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1.1 INTRODUCTION AND HISTORICAL DEVELOPMENT OF DPSM

In this chapter, the historical evolution of distributed point source method

(DPSM) and its basic principles are presented. First, the magnetic field generated

by a magnetic transducer/sensor in a free space is obtained. A U-shaped magnetic

sensor with high-permeability core is first modeled (Placko and Kundu, 2001).

Then, the method is extended to problem geometries with one interface (Placko

et al., 2001, 2002). The source of the field is denoted as ‘‘transducer’’ or

‘‘sensor,’’ and the interface between two media is sometimes called ‘‘target.’’

Observation points that are not necessarily on the interface are also called ‘‘target

points.’’ Figure 1.1 shows the relative orientations of the transducer and inter-

face. The interface or target can be an infinite plane or it can have a finite

dimension, acting as a finite scatterer. Only one reflection by the target surface is

first considered. The method is illustrated through some examples from electro-

magnetic and ultrasonic applications. In this chapter, different DPSM source
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configurations are considered including controlled-space radiation (CSR) sources

and triplets, as it can be seen in the patent (Placko et al., 2002).

DPSM modeling is based on a spatial distribution of point sources and can be

applied to both two-dimensional (2D) and three-dimensional (3D) problem geome-

tries. Mostly, 3D modeling is presented in this book for magnetic, acoustic, electro-

static, and electromagnetic field problems. In the DPSM modeling technique the

transducer surface and interface are replaced by a distribution of point sources, as

shown in Figure 1.2a. One layer of sources is introduced near the transducer and a

second layer near the interface. Point sources that model the transducer are called the

‘‘active’’ sources and those near the interface are called the ‘‘passive’’ sources. It

should be noted here that a transducer generates a field and an interface alters that field

by introducing reflected, transmitted, and scattered fields. If the interface is removed,

the active point sources should still be present. However, if the active sources are

turned off, then the passive point sources must be turned off as well because in the

absence of active sources, the passive sources do not exist. Active and passive point

sources can be distributed very close to the transducer face and interface, respectively,

as shown in Figure 1.2a or away from them as shown in Figure 1.2b. It is also not

A
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Medium 2

AB = Source or transducer or sensor
CD = Interface or target

C

D

Figure 1.1 Problem geometry with interface.
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Figure 1.2 Synthesizing the field by placing point sources: (a) close to the sensor and

interface, (b) away from the sensor and interface.
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necessary for the layer of point sources to be parallel to the surface (transducer or

interface) that is modeled by these sources. Strengths of the point sources are adjusted

such that the boundary conditions on the transducer surface and continuity conditions

across the interface are satisfied. This can be achieved by inverting some matrices. By

adjusting the point source strengths, the total field can be correctly modeled by

different layers of point sources placed in different orientations. Naturally, for

different orientations of the point sources, individual source strength vectors should

be different. The total field is computed by adding fields generated by all active and

passive point sources. Note that unlike the boundary element or finite element

techniques, in this formulation the discretization of the problem boundary or of the

problem domain is not necessary.

Like other numerical modeling schemes, accuracy of the computation depends

on the number of point sources considered. This process of introducing a number

of point sources can be called ‘‘mesh generation.’’ In this chapter, we study the

effect of the spacing between two neighboring point sources on the accuracy of

the field computation and the optimum spacing for accurate numerical compu-

tation. It is shown here that for accurately modeling acoustic fields, the spacing

between two neighboring point sources should be less than the acoustic wave-

length (in fact, as we will see later, this condition has to be fulfilled for all kinds

of waves, but the proof is given for the acoustic wave modeling). This restric-

tion can be relaxed if we are interested in computing the field far away from the

point source locations. For example, if one is interested in computing the field

generated by a circular sensor of finite dimension in a homogeneous medium,

the point source spacing must be a fraction of the wavelength if one is

interested in computing the field accurately adjacent to the transducer

face. However, at a larger distance the field can be computed accurately by

considering fewer point sources of higher strength although it will not give good

results near the transducer. Flat transducers or sensors with circular and

rectangular cross-sections as well as point-focused concave transducers are

modeled accurately by taking appropriate source spacing and are presented in

this chapter.

Figures 1.3–1.5 show the steps of DPSM evolution, improvements in elemental

source modeling, and different problems that have been solved so far by this

technique (Placko, 1984, 1990; Placko and Kundu, 2001, 2004; Placko et al., 1985,

1989, 2002; Ahmad et al., 2003, 2005; Dufour and Placko, 1996; Lee et al., 2002;

Lemistre and Placko, 2004; Banerjee et al., 2006).

