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INTRODUCTION
Alvin W. Strong

1.1 BOOK PHILOSOPHY

This CMOS technology reliability book has been written at a beginning graduate
level or senior undergraduate level and assumes some solid state physics
background.

The book is divided into seven relatively independent chapters consisting
of an introduction, gate dielectric characterization, gate dielectric physics and
breakdown, negative bias temperature instability or just NBTI reliability, hot
carrier injection or hot electron reliability, stress-induced voiding or stress
migration reliability, and electromigration reliability. The chapters describe the
reliability mechanisms and the physics associated with them. They then take that
understanding as the framework to build the bridge between the accelerated
mechanism and the product mechanism.

For a CMOS reliability course or understanding focused only on one of the
mechanisms, the authors expect that the material covered would include most of
the first chapter and that focus chapter.

Several mechanisms are occasionally considered with reliability mechanisms,
but these are not included here. Examples of these include latch-up [1], electro-
static discharge (ESD) [2, 3], and the radiation-induced soft-error rate (SER) [4].
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1.2 LIFETIME AND ACCELERATION CONCEPTS

It is a fact of life that every human-devised system has a finite lifetime before the
catastrophic failure of the system occurs. However, most systems have a reason-
ably well-defined lifetime, and the catastrophic failure, or wearout, occurs well
past that expected lifetime. That system has met our expectation and the customer
is satisfied. Wearout is best thought of in terms of all of the systems or subsystems
failing within one or two orders of magnitude in time. For example, a computer
system with an expected lifetime of 10 years should experience no significant
wearout before 10 years. However, all of the systems could be expected to wear
out sometime between 20-plus years and 200-plus years.

1.2.1 Reliability Purpose

The purpose then of reliability is to ensure that the life of the system will be longer
than the target life and that the failure rate during the normal operating life of the
system will be below the target failure rate. The reliability of the product must be
known when the product is sold so that the operating-life warranty costs can be
quantified and customer satisfaction protected. Ensuring these objectives are met
means that each failure mechanism must be quantified so that its impact during
normal operating life can be predicted and the time at which it starts to cause the
system to wear out can be predicted as well.

The length of time one has to do the reliability stressing and make the
predictions is dependent on the state of the program. As a new technology is being
developed, reliability engineers should be generating reliability data to help guide
the program in the appropriate design, cost, and reliability tradeoffs. This work
may occur over the course of several months to a few years. However, feedback on
any given experiment needs to be given as quickly as possible. Once the technology
is ready for implementation, it would typically undergo a ‘‘qualification’’ of no
more than three months in duration. If a problem is discovered after qualification,
that is, during manufacturing, it is all the more crucial to give feedback quickly.

The concept of an accelerated life is necessary for reliability stressing to have
meaning. That is, it must be possible to find some condition or conditions that will
allow one to shrink a 10-year product life down to a three month period, or less, so
that the reliability of the system can be investigated and guaranteed in that three
months. The conditions used to accelerate a given mechanism usually cannot be
applied to the whole system (in our case, the semiconductor product chip). In this
case, a test structure must typically be built that will replicate the behavior of the
element in the product chip, but allow one to apply an accelerating condition.
Hence, with the concept of accelerated life, we also need to posit the concept of a
representative test structure.

It must be noted that in all of the above discussion, the product is assumed to
operate perfectly when it is first turned on, for example, at time zero.

Once the reliability of each element has been investigated, understood, and
modeled, an additional step should be feedback for the next design pass so that the
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product team can design in reliability. A simple example of this design for
reliability would be to use minimal groundrules only where necessary.

1.2.2 Accelerated Life

An accelerated life concept must include several features to be useful. In addition
to the requirement that it can be used to accelerate a particular reliability
mechanism, it must be possible to quantify how much that condition actually
accelerates the reliability mechanism. It must be possible to build a bridge between
the accelerated stress conditions and the use condition so that it is possible to
quantify the degree or amount of acceleration. This quantification is also
necessary to ensure that no mechanism is introduced with the accelerating
condition that does not exist at the use condition of the product. One must
understand if the behavior of the mechanism is uniform and consistent from the
use condition to the accelerating conditions.

Once an appropriate accelerating condition has been determined, the accel-
eration between the stress conditions and the use condition can be determined.
First, data from at least two different values of accelerating conditions are
measured. The cumulative fails from those conditions are then plotted on the y
axis, versus time on the x axis. This plot is done on a set of axes that have
been transformed in such a way that the resulting plot is a straight line. The
methodology for doing this for the most common distributions used in semi-
conductor reliability is discussed in detail later in this chapter. The two distribu-
tions that are most commonly used in semiconductor technology reliability are
the two-parameter lognormal and Weibull distributions because each of these
is very flexible and can be used to describe many different types of behaviors.
These distributions provide a functional form with which a distribution can
be characterized so that it can then be treated analytically. The details of
these distributions, and their axes transformations, are the topics of Section 1.4.
A simple, although somewhat unrealistic, example would be a distribution whose
cumulative failures were linear with the log of time. If the cumulative fails were to
be plotted against time, a nonlinear curve would result. However, a transforma-
tion of the x axis by taking the log of the time and then plotting the cumulative
failures against that log of time would result in a straight line. These transforma-
tions are necessary so that the distributions and the slopes remain invariant across
all accelerating conditions and down to the use conditions. All transformations
have been made for the example in Figure 1.1 so that the plot is linear. Two sets of
voltage data are shown plotted on the top left of Figure 1.1. At least three different
values of each accelerating condition are preferred but only two are shown on
Figure 1.1 for simplicity. The data from these accelerated conditions are used to
calculate an acceleration factor, which is in turn used to calculate the acceleration
time between the lowest accelerated condition and the use condition.

One uses the lowest accelerated condition to minimize projection error.
Obviously if any new mechanism is introduced due to the accelerated condition,
or a nonlinearity in the expected mechanism is introduced, this acceleration time
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would not be valid. The transformation equations for the x and y axes of the plot
will depend on the particular reliability mechanism in question and the probability
distribution function that is most appropriate for that mechanism. The sample
sizes for the stresses are typically very small, whereas the wearout target is
typically expressed in terms of parts per million (ppm) or less. This means that
once the acceleration between the stress conditions and the use condition is
calculated, a second projection must then be made from that value, which
typically is at about the 50% fallout point of each of the accelerated curves, to
a very small percent fallout for that second projection curve. Note that the 50%
value is used only as a convenient example here. The exact value at which the
acceleration calculations will be made will depend on the distribution that is to be
used and is discussed in detail later in this chapter. The intent here is to give a
broad overview and avoid losing the reader in the detail. This extrapolation is
done using the same slope found during at the stress conditions, since the axes
have been transformed so that they remain invariant across all of the conditions of
interest. Thus, an error in the acceleration factor causes the use condition to be
incorrectly located in time, and any errors in determining the correct slope causes
the projection to the small fraction fail target to have an additional error. Often
this last error, the error due to an incorrect slope determination, can cause the
largest error in the resultant projection. It should be highlighted that we are not
speaking of graphing errors here since the calculations can all be performed using
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computer software. If done graphically, those errors would be in addition to the
errors mentioned previously.

Three plots are shown in Figure 1.1. The two plots on the left show the two
different accelerated voltage conditions with all other conditions held constant. The
dotted line plot on the right shows the projection from the 50% failure time for the
use condition to the failure time associated with the target failure rate for that
mechanism. One other potential factor that is not shown in Figure 1.1 is a test-
structure scaling factor. This factor will be discussed in each of the chapters for
which it is applicable. Although there are many accelerating conditions as shown in
Section 1.2.3, by far the two most common accelerating conditions are voltage and
temperature. The minimum experimental design that can yield a voltage accelera-
tion factor is the two conditions as shown in Figure 1.1. For example, assume that
the stress voltages in Figure 1.1 are 4.37V and 4V. The lines on the left side of
Figure 1.1 represent fits to data taken at these accelerated voltage conditions. The
slopes of the two stress conditions are shown as equal. The slope fit would normally
be accomplished by a fitting program, which could force the best fit to all of the
accelerated curves simultaneously. For this case we will assume an Eyring accel-
eration model [5] applies that has the form Acc= t2/t1=exp{(DH/k){(1/T2)
�(1/T1)}} exp{�bV (V2�V1)}. For the acceleration due to voltage, AccVOLTstress=
t2/t1=exp{�bV(V2�V1)}, where V is voltage, t is time, and bV is the voltage
acceleration factor for this Eyring model. The temperature acceleration model by
itself has the form AccTEMPstress= t2/t1=exp{(DH/k){(1/T2)�(1/T1)}} where k is
Boltzmann’s constant and is also known as an Arrhenius model. These models will
be discussed in more detail throughout this book but are introduced here to give the
reader an early qualitative introduction to the acceleration concepts. Observation of
the first two curves will reveal a time difference or acceleration of about 30� . The
large circles in Figure 1.1 represent a mean life of the hardware under stress and as
mentioned above are used as a convenient example. As will be discussed later, the
points at which the acceleration calculations will be made are the most accurate
values for the distribution under consideration. If the voltage used for the first curve
on the left is V= 4.37 and the voltage for the second curve isV= 4, then bV may be
calculated, given AccVOLTstress=30, as bV=(ln AccVOLTstress)/(V1�V2)=9.2. This
value for bV is then used to project from V=4 to the V=2 use condition as
AccVOLTuse=exp{9.2� (4�2)}=108. Having made this calculation, one then
needs to consider whether or not the value calculated is reasonable based on
comparable data both from the reliability analyst’s prior work, as well as literature
values. A similar procedure would be used to calculate any acceleration including,
for example, a temperature acceleration. This example should give the reader a
better understanding of the actual process of stressing and then projecting to use
conditions using acceleration concepts. Obviously the stress conditions must be
appropriately chosen and the experiment appropriately designed to achieve useful
results. Note that if too small of difference is used between two accelerating
conditions then the experimental error and the statistical variation in the two sets of
data may cause enough overlap of data such that the acceleration factor between the
two sets of data cannot be calculated. On the other hand if the difference between
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the two sets of data is too large, the failure times of the lower condition may be
longer than the time designated for the stress. The discussion of the extrapolation to
very small failing percentage targets will commence in Section 1.4.5.

We now return to a more general discussion of acceleration. The mean life
from Figure 1.1 is plotted against one of the accelerating conditions in Figure 1.2.
Figure 1.2 presents a picture of the progress of the state of the art of reliability
stressing across the last 20-plus years. Each circle represents a change of
approximately 40� in time.

More than 20 years ago, all reliability stressing was done with the reliability
test structures wire-bonded onto a die carrier or module. This structure, which was
contained within the package, was then put into a stress apparatus, which typically
applied stress temperature and voltage between weeks and months, depending on
the mechanism under investigation. The readouts were made at preset values,
typically on the order of two or three times per decade. The test structures had to
be removed from the stress apparatus and physically transported to a tester for
each readout. This stressing is represented in Figure 1.2 by the second circle from
the left. Note that the left most circle represents the useful life of the structure,
typically 10 years. For mechanisms like ionic contamination, which will relax
unless the voltage is continuously applied, it was necessary to have large batteries
connected to keep the hardware at stress voltage while transporting the hardware

Accelerating Condition e.g., Voltage (Increasing)

Life
Time

Saturation 

Catastrophic mechanism

Stress Window Shrinkage

New Mechanisms

Expected Life, 10 yrs  (Use Voltage)

Stress Life, 3 months (Module Stress)

Stress Life, 2 days (Mod/Waf Stress)

Stress Life,100 sec
(WLR)

Stress Life, 1 hr (Waf Stress)

Historical Limits

Figure 1.2. Lifetime projection curve with each large circle representing the 50%

life for the accelerating or use condition and showing various nonlinearities that

can compromise a highly accelerated stress.
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to the tester and awaiting test. Even for mechanisms that do not relax when not
under bias, this method has the disadvantage that no data can be obtained for the
first few weeks after the hardware becomes available because the wafers are being
built onto the chip carriers or modules and this build typically takes several weeks.
The advantage of this method, even today, is that the stress equipment is relatively
inexpensive and the test equipment is general enough to be used for readouts for
several mechanisms. This amortizes the test equipment across all of these stresses
and further decreases the cost of ownership.

However, for accuracy and simplicity, it is desirable to use the same
equipment for the stress application and the readouts. This also minimizes
handling damage and human error. Data acquisition improvements during the
past 20 years have allowed the detection of exact times-to-fail even for the long
three-month stresses. Now whether the stress is a long, three-month stress or a
very short stress, the exact times-to-fail can be obtained with the same equipment.

In addition, advances in the state of the art in hot carrier stressing, in dielectric
stressing, and in electromigration stressing have moved the leading practice to the
far right two points on Figure 1.2, that is, to stresses of hours and minutes.
Typically, stressing with seconds of duration is used in conjunction with at least
one additional stress of longer duration. For example, in the case of dielectric
stressing, optimally three voltages are stressed with the shortest stress duration
having a median fallout on the order of 10 to 100 sec and the longest (lowest
voltage) having a duration of 1000 to 10000 sec. This has been practiced for the
last 5 to 10 years for dielectric stressing but as the state of the art thickness
approaches 1 nm, it may actually become necessary to return to the relatively
long stresses of several months. In the case of electromigration, the quantitative
bridge for stressing on the order of seconds was only demonstrated a few years
ago [6–8].

One of the obvious points that should be explicitly made is that for a three-
month stress, the extrapolation to a 10-year use life is only a factor of 40. While for
a 100 sec stress, the extrapolation is a factor of more than 1E6. Much more care
concerning the projection error must be exercised when one is extrapolating six
orders of magnitude, than when one is extrapolating only a little more than one
order of magnitude.

Also one has to investigate very carefully whether any change in the
accelerating condition of the mechanism in question has occurred or can occur
under any reasonable set of conditions. This is depicted graphically in Figure 1.2
as new mechanisms, which may occur above a certain stress level. If any such
mechanisms exist, they may be either linear or nonlinear as shown, and they would
preclude exceeding that stress level since no straightforward model or bridge to
use conditions would be possible in that case. Another possibility is that the
accelerating or stress condition saturates above a certain level. That is, a further
increase in the accelerating condition causes no resultant decrease in the lifetime.
Again, a mechanism of this nature would limit the accelerating condition to a
value no higher than just below its saturation value, and even there, the physics
would need to be well understood.
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The final concept that Figure 1.2 attempts to depict is that the window
available for stressing is shrinking as the technology features continue to shrink.
In the past, a very significant margin existed in many of the mechanisms. Often a
calculated acceleration would demonstrate that the stress had gone well beyond a
10-year life but no wearout for that mechanism had been observed. Dielectric
stressing is an excellent example of this. For 12 nm oxides, dielectric stressing on
the order of three months could not detect any indication of wear out, and the
stress focus was just on the extrinsic or defect part of the curve. Today, models are
constructed to understand whether fractions of nanometers can be shaved from
the oxide thickness and still meet the end of life targets.

1.2.3 Accelerating Condition

Acceleration concepts have been discussed and we now turn our attention to
accelerating conditions. What types of external forces can be applied to the
semiconductor test structure in such a way as to cause the end of life, say 10 years,
to be reached in a time period that is significantly shorter than that 10-year life. In
principle, the shorter the stress time the better, as long as one can still bridge to the
use conditions. Examples of accelerating conditions for semiconductors are shown
below. This extensive list includes all of the common accelerating conditions and a
list of pertinent mechanisms with chapter references where applicable.

