needs to be made between replicates
and repetitions. For example, three readings from the same experimental unit
are repetitions, while the readings from three separate experimental units are
replicates. The error variance from the former is less than that from the latter
because repeated readings only measure the variation due to errors in reading
while the latter also measures the unit-to-unit variation. Underestimation of the
true error variance can result in the false declaration of an effect as significant.

The second principle is that of randomization. It should be applied to the
allocation of units to treatments, the order in which the treatments are applied in
performing the experiment, and the order in which the responses are measured.
It provides protection against variables that are unknown to the experimenter
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but may impact the response. It reduces the unwanted influence of subjective
judgment in treatment allocation. Moreover, randomization ensures validity of
the estimate of experimental error and provides a basis for inference in analyzing
the experiments. For an in-depth discussion on randomization, see Hinkelmann
and Kempthorne (1994).

A prominent example of randomization is its use in clinical trials. If a physi-
cian were free to assign a treatment or control (or a new treatment versus an
old treatment) to his/her patients, there might be a tendency to assign the treat-
ment to those patients who are sicker and would not benefit from receiving a
control. This would bias the outcome of the trial as it would create an unbalance
between the control and treatment groups. A potentially effective treatment like
a new drug may not even show up as promising if it is assigned to a larger pro-
portion of “sick” patients. A random assignment of treatment/control to patients
would prevent this from happening. Particularly commonplace is the use of the
double-blind trial, in which neither the patient nor the doctor or investigator has
access to the information about the actual treatment assignment. More on clinical
trials can be found in Rosenberger and Lachin (2002).

A group of homogeneous units is referred to as a block. Examples of blocks
include days, weeks, morning vs. afternoon, batches, lots, sets of twins, and pairs
of kidneys. For blocking to be effective, the units should be arranged so that
the within-block variation is much smaller than the between-block variation. By
comparing the treatments within the same block, the block effects are eliminated
in the comparison of the treatment effects, thereby making the experiment more
efficient. For example, there may be a known day effect on the response so that
if all the treatments can be applied within the same day, the day-to-day variation
is eliminated.

If blocking is effective, it should be applied to remove the block-to-block
variation. Randomization can then be applied to the assignments of treatments
to units within the blocks to further reduce the influence of unknown variables.
This strategy of block what you can and randomize what you cannot is used
in randomized block designs, to be discussed in Section 3.2.

These three principles are generally applicable to physical experiments but not
to computer experiments because the same input in a computer experiment gives
rise to the same output. Computer experiments (see Santner et al., 2003) are not
considered in the book, however.

A simple example will be used to explain these principles. Suppose two key-
boards denoted by A and B are being compared in terms of typing efficiency.
Six different manuscripts denoted by 1–6 are given to the same typist. First the
test is arranged in the following sequence:

1. A, B, 2. A,B, 3. A,B, 4. A, B, 5. A, B, 6. A,B.

Because the manuscripts can vary in length and difficulty, each manuscript is
treated as a “block” with the two keyboards as two treatments. Therefore, the
experiment is replicated six times (with six manuscripts) and blocking is used
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to compare the two keyboards with the same manuscript. The design has a seri-
ous flaw, however. After typing the manuscript on keyboard A, the typist will
be familiar with the content of the manuscript when he or she is typing the
same manuscript on keyboard B. This “learning effect” will unfairly help the
performance of keyboard B. The observed difference between A and B is the
combination of the treatment effects (which measures the intrinsic difference
between A and B) and the learning effect. For the given test sequence, it is
impossible to disentangle the learning effect from the treatment effect. Random-
ization would help reduce the unwanted influence of the learning effect, which
might not have been known to the investigator who planned the study. By ran-
domizing the typing order for each manuscript, the test sequence may appear as
follows:

1. A,B, 2. B,A, 3. A,B, 4. B,A, 5. A, B , 6. A, B.

With four AB’s and two BA’s in the sequence, it is a better design than the first
one. A further improvement can be made. The design is not balanced because
B benefits from the learning effect in four trials while A only benefits from two
trials. There is still a residual learning effect not completely eliminated by the
second design. The learning effect can be completely eliminated by requiring that
half of the trials have the order AB and the other half the order BA. The actual
assignment of AB and BA to the six manuscripts should be done by randomization.
This method is referred to as balanced randomization. Balance is a desirable
design property, which will be discussed later.

For simplicity of discussion, we have assumed that only one typist was
involved in the experiment. In a practical situation, such an experiment should
involve several typists that are representative of the population of typists so that
the conclusions made from the study would apply more generally. This and other
aspects of the typing experiment will be addressed in the exercises.

With these principles in mind, a useful addition to the cause-and-effect diagram
is to indicate how the proposed experimental design addresses each listed factor.
The following designations are suggested: E for an experimental factor, B for
a factor handled by blocking, O for a factor held constant at one value, and R
for a factor handled by randomization. This designation clearly indicates how
the proposed design deals with each of the potentially important factors. The
designation O, for “one value,” serves to remind the experimenter that the factor
is held constant during the current experiment but may be varied in a future
experiment. An illustration is given in Figure 1.3 from the injection molding
experiment discussed in Section 1.2.

Other designations of factors can be considered. For example, experimental
factors can be further divided into two types (control factors and noise fac-
tors), as in the discussion on the choice of factors in Section 1.2. For the
implementation of experiments, we may also designate an experimental factor
as “hard-to-change” or “easy-to-change.” These designations will be considered
later as they arise.
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Figure 1.3. Revised cause-and-effect diagram, injection molding experiment.

1.4 SIMPLE LINEAR REGRESSION

Throughout the book, we will often model experimental data by the general linear
model (also called the multiple regression model). Before considering the general
linear model in Section 1.6, we present here the simplest case known as the simple
linear regression model, which consists of a single covariate. We use the following
data to illustrate the analysis technique known as simple linear regression.

Lea (1965) discussed the relationship between mean annual temperature and
a mortality index for a type of breast cancer in women. The data (shown in
Table 1.1), taken from certain regions of Great Britain, Norway, and Sweden,
consist of the mean annual temperature (in degrees Fahrenheit) and a mortality
index for neoplasms of the female breast.

Table 1.1 Breast Cancer Mortality Data

Mortality Index (M): 102.5 104.5 100.4 95.9 87.0 95.0 88.6 89.2
Temperature (T ): 51.3 49.9 50.0 49.2 48.5 47.8 47.3 45.1

Mortality Index (M): 78.9 84.6 81.7 72.2 65.1 68.1 67.3 52.5
Temperature (T ): 46.3 42.1 44.2 43.5 42.3 40.2 31.8 34.0
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Figure 1.4. Scatter plot of temperature versus mortality index, breast cancer example.

The first step in any regression analysis is to make a scatter plot. A scatter
plot of mortality index against temperature (Figure 1.4) reveals an increasing
linear relationship between the two variables. Such a linear relationship between
a response y and a covariate x can be expressed in terms of the following model:

y = β0 + β1x + ε,

where ε is the random part of the model which is assumed to be normally
distributed with mean 0 and variance σ 2, that is, ε ∼ N(0, σ 2); because ε is
normally distributed, so is y with mean E(y) = β0 + β1x and Var(y) = σ 2.

If N observations are collected in an experiment, the model for them takes
the form

yi = β0 + β1xi + εi, i = 1, . . . , N, (1.1)

where yi is the ith value of the response and xi is the corresponding value of the
covariate.

The unknown parameters in the model are the regression coefficients β0 and
β1 and the error variance σ 2. Thus, the purpose for collecting the data is to
estimate and make inferences about these parameters. For estimating β0 and β1,
the least squares criterion is used; that is, the least squares estimators (LSEs),
denoted by β̂0 and β̂1, respectively, minimize the following quantity:

L(β0, β1) =
N∑

i=1

(yi − (β0 + β1xi))
2. (1.2)
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Taking partial derivatives of (1.2) with respect to β0 and β1 and equating them
to zero yields

∂L

∂β0
= 2

N∑
i=1

(yi − β0 − β1xi)(−1) = 0,

∂L

∂β1
= 2

N∑
i=1

(yi − β0 − β1xi)(−xi) = 0.

(1.3)

From (1.3), the following two equations are obtained:

N∑
i=1

yi = Nβ̂0 + β̂1

N∑
i=1

xi,

N∑
i=1

xiyi = β̂0

N∑
i=1

xi + β̂1

N∑
i=1

x2
i .

(1.4)

Equations (1.4) are called the normal equations. By solving them, the estima-
tors of β0 and β1 are obtained as

β̂1 =
∑N

i=1(xi − x̄)(yi − ȳ)∑N
i=1(xi − x̄)2

, (1.5)

β̂0 = ȳ − β̂1x̄, where x̄ =
N∑

i=1

xi/N and ȳ =
N∑

i=1

yi/N. (1.6)

The fitted model is thus

ŷ = β̂0 + β̂1x.

The quantities ei = yi − ŷi , i = 1, . . . , N , are called residuals. Clearly, the ith
residual denotes the difference between the observed response yi and the fitted
value ŷi . Residuals are very useful in judging the appropriateness of a given
regression model with respect to the available data. Using the fitted model, one
can estimate the mean response corresponding to a certain covariate value, say
x0, of x as ŷ = β̂0 + β̂1x0.