1.2 BASIC PRINCIPLES OF DPSM MODELING

1.2.1 The fundamental idea

In this subsection, we first describe the basic principle of this method, which is

based on the idea of using multiple point sources distributed over the active part of a

sensor or an interface. Active sources synthesize the transducer-generated signals in
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a homogeneous medium, whereas the passive point sources distributed along the

interface generate signals to model the reflection and transmission fields. For a

finite interface the passive sources also model the scattered field. Because the

distributed point sources model the total field, we call this method the ‘‘distributed

point source method’’ or DPSM. It should be mentioned here that this technique is

based on the analytical solutions of basic point source problems. Therefore, it can

be considered as a semi-analytical technique for solving sensor problems that

include magnetic, ultrasonic, and electrostatic sensors. For example, it is possible

to compute the magnetic field emitted by the open magnetic core of an eddy current

sensor, or acoustic pressure in front of an ultrasonic transducer without discretizing

the space by a large number of 3D finite elements. Magnetic and ultrasonic sensor

examples are presented in this chapter to illustrate the method because these

problems have some interesting properties as discussed later. It should be noted

here that for a magnetic sensor, the magnetic potential remains constant on the

sensor surface and the magnetic flux varies from point to point, whereas for the

acoustic sensor in a fluid, the particle velocity remains constant on the sensor

surface and the acoustic pressure varies. It requires an additional matrix inversion

in the magnetic field modeling, which is not necessary for the acoustic field

modeling.

An elemental point source is shown in Figure 1.6. In a nonconductive medium, it

involves both scalar potential and vector field, the field being proportional to the

gradient of the potential. Each source is surrounded by a surface (‘‘bubble’’) on which
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Figure 1.5 Different problems solved by DPSM.
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the boundary conditions are applied. Because the boundary conditions are specified

on the sensor surface for active point sources and on the interface surface for the

passive point sources, the bubble surface should touch those surfaces such that the

transducer surface or interface are tangents to the surface. Therefore, the point

sources at the centers of the bubbles cannot be located on the transducer surface or

on the interface. Reason for this restriction will be discussed later.

1.2.1.1 Basic equations The basic principle of the DPSM is illustrated in

Figure 1.7. The implementation of the model simply requires the replacement of

the active surface of the transducer by an array of point sources, so that the initial

Point source

Potential contour lines

Radiated field

Boundary condition bubble

Figure 1.6 Elemental point source.

Synthesized field

Actual field
Array of point 

sources

Transducer

Figure 1.7 Equivalent source radiation.
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complexity associated with a complex finite shape of the transducer is changed into a

superposition of elementary point source problems. One way of replacing the surface

by an array of point sources is discussed below.

The active surface of the transducer is discretized into a finite number of elemen-

tary surfaces dS, a point source is placed at the centroid of every elemental surface.

The source strength and the radiation area of the sources are controlled. Unlike

ordinary point sources, the sources used in DPSM do not necessarily radiate energy in

all directions. For this reason these sources can be called CSR sources. For example, a

source can be defined to radiate only in the bottom or top half space, or right or left

half space (see Fig. 1.8).

In the generic derivation, symbols y and j are used to represent different para-

meters for different engineering problems as described below. For magnetic sensors,

y and j represent the scalar magnetic potential � and the flux �/m0 of the magnetic

induction ðHÞ, respectively. For ultrasonic transducers, y andj represent the acoustic

pressure P and the flux � of the particle displacement ðxÞ, respectively. Note that the

particle velocity v ¼ dx
dt

. For electrostatic systems, y and j represent the scalar

magnetic potential V and the flux Q=e0 of the electric field ðEÞ. The interaction

function that relates the field generated by the unit source (such as the elemental

charge for electrostatic problems) to y is denoted by f. Table 1.1 shows the funda-

mental equations in different fields of engineering. It should be mentioned here that it

is possible to obtain similar equivalent equations for problems from other fields of

engineering such as thermal problems, for example. Nevertheless, it will be shown

later that for electromagnetic waves the situation is slightly different because the

sources in this case are elemental vectors of current, and in addition, the potential is

often a vector and not a scalar, due to eddy currents generated in conductive media.

It is interesting to note that the energy (or the power) radiated by such a system is

the product of a scalar quantity and the flux of a vector (or the time derivative of the

flux, for power). Let us denote the scalar quantity by yk and the flux emitted by the

point source k by jk. Figure 1.9 shows how the total field at a given point is computed

by adding fields generated by all the point sources. It also shows that because of

Figure 1.8 Illustration of the controlled-space radiation source properties.
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rotating symmetry, the elemental surface dS can be changed into a hemispherical

surface dS with radius rSðdS ¼ 2pr2
SÞ.

1.2.1.2 Boundary conditions One needs to introduce the boundary conditions

before solving the problem. For computing the values of the flux jk for N sources,

one needs N number of equations. These equations are obtained by introducing

H

Hs3

M

rs1

rs2

Hs2

r

Hs1

rs3

Figure 1.9 Equivalent surface discretization.