� Voltage (DC)

� Dielectric breakdown (3.4)

� Electromigration {indirectly} (7.3)

� Hot carrier (5.2)

� Temperature bias stability (4.3–4.5)

� Interconnect opens and shorts (7.3)

� Ionic contamination

� Energetic particle-induced soft error mechanisms

� Variable retention time mechanisms

� Leakage mechanisms

� Voltage Change (AC)

� Conducting hot carrier mechanisms (5.2)

� Temperature

� Dielectric breakdown (3.4)

� Electromigration {indirectly} (7.3)

� Stress migration (6.2–6.5)

� Interconnect shorts and opens (6.2–6.5, 7.3)

� Hot carrier (5.2)

� Temperature bias stability (4.3–4.5)
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� Ionic contamination

� Variable retention time mechanisms

� Leakage mechanisms

� Temperature Change

� Interconnect opens

� Temperature Change Rate

� Interconnect opens

� Current Density

� Dielectric breakdown (3.2–3.4)

� Electromigration (7.3)

� Humidity

� Corrosion

� Humidity and Pressure

� Corrosion

� Harsh environment

� Corrosion

� Mechanical pull tests

� Mechanical strength of interconnects and adhesives

� Radiation

� Some dielectric breakdown concerns

� Soft error rate (SER) for certain flash memory

Note: The SER effect does not get worse with time for most CMOS devices.

1.3 MECHANISM TYPES

1.3.1 Parametric or Deterministic Mechanisms

A parametric or deterministic mechanism is defined, albeit somewhat arbitrarily,
as any mechanism that impacts all identical structures nearly equally. A stress for
this type of mechanism will always cause the parameter under question to shift.
And, even if many samples are stressed, the shifts will all be very close to the same
value assuming all of the stressed structures are identical. For this reason, very
small sample sizes can successfully be used to characterize a parametric mechan-
ism. Most of the variation of the shifts observed for parametric mechanisms is
caused by variations of the controlling parameters and not by random statistical
variation.

The hot carrier (HC) mechanism is one example of a parametric mechanism.
While a field effect transistor (FET) is turning on or off, the gate current has a
peak value resulting from channel hot electron injection. These electrons gain
enough energy to surmount the Si/SiO2 interface without suffering energy-losing
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collisions in the channel. The electrons are trapped and result in FET performance
degradation. This mechanism is uniform and parametric in the sense that for a set
of FETs that are all structurally identical, the shifts resulting from the above stress
will be almost identical across all of the devices stressed; that is, the shifts will be
determined by their parameter values, not by the random variation. In practice, if
chips from several wafers or lots are stressed, variation will be seen but that
variation will be a function of slight differences in the structures of the FETs
across the wafers and lots.

Electromigration is an example of a mechanism that has aspects of a
parametric mechanism. A current flowing through a line will cause atomic motion
in that line. If that line is aluminum, significant atomic motion will occur at higher
current densities and will cause the line resistance to increase and ultimately open.
This is fundamental to the structure and the metallurgy. For high enough current
densities, electromigration will always occur for that aluminum line. It is not
caused by a defect although it can be exacerbated by a defect. Although the
physics cannot be changed, sometimes it is possible to mitigate the problem. For
example, if redundant layers of certain other metals are used in conjunction with
aluminum, the sandwich line structure will increase in time-zero resistance if the
overall cross-sectional area of the line remains constant, but electromigration
typically will only cause a resistance increase and not an open under the same high
current-density stress. For some metallurgies, no electromigration will occur even
at higher current densities. However, it must be pointed out that in the case of
electromigration, there are also aspects of a random mechanism because the grain
structure of the line is random. And this randomness is true for metallurgy that is
identical in processing. Typically, larger sample sizes are necessary when stressing
mechanisms that have a greater degree of randomness.

Obviously it is crucial to understand the fundamental physics for a parametric
mechanism. Once the physics is understood, strategies can be put into place to
mitigate the effect or to eliminate the problem by structural or operating-point
changes. Sometimes mitigation is possible and sometimes it is not. For the
electromigration example, tungsten is sometimes used for the lower levels of
wiring where the distances are small and the higher time-zero line resistance is
tolerable. For the longer wiring levels, the resistivity of tungsten is too large and
aluminum or copper must be used and other strategies invoked to decrease the
impact of electromigration.

Once the physics is understood, so that all of the controlling parameters are
identified and each of their impacts quantified, it is possible to address elimination
and mitigation strategies. To be able to quantify the impact of a given parameter, it
is usually necessary to characterize the impact of that parameter on a test structure
where individual control of all of the terminals is possible. If, for example, the
physics of the mechanism is related to a parasitic edge transistor in parallel to the
bulk transistor, the decision must be made as to whether to change the process to
eliminate the parasitic transistor, or to simply mitigate its impact on the circuit. A
problem may occur only at one extreme of the normal processing window or set of
biases and tolerances. HC is one example since it is worst at the shortest channel
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lengths for a given set of stress conditions. In some cases the strategy may be to run
the process to a tighter manufacturing limit. Because this type of mechanism
equally affects all structures with the identical process, only a few structures need to
be investigated to reasonably well characterize a parametric mechanism. However,
these devices under tests (DUTs) must all be structurally identical.

From this previous discussion it should be obvious that it is necessary to
investigate parametric mechanisms at all salient process window extremes to
ensure that no undesired effects occur. Again, each process window investigation
point requires only a small sample size.

Below are some examples of parametric mechanisms and one or two strategies
for controlling or eliminating the effect. In most of the cases, there are other
strategies that could also be invoked. Applicable chapter references are shown.

� Hot carrier: design point change, e.g., lower operating voltage the device
experiences

� Bias temperature stress or (negative bias temperature instability): design
point change, e.g., decrease operating voltage

� Ionic contamination: discovery and removal of contamination source

� Stress induced leakage current: design point change, e.g., decrease operating
voltage or thicken gate oxide

� Electromigration: design point change, decrease current density

� Soft error rate (radiation induced): design point change, increase critical
charge of pertinent cells or decrease charge collection efficiency. This is not
discussed further in this book

1.3.2 Structural Mechanisms

Structural mechanisms are those mechanisms for which the fails physically occur
in the same place. The distinction here from the structurally induced parametric
fails is that these fails are only a function of a structural artifact. Although these
definitions are all somewhat arbitrary, they help in understanding the sample size
differences recommended in the later chapters. Usually significant failure analysis
is required to determine that a particular failure type has a structural, systematic
signature. Often this signature only occurs at one of the process extremes so that it
does not occur on every wafer or lot. Sometimes it is even more difficult to identify
because not only does it only occur at one process extreme, it may also require a
certain set of process biases and/or tolerances to align in just a ‘‘right’’ way for the
failure to occur. This may take the form of one part of the wafer having an acute
susceptibility, or it may be tool dependent. In some of these cases, it may appear
random, while in fact, the fail is part of a manufacturing defect or process window
tail. This can usually be avoided if a large enough sample is investigated and if at
least part of that sample comes from the salient process extremes. If the failure
analysis then identifies a particular feature failing more than once, that feature
should undergo very careful scrutiny.
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Sampling is very important since the problem may not impact all lots or
wafers or die equally. The sampling must gauge all process variations unless one
process extreme can be identified as the worst case for the given mechanism. A
minimum of three manufacturing lots is recommended with one produced at the
identified critical extreme. For this type of mechanism, sampling for random
statistical variation is less important than sampling for the pertinent process
extremes.

Once this type of mechanism is understood, it can often be mitigated with a
strict application of statistical process control (SPC). However, no structural fails
should be acceptable within the normal process limits. Otherwise this would
represent a technology weakness that, if accepted, would likely result in an
inordinate number of customer failures even with tight SPC. It is always better
in the long term, to fix a problem rather than to try control it. Fixing the problem
can take the form of structural modifications or a redefinition of the process
limits. Especially for hardware made later in a program, the normal exercise of
SPC, once the process line is full of hardware, may eliminate the possibility of a
problem.

Process improvements made during manufacturing can inadvertently intro-
duce new structural mechanisms. An effective method to avoid this is to sample a
large number of chips and wafers looking for changes even in time-zero
characteristics. Changes in the time-zero characteristics will not always flag a
change in a reliability mechanism, but a change in the time-zero characteristic
should be carefully investigated especially if a significant database exists for the
normal properties of the parameter. Wafer-level reliability (WLR) is an even
better gauge as to the impact of process improvements on reliability. And in fact,
occasionally the time-zero properties have been changed through process changes
only to make the reliability worse in a direct tradeoff between yield and reliability.
All of the examples for this type of mechanism are very technology/process
dependent.

1.3.3 Statistical Mechanisms

Statistical mechanisms are defined as those mechanisms that are primarily
random. Thus the more susceptible area to a particular statistical mechanism,
the more likely that mechanism will cause a chip fail. The occurrence of the fail
will be totally random within that susceptible area. This is in contrast to a
structural fail, which will always occur at a given feature within a structure. It is
also in contrast to the parametric or deterministic mechanism for which the
process variation or process extreme will have a larger impact on the result than
does the random statistical variation within a given process point. One must be
careful at this point because the statistical mechanisms are also caused by
fundamental physics unless the discussion is limited to defects. The distinction
is more focused on the impact that the random statistical variation has on the
investigation of the mechanism.
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For the statistical mechanisms, it is critical that a significant sample be
stressed to understand the failure behavior. Hardware made at the process
extremes is only important in as much as it has an impact on the occurrence of
the mechanism. For example, a thinner oxide will have a higher failure rate for a
given set of conditions than the thicker oxide. In this case a significant sample
should be stressed at the process minimum thickness. The fails will be randomly
distributed throughout the area in both cases.

Aspects of dielectric breakdown and electromigration are two examples of
statistical mechanisms. The aspect of electromigration that is statistical in nature
is the grain structure of the line. Although the fabrication conditions very clearly
impact the grain structure, that grain structure will still have random variation
even when the fabrication conditions are identical. And first dielectric breakdown
is generally accepted to be random and has been shown to follow a weakest-link
behavior resulting in a Weibull distribution for its cumulative fail distribution.
This will be discussed in Section 1.4.7.

For a statistical mechanism, a much larger sample is required than for a
parametric mechanism. The reason is that there is a given randomness in samples
that have identical structures, even for identical processing in as much as possible.
Thus for a given stress on parts that are identical as far as can be known, there will
be a distribution of results instead of a single-valued result. The sample size must
be large enough to ensure that some mean or characteristic life is truly
representative of the population from which the sample is drawn and not just
caused by random statistical variations. To further elucidate this point: if five
processes were being compared and five small samples were chosen for each case,
very different results could be obtained just based on the random statistical
variation, and it could be possible, and in fact likely, to not choose the best process
due to this random variation. Obviously it must also be assumed in this case, as
well as the other cases, that the samples being investigated are representative not
only of the population from which they were drawn but also from the entire
production population.

A discussion of statistical mechanisms must include a general discussion of
defects. There are four classifications of random defects depending on the time of
occurrence. The first class of defects is screened out at time zero. These are
obviously the yield fails. The next class of defects is the infant defects. These pass
all time-zero testing but fail very early during stressing. These first two categories
of random defects typically reflect the manufacturing defect level. The third class
of defects is the operating life defects. These defects reflect the ultimate manu-
facturing and process capability and cause failure throughout the useful life of the
product. The final class of defects is wearout. This category of random defects
reflects the technology capability and was the subject of the preceding paragraphs.

Figure 1.3 shows the instantaneous failure rate, or hazard function, versus
time for the last three reliability classifications depicted as the so-called bathtub
curve for reliability. The first stage on the left is the early or infant mortality
region. The instantaneous failure rate is here characterized as rapidly falling, as
the parts are in the very early stage of use and the weaker parts are still failing at a
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relatively rapid rate. A short, highly accelerated stress, called a burn-in stress, can
often protect the customer because that stress has the possibility of moving the
hardware past the infant region before any of it is shipped to the customer. Thus
the customer only receives parts that are already in the operating life region where
the failure rate is very low. Although shown constant for convenience above,
typically the failure rate is slightly decreasing during the operating life for
semiconductors. Finally, ultimately the hardware will start to wear out. The
depiction here is of a wearout target that is 10 years or about 100K hours.

1.3.4 Infant Defects

Infant defects are those that pass time-zero tests without fail, but fail shortly
thereafter. Often failure analysis of the infant fails reveals structures that were
extremely marginal but somehow survived the time-zero or yield tests. These
defects should be entirely due to manufacturing defects. As the process matures
for a new technology, the level of these defects should decrease to a low number
bounded by the capability of that manufacturing facility.

There should be no structural fails contained within the infant defect
population. The existence of structural fails could indicate a technology problem
that still needs to be addressed or a process window problem that needs to be
eliminated.

Burn-in is the primary method of removing infant defects once the product is
completed. Burn-in for semiconductors is almost always done with a short
temperature and voltage stress. Sometimes both a wafer burn-in and a module
burn-in are performed. The wafer burn-in will typically occur at elevated
temperatures and very high voltages compared to the use conditions, and will
last only a few seconds. The module burn-in conditions will include an elevated
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temperature and a voltage that is higher than use condition, but lower than the
wafer burn-in voltage, and will be applied for several hours. As the process
matures and the manufacturing line defects decrease, the burn-in times and/or
conditions will also typically be decreased.

There are several types of module burn-in. The most effective burn-in is also
the most costly. The simplest but least effective burn-in is a DC stress where the
parts are not exercised during burn-in and hence, neither are they tested while
under stress. They are only tested before and after the burn-in stress. This method
suffers from the fact that not all circuits are being exercised, and therefore the
burn-in coverage is less than 100% and possibly very significantly less than 100%.
It also suffers from the fact one cannot be sure that all of the parts really received
the voltage stress. This could happen for several reasons but the parts that do not
receive burn-in are called escapes and will be the most likely to fail in the field. The
next level of burn-in is for the parts to be exercised but not tested during burn-in.
Again they are only tested before and after the burn-in stress. This method still
suffers in that parts may be incorrectly inserted during stress, hence one cannot be
sure that all of the parts really received the voltage stress. The most complex,
costly, and effective burn-in is for the parts to be both exercised and tested during
burn-in as well as before and after the burn-in stress. This last option ensures that
all of the parts that are put into the burn-in chamber will be flagged as fails at both
the stress and measurement conditions. This last option also minimizes escapes
since the chip responds in the oven to the testing while it is at the stress conditions.
However, even for this last option a few escapes can still occur.

Infant defects can be minimized by attention to general line cleanliness and
particulate control and monitoring. Again, the defect level typically decreases as
the technology maturity increases on a given fabrication line.

Good design-for-reliability practices also improve the apparent defect learn-
ing. One of the more common practices is to use the minimum groundrules only
when absolutely necessary. Another practice is to use special features only for
those circuits where there is great leverage.

Infant defects can impact many features and their nature depends on the
details of the technology. If the infant defects are not adequately eliminated either
through strict process control and line maturity, by burn-in, or both, then the
product will have high very early fallout rate when the customer starts using it.

1.3.5 Operating Life Defects

Operating life defects are those defects that occur, as the name suggests, during the
operational life of the product. The instantaneous failure rate should be small and
must be contained within the target to ensure that the product does not fail at
greater than the expected rate. To meet a given specification, accelerated life
modeling is used to predict the product defect level and to bridge that to the given
specification. The sample size used to determine the level of operating life defects
must be relatively large since this is a random mechanism and the operating-life
defect level is very small.
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1.3.6 Wearout

Ultimately, some part of any system will cause wearout. The time to wearout is
dependent on many factors. The first factor is the technology itself. In addition to
the technology, examples of other factors include the manufacturing process, the
temperature, and the voltage conditions. The frequency of use or duty cycle is also
very important. For example, a redundancy check circuit that is only used when
the chip is powered up can tolerate much more degradation per cycle than can a
circuit that is always operating when the chip in use. Other factors also have an
impact on the onset of wearout including the circuit itself.