For the breast cancer data, the response y is the mortality index M and the
covariate x is the temperature T . Then we have for N = 16,

16∑
i=1

(Ti − T̄ )2 = 467.65,

16∑
i=1

(Mi − M̄)2 = 3396.44,

16∑
i=1

(Ti − T̄ )(Mi − M̄) = 1102.57, T̄ = 44.5938, M̄ = 83.34.

(1.7)
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Using (1.5) and (1.6), the least square estimates of β0 and β1 are obtained as
follows:

β̂1 =
∑16

i=1(Ti − T̄ )(Mi − M̄)∑16
i=1(Ti − T̄ )2

= 1102.57

467.65
= 2.36,

β̂0 = M̄ − β̂1T̄ = −21.79.

The fitted regression line is given by M̂ = −21.79 + 2.36T . This model can
now be used to estimate the average mortality index due to breast cancer at a
location that has a mean annual temperature of 49◦F. Substituting T = 49 in the
fitted model, we obtain the estimated mean mortality as

M̂ = −21.79 + 2.36 × 49 = 93.85.

The fitted values and residuals for the 16 data points are shown in Table 1.2,
where the residual value ei is obtained by subtracting ŷi from yi .

1.5 TESTING OF HYPOTHESIS AND INTERVAL ESTIMATION

It is important to realize that the estimators β̂0 and β̂1 are random variables as
they are functions of the data yi . From (1.5),

β̂1 =
∑N

i=1(xi − x̄)yi∑N
i=1(xi − x̄)2

− ȳ
∑N

i=1(xi − x̄)∑N
i=1(xi − x̄)2

.

Table 1.2 Observed Responses, Fitted Values, and
Residuals, Breast Cancer Example

yi ŷi ei

102.5 99.16 3.34
104.5 95.85 8.65
100.4 96.09 4.31

95.9 94.20 1.70
87.0 92.55 −5.55
95.0 90.90 4.10
88.6 89.72 −1.12
89.2 84.54 4.66
78.9 87.37 −8.47
84.6 77.46 7.14
81.7 82.42 −0.72
72.2 80.77 −8.57
65.1 77.94 −12.84
68.1 72.98 −4.88
67.3 53.18 14.12
52.5 58.37 −5.87
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Since
∑N

i=1(xi − x̄) = 0, the second term vanishes and it follows that

β̂1 =
N∑

i=1

wiyi, (1.8)

where

wi = xi − x̄∑N
i=1(xi − x̄)2

. (1.9)

Similarly, it can be shown that

β̂0 =
N∑

i=1

viyi, (1.10)

where

vi = 1

N
− x̄wi. (1.11)

Using (1.8)–(1.11), the following expressions can be obtained for the mean,
variance, and covariance of β̂1 and β̂0:

E(β̂1) = β1, (1.12)

E(β̂0) = β0, (1.13)

Var(β̂1) = σ 2∑N
i=1(xi − x̄)2

, (1.14)

Var(β̂0) = σ 2

(
1

N
+ x̄2∑N

i=1(xi − x̄)2

)
, (1.15)

Cov(β̂0, β̂1) = − x̄∑N
i=1(xi − x̄)2

σ 2. (1.16)

Formulas (1.12)–(1.16) are special cases of general mean and variance–covari-
ance formulas for the least square estimators in multiple linear regression. See
(1.32) and (1.33).

From (1.12) and (1.13), we observe that β̂1 and β̂0 are unbiased estimators of
β1 and β0, respectively. Clearly, to estimate Var(β̂0), Var(β̂1), and Cov(β̂0, β̂1),
it is necessary to obtain an estimate of σ 2. This estimate can be obtained from
the residuals ei . The sum of squares of the residuals, also called the residual sum
of squares (RSS), is given by

RSS =
N∑

i=1

e2
i =

N∑
i=1

(yi − ŷi )
2,
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which, after some straightforward algebraic manipulation, reduces to

RSS =
N∑

i=1

(yi − ȳ)2 − β̂2
1

N∑
i=1

(xi − x̄)2. (1.17)

The degrees of freedom associated with RSS is N − 2. Thus, the mean square
error is given by MSE = RSS/(N − 2). It can be shown that E(RSS) = (N −
2)σ 2. Consequently, E(MSE) = σ 2, and MSE is an unbiased estimator of σ 2.

In order to know whether the covariate x has explanatory power, it is necessary
to test the null hypothesis H0: β1 = 0. Under the assumption of normality of the
error term εi in (1.1), each yi is a normally distributed random variable. Since
β̂1 can be expressed as a linear combination of yi’s and its mean and variance
are given by (1.12) and (1.14), it follows that

β̂1 ∼ N

(
β1, σ

2
/ N∑

i=1

(xi − x̄)2

)
.

The estimated standard deviation (i.e., standard error) of β̂1 is thus given by

se(β̂1) =
√

MSE∑N
i=1(xi − x̄)2

. (1.18)

For testing H0, the following statistic should be used

t = β̂1

se(β̂1)
.

The above statistic follows a t distribution with N − 2 degrees of freedom. The
higher the value of t , the more significant is the coefficient β1. For the two-sided
alternative H1: β1 �= 0, p value = Prob(|tN−2| > |tobs|), where Prob(·) denotes
the probability of an event, tν is a random variable that has a t distribution
with ν degrees of freedom, and tobs denotes the observed or computed value of
the t statistic. The t critical values can be found in Appendix B. A very small p
value indicates that we have observed something which rarely happens under H0,
suggesting that H0 is not true. In practice, H0 is rejected at level of significance
α if the p value is less than α. Common values of α are 0.1, 0.05, and 0.01.

Generally the p value gives the probability under the null hypothesis that the
t statistic for an experiment conducted in comparable conditions will exceed the
observed value |tobs|. The p value has the following interpretation: The smaller
the p value, the larger the evidence against the null hypothesis. Therefore, it
provides a quantitative measure of the significance of effects in the problem
under study. The same interpretation can be applied when other test statistics
and null hypotheses are considered.
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The 100(1 − α)% confidence interval for β1 is given by

β̂1 ± tN−2,α/2 se(β̂1),

where tN−2,α/2 is the upper α/2 point of the t distribution with N − 2 degrees of
freedom. If the confidence interval does not contain 0, H0 is rejected at level α.

Another way of judging the explanatory power of the covariate is by splitting
up the total variation associated with the response data into two components. The
quantity

∑N
i=1(yi − ȳ)2 measures the total variation in the data and is called the

corrected total sum of squares (CTSS). From (1.17), we observe that

CTSS = RegrSS + RSS, (1.19)

where RegrSS = β̂2
1

∑N
i=1(xi − x̄)2 is called the corrected regression sum of

squares. Thus, the total variation in the data is split into the variation explained
by the regression model plus the residual variation. This relationship is given in
a table called the ANalysis Of VAriance or ANOVA table displayed in Table 1.3.

Based on (1.19), we can define

R2 = RegrSS

CTSS
= 1 − RSS

CTSS
. (1.20)

Because the R2 value measures the “proportion of total variation explained by the
fitted regression model β̂0 + β̂1x,” a higher R2 value indicates a better fit of the
regression model. It can be shown that R2 is the square of the product-moment
correlation r between y = (yi) and x = (xi), i = 1, . . . , N , which is given by

r =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

.

The mean square is the sum of squares divided by the corresponding degrees
of freedom, where the degrees of freedom are those associated with each sum of
squares. As explained earlier, the mean square error, or the residual mean square,
is an unbiased estimator of σ 2.

Table 1.3 ANOVA Table for Simple Linear Regression

Degrees of Sum of Mean
Source Freedom Squares Squares

Regression 1 β̂2
1

∑N
i=1(xi − x̄)2 β̂2

1

∑N
i=1(xi − x̄)2

Residual N − 2
∑N

i=1(yi − ŷi )
2 ∑N

i=1(yi − ŷi )
2/(N − 2)

Total (corrected) N − 1
∑N

i=1(yi − ȳ)2
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If the null hypothesis H0: β1 = 0 holds, the F statistic

β̂2
1

∑N
i=1(xi − x̄)2∑N

i=1 e2
i /(N − 2)

(the regression mean square divided by the residual mean square) has an F

distribution with parameters 1 and N − 2, which are the degrees of freedom
of its numerator and denominator, respectively. The p value is calculated by
evaluating

Prob(F1,N−2 > Fobs), (1.21)

where F1,N−2 has an F distribution with parameters 1 and N − 2, and Fobs is the
observed value of the F statistic. The F critical values can be found in Appendix
D. The p value in (1.21) can be obtained from certain pocket calculators or by
interpolating the values given in Appendix D. An example of an F distribution
is given in Figure 2.1 (in Chapter 2) along with its critical values.

Let us now complete the analysis of the breast cancer mortality data. From
Table 1.2, we obtain RSS = ∑16

i=1 e2
i = 796.91. Consequently,

σ̂ 2 = MSE = RSS

14
= 56.92.

From the computations in Section 1.4, CTSS = 3396.44, and RegrSS = CTSS −
RSS = 2599.53. Table 1.4 shows the resulting ANOVA table.

The R2 is obtained as 2599.53/3396.44 = 0.7654, which means 76.54% of
the variation in the mortality indices is explained by the fitted model.