TABLE 1.1 Some physical values in DPSM modeling

Surface

Surface power energy Function f

Electrostatic ~EE ¼ �grad
��!ðVÞ ÐÐ

~EE � ~dSdS ¼ Q

e0

dQS

dt
� V ¼ dD

dt
� V

1

2
QsV

e�iðkf �rÞ

2pe0 � r

Magnetostatic ~HH ¼ �grad
��!ð�Þ ÐÐ

~HH � ~dSdS ¼ �

m0

d�s

dt
�� ¼ dB

dt
��

1

2
�s�

e�iðkf �rÞ

2pm0 � r

Ultrasonic ~FvFv ¼ k �~vv ¼ r
d~vv

dt

¼ �grad
��!ðPÞ

ÐÐ
~xx � ~dSdS ¼ �

dx

dt
� P

1

2
xP

�iorn0

2pr
ei�kf �r

[r is the distance of the point source, Kf is the wave number; for electrostatic systems, y is the scalar

magnetic potential V ;j is the flux Q=e0 of the electric field (E); for magnetic sensors, y is the scalar

magnetic potential �, j is the �=m0 of the the magnetic induction (H); for ultrasonic problems, r is the

fluid density, P is the pressure, x is the particle displacement, � is the flux of particle displacement, v0 is

the transducer velocity, o is the signal frequency.]
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boundary conditions on the scalar quantity yk at N given points. One possible choice

is to place these specific points (denoted by Pk) at the apex of the hemispherical

surfaces (then rS is normal to the surface). Clearly, greater is the number of points,

smaller is the value of radius rS. Therefore, when N tends to infinity, rS tends to 0,

and Pk points tend to reach the surface on which the point sources are placed. Let us

now illustrate this technique to model the magnetic field generated by a magnetic

sensor.

1.2.2 Example in the case of a magnetic open core sensor

Under assumptions of very high permeability core, the implementation of the model

simply requires discretization of the active surface (magnetic poles) of the core to

obtain an array of point sources. Let us denote the scalar quantity by yk and the flux

emitted by the source k by jk. In the application described in this section, yk and

jk represent the magnetic scalar potential and the flux of magnetic induction,

respectively.

1.2.2.1 Governing equations and solution Magnetic fields emitted by open

magnetic cores (electrical motors, magnetic and eddy current sensors) are modeled

in this section. Solving such problems without any approximation will be very

difficult in this domain of electromagnetic modeling. A magnetic sensor with a

‘U’-shaped open magnetic core (see Fig. 1.10) is considered as an illustrative

example.

Let us assume that the active part of a sensor is composed of two ‘‘poles’’—north

and south poles of the magnetic transducer, see Figure 1.11.

N spires
cxeI

Figure 1.10 Geometry of the magnetic sensor studied.
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The active surfaces are discretized into elementary surfaces dS. At the center of the

ith elemental surface dS, a point source emitting a flux ji is placed. From the

conservation of the magnetic flux, one can write that the summation of the flux

emitted by all point sources is equal to zero.

jN þ jS ¼
X

pole N

jNi þ
X
pole S

jSi ¼ 0 ð1:1Þ

The magnetic potential at a given point M in the space is obtained by considering the

contribution of all magnetic point sources.

y ¼
X

pole N

yi þ
X
pole S

yj ð1:2Þ

General relations between the magnetic field and the scalar magnetic potential are

given by

~HH ¼ �dy
d~rr

and j ¼
ðð

m0
~HH � ~dSdS ð1:3Þ

It yields in our case, for the ith point source

ji ¼ Hi � 2pm0r2 and
y i ¼ j i

2pm0r
ð1:4Þ

M
Hn1

H

Rn1

Rn2

Rs1

Rs2

Hs2
Hs1

Hn2

r
r

North pole poleSouth

Figure 1.11 Discretization of magnetic sensor poles.
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Hence, Eq. (1.2) becomes

y ¼
X

pôle N

jNi 	 f ðrNiÞ þ
X
pôle S

jSj 	 f ðrS jÞ

where

f ðrÞ ¼ 1

2pm0r
ð1:5Þ

After introducing Ci as the coordinate of the center of the source Si, Eq. (1.5) takes the

following form:

y ¼
X

pôle N

jNi 	 f ðM � CiÞ þ
X
pôle S

jS j 	 f ðM � CjÞ ð1:6Þ

1.2.2.2 Solution of coupling equations At this step, the value of the magnetic flux

emitted by the point sources is unknown. An additional boundary condition is then

introduced to obtain a new equation set. This is done by computing the magnetic

potential yk at each peak point (Pk) of the hemispherical surface (radius r), due to all

sources Si (see Fig. 1.12).

yk can be obtained from Eq. (1.6)

yk ¼
X

pôle N

jNi 	 f ðPk � CiÞ þ
X
pôle S

jS j 	 f ðPk � CjÞ ð1:7Þ

As the magnetic circuit of the sensor is composed of a material of high permeability,

there is no difference in magnetic potential between the points of the same pole.