The objective of modeling in this case is to ensure that the wearout does not
start until well after whatever the lifetime specification is for the product. Again,
because this is a random statistical mechanism, sample size is important.

One good example of a random mechanism that causes wearout is the
intrinsic dielectric mechanism of relatively thick oxides.

1.4 RELIABILITY STATISTICS

1.4.1 Introduction

The following treatment of reliability statistics is very abbreviated since the
primary focus of this book is the physics of the CMOS reliability mechanisms,
and there are many excellent texts on the subject of reliability statistics [9–13].
Ideally, the reader will already have some background in reliability statistics.
However, since that will not be the case for everyone, this abbreviated treatment is
included.

The author’s experience, from teaching a course based on this material, is that
some students raise objections to any treatment of statistics because they do not
understand the necessity of even a minimal background. By the end of the class,
however, the students have an appreciation for this background. This material is
necessary to understand the following chapters, and in fact, further treatment of
these concepts is given in the remaining chapters of this book.

1.4.2 Assumptions

Many assumptions, and indeed compromises, must be made in the exercise of
semiconductor reliability. The first assumption is that the variation in the stress
and test results is due to just the random statistical variation and/or random
process variations. This assumption can usually be met, but care must be taken in
the design of the experiment to ensure that the test site is appropriately designed,
that appropriate equipment is being used for the stress and test, and that the
equipment is in calibration.

The second assumption is that the sample stressed is representative of the
population. Clearly, if the sample is not representative of the population, one can
question what the results really mean and how pertinent they are to what will
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happen to the product in the field. This assumption is typically only weakly
satisfied in the case of technology qualifications. Fortunately, technology quali-
fications offer special opportunities that provide relief from only weakly meeting
this assumption. Quality control (QC) sampling is very different and can typically
satisfy this assumption quite well.

A third assumption is that each fail is independent of all other fails and
therefore has no impact on those other fails. This assumption significantly
simplifies model generation and can generally be considered true for reliability
defects. However this is typically not true for yield defects and sometimes there is a
direct relationship between yield and reliability fails [14–16]. For some special fail
cases one can decrease yield fails at the expense of increasing reliability fails and
vice versa, with appropriate process changes. Please note that we are talking about
process changes and not burn-in tradeoffs here. It is well known that yield fails are
not usually randomly distributed on a wafer. Stapper [17, 18] and others have
demonstrated that defects often follow a negative binomial distribution. Simplis-
tically this means that defects are clustered about areas on the wafer instead of
being independently distributed about the wafer area. Thus one is more likely to
find a second defect in the general area that already has a defect than near an area
on the wafer that has no defects. Yield issues and the negative binomial
distribution are both beyond the scope of this book, but they are mentioned
because of the occasional relationship between yield and reliability fails.

A fourth assumption is that it is possible to represent the discrete results
obtained during reliability stressing with continuous functions. Again, this
assumption is necessary in order to be able to generate models with predictive
capability. Much debate and agonizing can surround this assumption depending
on how well the data are behaved and how well they fit the continuous function
and which continuous function fits best. Often the time range of data is limited to
such a narrow window so as to allow the use of more than one continuous
function to characterize the data. Thick dielectric data are a classic example of this
case and the appropriate model was debated for many years. Sometimes very early
or late fails cloud the fit, but much of the time these fails can be explained due to
known phenomena, albeit often only after the stress. Care must be taken to ensure
no new regime or mechanism has been introduced during the stressing if some fails
behave significantly differently than the majority of the population of fails. If this
is the case, the stress conditions may have been too extreme and the fails are
no longer representative of the use conditions. Even if all of the fails follow the
same distribution, care must be taken not to stress at an extreme that is not
representative of the use conditions as described previously.

Two or more modes can be present with two different characteristic life times
and two different characteristic variation parameters. Here a bimodal fit can often
be achieved. An example would be dielectric breakdown for a relatively thick
dielectric of 5–10 nm. In this case both the characteristic life and shape parameter
are very different for the intrinsic or wearout population and the extrinsic or
defect population. There is a clean break in the curve between the two populations
and nearly all of the fails can be clearly attributed to one population or the other.
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This example is shown in Figure 1.4 for the case of a relatively thick dielectric.
(The case where the characteristic life is the only variable for two dielectric
distributions will be discussed further in the dielectric chapter in relationship to
the Weibull distribution.) This has direct applications to other distributions as well
by inference. One would hope and expect to be able to identify two different
failing types through failure analysis when two distributions are seen. This is
usually the case, although it is not always true possibly due to the obvious
limitations of failure analysis resource and the total number of fails. In the end,
some continuous function must be determined to be able to make the reliability
predictions.

A final comment about sample size is that there are some applications where
the attempt is so futile that other considerations must be used. For example, the
number of parts required for space applications is typically small. In these cases,
the qualification would need to bridge to similar hardware, use very long-term
product stressing, or possibly some other method.

1.4.3 Sampling and Variability

One can have variability in results due to raw material variations, process
variations, test equipment variations, stress equipment variations, or random
statistical variations. The process norm and its variations as well as the random
statistical variations are the subjects of interest. The other variations should be
minimized as much as possible.

Test and stress equipment variations can be minimized by timely and
scheduled calibration, and detected by using standards during the testing and
stressing. The standards are parts that have not undergone stress and therefore
should show no variation from readout to readout. For in situ test equipment, that
is, stress equipment that not only applies the stress but also performs the readouts,
standards cannot be as readily used, so more care should be taken to ensure that
equipment is calibrated. It is important to establish the variation of each piece of
stress equipment. For example, ovens should have a temperature profile done for
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each oven and that profile should be done when the oven is fully loaded with
DUTs. Ideally, a thermocouple would be monitored in each (DUT) position. For
most stresses, one would want to know the temperature to within a few degrees or
better. A fully loaded oven will change the airflow characteristics and could result
in hot or cold spots during the stress. Each stress should be considered in a similar
fashion. Note that here we are not talking about variation that would necessarily
be random in these cases. If the loaded oven interior is running five degrees high,
the projections will all have an additional error caused by that source. If the
projections are far enough from the norm so that the ovens are checked after the
fact, appropriate corrections can be made then; however, it is much more
satisfying to the customer and the responsible engineer to have the equipment
calibrated before the stress. A more extreme but yet typical example is the case
where several tiers of DUTs are put into an oven. Depending on the airflow, each
tier may have a temperature offset and even the DUTs in one tier could be
different. Here is a case where temperature profiling is crucial because normally
one would not keep track of the DUT position within the chamber. Thus it would
not be possible to apply correct temperatures after a stress even if the oven were to
then be profiled. The ovens provide a clear example of the importance of using
calibrated stress and test equipment to avoid nonrandom variations. They also
provide a clear example of a nonrandom variation that could be interpreted as
random variation if it were unknown as in the case of temperature variation within
each tier and even DUT. Another example of nonrandom variation would be
dielectric stresses where one needs to ensure that the interconnect wiring has a low
enough resistance, such that when leakage current is present, either due to
tunneling currents or stress induced leakage currents, that the current does not
cause voltage drops along the wiring and especially that the current does not cause
nonuniform voltage drops along the wires. In that worst case scenario, each
measurement and stress would have its own set of variations that would have to
first be understood and then considered when doing the projection. It is obviously
highly desirable to minimize these nonrandom variations everywhere possible.
One must consciously think through each experiment to ensure that the experi-
ment is correctly designed using appropriate and calibrated equipment. One last
example of the use of appropriate equipment includes the detailed consideration
of the how the measurements will be taken. If the equipment has been calibrated
but it is to be used in an auto-range mode, care must be taken that there is enough
time in that auto-range mode for the measurement to be returned to the computer.
Even just a step up to the next higher range might cause an additional delay time.
If the time required for the measurement was set at one scale without thought to
these cases, errors could occur that would be nonrandom and very confusing. If
this type of variation is present and not detected, it will add to the overall error.
This error could cause the projections to be skewed due a number of factors
including, for example, a constant offset or additional data scatter. In some cases
the projections would be pessimistic and in others the projection would be
optimistic. However, without recognizing the error in the system, the reliability
analyst would not even know to doubt the projection. Sections in each of the
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following major chapters will address how to avoid many of these pitfalls for each
of the mechanisms in terms of test site design, stress, and test.

One also has variation due to the process differences within each chip, wafer,
and lot. Ideally, the sample chosen for stress would contain all process iterations
possible in the manufacturing line.

Note that the challenge here is in the early qualification of new technologies
and not in the ongoing inspection, or quality control, of the manufacturing line.
These stresses are done at a much lower stress level and a shorter time than the
qualification stresses since the hardware must still be shippable after these stresses.
That is, a significant portion of the intrinsic life of the product cannot be used
during the QC stressing. It is also true of burn-in (BI) that a significant portion of
the intrinsic life of the product cannot be used during BI. For this QC issue, one
has a continuous flow of parts through a short stress and a test. The good news is
that a very large sample is typically stressed so one has a representative sample of
the population for that time period. This stressing, taken in conjunction with the
qualification stressing, does give a good overall picture of the population. Thus for
QC, as yield learning occurs and the appropriate process changes are made,
hardware with those changes are available for the QC-type stressing and testing.
Typically in this case, no special process window lots are fabricated but the
hardware currently being made on the line can be stressed to the QC times and
conditions.

Now let us return to the variation within each chip, wafer, and lot due to the
process differences. Our focus here is now the early qualification of new
technologies. Care needs to be taken to have samples that are as representative
of the standard process as possible. As discussed previously for random statistical
mechanisms, the larger the representative sample from the population, the better
the statistics of the result. This is true for lots, wafers, and test structures.
However, typically three to five lots of hardware with several wafers from each
lot is about as much hardware that the reliability engineer can expect to obtain for
a process qualification. Most specifications from JEDEC, a standards governing
body used by most of the semiconductor industry, require a minimum of three
lots. Recall that the assumption is that the sample is randomly selected from the
total population. For the ongoing quality inspections this can be true; however,
for the early qualification work, this is not possible. The first set of the lots that
have the final approved process will most often be used for the qualification work.
This hardware is also necessarily from a single snapshot in time. Because it is a
technology qualification, the hardware must be sampled very early in the
manufacturing cycle, and hence, before significant additional process learning
has had time to occur. This hardware should be reasonably representative of that
early vintage hardware, but without due diligence during the continuing process
learning, the process may change in such a way that the reliability becomes
unacceptable.

The sampling should always focus on the final expected process since the
processing order of two processes can be critical even when they are ostensibly
independent of each other [16]. This is not usually a problem but the engineer
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should be aware that it could possibly make a difference. A careful design of the
experiment is always a requisite to avoid confusing or misleading results.

The point of the above brief discussion is to point out that even with the best
one can do to ensure that the sample is representative of the entire population,
realistically one can only weakly satisfy this assumption in the semiconductor
reliability world during the early qualification phases. Other strategies must be
instituted to mitigate this weakness and they are discussed below. However, it is
possible to do a much better job at satisfying this assumption in the ongoing
quality control during the life of the product.

Returning to a focus on the types of mechanisms, if the lots are chosen wisely
and if the experiments are carefully designed including the test structures, then one
can investigate and qualify a new technology with a very high degree of confidence
even though the sampling is extremely limited. The stress and test equipment to be
used in the experiment must be carefully considered and calibrated, so that the
variability in the experiment can be limited to just the process and statistically
random variability that one is trying to understand.

It is at this point that previously given mechanism definitions, that is,
parametric, structural, and statistical mechanisms, should be applied. The design
of the experiment and sampling plan must consider each type of mechanism
uniquely and separately. For the parametric mechanism, if only three lots are
available for stressing, at least one of the three lots must be manufactured in such
a way so as to guarantee the pertinent extreme of the process variation. For
example in the case of gate dielectric, the thinnest gate permitted by the process
definition must be investigated. The thickest gate permitted does not typically
need to be investigated from a technology reliability perspective since the lifetime
of the thicker gate will usually be greater, and depending on the variation, possibly
much greater than the lifetime of the thinnest dielectric. That is not to say that no
one cares how thick this gate dielectric gets. At its thickest extreme, device
performance may be compromised so that extreme must be investigated for
product performance related issues but not for reliability issues. Sometimes all of
the pertinent process extremes can be fabricated on a single lot; however, often at
least two lots are needed to obtain all of the process extremes necessary to address
each of the parametric mechanisms.

Investigations to find structural mechanisms can also be nicely satisfied with lots
made with processing to the extreme edge of the allowed manufacturing range. In
this case it is not quite so obvious which extremes are required and lots made with
nominal processing should also be investigated. However large samples are not
required since by the definition given previously, if a chip is made with this particular
set of features, it will fail. The challenge then is to ensure that a chip is made with
those features. But, of course, unless one has already seen a fail, one does not know
what set of features would cause a fail. Here, past experience is the best guide for
finding that set of process conditions that might result in structural failures.

As suggested previously, large, representative sample sizes are needed for the
purely statistical mechanism. For today’s technology few mechanisms are purely
statistical in nature. That is the good news in terms of sample size. The other good
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news is that what one lacks in terms of representative lots and wafers, one can
often compensate through the use of good test site designs. Also appropriate test
site designs can provide a sufficient effective sample size even though the total
wafer count may be limited.

There are several other types of variables in the realm of sampling that should
be mentioned for the reader’s awareness. Sampling wafers from a tool that has just
gone back into production after a preventative maintenance cycle can cause
problems, as can wafers from new chemical suppliers even though they have been
approved.

1.4.4 Criteria, Censoring, and Plotting Points

Data can be collected either in terms of specific shifts or in terms of pass/fail
criteria. Electromigration, for example, will cause resistance increases. Depending
on the process details, the lines undergoing electromigration may or may not
actually go to a high resistance state or an open. The data taken and recorded may
simply be those lines that shifted by more than a given value or even just the
number of lines shifting by more than the given value. The data taken and
recorded may include the resistance shift of each line. Clearly, if the resistance shift
of each line is taken, the data can later be expressed in terms of a pass/fail limit.

For technology qualifications, it is usually desirable to record as much data as
possible including the actual shifts. These data are useful at several levels including
failure analysis decision making and isolating wafer and lot dependencies. The
total shift data are vital for the parametric mechanisms but are also desirable for
the structural and statistical mechanisms. Once the product is in manufacturing
and minimal stressing and testing can be done, often pass/fail criteria are adequate
as part of the shipping qualifications. Even during the wafer stressing and testing
for the shipping qualifications, chip failure location on the wafer can be used to
great advantage and flag process problems early.

One manufacturer [14] has shown excellent results using product yield as an
indicator of defect density for neighboring chips. They divide the chip into an edge
chip region and a center chip region. Chips in a ‘‘bad’’ neighborhood, in either
region, are 10 times more likely to fail during burn-in than those chips from a
‘‘good’’ neighborhood in either region. This work covered one hundred thousand
to one million chips and included technologies from 0.25 mm down to 0.09 mm as
well as both aluminum and copper. They give a quantitative expression for the
number of chips that constitute a ‘‘bad’’ neighborhood and show excellent
correlation between their modeled behavior and actual burn-in data. This paper
also provides a nice set of references for earlier work in this area.