Using (1.18), se(β̂1) =
√

MSE/
∑16

i=1(Ti − T̄ )2. Substituting
∑16

i=1(Ti −
T̄ )2 = 467.65 from (1.7),

se(β̂1) =
√

56.92

467.65
= 0.349.

Thus, the computed value of the t statistic for testing H0: β1 = 0 is

β̂1

se(β̂1)
= 2.358

0.349
= 6.756.

Table 1.4 ANOVA Table for Breast Cancer Example

Degrees of Sum of Mean
Source Freedom Squares Squares

Regression 1 2599.53 2599.53
Residual 14 796.91 56.92
Total (corrected) 15 3396.44
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The corresponding p value is Prob(t14 > 6.756) = 4.6 × 10−6. Since this p value
is negligibly small, one can safely reject the null hypothesis at much lower levels
of significance than 0.05 or 0.01 and conclude that temperature indeed has a
significant effect on mortality due to breast cancer.

From Table 1.4, the computed value of the F statistic is obtained as
2599.53/56.92 = 45.67 and has a p value of 4.6 × 10−6 associated with it.
We thus arrive at the same conclusion regarding the effect of temperature on
mortality.

The 95% confidence interval for β1 is given by

β̂1 ± t0.025,14se(β̂1) = 2.36 ± 2.145 × 0.349 = (1.61, 3.11).

Recall that in Section 1.4 we obtained an estimate for the mean mortality
corresponding to a temperature of 49◦F as M̂ = 93.85. We are now interested
in obtaining a standard error of this estimate and using it to obtain a confidence
interval for the mean mortality at T = 49.

Let ŷx0 denote the estimated average response from the fitted model ŷ =
β̂0 + β̂1x corresponding to a given value x = x0, that is,

ŷx0 = β̂0 + β̂1x0. (1.22)

Then,

Var(ŷx0) = Var(β̂0 + β̂1x0)

= Var(β̂0) + x2
0Var(β̂1) + 2x0Cov(β̂0, β̂1)

= σ 2

(
1

N
+ (x̄ − x0)

2∑N
i=1(xi − x̄)2

)
. (1.23)

The last step follows from (1.14)–(1.16).
A 100(1 − α)% confidence interval for the estimated mean response corre-

sponding to x = x0 is thus given by

ŷx0 ± tN−2,α/2

√
MSE

√
1

N
+ (x̄ − x0)2∑N

i=1(xi − x̄)2
. (1.24)

Next, consider the prediction of a new or future observation y correspond-
ing to x = x0. We assume that the simple linear regression model developed
from the sampled data will be appropriate for the new observation. Therefore,
the predicted value ŷpred,x0

is still obtained by substituting x = x0 in the fit-
ted regression model and is the same as the estimated mean response ŷx0 in
(1.22).

This prediction, however, differs from estimation of the mean response cor-
responding to x = x0 in the sense that here we predict an individual outcome
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observed in the future. Since the future value actually observed will fluctuate
around the mean response value, the variance σ 2 of an individual observation
should be added to the variance of ŷx0 . By adding σ 2 to the variance in (1.23),
we have

Var(ŷpred,x0
) = σ 2

(
1 + 1

N
+ (x̄ − x0)

2∑N
i=1(xi − x̄)2

)
.

Consequently, a 100(1 − α)% confidence interval for a predicted individual
response corresponding to x = x0, also called a 100(1 − α)% prediction interval,
is given by

ŷpred,x0
± tN−2,α/2

√
MSE

√
1 + 1

N
+ (x̄ − x0)

2∑N
i=1(xi − x̄)2

. (1.25)

Using (1.24), a 95% confidence interval for the estimated mean mortality index
corresponding to a temperature of 49◦F is obtained as

M̂49 ± t14,0.025

√
MSE

√
1

16
+ (T̄ − 49)2∑16

i=1(Ti − T̄ )2

= 93.85 ± t14,0.025

√
56.92

√
1

16
+ (44.59 − 49)2

467.65

= 93.85 ± 2.145 × 7.54 × 0.323 = (88.63, 99.07).

Similarly, using (1.25), a 95% confidence interval for the predicted mortality
index of an individual corresponding to the temperature of 49◦F is obtained as

M̂pred,49 ± t14,0.025

√
MSE

√
1 + 1

16
+ (T̄ − 49)2∑16

i=1(Ti − T̄ )2

= 93.85 ± t14,0.025

√
56.92

√
1 + 1

16
+ (44.59 − 49)2

467.65

= 93.85 ± 2.145 × 7.54 × 1.051 = (76.85, 110.85).

1.6 MULTIPLE LINEAR REGRESSION

Experimental data can often be modeled by the general linear model (also called
the multiple regression model). Suppose that the response y is related to k covari-
ates (also called explanatory variables, regressors, predictors) x1, x2, . . . , xk as
follows:

y = β0 + β1x1 + · · · + βkxk + ε, (1.26)
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where ε is the random part of the model which is assumed to be normally
distributed with mean 0 and variance σ 2, i.e., ε ∼ N(0, σ 2); because ε is normally
distributed, so is y and Var(y) = σ 2. The structural part of the model is

E(y) = β0 + β1x1 + · · · + βkxk + E(ε)

= β0 + β1x1 + · · · + βkxk.

Here, E(y) is linear in the β’s, the regression coefficients, which explains the
term linear model.

If N observations are collected in an experiment, the model for them takes
the form

yi = β0 + β1xi1 + · · · + βkxik + εi , i = 1, . . . , N, (1.27)

where yi is the ith value of the response and xi1, . . . , xik are the corresponding
values of the k covariates.

These N equations can be written in matrix notation as

y = Xβ + ε, (1.28)

where y = (y1, . . . , yN)T is the N × 1 vector of responses, β = (β0, β1, . . . , βk)
T

is the (k + 1) × 1 vector of regression coefficients, ε = (ε1, . . . , εN )T is the N ×
1 vector of errors, and X, the N × (k + 1) model matrix, is given as

X =

⎛
⎜⎝

1 x11 · · · x1k

...
...

. . .
...

1 xN1 · · · xNk

⎞
⎟⎠ . (1.29)

The unknown parameters in the model are the regression coefficients
β0, β1, . . . , βk and the error variance σ 2. As in Section 1.4, the least squares
criterion is used; that is, the least squares estimator (LSE), denoted by β̂,
minimizes the following quantity:

N∑
i=1

(yi − (β0 + β1xi1 + · · · + βkxik))
2,

which in matrix notation is

(y − Xβ)T (y − Xβ).

In other words, the squared distance between the response vector y and the
vector of fitted values Xβ̂ is minimized. In order to minimize the sum of squared
residuals, the vector of residuals

r = y − Xβ̂
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needs to be perpendicular to the vector of fitted values

ŷ = Xβ̂;

that is, the cross product between these two vectors should be zero:

rT ŷ = rT Xβ̂ = 0.

An equivalent way of stating this is that the columns of the model matrix X need
to be perpendicular to r, the vector of residuals, and thus satisfy

XT (y − Xβ̂) = XT y − XT Xβ̂ = 0. (1.30)

The solution to this equation is the least squares estimate, which is

β̂ = (XT X)−1XT y. (1.31)

From (1.31),

E(β̂) = (XT X)−1XT E(y)

= (XT X)−1XT Xβ (since E(y) = Xβ)

= β. (1.32)

The variance of β̂ is

Var(β̂) = (XT X)−1XT Var(y)((XT X)−1XT )T

= (XT X)−1XT X(XT X)−1σ 2I (since Var(y) = σ 2I)

= (XT X)−1σ 2. (1.33)

In fitting the model, one wants to know if any of the covariates (regressors,
predictors, explanatory variables) have explanatory power. None of them has
explanatory power if the null hypothesis

H0: β1 = · · · = βk = 0 (1.34)

holds. In order to test this null hypothesis, one needs to assess how much of the
total variation in the response data can be explained by the model relative to the
remaining variation after fitting the model, which is contained in the residuals.

Recall how the model was fitted: the residuals are perpendicular to the fitted
values so that we have a right triangle. This brings to mind the Pythagorean
theorem: The squared length of the hypotenuse is equal to the sum of the squared
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lengths of its opposite sides. In vector notation, the squared distance of a vector
a is simply aT a = ∑

a2
i . Thus, from the least squares fit, we obtain

yT y = (Xβ̂)T (Xβ̂) + (y − Xβ̂)T (y − Xβ̂)

= β̂
T

XT Xβ̂ + (y − Xβ̂)T (y − Xβ̂),

where yT y is the total sum of squares (uncorrected), β̂
T

XT Xβ̂ is the regression
sum of squares (uncorrected), and

RSS = (y − Xβ̂)T (y − Xβ̂)

is the residual (or error) sum of squares. In order to test the null hypothesis
(1.34), the contribution from estimating the intercept β0 needs to be removed.
Subtracting off its contribution Nȳ2, where ȳ is the average of the N observations,
yields

CTSS = yT y − Nȳ2 = RegrSS + RSS

= (β̂
T

XT Xβ̂ − Nȳ2) + (y − Xβ̂)T (y − Xβ̂), (1.35)

where CTSS is called the corrected total sum of squares and is equal to
∑N

i=1(yi −
ȳ)2, which measures the variation in the data, and RegrSS is called the corrected
regression sum of squares. Note that if there is a single covariate, the expres-
sions of RegrSS and RSS in (1.35) reduce to the corresponding expressions in
Section 1.5. In the remainder of this book, “corrected” will be dropped in ref-
erence to various sums of squares but will be implied. As in Section 1.5, the
splitting up of the total variation in data into two components is summarized in
the ANOVA table displayed in Table 1.5, and a measure of the proportion of the
total variation explained by the fitted regression model Xβ̂ is given by

R2 = RegrSS

CTSS
= 1 − RSS

CTSS
. (1.36)

It can be shown that R is the product-moment correlation between y = (yi)
N
i=1

and ŷ = (ŷi)
N
i=1 and is called the multiple correlation coefficient.