Therefore, yk ¼ yN ¼ a for the north pole and yk ¼ yS ¼ �b for the south pole,

where

yN � yS ¼ aþ b ¼ N 	 Iexc ð1:8Þ

poleSouthpoleNorth

r r

CNi - PSj

CNi - PNj

Figure 1.12 Definition of distances for coupling matrix computation.
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The number of equations thus obtained is equal to the number of point sources. Thus,

one gets a square matrix for the coupling equations

yNp1

yNp2

yNp3

ySp1

ySp2

0
BBBBBBB@

1
CCCCCCCA
¼

þa
þa
þa
�b
�b

0
BBBBBBB@

1
CCCCCCCA

¼

FNp1Nc1 FNp1Nc2 FNp1Nc3

FNp2Nc1 FNp2Nc2 FNp2Nc3

FNp3Nc1 FNp3Nc2 FNp3Nc3

2
4

3
5 FNp1Sc1 FNp1Sc2

FNp2Sc1 FNp2Sc2

FNp3Sc1 FNp3Sc2

2
4

3
5

FSp1Nc1 FSp1Nc2 FSp1Nc3

FSp2Nc1 FSp2Nc3 FSp2Nc3

� �
FSp1Sc1 FSp1Sc2

FSp2Sc1 FSp2Sc2

� �

2
6666664

3
7777775 	

jN1

jN2

jN3

jS1

jS2

0
BBBBBBB@

1
CCCCCCCA

ð1:9Þ

This system of equations with four submatrices can be rewritten as:

�N ¼ FNN 	�N þ FNS 	�S

�S ¼ FSN 	�N þ FSS 	�S

So that

� ¼ F 	� ð1:10Þ

Inversion of Eq. (1.10) gives the magnetic flux for all point sources

� ¼ F�1� ¼ G �

which gives

� ¼

jN1

jN2

jN3

jS1

jS2

0
BBBB@

1
CCCCA ¼

GNp1Nc1 GNp1Nc2 GNp1Nc3

GNp2Nc1 GNp2Nc2 GNp2Nc3

GNp3Nc1 GNp3Nc2 GNp3Nc3

" #
HNp1Sc1 HNp1Sc2

HNp2Sc1 HNp2Sc2

HNp3Sc1 HNp3Sc2

" #

GSp1Nc1 GSp1Nc2 GSp1Nc3

GSp2Nc1 GSp2Nc3 GSp2Nc3

� �
HSp1Sc1 HSp1Sc2

HSp2Sc1 HSp2Sc2

� �
2
66664

3
77775 	

þa
þa
þa
�b
�b

0
BBBB@

1
CCCCA

ð1:11Þ

The condition on the flux (Eq. 1.1) in combination with Eq. (1.11) gives a new

equation to determine the values of a and b:

jN þ jS ¼ a
X

i;j

Gij � b
X

k;l

Hkl ¼ 0 ð1:12aÞ
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After knowing the magnetic flux values, the magnetic potential or the field in the

space in front of the magnetic circuit is computed from Eqs. (1.3) and (1.5). We can

also compute some macroscopic parameters like the reluctance < by

< ¼ ðyN � ySÞ 	 j�1
N ¼ N 	 Iexc 	 j�1

N ð1:12bÞ

1.2.2.3 Results and discussion Some results obtained with the DPSM model are

presented and compared with the results obtained by the finite element method

(Ansys 3D software) (ANSYS, 1999). Geometry of the sensor, with 9 point sources

for each pole, is shown in Fig. 1.13.

For this simulation, Figure 1.14a and b shows the magnetic potential at the

surface of the north pole for 9 sources and 144 sources, respectively. Similar to

Figure 1.13, in Figure 1.14a, a small number of sources (9 sources) is kept to

illustrate the principle of the DPSM method. The boundary condition that the

magnetic potential is constant at the apex of every hemispherical surface can be

clearly seen in this figure. Same parameters are shown in Figure 1.14b when the

number of point sources in each pole is increased to 12� 12 ¼ 144. Dimensions

along the x- and y-axes are given in millimeters. Figure 1.15a and b presents the

normal component of the magnetic field at the surface of the north pole for 9 and 144

sources, respectively.

Figure 1.13 Illustration of the DPSM method with 9 sources on each pole.
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Figure 1.16a presents the Hx component of the magnetic field at the level of the

poles, obtained with the DPSM model. Figure 1.16b shows the variation of the

magnitude of Hx along a line in the y-direction on the poles’ plane. Figure 1.16b

shows the magnitude of Hx obtained by DPSM (dashed line) and ANSYS 3D

simulation (continuous line). This figure shows that the DPSM results are in good

agreement with the ANSYS simulation results.

Furthermore, it should be pointed out that the DPSM synthesis of the magnetic

field has been made, in this simple example, by matching the boundary conditions

on the scalar term (magnetic potential) at the surface of the transducer. It should be

noticed here that the satisfaction of the boundary condition gives rise to some

interesting conditions on the vector term (magnetic field) because the scalar

and vector terms are linked by a gradient relation (see Eq. (1.3)). Therefore, a

first-order development of the scalar term applied to the neighboring points of the

boundary surface guarantees a matching of the first-order derivative terms in any

tangential direction to the boundary surface. In addition, it should be noted that the

surface does not correspond to the wave front; therefore, every point, where the

Figure 1.14 Magnetic potential on north pole for (a) 9 and (b) 144 sources on each pole.