Most stress equipment built today has in situ capability. That is, it has the
ability to both stress the DUT as well as to test that device. Hence, obtaining exact
times-to-fail is simple. For example, the exact time for a 20% shift in the line
resistance due to electromigration can be obtained from the test equipment. In this
case the time for each fail or predetermined-shift is known uniquely and can be
plotted uniquely.
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Occasionally, times are known only for groups of fails. This may happen if
older stress equipment is used or if stresses are done in ovens because of large
sample sizes. Here the parts are stressed for a given period of time, removed from
stress, taken to a tester, tested, and then put back on stress. For reference, this
equipment is typically referred to as ex situ equipment. Now only those parts
failing after the given time period are known. The cumulative population failing at
that time is typically then plotted against that time. However, depending on the
design of the experiment and the specific issues being investigated, it is sometimes
preferable to break any experiment into intervals and plot the cumulative fallout
in the middle of that interval be it on a log or linear scale. Plotting positions are
discussed in more detail below.

One of the challenges of ex situ testing is that care must be taken that the
mechanism does not relax. For example if one were stressing for ionic contamina-
tion in ex situ equipment, one would need to apply a bias to the parts as they came
off the ex situ equipment so that the parts did not recover while awaiting test.
Historically large automotive batteries were used for this task when ex situ
equipment was used to stress mechanisms that relaxed.

Data may be censored for many reasons. There are statistical procedures for
handling nearly every type of censoring. The most common reason for censoring is
likely lack of stress time. Parts can only be stressed for a given time period and it is
expected that some part of the sample will survive beyond that time. Normally for
parametric mechanisms, one would have a model that predicted how long the
product should last given the shift, the stress conditions and the time under stress.
The model may allow the entire sample to be used.

If most DUTs failed within a relatively narrow time range but several did not,
two questions arise. Were these DUTs significantly better than the rest and
potentially not subject to the mechanism that caused the majority to fail, or was
the stress or test somehow compromised on these parts? Again, failure could be
defined as a certain shift or an actual open, short, or cessation of operation. The
nonfailing parts might be candidates for censoring if the stress was not fully
applied, or they might be part of a second and better population so that a bimodal
distribution should be used. There are at least three common ways of handling
these cases depending on the exact circumstances. One characterization method
would be to characterize the failing distribution with a bimodal distribution.
Another way would be to censor the unfailing or late-failing parts, subtract them
from the sample, and recalculate the failing distribution and times based on the
new sample size. A third method would be to leave them in the sample. It is clearly
highly desirable to know the reason for the preponderance of early or late fails
before making the decision as to how to characterize them. However, the statistics
in doing so are straightforward. Another pertinent example is those DUTs that
pass the initial test but fail during the first application of the stress. These are not
yield fails, nor are they real reliability fails since they failed as the initial stress was
being applied. These would actually be in the ship product quality level (SPQL)
category of fails. This is the class of fails that cause a product to look good as
shipped from the supplier, but when the customer first turns on the machine, it
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fails to function. This is obviously a very serious class of fails but can show up on
reliability plots and unless handled correctly can compromise the reliability
conclusions.

Step stressing is a technique by which multiple stress conditions are obtained
on the same set of hardware. These techniques are advantageous because a smaller
overall sample is then required since the same parts are used for every condition.
Usually, but not always, the steps have increasing acceleration as outlined below,
and if done carefully, step stressing is powerful. One of the attributes of a well
designed experiment is equal representation across all cells so that if one stress
condition or cell gives results unlike the other stress cells, it cannot be due to one
wafer or lot dominating that cell or lacking in that cell.

Historically, the key to step stressing is that each new applied condition must
result in an acceleration of about 100� in time from the previous cell. With a
100� acceleration, it is possible to calculate all of the acceleration parameters to
the same degree as if two independent cells had been stressed. If this cannot be
achieved, the separation in the results may not be adequate to interpret the data,
compromising the entire experiment. If a step stress is contemplated, a focus on
experimental design is necessary. This type of step stress is discussed further in
Section 2.3 with a dielectric example.

1.4.4.1 Plotting Position. The simplest and most straightforward method
of plotting the cumulative fails would be to simply plot the fail percent against the
time of fail. For example, assume that a stress of four parts resulted in one fail at
the one-hour readout, a second fail at the second-hour readout, a third fail at the
third-hour readout and finally the fourth fail at the fourth-hour readout. The
concept of a plotting position is to plot the fail in the most representative position
in the interval of failure. Thus instead of plotting the first fail at 25% in our
example, we plot it someplace between 0 and 25%. One option is to plot the fails
at the midpoints of the intervals such the fails would be plotted at the 12.5%,
37.5%, 62.5% and 87.5% points on the y axis corresponding to 1, 2, 3, and 4
hours respectively on the x axis. Conceptually, this y-interval plotting position
may be the simplest of the plotting positions. This plotting position is shown for 4
data points and 20 data points in Figure 1.5. There can be several choices for
plotting positions and good statistical arguments for each. Some of the more
common plotting positions are given below, but a thorough treatment of the
statistical rationale behind each choice is beyond the scope of this book. The
interested reader is referred to the statistics texts. In addition to the statistical
arguments suggesting the requirement of a plotting position, there would be the
practical problem that plotting simplistically as mentioned above, would require
plotting a point at 100% fallout which for log plots does not exist.

The smaller the sample, the more crucial is the use of an appropriate plotting
position. Several authors have suggested different plotting positions, any one of
which may be best under a given set of circumstances. Two common plotting
positions are F(ti)=i/(n+1) or F(ti)= (�1/2)/n [19] and F(ti)= (�0.3)/(n+0.4)
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[20]. Other authors have suggested various alternatives to the above plotting
positions. It is a simple matter to compare the possibilities with one’s actual data
especially in today’s world where the data is typically analyzed using a computer.

Note that the above discussion is only applicable and pertinent when
graphical procedures are used. Typically the analysis and estimation procedures
will be done using computer procedures.

As can be seen by Figure 1.5, there is little difference between the values of the
y-interval plotting position and the F(ti)=i/(n+1) plotting positions for samples
of 20 or greater, although the slopes are somewhat different. There are significant
differences both in value and slopes for both of the plotting positions shown on
Figure 1.5 for the case of only four points.

1.4.5 Definitions (Normal)

1.4.5.1 Failure Figures-of-Merit. The first set of definitions that are given
are for the generic failure language that is used within the reliability field.
Wearout, intrinsic failures, or end-of-life failures are defined at the end of the
expected life of the product. Defect or extrinsic failures are typically expressed
both in terms of end-of-life failures and various points of time throughout the life
of the product especially after one year. As seen below, these expressions may
either be in terms of the cumulative fails or the failure rates of the hazard function.
The terminology used for cumulative fails is typically parts per million (ppm), and
the terminology used for failure rates may be fails per 1000 hr or fails per billion
device hours (FITs).

Circles represent no plotting 
position and final point would 
be at 100% fallout

Crosses represent i/(n+1) plotting 
position for 4 data points

Triangles represent y-
interval plotting position 
for 20 data points –note 
parallel to circles line

Diamonds represent y-interval plotting position 
for 4 data points –note parallel to circles line

Squares represent 
i /(n+1) plotting position 
for 20 data points
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Figure 1.5. Plot comparing y-interval and i/(n+1) plotting positions with no

plotting position for 4 and 20 data points.
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1.4.5.2 General. The independent variable for nearly all practical cases
within reliability statistics is time. Sometimes the distribution parameters will be
used as the independent variables when comparing distributions or models. This
might take the form of plots comparing the mean and standard deviation for
various lognormal distributions. (See Section 1.4.8) For Weibull distributions this
might take the form of a comparison of the various shape parameters at the
characteristic life for each distribution (See Section 1.4.7).

Recall that our first assumption above was that the variation in the results was
due only to random variations. A ramification of this definition is that the actual
value is not known at any precise point in the domain of interest (nearly always
time for reliability work) due to the random statistical variation. Within the
framework of reliability modeling, a distribution function is sought to describe the
pattern of values that are most likely to occur.

1.4.5.3 Probability Density Function (PDF). The probability distribution
function or probability density function is that function that describes the fails in
each period of time. This is nothing more than a histogram with time intervals as the
abscissa and the percentage of fails as the ordinate or y-axis value. Since this function
gives the fails that have occurred in the previous time steps, if an analytical
expression can be found that accurately describes those past times steps, that
expression can then be used to predict the fails that would be expected in future time
steps. For example, if a stress results in all samples failing of 50 samples on stress,
and the data is then grouped within subregions, the discrete distribution in Figure 1.6
results. Note that these 50 data points were generated by a simulation with a mean
fail time of m=10hrs and a standard deviation of s=2, and hence, the data are
representative of some mechanism that causes the population to fail with the above
characteristics. The intent of this plot is that it represents a small sample from a
much larger population. The next charts will also present data representative only of
the empirical sample, not of the true population. These charts will highlight the
randomness of the resulting distributions when only small samples are possible.

The assumption is that the true mean and standard deviation of the
population is known. The charts then depict that variation for the distributions
associated only with choosing a small sample. There are several features to notice
about this empirical distribution before continuing. The first is that it does indeed
have the general appearance of a normal distribution with a mean of 10 hr. The
second observation is that it has significant aberrations from the expected values
both for the 3.5–4.5 time interval and the 6.5–7.5 time interval. But this is just a
small sample from a true normal distribution so the aberrations are not a
consequence of data collection issues; they are just a function of the random
variation to be expected because the sample size chosen was only 50. Note that if
this would have been a real experiment, the early fail at about four hours might
have been attributed to something other than the primary fail mechanism, which
acts between 6 and 14 hours and hence, considered as a nonrepresentative fail and
eliminated from the population. Obviously, this could be the case in a real
experiment; however, here it is an integral part of the normal fail distribution and
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is equivalent in all respects, except its time to fail, to the later fails. As such it
cannot be eliminated from the sample without compromising the experimental
conclusions. The same observations could be made for some of the fails in the
6.5–7.5 time interval. Here two to three fails were expected and seven were
observed for this simulation. One could wonder about power spikes and any
number of other experimental problems during this time interval. However, the
large number in this interval in our case is again purely random statistical
variation and must be accepted as experimentally valid.

The point of the above discussion is twofold. First, when dealing with
statistical mechanisms, it is crucial to have large sample sizes. Otherwise, one
may not be able to differentiate between experimental data issues and purely
random statistical variation for those points that appear to be far from the expected
distributions. The second point is that data points should only be removed from the
sample when there are very clear experimental reasons to justify it.

When the time interval approaches zero in the limit, the above discussion
applies to continuous functions as well. If the discrete function is well behaved,
that discrete function may be represented by a continuous distribution. The
continuous PDF, which was used to generate the simulation shown in Figure 1.6,
is given in Figure 1.7. Five such distributions were simulated and averaged
together and are plotted in Figure 1.8 after normalization. Note that the
distribution parameters were identical in all five of the simulations used to
generate Figure 1.8, but each individual simulation of 50 points varied signifi-
cantly from the curve shown in Figure 1.7. The combination of the five
simulations of 50 points shown in Figure 1.8 after normalization, much more
closely resembles the continuous distribution shown in Figure 1.7. The difference
between Figures 1.6 and 1.8 is due purely to random statistical variation.
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Figure 1.6. A histogram corresponding to a sample from a normal distribution

with m = 10 and s = 2; one simulation with 50 points.
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Figure 1.9 shows a simulation using the same starting distribution but with
250 data points normalized to 50 data points instead of just a simulation of 50
data points. Here there is still significant deviation from the normal distribution.
This is most obvious in the 8.5–9.5 and 10.5–11.5 intervals. Figures 1.8 and 1.9
show deviations because the sampling is still limited. Figure 1.10 shows that same
simulated distribution but now with 1000 data points and again normalized. This
curve is now very true to a normal distribution especially at the values close to the
mean. The shape of all of the curves in Figures 1.6 –1.10 are the classic ‘‘bell
curves.’’ But if only 50 points or less are plotted, serious deviation from the pure
normal distribution should be expected.

Mathematically, one can allow the subregions to become smaller and smaller,
and to in fact approach zero. This is the case shown in Figure 1.7 where the PDF
becomes the continuous function, f(t) and is defined as the probability that the
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Figure 1.7. Continuous normal distribution with m = 10 and s = 2.
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values of t lie between (t�0.5dt) and (t+0.5dt), where 0otoN. The equation for
the PDF for the normal distribution is given Equation 1.1. Note in the general
case the mean may have any value whereas the standard deviation must have a
positive value.

f ðtÞ ¼ 1

s
ffiffiffiffiffiffi

2p
p exp �ðt� mÞ2=2s2

h i

where 0otoN ð1:1Þ

where m is the mean time to fail and s is the standard deviation.
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1.4.5.4 Cumulative Distribution Function (CDF). The cumulative distri-
bution function (CDF) is the cumulative sum from each subregion of the failing
population for a discrete function. The CDF, or F(t), is that fraction of the
population that has failed by time t. Stated another way, F(t) is the probability
that a part will fail by time t. Hence, as one adds the failures from each time
interval, the CDF increases from zero to one. The CDF for a continuous function
is then simply the integral of the PDF.

The CDF will typically be the first plot that the reliability engineer makes after
taking the experimental data. Notice that for the CDF, only the fails are plotted.
This has the important ramification that only the failing samples will be used to
determine the distribution. If the reliability engineer has designed an experiment
with 1000 samples for a given time duration, and after the end of that time, only five
samples have failed, only five points can be plotted and only the tail of the
distribution will be displayed. The remaining 995 samples are censored before
failure occurs. As we shall see later, a large variation would be expected in the
results at the tail of a distribution due to large confidence bounds. Hence, very little
about the sample distribution could be expected to be accurately determined in that
case even though a large sample was stressed. At the other extreme, if only five
samples were stressed and all failed, there would again be only five fails to plot but
that would represent the entire CDF for this sample. Now because the total sample
size was so small, the confidence bounds would be very large, and the distribution
parameters of the population would have a such wide range of possible values for a
given set of confidence bounds that little would be known about the actual
distribution of the population, even though it is known for our sample of five.

The CDFs that are shown in Figures 1.11 and 1.12 are related to the discrete
and continuous PDFs given in Figures 1.6 and 1.7, respectively. We need to
highlight that these are empirical or sample CDFs and not those for the
population. As expected, since these data were generated by a simulation of a
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normal distribution with a mean of 10, half of the population has failed by 10
hours. Equivalently, the probability of failure by 10 hours is 50%. Expressed
mathematically, the probability of fail at a given time is the area expressed by

FðtÞ ¼
Z t

0

f ðxÞdx ð1:2Þ

From the PDF the most general equation for the CDF is given as Equation 1.3
below. The reliability subset of this equation limits t to the positive time values.

FðxÞ ¼
Z t

0

1

s
ffiffiffiffiffiffi

2p
p exp �ðx� mÞ2=2s2

h i

dx ¼ F½ðt� mÞ=s� ð1:3Þ

where F is the normal distribution function and 0otoN. The probability that t
lies within the range from 0 to +N, is equal to one since in our case that range
includes all possible values of t. Hence, the value of the integral must be 1
representing 100% failure.

1.4.5.5 Reliability Function R(t). Whereas the CDF is the cumulative
failing population, the reliability function, R, is the cumulative surviving popula-
tion. It is obtained by subtracting the cumulative fails (CDF) from 1, i.e.,
R(t)=1�F(t). Just as the CDF must equal one after the last fail, the reliability
function must equal 0 since there are by definition no survivors. The equivalent
continuous reliability distribution is also plotted in Figure 1.12 where the
reliability scale is on the right. Obviously for the R, the point at which 50% of
the population has survived is 10 hours or the mean of the normal distribution.