Table 1.5 ANOVA Table for General Linear Model

Degrees of Sum of Mean
Source Freedom Squares Squares

Regression k β̂
T

XT Xβ̂ − Nȳ2 (β̂
T

XT Xβ̂ − Nȳ2)/k

Residual N − k − 1 (y − Xβ̂)T (y − Xβ̂) (y − Xβ̂)T (y − Xβ̂)/(N − k − 1)

Total (corrected) N − 1 yT y − Nȳ2
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The mean square is the sum of squares divided by the corresponding degrees
of freedom, where the degrees of freedom are those associated with each sum of
squares. The residual mean square is commonly referred to as the mean square
error (MSE) and is used as an estimate for σ 2. Thus we can denote the MSE as

σ̂ 2 = (y − Xβ̂)T (y − Xβ̂)/(N − k − 1). (1.37)

If the null hypothesis (1.34) holds, the F statistic

(β̂
T

XT Xβ̂ − Ny2)/k

(y − Xβ̂)T (y − Xβ̂)/(N − k − 1)

(the regression mean square divided by the residual mean square) has an F

distribution with parameters k and N − k − 1, which are the degrees of freedom
of its numerator and denominator, respectively. The p value is calculated by
evaluating

Prob(Fk,N−k−1 > Fobs),

where Prob(·) denotes the probability of an event, Fk,N−k−1 has an F distribution
with parameters k and N − k − 1, and Fobs is the observed value of the F statistic.

In model (1.28), the vector ε follows a multivariate normal distribution with
mean vector 0 and covariance matrix σ 2I. Using this with (1.32) and (1.33), it can
be shown that the least squares estimate β̂ has a multivariate normal distribution
with mean vector β and variance–covariance matrix σ 2(XT X)−1, that is,

β̂ ∼ MN(β, σ 2(XT X)−1),

where MN stands for the multivariate normal distribution. The (i, j )th entry
of the variance–covariance matrix is Cov(β̂i , β̂j ) and the j th diagonal element
is Cov(β̂j , β̂j ) = Var(β̂j ). Therefore, the distribution for the individual β̂j is
N(βj , σ

2(XT X)−1
jj ), which suggests that for testing the null hypothesis

H0: βj = 0,

the following t statistic be used:

β̂j√
σ̂ 2(XT X)−1

jj

. (1.38)

Under H0, the t statistic in (1.38) has a t distribution with N − k − 1 degrees
of freedom. This can also be used to construct confidence intervals since the
denominator of the t statistic is the standard error of its numerator β̂j :

β̂j ± tN−k−1,α/2

√
σ̂ 2(XT X)−1

jj , (1.39)
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where tN−k−1,α/2 is the upper α/2 quantile of the t distribution with N − k − 1
degrees of freedom. See Appendix B for t critical values.

Besides testing the individual βj ’s, testing linear combinations of the βj ’s can
be useful. As an example, for testing aT β = ∑k

j=0 ajβj , where a is a (k + 1) × 1
vector, it can be shown that

aT β̂ ∼ N(aT β, σ 2aT (XT X)−1a).

This suggests using the test statistic

aT β̂√
σ̂ 2aT (XT X)−1a

, (1.40)

which has a t distribution with N − k − 1 degrees of freedom.
More generally, for any setting of (x1, . . . , xk), the E(y) value, β0 + ∑k

j=1

βjxj , can be rewritten in vector notation as xT β, where xT = (1, x1, . . . , xk). It
can be estimated by its sample counterpart xT β̂. The corresponding test statistic
is the same as in (1.40) with a replaced by x. The 100(1 − α)% confidence
interval for xT β is given by

xT β̂ ± tN−k−1,α/2

√
σ̂ 2xT (XT X)−1x. (1.41)

This is an extension of formula (1.24) for simple linear regression. If xT β̂ is used
to predict a future y value at (x1, . . . , xk), the 100(1 − α)% prediction interval
is obtained from (1.41) with xT (XT X)−1x replaced by (1 + xT (XT X)−1x). This
prediction interval is an extension of formula (1.25) for simple linear regression.

Extra Sum of Squares Principle
The extra sum of squares principle will be useful later for developing test statistics
in a number of situations. Suppose that there are two models, say Model I and
Model II. Model I is a special case of Model II, denoted by Model I ⊂ Model
II. Let

Model I: yi = β0 + β1xi1 + · · · + βkxik + εi

and

Model II: yi = β0 + β1xi1 + · · · + βkxik + βk+1xi,k+1 + · · · + βqxiq + ε′
i .

Model I ⊂ Model II since βk+1 = · · · = βq = 0 in Model I. Then, for testing
the null hypothesis that Model I is adequate, that is,

H0: βk+1 = · · · = βq = 0 (1.42)
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holds, the extra sum of squares principle employs the F statistic:

(RSS(Model I) − RSS(Model II))/(q − k)

RSS(Model II)/(N − q − 1)
, (1.43)

where RSS stands for the residual sum of squares. It follows that

RSS(Model I) − RSS(Model II)

= RegrSS(Model II) − RegrSS(Model I),

where RegrSS denotes the regression sum of squares; thus, the numerator of the F
statistic in (1.43) is the gain in the regression sum of squares for fitting the more
general Model II relative to Model I, that is, the extra sum of squares. When (1.42)
holds, the F statistic has an F distribution with parameters q − k (the difference
in the number of estimated parameters between Models I and II) and N − q − 1.
The extra sum of squares technique can be implemented by fitting Models I and
II separately, obtaining their respective residual sums of squares, calculating the
F statistic above, and then computing its p value (= Prob(F > Fobs)).

1.7 VARIABLE SELECTION IN REGRESSION ANALYSIS

In the fitting of the general linear model (1.27), those covariates whose regres-
sion coefficients are not significant may be removed from the full model. A more
parsimonious model (i.e., one with fewer covariates) is preferred as long as it
can explain the data well. This follows from the principle of parsimony (or
Occam’s razor), a principle attributed to the fourteenth-century English philoso-
pher, William of Occam, which states “entities should not be multiplied beyond
necessity.” It is also known that a model that fits the data too well may give poor
predictions, a phenomenon that can be justified by the following result in regres-
sion analysis (Draper and Smith, 1998): The average variance of ŷi (= xT

i β̂) over
i = 1, . . . , N is proportional to k + 1, the number of parameters in the regres-
sion model in (1.26). As k increases, a large model can better fit the data but the
prediction variance also increases.

The goal of variable selection in regression analysis is to identify the smallest
subset of the covariates that explains the data well; one hopes to capture the
true model or at least the covariates of the true model with the most significant
regression coefficients. One class of strategies is to use a model selection criterion
to evaluate all possible subsets of the covariates and select the subset (which
corresponds to a model) with the best value of the criterion. This is referred to as
best subset regression. To maintain a balance between data fitting and prediction,
a good model selection criterion should reward good model fitting as well as
penalize model complexity. The R2 in (1.36) is not a suitable criterion because
it increases as the number of covariates increases. That is, it does not penalize
excessively large models. An alternative criterion is the adjusted R2 (Wherry,
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1931), which takes into consideration the reduction in degrees of freedom for
estimating the residual variance with inclusion of covariates in the model. For a
model containing k covariates, the adjusted R2 is given by

R2
a = 1 − RSS/(N − k − 1)

CTSS/(N − 1)
. (1.44)

Note that the difference between R2
a and the expression for R2 in (1.36) is in

the degrees of freedom in the denominator and the numerator of (1.44). If an
insignificant variable is added to a model, the R2 will increase, but the adjusted
R2

a may decrease.
Another commonly used criterion is the Cp statistic (Mallows, 1973). Sup-

pose there are a total of q covariates. For a model that contains p regression
coefficients, which consist of those associated with p − 1 covariates (p − 1 < q)
and an intercept term β0, define its Cp value as

Cp = RSS

s2
− (N − 2p), (1.45)

where RSS is the residual sum of squares for the model, s2 is the mean square
error (see (1.37)) for the model containing all q covariates and β0, and N is
the total number of observations. As the model gets more complicated, the RSS
term in (1.45) decreases while the value p in the second term increases. The
counteracting effect of these two terms prevents the selection of extremely large
or small models. If the model is true, E(RSS) = (N − p)σ 2. Assuming that
E(s2) = σ 2, it is then approximately true that

E(Cp) ≈ (N − p)σ 2

σ 2
− (N − 2p) = p.

Thus one should expect the best fitting models to be those with Cp ≈ p. Further
theoretical and empirical studies suggest that models whose Cp values are low
and are close to p should be chosen.