Figure 1.15 Normal component of the magnetic field on north pole for (a) 9 and (b) 144

sources.

14 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)



scalar condition is matched, corresponds to different components of the wave. This

interesting point can be easily observed in ultrasonic problems. In ultrasonic

modeling (discussed below) like magnetic problems, the DPSM synthesis can be

carried out by matching scalar boundary conditions (pressure). In the ultrasonic

modeling pressure, matching induces a variation for the vector terms (velocity).

This point is illustrated in Figure 1.17. It should be noted here that if the continuity

conditions must be satisfied on vectors (see examples on ultrasonic problems in

Chapter 4 and electromagnetic problems in Chapter 6) instead of scalars, then

triplet point sources must be used instead of simple point sources.

Figure 1.16 (a) Tangential component of the magnetic field computed by DPSM; (b) compar-

ison of results obtained from DPSM (dashed line) and ANSYS (continuous line) simulation.

Boundary condition points

Neighboring points « j »

12dr
13dr

14dr

15dr16dr
17dr

0+×
∂
∂+≈ ij

i

i
ij dr

r

P
PP

Transducer

»iPOINT «

For all neighboring points j:

ir

Figure 1.17 Field synthesis properties and boundary conditions.
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It will be shown in subsequent developments that for some boundary value pro-

blems, the boundary conditions may be specified on vector quantities. A simple such

example is the ultrasonic transducer modeling. Ultrasonic transducer surfaces usually

have a normal vibration speed, which induces a model in which the velocity vector is

normal to the transducer surface. The next applications of DPSM will be illustrated

with examples taken from the ultrasonic transducer modeling problems. For ultrasonic

problems the point sources can be single elemental point source or triplet source.

Although single elemental point sources are capable of satisfying only one boundary

condition at a point, the triplet sources are capable of satisfying three boundary

conditions (x, y, and z components of the velocity vector, for example) at one point.

1.3 EXAMPLES FROM ULTRASONIC TRANSDUCER MODELING

Most derivations on ultrasonic transducer modeling presented in this section are taken

from Placko and Kundu (2004). For step by step development of DPSM formulation for

ultrasonic problems, readers are referred to Chapter 3 of this book, where the formula-

tion has been derived starting from the basic equations of ultrasonic problems.

Three most common ultrasonic wave fronts that are often used for modeling

purposes are spherical, cylindrical, and plane. Spherical waves are generated by a

point source in an infinite medium, cylindrical waves are generated by a line source,

whereas plane waves are generated by an infinite plane, as shown in Figure 1.18.

These waves can be harmonic or nonharmonic. Harmonic waves are generated

from harmonic (time dependence¼ e�iot) sources. The equation of the propagating

spherical wave generated by a harmonic point source in a fluid space is given by

(Kundu, 2004)

GðrÞ ¼ eikfr

4pr
ð1:13:aÞ

and the equation of a propagating plane wave in a fluid is given by (Kundu, 2004)

Gðx1Þ ¼ eikf x1 ð1:13:bÞ

S

S

S

FF F

Figure 1.18 Point source (left), line source (middle) and infinite plane source (right) generat-

ing spherical, cylindrical and plane wave fronts, respectively. Sources are denoted by S and the

wave fronts by F.
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where, kfð¼ o=cfÞ is the wave number of the fluid and is defined as the ratio of the

angularfrequency(o)andtheacousticwavespeedðcf Þ inthefluid,r is theradialdistance

of thesphericalwavefrontfromthepointsource,andx1 is thepropagationdistanceof the

plane wave front from the plane source. In Eqs. (1.13a) and (1.13b) G can be either

pressure (p) or wave potential (f). The wave potential–pressure relation is given by

p ¼ ro2f ð1:13cÞ

If the wave sources of Figure 1.18 are located in a homogeneous solid instead of the

fluid medium, then only compressional waves are generated in the solid, and their

expressions can be obtained by simply substituting kf by kP, where kP is the P-wave

number of the solid. In the absence of any interface or boundary, the mode conversion

does not occur and shear waves are not generated from the compressional waves.

In many nondestructive evaluation (NDE) applications, elastic waves are gener-

ated by a source of finite dimension and the wave fronts are not spherical or cylindrical

or plane. Diameters of the commercially available ultrasonic transducers that are

most commonly used in NDE for ultrasonic wave generation vary from a quarter of an

inch to one inch. Of course, in special applications the ultrasonic sources can be much

smaller (in the order of microns for high-frequency acoustic microscopy applications)

or much larger (several inches for large-structure inspection). To correctly predict the

ultrasonic field (displacement, stress, and pressure fields), generated by such finite

sources, a semi-analytical modeling technique such as DPSM is needed.