1.4.5.6 Instantaneous Failure Rate (IFR) or Hazard Function, h(t).
Another important statistical concept that is used within the reliability community
is that of the instantaneous failure rate (IFR) or hazard function h(t). The h(t) is
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defined as the probability that those parts that have survived until a time, t, will
fail in the next increment of time, Dt. The h(t) is then a probability divided by the
incremental time Dt which converts it to a rate. Hence, h(t) is a failure rate
expressed either in terms of fails per time or fraction failing per time. The h(t) or
hazard function is defined mathematically as

hðtÞ ¼ f ðtÞ=½1� FðtÞ� ¼ f ðtÞ=RðtÞ ð1:4Þ

Derivations for the h(t) are given in references [12] and [5]. Those derivations
are beyond the scope of this book although the reader may find that a review of
those derivations may be helpful in better understanding the hazard function.

This figure of merit is most useful in describing the case of fallout during
the normal lifetime of the product. That fallout is also known as extrinsic fallout
or defect fallout. The h(t) can be integrated in a manner similar to the PDF or
f(t) to obtain H(t) sometimes referred to as the cumulative hazard function. For
more information on the cumulative hazard function than given below, the
interested reader is directed to the books previously referenced and especially
reference [10].

The discrete h(t) related to Figures 1.6 and 1.11 is shown in Figure 1.13 and
the continuous h(t) related to Figures 1.7 and 1.12 is shown in Figure 1.14. For the
case of this normal distribution, the h(t) is an increasing function. The discrete h(t)
shown in Figure 1.13 has a general similarity to the continuous h(t) in Figure 1.14
but because of random statistical variation is far from identical.

Because the CDF is the summation or integral of the PDF, the statistical
variation can appear to be mitigated. This could be the conclusion of a casual
comparison of Figures 1.6, 1.11, and 1.13 as compared to Figures 1.7, 1.12, 1.14
respectively. However, a careful inspection will still reveal the variation.
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1.4.5.7 Cumulative Hazard, H(t). The cumulative hazard function is the
integral of the hazard function as shown in Equation 1.5 and is another function
that can provide useful insight. The cumulative hazard is directly related to the
CDF as shown in Equations 1.4 and 1.5. The H(t) can be more convenient for
some types of censored data when plotting manually than is the CDF. However,
for semiconductor technology reliability and in today’s computer world, it is
rarely used and is presented here for completeness.

HðtÞ ¼
Z t

0

hðxÞdx ð1:5Þ

Another potentially useful relationship is H(t)=�ln R(t). This equation may be
verified by taking the derivative of both sides to obtain Equation 1.5. This
relationship may be expressed in several different forms.

1.4.5.8 Average Failure Rate (AFR). The average failure rate (AFR) is the
total number of fails within a given time interval expressed as a rate. This is a
useful figure of merit because the time interval can be defined and then a single
number used to characterize the reliability. Note that the hazard function is
variable so the value depends on the chosen time. One could get the same value of
AFR for equivalent product from two vendors using the hazard function, but the
shape of the curves in arriving at that value might cause one product to be
acceptable and the other one unacceptable. Because the AFR is an average, it is a
simpler figure of merit and is an acceptable figure of merit in many cases. It is
typically the figure of merit of choice to compare failure rates after one year and
sometimes after 5 or 10 years as well. The one-year AFR is not necessarily set
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exactly at one year or 8.76 khr, sometimes it is approximated as 10 khr. The AFR
is just the integral of h(t) between a specific time interval, divided by that time
interval. Mathematically it is represented as

AFRðt1; t2Þ ¼
1

t2 � t1

� �

Z t2

t1

hðtÞdt: ð1:6Þ

1.4.5.9 Moments. Although moments of a probability density function
may be defined that will characterize a PDF, the accepted practice in reliability
engineering is to use the distribution attributes themselves, such as the character-
istic life and shape factor for a Weibull distribution, rather than the moments of
the PDFs. A given moment may be described as the relationship of every value of
f(x) with respect to some fixed value.

A detailed discussion of the moments of distributions is beyond the scope of
this book and is generally not necessary for reliability engineering. However, the
interested reader is directed to Green and Bourne [12], for a rather complete
discussion on the various moments for the major distributions. The moments of
most interest in semiconductor reliability are 1) the first moment about the origin
which is the mean for the normal distribution and the characteristic life for the
exponential distribution; and 2) the second moment about the mean which is the
variance for the normal distribution and the square of the characteristic life for the
exponential distribution.

First moment about some constant x0:

M1 ¼
Z

N

�N
ðx� x0Þf ðxÞdx: ð1:7Þ

Mthmoment: Mm ¼
Z

N

�N
ðx� x0Þmf ðxÞdx: ð1:8Þ

Then the first moment about the origin (x0=0) is the mean:

M1 ¼
Z

N

�N
xf ðxÞdx: ð1:9Þ

The second moment about the mean is the variance:

M2 ¼
Z

N

�N
ðx�M1Þ2f ðxÞdx: ð1:10Þ

1.4.5.10 Fractile or Quantile Function. The p fractile, or equivalently the
p quantile, is the time at which that fraction, in percent, of the sample fails. Hence,
p= 5% represents the 5% failure point of the sample and p= 50% represents the
50% failure point, and p=F(tf). It is sometimes the case that the time position of
the fifth, tenth, or twentieth percentile of the lifetime distribution is specified as the
fail criterion. This is especially true when the tails of the population are the
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primary cause of failure. The time to fail of the p fractile is then just tf=F�1(p) or
the inverse of the CDF. Thus for the example in Figure 1.12, the time of fail for the
25 fractile or 25% failing portion of the sample is about 8.75 hrs. Note that the 25,
50, and 75 fractiles or quantiles are also known as the quartiles.

1.4.5.11 Reliability Projections and Closure. The normal distribution
was used to introduce the various reliability functions because everyone typically
has had either direct or indirect experience with the normal or Gaussian
distribution.

One final concept is needed before moving to the other distributions that will
be commonly used in reliability statistics. That concept is the one of transforming
the distribution of choice in such a manner that the CDF is linear when plotted.

The CDF plot for a continuous normal distribution was given in Figure 1.12.
However, one could not make any graphical projections using that chart since the
plot is not a straight line. The axis needs to be modified to achieve a straight line.
Alternatively the equivalent set of equations could be numerically solved to make
the projections. In practice both are typically done. A computer is used to solve
equations, fit data, and do all of the calculations, and it is also used to plot the
results on the appropriate axis so that one may have a visual demonstration of the
solution and of the projection.

Before continuing the endeavor to make the CDF of the normal distribution a
linear plot on some axis, the concept of the standard normal distribution needs to
be considered. Equation 1.3 is not soluble in closed form. Originally, tabular
values were used to solve these equations. A standard normal distribution was
introduced so that only one set of values would be necessary and all variations of a
normal distribution could be converted to that standard normal distribution. In
today’s world of computers and numerical integration, this procedure would not
be necessary, but it is instructive and should give the reader a better intuitive
understanding. Given a distribution where x is the random variable of a normal
distribution that has a mean of m and standard deviation of s, the transformation
to the standard normal distribution is given by

z ¼ ðx� mÞ=s: ð1:11Þ

With this transformation and noting that for a standard normal distribution s=1
by definition, the PDF given in Equation 1.1 and the CDF given in Equation 1.3
become

PDF : fðzÞ ¼ 1
ffiffiffiffiffiffi

2p
p exp

�z2
2

� �

where �NozoN ð1:12Þ

and

CDF: FðzÞ ¼
Z z

�N

1
ffiffiffiffiffiffi

2p
p exp

�w2

2

� �� �

dw where �NozoN: ð1:13Þ
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As mentioned above, historically the values for the standard normal CDF
were tabulated and all normal distributions converted to the standard normal
distribution for integration based on that tabulation. Most, if not all statistics
books, contain tables showing the solution of Equation 1.13, including the
referenced statistics books. Plots of an empirical, normal CDF are shown in
Figures 1.15 and 1.16 for a standard normal distribution for the 1000 point
experiment with the points generated by simulation assuming the standard normal
distribution. Note that for the standard normal distribution, the PDF is
symmetric about zero so that indeed m= 0 and hence, at zero, half of the
population will have failed.

We return to the second part of the normal CDF in Equation 1.3 to obtain the
y-axis transformation for the normal plot that will yield a linear CDF plot if the
distribution is normal. Mathematically, this may be expressed from Equation 1.3
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for the normal CDF as F(xp)=F({xp – m}/s). Solving this equation for xp by
taking the inverse of the function F(xp), one obtains xp= m+s F�1(xp). If xp is
then plotted versus F�1(xp), a straight line will result if the distribution in question
can be represented with a normal distribution. Note that each of the quantile pairs
is plotted equidistant from the mean on this new axis. Thus +/�s points are equal
distant from the mean as are the 0.01 and 0.99 points whereas the distance on the y
axis between 0.01 and 0.023 is nearly equal to that between 0.3 and 0.5. Note that
the right y-axis scale could have chosen to show the equivalent s value instead of
the actual cum fail percent. Given this choice of percentile values, the right y-axis
equivalent values are 2, 1, 0, �1, and �2 s, respectively, from top to bottom. Thus
Figure 1.16 has an axis that transforms the CDF of a normal distribution into a
linear function.

Note the power of this transformation. The CDF curve is now linear since the
data follows a normal distribution and while the tails of the distribution vary from
the straight-line projection, one could project from the data back to the time at
which 1 ppm or 0.0001% would be predicted to fallout, or to any other desired
fallout. Obviously this projection assumes that no new mechanisms were encoun-
tered as per the assumptions previously stated in Sections 1.2.2 and 1.4.2.

It is instructive to observe these two plots when only 50 experimental data
points are available. We have already discussed the importance of sample size for
at least statistical mechanisms, but since a picture is worth a thousand words, the
picture is shown below. Clearly the slope and mean of the curve for Figure 1.16 are
known to a much higher confidence than that for Figure 1.17, or equivalently
Figure 1.18, which has the axis transformation.
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The reliability concepts have been introduced using the normal distribution
since most are familiar with it and its bell-shaped PDF. The normal distribution
will be discussed further in terms of the lognormal distribution in Section 1.4.8
below as well as in the electromigration chapter in Sections 7.4.2 and 7.4.3. We will
now move to the distributions that will be most commonly used in the remainder
of this book. Those distributions are primarily the lognormal distribution and the
Weibull distribution which are both two-parameter distributions as typically used
in semiconductor reliability, although a third parameter could be introduced for
either. It has in fact been shown that a third parameter for the lognormal
distribution can more effectively describe electromigration behavior because it
can be used to model an incubation period [21]. The cost is a much larger sample
size to determine all three parameters than that required to determine just two
parameters so that the more complex model has historically rarely been used. As
features continue to shrink it may become advantageous to move to a three-
parameter distribution to gain the additional accuracy that could provide
additional reliability margin.

1.4.6 Exponential Distribution

The exponential distribution is a single-valued distribution and has the very
important attribute that h(t), the instantaneous failure rate, is a constant The
PDF, CDF, and h(t) are given in Equations 1.14, 1.15, and 1.16, respectively,
where time, tZ0.

PDF : f ðtÞ ¼ l expð�ltÞ ð1:14Þ
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CDF : FðtÞ ¼
Z t

0

f ðxÞdx ¼ 1� expð�ltÞ ð1:15Þ

IFR: hðtÞ ¼ f ðtÞ=½1� FðtÞ� ¼ l ð1:16Þ

Because h(t) for the exponential distribution is a constant, the probability of
failure in the next time increment is independent of the length of time the product
has already been in use or on stress. The ramification of this is that the part has no
aging that impacts its failure rate. A new part has the same failure rate as does the
part that is still functioning having already survived many years of operation.
Another way of stating this is that the part has no memory of its past operation.

The first moment about the origin is 1/l and the second moment about the
mean is 1/l2. These moments are given for comparison to the normal distribution
and are not frequently used in semiconductor technology reliability.

We show a set of curves for the PDF, CDF, and h(t) for the exponential
distribution where l has the values of 0.5, 1, and 2. Figures 1.19 and 1.22 depict
the PDF and h(t) , respectively. The exponential CDFs are plotted in Figures 1.20
and 1.21.

Note that the vertical axis has been modified in Figure 1.21 so that the CDF
for the exponential distribution will plot linearly. The procedure here is much
simpler than for the normal distribution, although in principle it is similar.
Equation 1.15 is solved for lt yielding �ln(1�F(t)). The scale transformation is
possibly most recognizable for l=1, since at t=1, the exponential argument
value is 1 and the cumulative percent failed is 63%.

Thus far we have been discussing the exponential distribution in terms of a
single parameter. The exponential distribution can also be utilized with two
parameters and the PDF, CDF, and h(t) are shown in Equations 1.17 –1.19 for
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Figure 1.19. PDF of exponential distribution for three values of the distribution

parameter, l, plotted on linear axis.
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that case. The second distribution parameter, t0, would typically be a timescale
shift in the case of semiconductor reliability although in some cases its interpreta-
tion might more appropriately be a threshold parameter.

PDF: f ðtÞ ¼ l exp �lðt� t0Þ½ � ð1:17Þ

CDF: FðtÞ ¼
Z t

0

f ðxÞdx ¼ 1� exp �lðt� t0Þ½ � ð1:18Þ

IFR: hðtÞ ¼ f ðtÞ=½1� FðtÞ� ¼ l ð1:19Þ
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Figure 1.20. CDF of exponential distribution for three values of the distribution

parameter, l, plotted on linear axis.
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1.4.7 Smallest Extreme Value and Weibull Distributions

The smallest extreme value distribution is included primarily to demonstrate its
relationship to the Weibull distribution; however, it does have some application in
its own right. These applications are not in general use in semiconductor reliability
today and will not be discussed in this book. The smallest extreme distribution is
applicable for �NoxoN where k is the location parameter and may be positive
or negative and z is the scale parameter which must be positive. As in the Weibull
distribution, 63.2% of the population has failed at the value F(x=k).

PDF : f ðxÞ ¼ 1

z
exp

x� k
z

� �

exp � exp
x� k
z

� �� �

ð1:20Þ

CDF: FðxÞ ¼ 1� exp � exp
x� k
z

� �

ð1:21Þ

IFR : hðxÞ ¼ 1=zð Þ exp x� k=z½ � ð1:22Þ

To obtain the Weibull CDF one defines x=ln y and k=ln j, and z=1/b, then
substituting in Equation 1.21 one obtains

FðyÞ ¼ 1� exp � expðln y� ln y=1=bÞ½ � ¼ 1� exp �ðy=jÞb
h i

; ð1:23Þ

where y is now constrained to be yW0.
The result in Equation 1.23 is identical to the Weibull CDF given in Equation

1.25. It is left as a student exercise to show that this special case of the smallest
extreme value function reduces to the Weibull distribution for the PDF and h(t).
A more complete discussion is given by Nelson [10].
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Figure 1.22. h(t) of exponential distribution for three values of the distribution

parameter, l, plotted on linear axis.
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The Weibull distribution, as a two-parameter distribution, has a characteristic
life, j, and a shape parameter, b. The PDF, CDF, and h(t) are given in Equations
1.24, 1.25, and 1.26, respectively.