Alternatively, two commonly used criteria are the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC), which are defined as

AIC = N ln

(
RSS

N

)
+ 2p, (1.46)

and

BIC = N ln

(
RSS

N

)
+ p ln(N), (1.47)

where p is the number of parameters (i.e., regression coefficients) in the model.
Unlike the Cp statistic, AIC and BIC can be defined for general statistical prob-
lems beyond regression (see McQuarrie and Tsai, 1998). Another advantage is
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that, in software like R, both AIC and BIC are available in the stepwise regression
routine.

For moderate to large q, fitting all subsets is computationally infeasible. An
alternative strategy is based on adding or dropping one covariate at a time from
a given model, which requires fewer model fits but can still identify good fitting
models. It need not identify the best-fitting models as in any optimization that
optimizes sequentially (and locally) rather than globally. The main idea is to
compare the current model with a new model obtained by adding or deleting
a covariate from the current model. Call the smaller and larger models Model
I and Model II, respectively. Based on the extra sum of squares principle in
Section 1.6, one can compute the F statistic in (1.43), also known as a partial
F statistic, to determine if the covariate should be added or deleted. The partial
F statistic takes the form

RSS(Model I) − RSS(Model II)

RSS(Model II)/ν
, (1.48)

where ν is the degrees of freedom of the RSS (residual sum of squares) for
Model II. Three versions of this strategy are considered next.

One version is known as backward elimination. It starts with the full model
containing all q covariates and computes partial F ’s for all models with q − 1
covariates. At the mth step, Model II has q − m + 1 covariates and Model I
has q − m covariates, so that ν = N − (q − m + 1) − 1 = N − q + m − 2 in the
partial F in (1.48). At each step, compute the partial F value for each covariate
being considered for removal. The one with the lowest partial F , provided it
is smaller than a preselected value, is dropped. The procedure continues until
no more covariates can be dropped. The preselected value is often chosen to be
F1,ν,α, the upper α critical value of the F distribution with 1 and ν degrees of
freedom. Choice of the α level determines the stringency level for eliminating
covariates. Typical α’s range from α = 0.1 to 0.2. A conservative approach would
be to choose a smaller F (i.e., a large α) value so that important covariates are not
eliminated. The statistic in (1.48) does not have a proper F distribution because
the RSS term in its denominator has a noncentral χ2 distribution (unless Model II
is the true full model). Therefore the F critical values in the selection procedure
serve only as guidelines. The literature often refers to them as F-to-remove values
to make this distinction.

Another version is known as forward selection, which starts with the model
containing an intercept and then adds one covariate at a time. The covariate with
the largest partial F (as computed by (1.48)) is added, provided that it is larger
than a preselected F critical value, which is referred to as an F-to-enter value.
The forward selection procedure is not recommended as it often misses impor-
tant covariates. It is combined with backward elimination to form the following
stepwise selection procedure.

The stepwise selection procedure starts with two steps of the forward selection
and then alternates between one step of backward elimination and one step of
forward selection. The F -to-remove and F -to-enter values is usually chosen to
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be the same. A typical choice is F1,ν,α with α = 0.05, 0.1, 0.15. The choice
varies from data to data and can be changed as experience dictates. Among the
three selection procedures, stepwise selection is known to be the most effective
and is therefore recommended for general use.

For a comprehensive discussion on variable selection, see Draper and Smith
(1998).

1.8 ANALYSIS OF AIR POLLUTION DATA

In this section, we consider an application of multiple linear regression and
variable selection. Researchers at General Motors collected data on 60 U.S. Stan-
dard Metropolitan Statistical Areas (SMSAs) in a study of whether air pollution
contributes to mortality (Gibbons and McDonald, 1980). The response variable
for analysis is age adjusted mortality (denoted by MORTALITY). The predictors
include variables measuring demographic characteristics of the cities, variables
measuring climate characteristics, and variables recording the pollution poten-
tial of three different air pollutants. The goal of this analysis is to find out if
air pollution affects mortality after adjusting for the effects of other significant
variables. The data are available at

http://lib.stat.cmu.edu/DASL/Stories/AirPollutionandMortality.html.

The complete list of the 14 predictor variables and their codes are given below:

1. JanTemp: mean January temperature (degrees Fahrenheit).
2. JulyTemp: mean July temperature (degrees Fahrenheit).
3. RelHum: relative humidity.
4. Rain: annual rainfall (inches).
5. Education: median education.
6. PopDensity: population density.
7. %NonWhite: percentage of non-whites.
8. %WC: percentage of white collar workers.
9. pop: population.

10. pop/house: population per household.
11. income: median income.
12. HCPot: HC pollution potential.
13. NOxPot: nitrous oxide pollution potential.
14. SO2Pot: sulphur dioxide pollution potential.

Note that these data are observational in which mortality and the 14 vari-
ables are observed together rather than them being experimental in which the 14
variables are set to specified values and then the resulting mortality is observed.
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Consequently, any relationship found between mortality and the 14 variables in
the analysis of these data need not imply causality. For information on observa-
tional studies and causality, see Rosenbaum (2002).

Among the 60 data points, the 21st (Fort Worth, TX) has two missing val-
ues and is discarded from the analysis. Thus the total sample size N is 59.
The three pollution variables HCPot, NOxPot, and SO2Pot are highly skewed.
A log transformation makes them nearly symmetric. Therefore these three vari-
ables are replaced by log(HCPot), log(NOxPot), and log(SO2Pot), respectively,
and are called logHC, logNOx, and logSO2, respectively. Figure 1.5 shows the
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Figure 1.5. Scatter plots of MORTALITY versus JanTemp, JulyTemp, Education, %NonWhite,
logNOx, and logSO2, air pollution example.
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scatter plots of mortality against six selected predictors. They clearly show an
increasing trend of mortality as a function of %NonWhite, logSO2, and logNOx
and a decreasing trend as a function of Education, which seem to support our
intuition about these variables. There is also a discernable increasing trend in
JanTemp and JulyTemp. While the information gleaned from the plots can be
useful and suggestive, they should not be taken as conclusive evidence because
of the potentially high correlations between the predictor variables. Such corre-
lations can complicate the relationship between the response and the predictors.
Consequently, a trend in the scatter plots may not hold up in the final analysis.
We will return to this point after presenting the fitted model in (1.49).

To incorporate the joint effects of the predictors, a regression model should
be fitted to the data. The output for the multiple regression analysis is shown in
Tables 1.6 and 1.7.

From Table 1.7, R2 and R2
a can easily be computed as follows:

R2 = 1 − 52610

225993
= 0.761,

R2
a = 1 − 52610/44

225993/58
= 0.693.

Table 1.6 Multiple Regression Output, Air Pollution Example

Standard
Predictor Coefficient Error t p Value

Constant 1332.7 291.7 4.57 0.000
JanTemp −2.3052 0.8795 −2.62 0.012
JulyTemp −1.657 2.051 −0.81 0.424
RelHum 0.407 1.070 0.38 0.706
Rain 1.4436 0.5847 2.47 0.018
Education −9.458 9.080 −1.04 0.303
PopDensi 0.004509 0.004311 1.05 0.301
%NonWhite 5.194 1.005 5.17 0.000
%WC −1.852 1.210 −1.53 0.133
pop 0.00000109 0.00000401 0.27 0.788
pop/hous −45.95 39.78 −1.16 0.254
income −0.000549 0.001309 −0.42 0.677
logHC −53.47 35.39 −1.51 0.138
logNOx 80.22 32.66 2.46 0.018
logSO2 −6.91 16.72 −0.41 0.681

Table 1.7 ANOVA Table, Air Pollution Example

Degrees of Sum of Mean
Source Freedom Squares Squares F p Value

Regression 14 173383 12384 10.36 0.000
Residual 44 52610 1196
Total 58 225993
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Any standard software will provide these values. The estimate s2 of the error
variance σ 2 is given by the mean square error, which, from Table 1.7, is 1196.

Keeping in mind the principle of parsimony explained in Section 1.7, the
objective is now to fit a reduced model containing fewer number of variables.
Table 1.6 shows that four variables, JanTemp, Rain, %NonWhite, and logNOx,
are significant at the 0.05 level. However, simply retaining the significant predic-
tors in the fitted multiple regression model may not work well if some variables
are strongly correlated. We therefore employ the two variable selection tech-
niques described in Section 1.7. Table 1.8 shows the output for the best subsets
regression using BIC and Cp (only 5 out of 14 rows are shown). Each row of
the table corresponds to the “best” (the one with minimum BIC or Cp) model
for a fixed number of predictor variables. For example, among the

(14
4

)
subsets

of predictors containing 4 variables, the one containing, coincidentally, the pre-
dictors JanTemp, Rain, %NonWhite, and logNOx has the lowest Cp value of 8.3
and the lowest BIC value of 608.29 and is considered the best.

Based on the BIC, the best model has five predictors and the lowest BIC
value of 605.83. The five selected variables are: JanTemp, Rain, %NonWhite,
Education, and logNOx. Use of the Cp criterion gives less conclusive choices.
Although the best model with six predictors has the lowest Cp value of 3.7, it
does not satisfy the criterion Cp ≈ p (note that p is one more than the number of
predictors because it also includes the intercept term). Observe that the best model
containing five variables (p = 6) has its Cp value (4.3) closer to p. Therefore,
on the basis of the Cp criterion and the principle of parsimony, one would be
inclined to choose the same five variables as the BIC. (Use of the AIC criterion
for these data will be left as an exercise.)