1.3.1 Justification of modeling a finite plane source by a distribution

of point sources

The pressure field due to a finite plane source can be assumed to be the summation of

pressure fields generated by a number of point sources distributed over the finite

source area as shown in Figure 1.19. The finite source can be, for example, the front

face of a transducer as shown in this figure.

This assumption can be justified in the following manner:

A harmonic point source that expands and contracts alternately can be represented by

a point and a sphere as shown in Figure 1.20a. The point represents the contracted

position and the sphere (circle in a 2D figure) represents the expanded position. When

a large number of these point sources are placed side by side on a plane surface, then

Figure 1.19 Four point sources distributed over a finite source
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the contracted and expanded positions of the point sources are shown in Figure 1.20b.

The combined effect of a large number of point sources, placed side by side, is shown

in Figure 1.20c, where the contracted (dark line) and expanded (thin line) positions of

a line source or the cross section of a plane source are seen.

From Figure 1.20 it is clear that the combined effect of a large number of point

sources distributed on a plane surface is the vibration of the particles in the direction

normal to the plane surface. Nonnormal components of motion at a point on the

surface, generated by neighboring source points, cancel each other. However, non-

normal components do not vanish along the edge of the surface. Therefore, the

particles not only vibrate normal to the surface but also expand to a hemisphere

and contract to the point along the edge, as shown in Figure 1.20c. If this edge effect

does not have a significant contribution on the total motion, then the normal vibration

of a finite plane surface can be approximately modeled by replacing the finite surface

by a large number of point sources distributed over the surface.

1.3.2 Planar piston transducer in a fluid

The pressure field in a fluid for the planar piston transducer of finite diameter, as

shown in Figure 1.21, is computed first. This problem can be solved in two ways as

described below.

1.3.2.1 Conventional surface integral technique If one distributes the point

sources over the transducer face, as discussed in Section 2.1, then the pressure field

(a) (b)
(c)

Figure 1.20 Contracted (dark) and expanded (thin line) positions of the particles for (a) a point

source, (b) distributed finite number of point sources, and (c) a very large number of point

sources.

x
r

x3

x2

x1

y

Figure 1.21 Point source y is on the transducer face, point x is where ultrasonic field is

computed
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at position x in the fluid, due to the point sources at position y distributed over the

transducer surface, can be given by integrating Eq. (1.13) over the transducer surface.

pðxÞ ¼
ð
S

B
expðikfrÞ

4pr
dSðyÞ ð1:14aÞ

where B is proportional to the source velocity amplitude. The above integral can be

written in the following summation form:

pðxÞ ¼
XN

m¼1

B

4p
�Sm

� �
expðikfrmÞ

rm

¼
XN

m¼1

Am

expðikfrmÞ
rm

ð1:14bÞ

However, from the Rayleigh–Sommerfield theory (Schmerr, 1998),

pðxÞ ¼ � ior
2p

ð
S

v3ðyÞ
expðikfrÞ

r
dSðyÞ ð1:15Þ

where v3(y) is the particle velocity component normal to the transducer surface; note

that v1(y)¼ v2(y)¼ 0. For constant velocity of the transducer surface (v3¼ v0),

Eq. (1.15) is simplified to

pðxÞ ¼ � iorv0

2p

ð
S

expðikfrÞ
r

dSðyÞ ð1:16Þ

A comparison between Eqs. (1.14a) and (1.16) gives

B ¼ �2iorv0 ð1:16aÞ

Eq. (1.16) can be evaluated in closed form for a circular transducer of radius a for the

following two special cases (Schmerr, 1998):

(1) when x is located on the x3-axis

pðx3Þ ¼ rcfv0

�
expðikfx3Þ � exp ikf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ a2

q� ��
ð1:16bÞ

(2) when x is in the far field. In other words, when r is much greater than the

transducer radius

pðx1; x2; x3Þ ¼ �iorv0a2 expðikfRÞ
R

J1ðkfa sin yÞ
kfa sin y

ð1:16cÞ

R and y of Eqs. (1.16b) and (1.16c) are shown in Figure 1.22. J1 is the Bessel function

of the first kind.
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1.3.2.2 Alternative DPSM for computing the ultrasonic field An alternative

technique to compute the strength of the distributed point sources on the transducer

surface is given in this section.

Let the strength of the mth point source be Am such that the pressure at a distance rm

from the point source is given by Eq. (1.17) (also see Eq. (1.14b)).

pmðrÞ ¼ Am

expðikfrmÞ
rm

ð1:17Þ

If there are N point sources distributed over the transducer surface, as shown in

Figure 1.23, then the total pressure at point x is given by

pðxÞ ¼
XN

m¼1

pmðrmÞ ¼
XN

m¼1

Am

expðikfrmÞ
rm

ð1:18Þ

where rm is the distance of the mth point source from point x. Note that Eqs. (1.18) and

(1.14b) are identical.

From the pressure–velocity relation, it is possible to compute the velocity at x.