PDF : f ðtÞ ¼ ðb=tÞðt=jÞb exp �ðt=jÞb
h i

ð1:24Þ

CDF : FðtÞ ¼
Z t

0

f ðxÞdx ¼ 1� exp �ðt=jÞb
h i

ð1:25Þ

IFR: hðtÞ ¼ f ðtÞ=½1� FðtÞ� ¼ ðb=tÞðt=jÞb ð1:26Þ

Obviously for semiconductor reliability purposes, these equations are applicable
only for tZ0.

Notice first the case where the shape parameter is equal to 1, that is b=1. This
is the case in which the Weibull distribution collapses to the exponential
distribution. In this case, Equations 1.24 –1.26 reduce to Equations 1.14 –1.16,
respectively, where l=1/j.

The next observation gives the characteristic life its meaning. Substituting j
for t in the CDF, we get F(t)=1�exp(�[j/j]b)=1�e�1=0.632. Hence, 63.2%
of the population fails by the characteristic life, j, independent of the shape
parameter b. This makes the characteristic life a powerful figure of merit for the
Weibull distribution. Therefore when discussing distributions which follow a
Weibull distribution, it is the 63.2 percentile that is the desired figure of merit, not
the fallout at the 50 percentile as is the appropriate figure of merit for the normal
distribution.

The shape parameter, b, gives the slope of the Weibull distribution. Usually in
reliability projections, the slope has a larger impact on the final projection than the
characteristic life since the projections are typically extrapolated across several or
even many orders of magnitude. Any error in the shape parameter is then
magnified by that extrapolation.

Many reliability systems can be and are modeled using a Weibull distribution.
As the figures depicting the Weibull distribution below will show, it is a very
flexible distribution. This flexibility is one of the reasons it is very useful for
reliability engineers. The Weibull distribution is the distribution of choice for
systems that have many, identical competing elements that can each cause a fail
and for which the first element to fail causes the entire system to fail. This is
discussed briefly in Section 1.4.8 and more fully in the dielectric chapters, Sections
2.1.2 and 2.4. Several authors have discussed the theoretical justification for using
the Weibull distribution and how it follows from the extreme value theory when
used in conjunction with the weakest link model [22–25].

The first moment about the origin is jG{(1+b)/b} for a Weibull distribution.
The second moment about the mean for a Weibull distribution is j2G{(2+b)/
b}�G2{(1+b)/b}] where G is the gamma function. These moments are not
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frequently used in semiconductor reliability work but are given here for complete-
ness and for comparison to the normal distribution.

The next topic for the Weibull discussion is the conversion of the axes for the
CDF plot to those that will result in a straight line plot for the Weibull
CDF. Using the same general procedure as for the exponential linearization
Equation 1.25 is solved for ‘‘t’’ by subtraction and taking the natural logarithm
twice obtaining

ln½� ln½1� FðtÞ�� ¼ b ln t� b ln j: ð1:27Þ

The term on the left has been defined as a Weibit,W, whereW=ln(�ln(1�F(t)). If
we then plotW versus ln t on the x axis, a linear plot for the CDF is achieved if the
distribution follows a Weibull distribution.

Figures 1.23, 1.24, 1.26 are plotted on a linear scale and show the PDF, CDF
and h(t), respectively, for the Weibull distribution. For Figure 1.25 the Weibull
CDF is plotted on a scale having Weibits as the y axis and ln t as the x axis.

Notice that in Figures 1.24 and 1.25, the CDF plots for Weibull distributions
having a characteristic life of two, the cumulative failure for each of the Weibull
distributions is 63.2% at that characteristic life of two, regardless of the shape
parameter. Also note that widely differing distributions occur for the shape factors
chosen.

The h(t) for a shape parameter, b=1 is a constant as discussed above and is
demonstrated in Figure 1.26. Returning to Figure 1.23, note the drastic difference
in the PDF for Weibull distributions having shape parameters of 0.5, 1, and 5. For
Weibull distributions having values of b less than 1, the PDF starts high at time
zero and is a decreasing function. This is typical of a defect mechanism and indeed,
historically, for oxides thicker than about 5 nm, br1, was typically interpreted as
extrinsic or defect fallout while for values of bW1, the interpretation was that the
Weibull distribution represented the intrinsic fallout or wearout. This is a very
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Figure 1.23. PDF for Weibull distribution with three values of the shape para-

meter b and a characteristic life, j = 2.
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graphic example of why the Weibull distribution is so useful in reliability
modeling. Many experiments can be successfully modeled using a Weibull
distribution; however, it is most powerful when a theoretical reason exists for
its use to describe a particular mechanism.

The three-parameter Weibull distribution is given in the Equations 1.28 –1.31.
Again, the third parameter would typically be a time-shift parameter for
semiconductor reliability modeling although it could be cast as a threshold
parameter especially in the more general cases. Note that as semiconductors are
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driven to the limit, it may become necessary to include more terms in the modeling
distributions to more accurately characterize the end of life predictions.

PDF : f ðtÞ ¼ ðb=t� t0Þðt� t0=jÞb exp �ðt� t0=jÞb
h i

ð1:28Þ

This equation can be written somewhat more simply if it is recast as

PDF : f ðtÞ ¼ b=jb� �

ðt� t0Þb�1 exp �ðt� t0=jÞb
h i

ð1:29Þ

CDF : FðtÞ ¼
Z t

0

f ðxÞdx ¼ 1� exp �ðt� t0=jÞb
h i

ð1:30Þ

IFR : hðtÞ ¼ f ðtÞ=½1� FðtÞ� ¼ b=jb� �

ðt� t0Þb�1 ð1:31Þ

1.4.8 Lognormal Distribution

The lognormal distribution, as a two-parameter distribution, has a median
parameter, mln, and a shape parameter, sln. mln is also called the log mean in
some statistics texts. It is important to understand the relationship between the
lognormal distribution and the normal distribution. The median parameter, mln,
is the mean of the natural log of the lifetime and the shape parameter, sln, is the
standard deviation of the natural log of lifetime. Thus if Y is a random variable
with a normal distribution having a mean of m, and a standard deviation of s, the
lognormal distribution with a random variable of Z which would be derived from
that normal distribution is given by Z=exp Y. For this lognormal distribution
the shape parameter sln, is equal to the normal standard deviation s, and the
median parameter is related to the normal mean by mln= exp m.
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The PDF, and CDF equations for the lognormal distribution are shown in
Equations 1.32 and 1.33 where 0otoN.

PDF : f ðtÞ ¼ slnt
ffiffiffiffiffiffi

2p
p� 	�1

exp �ððln t� ln mlnÞ2=2s2lnÞ
h i

ð1:32Þ

CDF : FðtÞ ¼
Z t

0

slnx
ffiffiffiffiffiffi

2p
p� 	�1

exp ð�ðln x� ln mlnÞ2=2s2lnÞ
h i

� �

dx ð1:33Þ

The median parameter above is designated as ‘mln’ to emphasize the relation-
ship to the normal distributions but it is often designated as T50. The h(t) would
be numerically calculated and is given by the usual h(t)= f(t)/[1�F(t)] formula.
Note that the hazard rate of the lognormal is not monotonic as per Figure 1.30.
The mean or first moment about the origin for a lognormal distribution is
exp[ln(mln)+0.5sln

2]. The variance or second moment about the mean for a
lognormal distribution is exp[2 ln(mln)+sln

2]{exp(sln
2)�1}. Again these moments

are given only for comparative purposes as they are rarely used in semiconductor
reliability.

Figures 1.27, 1.28 and 1.30 depict the lognormal PDF, CDF, and h(t)
respectively. Figure 1.29 depicts the CDF after the transformation to the linear
scale. Observe that in Figures 1.27 –1.30 the lognormal distribution also has a
great deal of flexibility as to the shape of the distributions that it can model.
Hence, the lognormal distribution can also be used to model a large number of
phenomena. Also note that for the CDF, the median life time-to-fail, mln, is
independent of the shape parameter, sln.

The lognormal scale for the CDF plot may be transformed in a manner similar
to the normal scale except now instead of starting with F(tq)=F({tq – m}/s)
as for the normal distribution, we start with F(tq)=F({log (tq) – ln(mln)}/sln).
Solving for tq by taking the inverse of the function, ln(tq)= ln mln+sln F�1(tq) is
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Figure 1.27. PDF for lognormal distribution with three values of the shape

parameter sln and a median parameter, mln = 0.

46 CHAPTER 1: INTRODUCTION



obtained. Hence, for the lognormal, a plot of ln(tq) versus F�1(tq) will yield a
straight line if the distribution can be modeled by a lognormal distribution. This is
depicted in Figure 1.29.

Because of the flexibilities of both the lognormal distribution and the Weibull
distribution it is often possible to model data using either distribution. However,
typically data can only be collected across two to three orders of magnitude and
projections must be made another two or three orders of magnitude in time beyond
the data collection time. For example, a typical stress will last at most 100–1000hrs
and the product must last for 100Khr. Also, the number of parts that can be
stressed is usually very limited because of early hardware delivery limitations as well
as stress facility limitations. The lack of stress time beyond a three month maximum
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Figure 1.29. CDF for lognormal distribution with three values of the shape
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precludes several serial stresses. Thus if only 50 parts are stressed, the first fail
already represents the 2% fallout point. Based on the amount of data and the range
of data, one may not be able to experimentally determine which distribution fits best
and indeed, they may fit the data equally well. The results of projecting across the
two to three orders of magnitude, however, could well mean the difference between
a product that passes the requirement by an order of magnitude or more and one
that fails the requirement by an order of magnitude or more. Recall that in addition
to projecting across those orders of magnitude of time one is also usually projecting
to ppm failure rates with the last data point at typically 1% or 2%.

For that reason, one prefers to appeal to a theoretical reason for choosing one
distribution over the other whenever possible. It will be shown in Chapter 2,
Section 2.4 that the Weibull distribution should be used when modeling phenom-
ena that exhibit an extreme value behavior. Extreme value distributions are used
to characterize systems where there are many competing mechanisms in parallel,
and any one of which failing, can cause the whole system or product to fail.
Dielectric breakdown is a prime example this behavior and the theory in Section
2.4 is applied to dielectric breakdown. The reader is advised to review that chapter
as well as the aforementioned references to fully understand the theoretical
reasons for choosing a Weibull distribution, to observe graphically the difference
between choosing the lognormal and Weibull distributions, and finally to gain an
appreciation for the sample size and time required to experimentally determine
which distribution to use if no theoretical reason can be determined.

One basis for the use of a lognormal distribution is a proportional growth or
multiplicative model [26, 27]. The model of failure in this instance is one where a
shift, or a change, or a degradation starts ever so slowly, and then with time, that
change grows or multiplies. Electromigration is typical, and will be modeled in this
book, with a lognormal model. In the electromigration case, a void is formed, but
that void growth starts with a single metallic atom exit. As the void grows from the
molecular size, the volume surrounding the void increases and more atomic or
molecular motion can contribute to the increasing void growth. Ultimately the void
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becomes such a large percent of the line that the resistance increases to the point of
failure. Crack growth and fatigue are also examples of mechanisms typically
modeled by lognormal distributions as are diffusion and chemical reactive pro-
cesses. Thus failures which result from small degradation processes that continue to
grow until failure occurs are often best modeled by the lognormal distribution. As
mentioned above, electromigration is caused by material transport and both the
normal and lognormal distributions will be further developed in the support of the
electromigration work in Section 7.4. The relationship of the material transport to
the lognormal distribution will also be treated further there. Note that an under-
standing of the physical mechanism should provide significant direction as to the
choice between the lognormal distribution model and the Weibull distribution
model. In fact, based on the inability to take enough data to distinguish between the
distribution models, the physical mechanism is typically a much better starting
point to determine the correct model. The difficulty of choosing a model based on
small amounts of empirical data will be clearly demonstrated in Section 2.4.3.

This introduces a further reason for understanding the physics of the
mechanism in question that was not discussed in Section 1.3. Without a good
understanding of the physics behind the mechanism, one might incorrectly choose
a distribution with which to model the behavior and, as a consequence, be either
radically optimistic or radically pessimistic without even knowing one’s bias.

Sometimes it is useful to introduce a third parameter into the lognormal
distribution to reflect either an incubation period, or more generally, an additional
feature of the distribution. As mentioned above, this was proposed [21] for
electromigration and was very successfully used to model an incubation period for
electromigration and is discussed further in Section 7.4.5.

The PDF and CDF equations for the three-parameter lognormal distribution
are shown in Equations 1.34 and 1.35 where 0otoN.

PDF: f ðtÞ ¼ slnt
ffiffiffiffiffiffi

2p
p� 	�1

exp � ½ðln t� mlnÞ=t0�2

2s2ln

 !" #

ð1:34Þ

CDF : FðtÞ ¼
Z t

0

slnt
ffiffiffiffiffiffi

2p
p� 	�1

exp
�½ðln x� mlnÞ=t0�2

2s2ln

" #" #

dx ð1:35Þ

The CDF for a three-parameter lognormal distribution is shown in Figure 1.31,
where the third parameter is the location parameter which allows the direct
modeling of an incubation period or of some threshold.

1.4.9 Poisson Distribution

The next distribution covered will be the Poisson distribution. It will be the
distribution of choice for modeling some of the device negative bias temperature
instability (NBTI) effects. More generally the Poisson distribution is often used to
model recurrence data.
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The Poisson distribution is very different from any of the distributions
considered earlier because it belongs to the family of discrete distributions. Until
now, we have modeled data with continuous distributions even though the data
have been discrete. The discrete distribution gives a tool by which one can model
the number of failures, or shifts, above a certain minimum shift or fail point.

The probability density function of a continuous distribution describes the
fails in each period of time which can be plotted as a histogram with the time
interval as the abscissa and the number of fails as the ordinate or y-axis value. A
discrete distribution has an equivalent function that is called the probability
function (pf). It consists of the probabilities of all of the occurrences that can occur
in a given system. A simple discrete function is the geometric distribution and its
probability function is given by f(x)=p (1�p)(x�1), where p is a probability and
hence, 0opo1, x is any one of the total set of observations, and f(x) is then the
probability of that observation or outcome occurring.

The cumulative distribution function of a discrete function is the summation
of the probabilities of all possible observations or outcomes and must equal one as
x approaches +N, that is, as all of the probabilities of all possible outcomes are
included in the summation. As x approaches �N, the cumulative distribution
function must approach zero since the probability of none of the outcomes would
be included in the summation. For the geometric and Poisson distributions,
the observation or outcome factor must be an integer; however, this is not true
of discrete distributions in general. A much more complete discussion of discrete
distributions is given by Nelson [10].

The pf and CDF for the Poisson distribution are shown in Equations 1.36 and
1.37, where lP is the observation or outcome rate factor with lP W0, nZ0 and is
the number of observations or events, and t is the observation variable which in
the case of semiconductor reliability would typically be time but could, in principle
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be any variable of interest. The pf and CDF are plotted for three values of lP in
Figures 1.32 and 1.33, respectively.

pf: f ðntÞ ¼ ðlPÞn=n!ð Þ exp �lP½ � ð1:36Þ

CDF: FðnÞ ¼ PðN � nÞ ¼
Xn

i¼0 ðlPÞ
i=i!

� 	

exp �lP½ � ð1:37Þ

The mean and variance for the Poisson distribution are equal to each other,
and each is equal to lP. Again the reader is referred to Nelson [10], and Meeker [9],
for a much more complete discussion on the Poisson distribution as well as
Poisson analysis (Figure 1.33).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 25

P
oi

ss
on

 C
D

F
 

λpt Value

λpt = 1

λpt = 5

λpt = 10

5 10 15

Figure 1.33. Poisson CDF for lt values = 1, 5, and 10.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

λPt = 1

λPt = 5

λPt = 10

P
oi

ss
on

 p
f

λPt value

5 10 15 20 25

Figure 1.32. Poisson pf for lt values = 1, 5, and 10.