Let us now use a stepwise regression approach to find the best model.
Table 1.9 summarizes the stepwise regression output. The α values corresponding
to F -to-remove and F -to-enter were both taken as 0.15 (the default value
in standard statistical software). The output does not show the F -to-enter
or F -to-remove value; rather, it shows the t statistic corresponding to each
coefficient in the multiple regression model after inclusion or exclusion of a
variable at each step. After seven steps, the stepwise method chooses a model
with five predictors JanTemp, Rain, %NonWhite, Education, and logNOx.
Observe that although, at the third step, logSO2 entered the model, it was
dropped at the seventh step. This means that, at the third step, when the model

Table 1.8 Best Subsets Regression Using BIC and Cp , Air Pollution Example

Subset Size R2 R2
a Cp BIC s Variables

4 69.7 67.4 8.3 608.29 35.62 1,4,7,13
5 72.9 70.3 4.3 605.83 34.02 1,4,5,7,13
6 74.2 71.3 3.7 606.81 33.46 1,4,6,7,8,13
7 75.0 71.6 4.3 609.16 33.29 1,4,6,7,8,12,13
8 75.4 71.5 5.4 612.18 33.32 1,2,4,6,7,8,12,13

Note: The s value refers to the square root of the mean square error [see (1.37)] of the model.



ANALYSIS OF AIR POLLUTION DATA 33

Table 1.9 Stepwise Regression Output, Air Pollution Example

Step 1 2 3 4 5 6 7

Constant 887.9 1208.5 1112.7 1135.4 1008.7 1029.5 1028.7

%NonWhite 4.49 3.92 3.92 4.73 4.36 4.15 4.15
t value 6.40 6.26 6.81 7.32 6.73 6.60 6.66
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Education −28.6 −23.5 −21.1 −14.1 −15.6 −15.5
t value −4.32 −3.74 −3.47 −2.10 −2.40 −2.49
p value 0.000 0.000 0.001 0.041 0.020 0.016

logSO2 28.0 21.0 26.8 −0.4
t value 3.37 2.48 3.11 −0.02
p value 0.001 0.016 0.003 0.980

JanTemp −1.42 −1.29 −2.15 −2.14
t value −2.41 −2.26 −3.25 −4.17
p value 0.019 0.028 0.002 0.000

Rain 1.08 1.66 1.65
t value 2.15 3.07 3.16
p value 0.036 0.003 0.003

logNOx 42 42
t value 2.35 4.04
p value 0.023 0.000

s 48.0 42.0 38.5 37.0 35.8 34.3 34.0
R2 41.80 56.35 63.84 67.36 69.99 72.86 72.86
R2(adj) 40.78 54.80 61.86 64.94 67.16 69.73 70.30
Cp 55.0 29.5 17.4 12.7 9.7 6.3 4.3
BIC 634.52 621.62 614.60 612.63 611.76 609.90 605.83

consisted of two variables (%NonWhite and Education), among the remaining
12 predictor variables, inclusion of logSO2 increased the partial F by the
maximum amount. Obviously, this partial F (not shown in the table) was
more than the cut-off value. At the sixth step, logNOx was included in the
model following exactly the same procedure. However, after running a multiple
regression with six variables following the inclusion of logNOx, the t value for
logSO2 drops drastically with the corresponding p value of 0.98 (see Table 1.9).
This is due to a strong positive correlation between logNOx and logSO2,
referred to as multicollinearity in the regression literature. Consequently, at the
seventh step, the F -to-remove value for logSO2 becomes very small (again, this
is not shown in the output) and results in dropping this variable. Eventually,
the final model selected by stepwise regression is exactly the same as the one
selected by using the Cp statistic as discussed in the preceding paragraphs.

As expected, the R2 and R2
a values in Tables 1.8 and 1.9 increase as the

model size increases, although R2
a increases more slowly. With the exception of

the last column (seventh step) of Table 1.9, the values of R2, R2
a , BIC, Cp, and

s in Table 1.8 are different from the corresponding values in Table 1.9 because
the variables selected by stepwise regression are not necessarily the best (for a
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given model size) according to the BIC or Cp criterion. Recall that, unlike in
Table 1.8, not all subsets of a given size p are searched in stepwise regression.

The final model can be obtained either directly from the last stage of the
stepwise regression output, or by running a multiple regression of mortality on
the five significant variables. The coefficients of these five variables in the final
model will be different from the corresponding coefficients in Table 1.6, as the
model now has fewer variables. The fitted model is

MORTALITY = 1028.67 − 2.14 JanTemp + 1.65 Rain − 15.54 Education

+ 4.15 %NonWhite + 41.67 logNOx, (1.49)

with an R2 of 0.729 and an adjusted R2
a of 0.703.

Note that the signs of coefficients of the predictors of JanTemp, Education,
%NonWhite, and logNOx in (1.49) confirm the trends in Figure 1.5. On the
other hand, the apparent trend in Figure 1.5 for JulyTemp and logSO2 is not
confirmed in the more rigorous regression analysis. This discrepancy can be
explained by the high correlations between these two variables and the other
significant variables. The observed trend in these two variables is incorporated
when the other significant variables are included in the model. In the case of
logSO2, it was later dropped when a highly correlated variable logNOx was
included in the model (see Steps 6 and 7 of Table 1.9). This analysis demonstrates
the danger of making decisions based on simple graphical displays.

From (1.49) one can conclude that, after adjusting for the effects of JanTemp,
Rain, Education, and %NonWhite, the pollutant NOx still has a significant effect
on mortality, while the other two pollutants HC and SO2 do not.

1.9 PRACTICAL SUMMARY

1. Experimental problems can be divided into five broad categories:

(i) Treatment comparisons,
(ii) Variable screening,

(iii) Response surface exploration,
(iv) System optimization,
(v) System robustness.

2. Statistical process control tools such as control charts are often used to mon-
itor and improve a process. If a process is stable but needs to be further
improved, more active intervention like experimentation should be employed.

3. There are seven steps in the planning and implementation of experiments:

(i) State objective,
(ii) Choose response,
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(iii) Choose factors and levels,
(iv) Choose experimental plan,
(v) Perform the experiment,

(vi) Analyze the data,
(vii) Draw conclusions and make recommendations.

4. Guidelines for choosing the response:

(i) It should help understand the mechanisms and physical laws involved
in the problem.

(ii) A continuous response is preferred to a discrete response.
(iii) A good measurement system should be in place to measure the

response.

5. For response optimization, there are three types of responses: nominal-
the-best, larger-the-better, and smaller-the-better.

6. A cause-and-effect diagram or a flow chart should be used to facilitate the
identification of potentially important factors and to provide a system view
of the problem.

7. Three fundamental principles need to be considered in experimental design:
replication, randomization, and blocking. Blocking is effective if the
within-block variation is much smaller than the between-block variation.

8. Factors can be designated as E (experimental), B (blocking), O (constant
level), and R (randomization).

9. A step-by-step introduction to simple linear regression, including estima-
tion and hypothesis testing, is given in Sections 1.4 and 1.5. Elementary
derivations are presented without the use of matrix algebra.

10. Multiple linear regression, which extends simple linear regression to any
number of predictor variables, is covered in Section 1.6. General linear mod-
els and least squares estimator are presented using matrix algebra. Analysis of
variance, R2 (multiple correlation coefficient), and the extra sum of squares
principle are included.

11. Variable selection in regression analysis is considered in Section 1.7. Criteria
for selection include the principle of parsimony, the adjusted R2

a , the AIC,
BIC, and Cp statistics. Variable selection strategies include backward elimi-
nation, forward selection, and stepwise selection, the last one being preferred.
Illustration of multiple regression and variable selection with air pollution
data is given in Section 1.8.
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EXERCISES

1. Use a real example to illustrate the seven-step procedure in Section 1.2.

2. Use two examples, one from manufacturing and another from the service sec-
tor, to illustrate the construction of the cause-and-effect diagram. Designate
each factor on the diagram as E, B, O, or R.

3. Give examples of hard-to-change factors. How do you reconcile the
hard-to-change nature of the factor with the need for randomization?

4. Identify a real-life situation (industrial, social, or even something associated
with your daily life), where you may need to conduct an experiment to
satisfy any of the five objectives stated in Section 1.1. Among the seven
steps necessary to conduct an experiment systematically (as described
in Section 1.2), illustrate as many as you can with the help of your
example.

5. The prices of gasoline are on the rise once again and everyone’s concern
is to get as much mileage as possible from his/her automobile. Prepare a
cost-and-effect diagram to list all the factors that may be responsible for
high fuel consumption in your vehicle. Classify the causes under the heads
MAN, MACHINE, METHOD, MATERIAL as in Figure 1.2. Which of the
factors in the diagram can be classified as experimental (E) factors with
respect to your routine driving process?

*6. (a) For the typing experiment considered in Section 1.3, use a statistical
model to quantify the gains from using randomization (as illustrated in
the second sequence) and from using balance in addition to randomiza-
tion.