� @p

@n
¼ r

@vn

@t
¼ �iorvn ð1:19Þ

x
R

x1

a θ

x2

x3

Figure 1.22 R and y denote the far field point x

x3m

vm
v3m

rm

x3

x1

x2

x

m

Figure 1.23 Velocity vm at point x due to the m-th point source

20 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)



Note that for e�iot time dependence of velocity, its derivative can be obtained by

simply multiplying vn by positive or negative io. For e�iot time dependence,

vn ¼
1

ior
@p

@n
ð1:20Þ

Therefore, the velocity in the radial direction, at a distance r from the mth point

source, is given by

vmðrÞ ¼
Am

ior
@

@r

expðikfrÞ
r

� �
¼ Am

ior
ikf expðikfrÞ

r
� expðikfrÞ

r2

� �

¼ Am

ior
expðikfrÞ

r
ikf �

1

r

� �
ð1:21Þ

and the x3 component of the velocity is

v3mðrÞ ¼
Am

ior
@

@x3

expðikfrÞ
r

� �
¼ Am

ior
x3 expðikfrÞ

r2
ikf �

1

r

� �
ð1:22Þ

When contributions of all N sources are added, see Figure 1.23, then the total velocity

in the x3 direction at point x is obtained.

v3ðxÞ ¼
XN

m¼1

v3mðrmÞ ¼
XN

m¼1

Am

ior
x3m expðikfrmÞ

r2
m

ikf �
1

rm

� �
ð1:23Þ

where x3m is the x3 value measured from the mth source as shown in Figure 1.23.

If the transducer surface velocity in the x3 direction is given by v0, then for all x

values on the transducer surface, the velocity in the x3 direction should be equal to v0.

Therefore,

v3ðxÞ ¼
XN

m¼1

Am

ior
x3m expðikfrmÞ

r2
m

ikf �
1

rm

� �
¼ v0 ð1:24Þ

By taking N points on the transducer surface, it is possible to obtain a system of N

linear equations to solve for N unknowns ðA1;A2;A3; . . . ;ANÞ. However, difficulty

arises when the point source location and the point of interest, x, coincide because

then rm becomes zero and v3m, from Eq. (1.24), becomes unbounded. Note that if point

sources and points of interest x are both located on the transducer surface, only then

these two points may coincide and rm can be zero. To avoid this possibility, the point

sources are placed slightly behind the transducer surface as shown in Figure 1.24. For

this arrangement the smallest value that rm can take is rS.

When point x is located on the transducer surface as shown in Figure 1.24, then

its x3 component of velocity is matched with the transducer surface velocity v0. In

Figure 1.24 one can see that point x is located at the apex of the small spheres touching

the transducer surface and the point sources are placed at the centers of these small
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spheres. In addition to matching the v3 component to v0, if one wants to equate the

other two components v1 and v2 to zero, then for each point x on the transducer

surface, there are a total of three conditions or equations to be satisfied, as shown in

Eqs. (1.24) and (1.25).

v1ðxÞ ¼
XN

m¼1

Am

ior
x1m expðikfrmÞ

r2
m

ikf �
1

rm

� �
¼ 0

v2ðxÞ ¼
XN

m¼1

Am

ior
x2m expðikfrmÞ

r2
m

ikf �
1

rm

� �
¼ 0

ð1:25Þ

Thus, from N points on the sphere surfaces, 3N equations are obtained. Therefore, we

get more equations than unknowns. To get the same number of unknowns as

equations, the number of unknowns can be increased from N to 3N by replacing

each point source by a triplet source. A triplet source is a combination of three point

sources with three different strengths put together as shown in Figure 1.25. All

sources are placed on the same plane at x3 ¼ �rS parallel to the transducer surface.

The three point sources of each triplet are located at the three vertices of an isosceles

triangle that are oriented randomly, as shown in Figure 1.25, to preserve the isotropic

material properties and prevent any preferential orientation. Thus, by solving a

system of 3N linear equations (for triplet sources) or a system of N linear equations

(for simple point sources), the source strengths Am associated with all point sources

can be obtained. After getting Am, the pressure p(x) can be calculated at any point

x1

x3

rS

x
rm

Figure 1.24 Point sources are located at x3 ¼ �rS while the transducer surface is at x3 ¼ 0.

Triplet 
Source

Figure 1.25 Randomly oriented triplet sources

22 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)



from Eq. (1.18), on the transducer surface or away. The pressure field obtained in this

manner should be the same as that obtained from Eq. (1.16). Note that for a

nonviscous perfect fluid, only the normal velocity component ðv3Þ at the fluid–solid

(transducer face) interface should be continuous. The velocity components parallel to

the transducer face are not necessarily continuous because slippage may occur

between the transducer face and the fluid. However, for viscous fluids such slippage

is not possible and all the three velocity components should be continuous across the

solid transducer face and fluid interface.

1.3.2.2.1 Matrix formulation The matrix formulation for computing the source

strengths is given below. The following formulation is presented for triplet sources

when all the three velocity components are matched at the transducer face and fluid

interface. This is the case for viscous fluids. However, for nonviscous perfect fluids

when only the normal velocity component needs to be matched, then simple ele-

mental point sources should be used instead of triplet sources. Then v1 and v2 velocity

components should be dropped from the following formulation. In that case the

matrix and vector dimensions will be reduced from 3N to N.