1.4 RELIABILITY STATISTICS 51



1.5 CHI-SQUARE AND STUDENT t DISTRIBUTIONS

This section introduces those distributions that will be used not to characterize the
physics of a mechanism, but rather to provide the statistical framework to test the
applicability of the results.

1.5.1 Gamma and Chi-Square Distributions

The chi-square test is one of the primary metrics used to determine if the
distribution chosen to characterize the mechanism is consistent with the sample
data. Hence, the chi-square test is used to determine the goodness of fit. Because
it is a special case of the gamma distribution, the gamma distribution is
shown first. The PDF and CDF for the gamma distribution are given in
Equations 1.38 –1.40.

1.5.1.1 Gamma Distribution

PDF : f ðt; aG; bGÞ ¼ taG�1=baGG GðaGÞ
� �

exp �t=bG½ � for t40: ð1:38Þ

CDF : Fðt; aG; bGÞ ¼ 1=GðaGÞð Þ
Z t

0

xaG�1=baGG
� �

exp �x=bG½ �dx: ð1:39Þ

G(aG) is the gamma function given by

GðaGÞ ¼
Z

N

0

xaG�1e�xdx: ð1:40Þ

If bG=2 and aG=n/2 where n is an integer representing the number of the
degrees of freedom of the distribution, then the gamma distribution reduces to the
chi-square distribution. The chi-square distribution PDF and CDF are given in
Equations 1.41 and 1.42. The PDF and CDF for chi-square distributions of one
and five degrees of freedom are shown in Figure 1.34.

1.5.1.2 Chi-Square Distribution

PDF : f ðtÞ ¼ tðn=2Þ�1=2ðn=2ÞGðn=2Þ
� 	

exp½�t=2� for t40 ð1:41Þ

CDF : FðtÞ ¼ ð1=Gðn=2ÞÞ
Z t

0

xðn=2Þ�1=2ðn=2Þ
� 	

exp½�x=2�dx ð1:42Þ

It should also be noted that for the special case of two degrees of freedom
(n=2), the chi-square distribution itself reduces to an exponential distribution with
a mean equal to 2. This can be seen from the PDF of Equation 1.41. G(n)}=
{1/G(n/2)} {x(n/2�1)/2n/2}exp(�x/2)=G(1)}{1/2}exp(�x/2)={1/2}exp(�x/2). The

52 CHAPTER 1: INTRODUCTION



gamma function could also be expressed in terms of a simple factorial expression
since the gamma function argument u has an integer value, e.g., G(n)=(n�1)!=1 in
the case of n=2. Further discussion of the chi-square distribution is given in Green
and Bourne [12].

1.5.2 Student t Distribution

The Student t test can be used to draw inferences about the sample, the
population, and the statistical significance of the results. It has many uses within
the field of semiconductors but its development is beyond our scope here [28]. The
PDF and CDF for the Student t distribution is given in Equations 1.43 and 1.44,
respectively.

1.5.2.1 Student t Distribution

PDF : f ðxÞ ¼ G½ðnþ 1Þ=2�=G½n=2�ð Þ
f1þ ðx2=nÞgðnþ1Þ=2

ffiffiffiffiffi

pn
p� 	 where �NoxoN ð1:43Þ

CDF : FðxÞ ¼ G½ðnþ 1Þ=2�=G½n=2�ð Þ
ffiffiffiffiffi

pn
p
ð Þ

Z x

�N
f1þ ðy2=ng
� ��ðnþ1Þ=2

dy ð1:44Þ

where G is the gamma function and n is the degrees of freedom.
The Student t distribution is symmetrical about the mean and it converges to a

normal distribution as n approaches infinity. Student t distributions are shown in
Figure 1.35 for 2 and 20 degrees of freedom.
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Figure 1.34. PDF and CDF for chi square distribution for 1 and 5 degrees of

freedom.
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1.6 APPLICATION

1.6.1 Readouts Versus ‘‘Exact’’ Time-To-Fail

Data censoring is often necessary even given the experimenter’s best effort to
avoid it. Various types of data censoring are discussed below. Our focus, as
throughout this book, will be on the practical application to semiconductor
technology reliability. Historically, one had to use separate test and stress
equipment sometimes called ex situ stress equipment. That is still necessary
sometimes today, but more often one piece of equipment can be used for both
the stressing and testing of the DUTs. This is likewise sometimes referred to as
in situ stressing. This equipment will give the ‘‘exact’’ time-to-fail of each DUT.
In situ test equipment typically will be able to determine the time-to-fail within
milliseconds and although this is not mathematically exact, it can be considered
exact for any realistic reliability stress that is at least a few seconds or greater in
duration. All of the semiconductor technology reliability stressing that is practiced
today including very fast wafer-level reliability stressing is at least a few seconds in
stress duration.

When ex situ stressing is necessary, the sample is first tested and then put into
the stress chamber. Readouts should usually be done on a log-of-time basis. As an
example, consider a stress sample that is to be 500 hr in duration. Assume that
each test of the total sample takes one hour on the tester with a five-hour overhead
of removing the sample from stress, transporting it to and from the tester, and
returning the sample on stress. Further assume that either no relaxation occurs or
that the samples are held at a voltage while awaiting their turn on the test
equipment. The next issue to be addressed is the tradeoff between data collection,
the time at which most of the failures or shifts are expected, and the total time of
the stress activity. If the prime concern is the percent of the sample that survives
until 500 hr, very few, intermediate readouts may be chosen especially if time is of
great concern, which is often the case. As the reliability engineer, one wants to be
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Figure 1.35. Student t PDF for 2 and 20 degrees of freedom.
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very cautious in this case. If the hardware all passes at the end of the 500 hr, there
is no issue. However, if there are significant fails, the customer will then more than
likely desire additional information. For the example requiring 6 hours off stress,
the readout schedule might be 10, 30, 100, and 500 hours. Obviously if only two or
three readouts were made, this becomes problematic. The best experimental design
can only be achieved when the behavior is reasonably well known beforehand, so
that the readouts can be taken in approximately equal steps of transformed time.
Note that the first plotted fail on any CDF plot will not occur at time zero, but
at the first nonzero readout. Depending on how quickly fails or shifts are expected,
the reliability engineer might even choose to do a two-hour readout in addition to
the above readouts or even both one- and two-hour readouts.

For the case of in situ stressing, a data-retention strategy is typically chosen by
the equipment manufacturer. Here the issue becomes too much data when only a
little information is desired. If the first significant shift or fail occurs after 18.554 hr
for one of the samples on stress and the equipment has been making a readout
once every 0.001 hr, someplace in the equipment storage 18,553 entries exist that
present no information. Typically equipment today will give the engineer the
ability to save measurements that have a shift greater than a per cent change
from the last measurement or beyond some minimum threshold change. This is
obviously both desirable and necessary.

The actions of the reliability engineer are the same in both cases after the data
is taken. The CDF will be plotted on the appropriate axes. The difference is that
for the ex situ case, the only points that will be plotted will be at the precise
readout times or a plotting position appropriate to those times. However, what is
really known about each fail in this distribution is only its time-to-fail within a
certain time range. For example, for a fail that occurred at the 50-hour readout, it
is only known that that fail occurred sometime between the previous readout, e.g.,
20 and 50 hr. Obviously, all of the fails that occurred between 20 and 50 hr are
grouped together and plotted at a single time. For this reason this type of data is
called grouped data or readout data. Because these fails are only known within a
range of time values, this is also called interval censoring. For the in situ case,
values will be plotted at the ‘‘exact’’ times-to-fail, again considering the best
plotting position strategy.

1.6.2 Additional Types of Censoring

Two of the most common reasons for censoring are lack of time or lack of stress
equipment or both. If a stress is terminated before all of the parts have failed, it is
called time censoring or Type I censoring. The times-to-fail are not known for the
samples failing after the stress termination. Time censoring is very common and
often necessary. The challenge for the reliability engineer is to then design the
experiment in such a fashion that most of the population fails in the allotted time.
Type II censoring occurs when the sample is removed from stress after a given
percent of the samples have failed. This may also be called failure censoring.
Failure censoring has the advantage of guaranteeing that a given, cumulative

1.6 APPLICATION 55



fallout can be plotted on the CDF plot. Often the tail of the distribution may be
significantly more robust than the main population so it may survive another
decade or more in time. But in terms of the modeling and projection, this tail
would be appropriately discounted, so time can be saved without any significant
information lost in this special case of failure censoring. It is assumed that for
either time censoring or failure censoring, the stress plan is decided beforehand
and that the censoring is hence, unbiased. If time or fail censoring decisions are
made during the stress that are based on the stress results, a bias, either favorable
or unfavorable, could be introduced into the results.

Other reasons for censoring might include equipment failure or voltage surges
due to power outage and return. In these cases the compromised samples would
need to be removed from stress. If one were stressing on two separate stressors and
only one suffered from the problem, those samples would be removed at that time,
and as the stress continued on only the uncompromised equipment, the percent
fails from that time on would be calculated based on the new, smaller sample.

Another reason for censoring would be the need to obtain failure analysis on
an early fail or shift to determine if the signature was the expected fail signature.
For example, if for an electromigration stress 20% resistance shift was considered
a failure, a DUT might be pulled from the stress and sent to failure analysis if it
shifted 10% much more quickly than expected. Here the data point would be
sacrificed for an immediate determination as to whether a new mechanism was at
work. In principle the same could hold true for a stress that uncovered several
mechanisms, but for which only one was of concern. Although this would not be a
common case in semiconductor reliability, it can happen.

1.6.3 Least-Squares Fit and Application

It is expected that the engineer will be using numerical techniques for plotting and
analyzing the data. Hence, we do not give computer programs, nomographs, tables
of calculated values for special functions, or charts showing continuous values of
special functions. Once the data has been plotted, preferably by numerical means, a
fitting routine can be run to give a best fit line through those values.

One of the simpler choices would be a least-squares fit to the data. In this case,
the square of y-axis distance from each point, to the fitted line is summed and
minimized to achieve the least-squares fit. This is shown graphically in Figure 1.36.

As discussed in Section 1.4, we choose axes which cause the function that is to
be plotted to have a linear form, thus the least-squares-fit function is also a linear
function.

yiða; bÞ ¼ aþ bti ð1:45Þ

Q2ða; bÞ ¼
X

n

i¼1
ðyi � ðaþ btiÞÞ2
h i

ð1:46Þ

Equation 1.46 is minimized when the derivative is set equal to zero. Since
Equation 1.46 is a function of both ‘a’ and ‘b,’ each partial derivative must be
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individually set to zero. Note that Q could be a function of many parameters for
the nonlinear case, and in that more general case, the equivalent of Equation 1.46
would be set to zero for all partial derivatives. The derivation of the equations
below is beyond the scope of this book and the reader is referred to any theoretical
statistics book for a complete derivation and more complete description of these
equations. The reader is directed to the end of this discussion for an example that
walks through each of the following steps. Under almost every circumstance in
today’s world, any of several excellent software packages would be used to do
these calculations; however, it is important for the reliability engineers to under-
stand the basis of those calculations even if they have not derived each equation
themselves. We start with the least-squares fit.

@Q2ða; bÞ=@a ¼ �2
X

n

i¼1
ðyi � ðaþ btiÞÞ½ � ¼ 0: ð1:47Þ

@Q2ða; bÞ=@b ¼ �2
X

n

i¼1
ðyi � ðaþ btiÞÞti½ � ¼ 0: ð1:48Þ

The estimates of the regression coefficients, ‘a’ and ‘b,’ are given by the following
equations. The estimate of the ‘b’ coefficient, b̂, is the estimate of the slope of the
least-squares-fit line and is given by

b̂ ¼
Pn

i¼1 yiti �
Pn

i¼1 yi
� �

Pn
i¼1 ti

� �


n
� �

Pn
i¼1 t

2
i �

Pn
i¼1 ti

� �2
.

n
h i ð1:49Þ
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Figure 1.36. Least-squares-fit line to 20 point data set plotted with i/(n+1)

plotting position.
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The estimate of the ‘a’ coefficient, or estimate of the intercept of the least-squares-
fit line, is given by:

â ¼
X

n

i¼1
yi

 !

.

n� b̂
X

n

i¼1
ti

 !

.

n ð1:50Þ

Two figures of merit for the least-squares fit include the correlation coefficient,
rC shown in Equation 1.51, and a data-based estimator for the variance of the error
s2, shown in Equation 1.52. This estimator s2 will be used throughout this chapter
since it is usually true in semiconductor reliability that the variance of the
population is not known. The correlation coefficient is a measure of the strength
of the linear relationship between the two variables under study. rC is dimensionless
and ranges from �1 to 0 to +1, meaning an excellent negative correlation, no
correlation, or a positive correlation (Figure 1.37). This is sometimes called the
Pearson product moment of correlation. Although this would not normally be an
issue in semiconductor reliability, note that excellent correlation does not imply a
causal relationship, but only that a linear relationship exists between the variables in
question. The estimator of the variance, s2, gives a measure of the dispersion of the
actual y values about the y values as fitted to the least-squares line. If the estimator
of the variance was very large, it would be possible that little, if any, correlation
existed even if the correlation coefficient was close to a positive or negative one. The
correlation coefficient rC and the variance estimator s2 are given by:

rC ¼
Pn

i¼1 yiti �
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� �
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� �
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ð1:52Þ

One very significant attribute should be noted about the least-squares fit. The
error between the actual point and the fitted point contained within the line is
squared. The sum of these squares is then minimized. Another and possibly
preferable option would be to simply minimize the sum of the errors instead of the
sum of the square of the errors. However, absolute values are not analytically
soluble. The result of minimizing the sum of the squares is that points further from
the fitted line have a larger contribution and are thus more heavily weighted than
the closer points. Usually, but not always, the end points of the distribution, the
first readouts and the last readouts, will have the largest error. These early and late
points will typically be the most distant from their equivalent points on the fitted
line. Hence, these early and late readouts have a greater influence on the resulting
fitted line than do most of the other readouts. One would typically want to
minimize the influence of these points rather than maximize it. The early points
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may be only slightly longer than the minimum response time of the stress/test
system. The late points may not be representative of the main population due to
any number of stress/test issues, or they may truly be representative of a
population that has significantly longer life.

The confidence interval, at the 100(1�a) percentile for the slope b̂ of our
straight line fit is given by Equation 1.53. Note that this will yield a range of slopes
that are acceptable within our specified confidence interval. As alpha gets smaller,
the range of acceptable slopes will increase. Hence, there is a tradeoff, the tighter the
confidence interval desired, the larger will be the spread of values for b̂ that must be
accepted to meet that increased confidence level. This is quantified in the example at
the end of this chapter. The confidence interval for the slope, Cb, is given by

Cb ¼ b̂� ta=2s
X

n

i¼1
t2i �

X

n

i¼1
ti

 !2


n

8

<

:

9

=

;

; ð1:53Þ

where b̂ is the estimator for the slope and is given in Equation 1.49, ta/2 is taken from
Student distribution tables and is also a function of the degrees of freedom, s is the
square root of the variance estimator given in Equation 1.52, and n is the sample size.

The next figure of merit is for the 100 (1�a) percent confidence interval at a
given value of time, t, for the mean value of y which in this case is the CDFi. The
reader is referred to any of the referenced statistics books for more detail. The
confidence interval, CI, is then given by

CI ¼ ŷ� ta=2s
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where ŷ corresponds to time t and is given by ŷðiÞ ¼ aþ b̂ti.