(b) Suppose that the following sequence is obtained from using balanced
randomization:

1. A,B, 2. A, B, 3. A, B, 4. B, A, 5. B,A, 6. B,A.

Would you use it for the study? If not, what would you do? What aspect
of the sequence makes you uneasy? Can you relate it to the possibil-
ity that the advantage of the learning effect may diminish over time
and express it in more rigorous terms? (Hint: The terms in the model
should represent the effects you identified as potentially influencing the
comparison.)

7. The typing experiment can be further improved by employing more typists
that are representative of the population of typists. Suppose three typists are
chosen for the study. Devise an experimental plan and discuss its pros and
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cons. (Some of the more elaborate plans may involve strategies that will be
introduced in the next chapter.)

*8. Give an elementary proof of the variance and covariance formulas
(1.14)–(1.16) by using equations (1.8)–(1.11).

9. In the winter, a plastic rain gauge cannot be used to collect precipitation
data because it will freeze and crack. As a way to record snowfall, weather
observers were instructed to collect the snow in a metal standard 2.5 can,
allow the snow to melt indoors, pour it into a plastic rain gauge, and then
record the measurement. An estimate of the snowfall is then obtained by
multiplying the measurement by 0.44. (The factor 0.44 was theoretically
derived as the ratio of the surface area of the rectangular opening of the rain
gauge and of the circular metal can.) One observer questioned the validity
of the 0.44 factor for estimating snowfall. Over one summer, the observer
recorded the following rainfall data collected in the rain gauge and in the
standard 2.5 can, both of which were mounted next to each other at the same
height. The data (courtesy of Masaru Hamada) appear in Table 1.10, where
the first column is the amount of rain (in inches) collected in the standard

Table 1.10 Rainfall Data

x y x y x y

0.11 0.05 2.15 0.96 1.25 0.62

1.08 0.50 0.53 0.32 0.46 0.23

1.16 0.54 5.20 2.25 0.31 0.17

2.75 1.31 0.00 0.06 0.75 0.33

0.12 0.07 1.17 0.60 2.55 1.17

0.60 0.28 6.67 3.10 1.00 0.43

1.55 0.73 0.04 0.04 3.98 1.77

1.00 0.46 2.22 1.00 1.26 0.58

0.61 0.35 0.05 0.05 5.40 2.34

3.18 1.40 0.15 0.09 1.02 0.50

2.16 0.91 0.41 0.25 3.75 1.62

1.82 0.86 1.45 0.70 3.70 1.70

4.75 2.05 0.22 0.12 0.30 0.14

1.05 0.58 2.22 1.00 0.07 0.06

0.92 0.41 0.70 0.38 0.58 0.31

0.86 0.40 2.73 1.63 0.72 0.35

0.24 0.14 0.02 0.02 0.63 0.29

0.01 0.03 0.18 0.09 1.55 0.73

0.51 0.25 0.27 0.14 2.47 1.23

Note: x = amount of rain (in inches) collected in metal can, y = amount
of rain (in inches) collected in plastic gauge.
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2.5 can (x) and the second column is the amount of rain (in inches) collected
in the rain gauge (y).

(a) Plot the residuals yi − 0.44xi for the data. Do you observe any system-
atic pattern to question the validity of the formula y = 0.44x?

(b) Use regression analysis to analyze the data in Table 1.10 by assuming
a general β0 (i.e., an intercept term) and β0 = 0 (i.e., regression line
through the origin). How well do the two models fit the data? Is the
intercept term significant?

*(c) Because of evaporation during the summer and the can being made of
metal, the formula y = 0.44x may not fit the rainfall data collected in
the summer. An argument can be made that supports the model with
an intercept. Is this supported by your analyses in (a) and (b)?

10. The data in Table 1.11 (Weisberg, 1980, pp. 128–129) records the average
weight of the brain weight (g) and body weight (kg) for 62 mammal species.
The objective is to model brain weight as a function of body weight.

Table 1.11 Brain and Body Weight Data

Body Wt Brain Wt Body Wt Brain Wt Body Wt Brain Wt

3.385 44.5 521.000 655.0 2.500 12.10

0.480 15.5 0.785 3.5 55.500 175.00

1.350 8.1 10.000 115.0 100.000 157.00

465.000 423.0 3.300 25.6 52.160 440.00

36.330 119.5 0.200 5.0 10.550 179.50

27.660 115.0 1.410 17.5 0.550 2.40

14.830 98.2 529.000 680.0 60.000 81.00

1.040 5.5 207.000 406.0 3.600 21.00

4.190 58.0 85.000 325.0 4.288 39.20

0.425 6.4 0.750 12.3 0.280 1.90

0.101 4.0 62.000 1320.0 0.075 1.20

0.920 5.7 6654.000 5712.0 0.122 3.00

1.000 6.6 3.500 3.9 0.048 0.33

0.005 0.1 6.800 179.0 192.000 180.00

0.060 1.0 35.000 56.0 3.000 25.00

3.500 10.8 4.050 17.0 160.000 169.00

2.000 12.3 0.120 1.0 0.900 2.60

1.700 6.3 0.023 0.4 1.620 11.40

2547.000 4603.0 0.010 0.3 0.104 2.50

0.023 0.3 1.400 12.5 4.235 50.40

187.100 419.0 250.000 490.0
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(a) Obtain a scatter plot of brain weight versus body weight and observe
whether there is any indication of a relationship between the two. Com-
ment on the plot.

(b) Now take a log transformation of both the variables and plot log(brain
weight) against log(body weight). Does this transformation improve the
relationship?

(c) Fit an appropriate regression model to express brain weight as a function
of body weight. What percentage of variation in the response is explained
by the model?

(d) Estimate the expected average brain weight of mammals that have an
average body weight of 250 kg. Obtain a 95% confidence interval for
this estimate.

11. The modern Olympic Games are an international athletic competition that
has been held at a different city every four years since their inauguration in
1896, with some interruptions due to wars. The data for the gold medal per-
formances in the men’s long jump (distance in inches) is given in Table 1.12.
The first column Year is coded to be zero in 1900. The performance of long
jump is expected to be improved over the years.

(a) Draw a scatter plot of the response “Long Jump” against the covariate
“Year.” Comment on any striking features of the data by relating them
to the world events of specific years.

(b) Run simple linear regression on the data. Does the linear regression
model fit the data well?

(c) Conduct an F test at 0.05 level to decide if there is a linear relationship
between the performance of long jump and the year of the game.

(d) Get an estimate of the mean long jump performance in year 1896, and
obtain a 95% confidence interval for the estimate.

(e) Analyze the regression output. Are there any outliers in the data? If so,
remove the outliers and reanalyze the data. Obtain the residual plots and
take a careful look. Do they still reveal any special pattern pertaining to
the record setting nature of the data?

Table 1.12 Long Jump Data

Year Long Jump Year Long Jump Year Long Jump Year Long Jump

−4 249.75 24 293.13 56 308.25 80 336.25

0 282.88 28 304.75 60 319.75 84 336.25

4 289.00 32 300.75 64 317.75 88 343.25

8 294.50 36 317.31 68 350.50 92 342.50

12 299.25 48 308.00 72 324.50

20 281.50 52 298.00 76 328.50
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12. (a) For the air pollution data in Section 1.8, use the AIC criterion to find
the best model for subset sizes four to eight.

*(b) Explain why the best model according to AIC is different from the best
model chosen by BIC in Table 1.8. (Hint: Compare the second terms
in (1.46) and (1.47).)

13. The data in Table 1.13 is from 1980 U.S. Census Undercount (Ericksen
et al., 1989). There are 66 rows and 10 columns. The first column is the
place where the data is collected. There are eight predictors:

1. Minority: minority percentage.
2. Crime: rate of serious crimes per 1000 population.
3. Poverty: percentage poor.
4. Language: percentage having difficulty speaking or writing English.
5. Highschool: percentage age 25 or older who had not finished high school.
6. Housing: percentage of housing in small, multi-unit buildings.
7. City: a factor with two levels: “city” (major city), “state” (state remainder).
8. Conventional: percentage of households counted by conventional personal

enumeration.

The response is undercount (in terms of percentage). Use regression to inves-
tigate the relationship between undercount and the eight predictors.

(a) Perform regression analysis using all the predictors except city. Show
the regression residuals. Which predictors seem to be important? Draw
the residual plot against the fitted value. What can you conclude from
this plot?

*(b) Explain how the variable “City” differs from the others.
(c) Use both best subset regression and stepwise regression to select vari-

ables from all the predictors (excluding the variable “City”). Compare
your final models obtained by the two methods.