Figure 1.37. Positive correlation (increasing slope with larger dots) and negative

correlation (decreasing slope with larger dots) where correlation coefficient, rC,

would be relatively close to + or �1, respectively, and no correlation (smaller

dots) where the correlation coefficient, rCB0.
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Cautionary note: The confidence intervals, t-tests, and hypothesis tests shown
above are only exact for the case where the Ei are also normal random variables.
The transformations discussed in Section 1.4, which are required to cast the
various failure distributions in a linear form, unfortunately cause the above
regression model to be not strictly valid after the transformations. In particular,
the noise terms Ei, are not independently distributed, having a tendency to be
larger towards the edges of the data. Hence the maximum likelihood estimators
are much preferred for the evaluation of confidence intervals, t tests and
hypothesis testing and although they are beyond the scope of this book the reader
is directed to any of the referenced statistics texts for thorough discussions of these
topics. Understanding the weakness of this analyzed regression model we will
continue using it for simple graphical illustrative purposes. Also note that its
validity could be tested by using simulations if it were to be used instead of the
maximum likelihood estimator. As already mentioned, the expectation is that one
of the many computer programs for confidence interval and hypothesis testing
would be used to generate the results, and that in fact a maximum likelihood
estimator program would be used.

Example 1: A simple linear example of the application of Equations 1.45 through
1.54 will be given next. The simplest case to illustrate the applications of the
equations and avoid getting lost in the transformation equations is used. Note that
in Section 1.4 the transformations that were shown allow the normal, exponential,
Weibull, and lognormal distributions to be plotted linearly after the axis
transformations. The i/(n+1) plotting position is chosen in this example for
simplicity and there are 20 data points. The actual least-squares fit is shown in
Figure 1.36. It was generated with software, but we now go back to reconstruct the
method of doing it manually. Table 1.1 gives the time and CDF values as well as
the additional terms required for the calculations.

First the slope and intercept estimates are calculated for the least-squares fit
line drawn in Figure 1.36.

From Equation 1.45: b̂ ¼ 34:01� ½ð10Þð52:34Þ=20�
½178:5� ð52:34Þ2=20�

¼ 0:189

From Equation 1.46: â ¼ 10=20� ð0:189Þð52:34Þ=20 ¼ 0:00571

Hence, the formula for the line drawn in Figure 1.36 is ŷ=0.00571+0.189 t.

The correlation coefficient rC is calculated from Equation 1.51 and yields
rC= 0.991. The value is very close to +1, indicating a very strong positive
correlation. This indicates that there is a very strong linear relationship between
these two variables.

rC ¼
½34:026� ð52:367Þð10Þ=20�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:508� ð10Þð10Þ=20
p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð178:64Þ � ð52:367Þð52:367Þ=20
p
� � ¼ 0:991
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The variance estimator then comes from Equation 1.52 and the square root of the
variance estimator for this example is, s=0.0384.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½6:508� ð10Þð10Þ=20� � ½0:189ð34:026� ð10Þð52:367Þ=20�
18

r

( )

¼ 0:0384

The final two metrics investigated in this chapter will be the confidence
intervals on the value of the slope and on the mean value of ŷ or the CDF
estimator at a fixed time. The 95% confidence interval for the slope, Cb, is given by
Equation 1.53 and the 95% confidence interval for the mean value of ŷ at a fixed
time is given by Equation 1.54. In terms of the reliability projection, the value
of the slope is by far more critical than the mean value of ŷ at a fixed time.
That is because any slope error is magnified by the reliability projection across at
least several orders of magnitude of time in the course of data being taken
at highly accelerated conditions while the projection must typically reach 10 years
as demonstrated in our first figure, Figure 1.1. Any error in mean value of ŷ
at a fixed time remains constant on a percentage basis as the projection

TABLE 1.1 . Table Showing Time, CDF, Squares, Cross Products, and Sums for Least-
Squares-Fit Procedure

Time Time2 CDF CDF2 Time�CDF

0.064 0.004 0.048 0.002 0.003

0.446 0.199 0.095 0.009 0.042

0.467 0.218 0.143 0.020 0.067

1.096 1.200 0.190 0.036 0.209

1.393 1.941 0.238 0.057 0.332

1.734 3.005 0.286 0.082 0.495

1.858 3.451 0.333 0.111 0.619

2.306 5.317 0.381 0.145 0.878

2.366 5.599 0.429 0.184 1.014

2.537 6.572 0.476 0.227 1.221

2.743 7.523 0.524 0.274 1.437

2.753 7.582 0.571 0.327 1.573

3.386 11.467 0.619 0.383 2.096

3.426 11.735 0.667 0.444 2.284

3.431 11.774 0.714 0.510 2.451

3.572 12.759 0.762 0.581 2.722

4.323 18.684 0.810 0.655 3.499

4.556 20.760 0.857 0.735 3.905

4.929 24.297 0.905 0.819 4.460

4.955 24.553 0.095 0.907 4.719

SUM 52.340 178.640 9.143 6.508 34.027
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extends across the decades. These figures of merit are shown on Figure 1.38 and
Figure 1.39 respectively.

Cb ¼ 0:189� ð2:101Þð:0384Þ=ðð178:5� ð52:34Þ2=20ÞÞ0:5 ¼ 0:189� :037

CI ¼ ŷ� ð2:101Þð0:0384Þ
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Figure 1.39. Least-squares-fit line with 20 data points plotted with confidence

limits calculated based on Equation 1.53.

Time

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Figure 1.38. Least-squares-fit line to a 20 point data set, plotted showing point-

wise confidence intervals computed for each value of t, using Equation 1.54.
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For the case of t=0, from Equation 1.44: ŷðâ; b̂Þ ¼ 0:00571þ 0:189t ¼ 0:00571
and above

CI ¼ ð0:00571þ 0:189 tÞ � ð2:101Þð0:0384Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

20
þ ðt� 2:617Þ2

178:5� ð52:34Þ2=20

s

¼ 0:00571� 0:03736

Hence 95% confidence interval for the mean value of ŷ at a fixed time of zero lies
between the values of �0.0316 and +0.043. Obviously for CDF, the value must
always be positive. The 95% confidence interval for the slope lies between 0.176
and 0.201.

A casual observation of Figures 1.38 and 1.39 may not be convincing that the
conservative value for the slope has a greater impact on the final reliability
projection than the conservative value of the least-squares fit due to the mean
value of ŷ at a fixed time for the 95% confidence intervals. Note that in these
figures no projection has been made. Again we must emphasize that all of the
results for Example 1 are only approximate because the noise terms are not
independently distributed. Hence the results on the figures are also only approx-
imate. The intent here is to give the reader a simple approximation. The more
accurate computer generated results for a maximum likelihood estimator are
much preferred; however, it is also good to have a simple approximate method as
a sanity check.

Figure 1.40 is a qualitative depiction of three errors terms that conspire
against the reliability engineer. Two terms were discussed above with respect to
the linear regression model even though severe weaknesses were highlighted for its
use in determining confidence bounds. Those two error terms are shown
qualitatively as the slope error and the mean error in Figure 1.40. The third error
is the error in the acceleration factor itself. Limited sample sizes, random
statistical variation, and random process variation all limit the accuracy of the
acceleration calculation. Often the models used in semiconductor reliability have
an exponent that controls the acceleration so that a very small error in that
exponent is magnified many times. Here we have assumed that there are no
experimental or equipment errors. The slope and mean error indicators are only
shown on the worst case side of the two acceleration error indicators. The data
points are practically lost on a chart such as this and one can see that the total
error bar is approximately an order of magnitude as it is depicted in this figure.
Although this is nothing more than a sketch, it is very realistic to expect these
three errors to result in an uncertainty of that magnitude. If the time is to be a
given, then the uncertainty is in the value of the failure rate and again that can be
on the order of a factor of ten.

Finally compare this figure to our starting point of Figure 1.1. Hopefully at
this point the reader understands not only the procedure for generating plots like
Figure 1.1 or 1.40, but also understands the precautions that must be considered
as one goes about designing an experiment, taking the data, determining the
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appropriate distribution function, calculating the acceleration factors, and finally
making the plots either physically or with a computer.

1.6.4 Chi-Square Goodness of Fit Application

The chi-square goodness of fit test may be used to test the hypothesis that data,
sampled from a population, fit an assumed distribution. The concept behind this
test is to first divide the data into intervals or cells, and to then compare the
expected value in each interval based on the assumed distribution, to the observed
value in that interval. The test is sensitive to both the size of the intervals and the
data frequency within each interval. Note that if the expected data frequency is
less than five, some intervals may need to be combined.

w2 ¼
X

c

i¼1
fðObservedi � ExpectediÞ2=Expectedig ð1:55Þ

In Equation 1.55, c is the number of the intervals or cells or groups of data
and for Equation 1.55 to approach a true chi-square distribution, the sample size,
n, must approach N. However, as long as n is large enough so that each grouping
of data has a minimum of five observations, Equation 1.55 can be used for a chi-
square goodness of fit test. Note that the chi-square statistic has c�1 degrees of
freedom if no parameters need to be estimated.
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Typically the parameter values will be estimated from the data in the case of
semiconductor reliability. For that case, Equation 1.55 may be rewritten explicitly
in terms of the sample size and the probability of the samples falling within a given
grouping. The student is referred to Mann [11] for a detailed discussion of this
subject.

w2 ¼
X

c

i¼1
fðObservedi � nPiÞ2=nPig ð1:56Þ

where c is the number of the intervals or cells or groups of data and again the
sample size, n, is sufficiently large for each cell to have at least five observations.

The first step in applying the chi square goodness of fit test then, is to divide
the data into groups so that a histogram of the actual data may be plotted.
Typically the null hypothesis to be tested in this case will be that the data can be
described by the assumed distribution and the alternative hypothesis is that the
data cannot be described by the assumed distribution. The chi square figure of
merit is defined by Equation 1.56. This test assumes the chi square distribution has
c�p degrees of freedom where c is the number of nonempty cells, and p is the
number of unspecified parameters of the distribution plus one. For the two-
parameter Weibull distribution in Equation 1.25 or the two parameter lognormal
distribution in Equation 1.33, p=3. The hypothesis that the data can be described
by the assumed distribution is rejected if Equation 1.57 is true. The term w2(1�a,m�p)
is calculated from the chi square CDF given in Equation 1.42.

w24w2ð1�a;m�pÞ ð1:57Þ

where a is the level of significance and m–p are the degrees of freedom.
An application of the chi square test using these equations is given below. The

fail times are given in Table 1.1 and the chi square test will now be used to
determine whether or not these fail times belong to a uniform distribution with
0rtr5. Three cells are chosen between 0 and 5 such that the cell boundaries are at
c1=1.4, c2=2.8 and c3=5 with the cells having 5, 7, and 8 observed fails
respectively. Also note that since we have discrete fail times, the cell separations,
ci, must be chosen so as to avoid those fail times. The expected values for the three
intervals or cells may be calculated using the equation: PiðtÞ ¼ ðti � ti�1Þ=ðt2 � t1Þ
where the distribution is defined between the values of t1 and t2, and which in this
case are 0 and 5, respectively. Those results are: P1=0.28, P2=0.28, and
P3=0.44. After multiplying by the sample size, the estimated number of
observations in each cell becomes 6, 6, and 9, respectively. Note that the
requirement of a minimum of five expected occurrences per cell is met in this
example. Substitution of these results into Equation 1.56 then yields:

w2 ¼ ð5� 6Þ2=6þ ð7� 6Þ2=6þ ð8� 9Þ2=9 ¼ 0:444

The hypothesis that the data is sampled from a uniform distribution is not rejected
for a=0.05, since w2 0.95 (2)=5.99.
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1.6.5 Maximum Likelihood Estimation (MLE)

Conceptually, the objective of MLE is to determine that set of distribution
parameters that will maximize the likelihood of representing the sample data.
MLE is both a powerful and versatile method for fitting statistical distribution
models to sample data. MLE is very useful for semiconductor reliability both
because it has the power to fit all of the distributions commonly used in reliability
to sample data and because it provides a best fit for all of the distribution
parameters across all of the cells of a stress. MLE can also be used for hypothesis
testing. Although the computation required for MLE is typically complex, this is
not an issue given today’s software packages.

The likelihood function, L, is the joint probability shown in Equation 1.58.

L ¼
Y

n

i¼1
fxiðxi; y1; y2; :::; ykÞ ð1:58Þ

where fxi (xi; y) is the probability of all of the xis occurring together given the
distribution parameters y1, y2,y, yk, f is the probability density function, xi is a
random sample of size n, and y is a vector consisting of the set of unknown
distribution parameters.

Discussion of the MLE theory and technique is beyond the scope of this book
and the reader is referred to, for example, Mann [11], for an excellent discussion of the
MLE technique as applied to a three-parameterWeibull distribution. Li et al. recently
published two excellent articles on the MLE theory and techniques for the lognormal
distribution [29, 30]. Nelson [10] also addresses MLE in a comprehensive manner.

1.6.6 Closure

This brief introduction to statistics should be adequate for the reader to navigate
the remainder of this book. It has been abbreviated because the focus of this book
is on the reliability mechanisms themselves, not on reliability statistics. The
development of the Weibull and lognormal distributions will be discussed further
in Chapters 2 and 7, respectively. Also in Chapter 2, additional examples of
confidence bounds are given. However, none of these statistics topics have been
treated rigorously since this book is focused on CMOS reliability. Furthermore,
some very important topics, for example MLE, have only been mentioned. The
reliability engineer that clearly understands statistics is in the best position to both
understand what information is in the data as well as advance the understanding
of the physics of the mechanism. In no way should the brevity of this treatment be
construed as diminishing the importance of reliability statistics. Both introductory
reliability statistics books as well as advanced reliability statistics books have been
referenced and the readers are encouraged to avail themselves of these references
as well as any of the other of the many statistics books on the market.

Many other areas of statistics have not even been mentioned, including some
the statistical considerations that go into the design of the experiments. Although
several reasons for censoring have been highlighted, we stopped short of providing
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the statistics to do so. The reader should also be aware that the field of statistics
includes the appropriate formalisms to treat replacement parts and repairable
parts. One can think of fitting multiple cells and the statistical treatment required
for factorial experiments. All of these have more or less applicability to
semiconductor reliability depending on the particular issues and experiments,
and again the reader is referred to the full books on these subjects. Several good
texts not already referenced include [31, 32].

We have discussed in some detail the mechanics of a projection. Once the
mechanics are mastered, the real engineering begins. A Weibull distribution was
shown to have theoretical justification for modeling a physical system that behaves
as a ‘weakest link’ system, as discussed and referenced in Section 1.4.7. In this case
the theoretical support for the Weibull distribution, a subset of an extreme value
distribution, is very strong. One theoretical basis for lognormal distribution is the
proportional growth or multiplicative model and is typically the case for material
transport. Knowing the mechanism is an important part of choosing the correct
modeling distribution.

One final word of caution for today’s world where most, if not all, of
reliability analyses are done by machine—this is truly progress; however, always
do a sanity check on the results. Try to estimate the result so that you will not be
blindsided by input errors that may have missed an order of magnitude or used
inconsistent units. At the risk of nostalgia, the one and only advantage of the
ancient instrument called a slide-rule was that it gave the result only to three
significant digits and it did not show the decimal point. The three significant digits
could be refined but the engineer had to independently calculate the decimal point.
The engineer was forced to look at the problem and result in enough detail to
notice an order of magnitude error.
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