14. For 2005, the consumption of gasoline was measured in the 50 states and the
District of Columbia in the United States by the Federal Highway Admin-
istration. The response y is the consumption of gallons of gasoline per
population of 16 years olds and older. Consider the following four predictor
variables—x1: state gasoline tax (cents per gallon), x2: per capita income
(1000s of dollars), x3: paved highways (1000s of miles), and x4: licensed
drivers per 1000 persons in population of 16 years olds or older (exceeds
1000 in some states, because learner’s permits are counted as licenses and
learner’s permit holders can be under 16 years of age). The data in Table 1.14
are derived from the tables at

http://www.fhwa.dot.gov/policy/ohim/hs05/index.htm.
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Table 1.13 Ericksen Data

Mino- Lan- High- Hous- Conven- Under-
Place rity Crime Poverty guage school ing City tional count

Alabama 26.1 49 18.9 0.2 43.5 7.6 state 0 −0.04
Alaska 5.7 62 10.7 1.7 17.5 23.6 state 100 3.35
Arizona 18.9 81 13.2 3.2 27.6 8.1 state 18 2.48
Arkansas 16.9 38 19.0 0.2 44.5 7.0 state 0 −0.74
California 24.3 73 10.4 5.0 26.0 11.8 state 4 3.60
Colorado 15.2 73 10.1 1.2 21.4 9.2 state 19 1.34
Connecticut 10.8 58 8.0 2.4 29.7 21.0 state 0 −0.26
Delaware 17.5 68 11.8 0.7 31.4 8.9 state 0 −0.16
Florida 22.3 81 13.4 3.6 33.3 10.1 state 0 2.20
Georgia 27.6 55 16.6 0.3 43.6 10.2 state 0 0.37
Hawaii 9.1 75 9.9 5.7 26.2 17.0 state 29 1.46
Idaho 4.2 48 12.6 1.0 26.3 9.1 state 56 1.53
Illinois 8.1 48 7.7 1.0 29.8 13.5 state 0 1.69
Indiana 7.1 48 9.4 0.5 33.6 9.9 state 0 −0.68
Iowa 2.3 47 10.1 0.3 28.5 10.4 state 0 −0.59
Kansas 7.9 54 10.1 0.5 26.7 8.5 state 14 0.94
Kentucky 7.7 34 17.6 0.2 46.9 10.6 state 0 −1.41
Louisiana 31.4 54 18.6 1.1 42.3 9.7 state 0 2.46
Maine 0.7 44 13.0 1.0 31.3 19.5 state 40 2.06
Maryland 16.7 58 6.8 0.8 28.2 10.5 state 0 2.03
Massachusetts 3.8 53 8.5 2.1 27.4 26.9 state 4 −0.57
Michigan 7.0 61 8.7 0.7 29.9 9.4 state 8 0.89
Minnesota 2.1 48 9.5 0.5 26.9 10.7 state 11 1.57
Mississippi 35.8 34 23.9 0.2 45.2 7.2 state 0 1.52
Missouri 7.8 45 11.2 0.3 34.9 9.1 state 0 0.81
Montana 1.5 50 12.3 0.4 25.6 12.8 state 75 1.81
Nebraska 4.8 43 10.7 0.5 26.6 9.7 state 33 0.36
Nevada 13.0 88 8.7 1.6 24.5 11.7 state 10 5.08
New Hampshire 1.0 47 8.5 0.8 27.7 20.3 state 0 −1.49
New Jersey 19.0 64 9.5 3.6 32.6 23.7 state 0 1.44
New Mexico 38.4 59 17.6 4.6 31.1 10.7 state 58 2.69
New York 8.0 48 8.9 1.3 29.3 21.6 state 0 −1.48
North Carolina 23.1 46 14.8 0.2 45.2 8.2 state 0 1.36
North Dakota 1.0 30 12.6 0.5 33.6 15.1 state 70 0.35
Ohio 8.9 52 9.6 0.5 32.1 11.3 state 0 0.97
Oklahoma 8.6 50 13.4 0.5 34.0 8.0 state 0 −0.12
Oregon 3.9 60 10.7 0.8 24.4 7.9 state 13 0.93
Pennsylvania 4.8 33 8.8 0.6 33.6 13.3 state 0 −0.78
Rhode Island 4.9 59 10.3 3.2 38.9 29.6 state 0 0.74
South Carolina 31.0 53 16.6 0.2 46.3 7.9 state 0 6.19
South Dakota 0.9 32 16.9 0.4 32.1 12.0 state 84 0.42
Tennessee 16.4 44 16.4 0.2 43.8 9.4 state 0 −2.31
Texas 30.6 55 15.0 4.7 38.7 7.7 state 1 0.27
Utah 4.7 58 10.3 0.9 20.0 11.3 state 14 1.14
Vermont 0.9 50 12.1 0.5 29.0 20.8 state 0 −1.12
Virginia 20.0 46 11.8 0.5 37.6 10.3 state 0 1.11

(continued )
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Table 1.13 (Continued)

Mino- Lan- High- Hous- Conven- Under-
Place rity Crime Poverty guage school ing City tional count

Washington 5.4 69 9.8 1.0 22.4 9.4 state 4 1.48
West Virginia 3.9 25 15.0 0.2 44.0 9.0 state 0 −0.69
Wisconsin 1.7 45 7.9 0.4 29.5 12.8 state 9 1.45
Wyoming 5.9 49 7.9 0.7 22.1 13.2 state 100 4.01
Baltimore 55.5 100 22.9 0.7 51.6 23.3 city 0 6.15
Boston 28.4 135 20.2 4.4 31.6 52.1 city 0 2.27
Chicago 53.7 66 20.3 6.7 43.8 51.4 city 0 5.42
Cleveland 46.7 101 22.1 1.6 49.1 36.4 city 0 5.01
Dallas 41.6 118 14.2 3.1 31.5 12.9 city 0 8.18
Detroit 65.4 106 21.9 1.6 45.8 18.6 city 0 4.33
Houston 45.1 80 12.7 5.1 31.6 8.9 city 0 5.79
Indianapolis 22.5 53 11.5 0.3 33.3 13.6 city 0 0.31
Los Angeles 44.4 100 16.4 12.7 31.4 15.0 city 0 7.52
Milwaukee 27.2 65 13.8 1.6 46.4 27.2 city 0 3.17
New York City 44.0 101 20.0 8.9 39.8 32.2 city 0 7.39
Philadelphia 41.3 60 20.6 2.2 45.7 21.7 city 0 6.41
Saint Louis 46.7 143 21.8 0.5 51.8 40.9 city 0 3.60
San Diego 23.6 81 12.4 4.2 21.1 11.2 city 0 0.47
San Francisco 24.8 107 13.7 9.2 26.0 20.3 city 0 5.18
Washington DC 72.6 102 18.6 1.1 32.9 21.0 city 0 5.93

Analyze the data and answer the following questions:

(a) What impression can you draw from the scatter plots regarding the
variables affecting consumption of gasoline?

(b) After performing a multiple regression analysis, which predictor vari-
ables are seen to significantly affect the response?

*(c) Provide intuitive explanations for the impact of each of the four
predictor variables on the response as suggested by the multiple
regression output. Try to account for any inconsistency that may be
apparent.

(d) Use the following three methods to obtain the best regression
model:

i. Use best subset selection using BIC and Cp.
ii. Conduct regression analysis using backward elimination.

iii. Perform regression analysis using stepwise regression.

Are the results consistent?

*(e) Obtain the residual plots and take a careful look at them. Do they
suggest any specific pattern that may provide any clue regarding the
improvement of the model?
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Table 1.14 Gasoline Consumption Data

x1 x2 x3 x4 y x1 x2 x3 x4 y

18.00 27.8 96.0 1011.7 708.1 27.75 26.9 69.3 944.0 608.2

8.00 34.5 14.4 976.9 537.7 25.30 31.3 93.3 958.7 568.6

18.00 28.4 59.8 871.4 609.3 24.80 33.4 34.6 859.2 593.0

21.70 25.7 98.7 927.9 626.7 19.50 37.0 15.6 954.5 651.5

18.00 35.0 169.9 832.8 568.0 10.50 41.3 38.6 863.2 620.0

22.00 36.1 87.6 925.0 574.9 18.88 26.2 63.8 871.2 618.8

25.00 45.4 21.2 987.5 564.6 23.25 38.2 113.3 726.7 365.4

23.00 35.9 6.1 910.7 636.5 27.10 29.2 103.1 919.0 623.3

20.00 51.8 1.5 737.2 279.6 23.00 31.4 86.8 901.0 645.2

14.50 31.5 120.6 942.5 589.5 28.00 31.3 124.8 853.4 559.5

7.50 30.1 117.6 852.5 712.7 17.00 28.1 112.9 799.8 641.1

16.00 32.2 4.3 849.0 446.4 24.00 30.0 64.5 931.8 522.7

25.00 27.1 47.1 890.8 530.0 30.00 33.3 120.7 849.2 508.0

19.00 34.4 138.8 796.3 511.3 30.00 33.7 6.5 868.0 437.3

18.00 30.1 95.6 875.6 645.8 16.00 27.2 66.2 892.4 715.3

20.70 30.6 114.0 855.1 642.8 22.00 30.9 83.9 926.8 641.7

24.00 30.8 135.5 918.5 520.0 21.40 30.0 90.5 919.5 639.5

18.50 27.7 78.0 865.5 648.0 20.00 30.2 304.2 851.8 658.1

20.00 27.6 60.9 878.5 637.3 24.50 26.6 43.6 887.0 552.8

26.00 30.6 22.8 928.2 652.8 20.00 32.8 14.4 1106.9 666.2

23.50 39.2 31.0 850.8 603.3 17.50 35.5 72.0 870.2 652.0

21.00 41.8 35.9 902.5 544.4 31.00 35.3 83.4 940.2 529.9

19.00 32.0 121.5 900.0 609.9 27.00 25.9 37.0 896.8 555.0

20.00 35.9 132.0 761.0 640.8 29.90 32.2 114.1 907.4 558.1

18.40 24.7 74.2 870.3 698.0 14.00 34.3 27.7 934.0 741.1

17.00 30.6 125.8 901.5 672.3
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