Eqs. (1.24) and (1.25) can be combined into the following matrix equation:

VS ¼MSSAS ð1:25aÞ

where VS is the ð3N � 1Þ vector of the velocity components at N number of surface

points x, and AS is the ð3N � 1Þ vector containing the strengths of 3N number of point

sources. MSS is the ð3N � 3NÞ matrix relating the two vectors VS and AS. From

Eqs. (1.24) and (1.25) one can write

fVSgT ¼ ½ v1
1 v1

2 v1
3 v2

1 v2
2 v2

3 . . . vN
1 vN

2 vN
3 � ð1:25bÞ

Note that the transpose of the column vector VS is a row vector of dimension

ð1� 3NÞ. Elements of this vector are denoted by vn
j , where the subscript j can take

values 1, 2, or 3 and indicate the direction of the velocity component. Superscript n

can take any value between 1 and N corresponding to the point on the transducer

surface at which the velocity component is defined.

For most ultrasonic transducers, vn
j ¼ 0 for j ¼ 1 and 2 (the velocity component

parallel to the transducer face) and vn
j ¼ v0 for j ¼ 3 (the velocity component normal

to the transducer face). Then, Eq. (1.25b) is simplified to

fVSgT ¼ ½ 0 0 v0 0 0 v0 . . . 0 0 v0 � ð1:25cÞ

Vector AS of the source strengths is given by

fASgT ¼ ½A1 A2 A3 A4 A5 A6 . . . Að3N�2Þ Að3N�1Þ A3N � ð1:25dÞ

Note that the upper limits of Eqs. (1.24) and (1.25) are changed from N to 3N when

triplet sources are considered, because then for every small sphere three point sources

exist. Therefore, for N spheres 3N sources exist as shown in Figure 1.25.
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Finally, the square matrix MSS is obtained from Eqs. (1.24) and (1.25).

MSS ¼

f ðx1
11; r

1
1Þ f ðx1

12; r
1
2Þ f ðx1

13; r
1
3Þ f ðx1

14; r
1
4Þ . . . . . . f ðx1

1ð3N�1Þ; r
1
ð3N�1ÞÞ f ðx1

1ð3NÞ; r
1
3NÞ

f ðx1
21; r

1
1Þ f ðx1

22; r
1
2Þ f ðx1

23; r
1
3Þ f ðx1

24; r
1
4Þ . . . . . . f ðx1

2ð3N�1Þ; r
1
ð3N�1ÞÞ f ðx1

2ð3NÞ; r
1
3NÞ

f ðx1
31; r

1
1Þ f ðx1

32; r
1
2Þ f ðx1

33; r
1
3Þ f ðx1

34; r
1
4Þ . . . . . . f ðx1

3ð3N�1Þ; r
1
ð3N�1ÞÞ f ðx1

3ð3NÞ; r
1
3NÞ

f ðx2
11; r

2
1Þ f ðx2

12; r
2
2Þ f ðx2

13; r
2
3Þ f ðx2

14; r
2
4Þ . . . . . . f ðx2

1ð3N�1Þ; r
2
ð3N�1ÞÞ f ðx2

1ð3NÞ; r
2
3NÞ

f ðx2
21; r

2
1Þ f ðx2

22; r
2
2Þ f ðx2

23; r
2
3Þ f ðx2

24; r
2
4Þ . . . . . . f ðx2

2ð3N�1Þ; r
2
ð3N�1ÞÞ f ðx2

2ð3NÞ; r
2
3NÞ

f ðx2
31; r

2
1Þ f ðx2

32; r
2
2Þ f ðx2

33; r
2
3Þ f ðx2

34; r
2
4Þ . . . . . . f ðx2

3ð3N�1Þ; r
2
ð3N�1ÞÞ f ðx2

3ð3NÞ; r
2
3NÞ

. . . . . . . . . . . . . . . . . . . . . . . .

f ðxN
31; r

N
1 Þ f ðxN

32; r
N
2 Þ f ðxN

33; r
N
3 Þ f ðxN

34; r
N
4 Þ . . . . . . f ðxN

3ð3N�1Þ; r
N
ð3N�1ÞÞ f ðxN

3ð3NÞ; r
N
3NÞ

2
66666666666666666664

3
77777777777777777775
ð3N�3NÞ

ð1:25eÞ

where

f ðxn
jm; r

n
mÞ ¼

xn
jm expðikfr

n
mÞ

iorðrn
mÞ

2
ikf �

1

rn
m

� �
ð1:25fÞ

In Eq. (1.25f), the first subscript j of x can take values 1, 2, or 3 and indicate whether x

is measured in the x1, x2, or x3 direction. The subscript m of x and r can take values

from 1 to 3N depending on which point source is considered, and the superscript n can

take any value between 1 and N corresponding to the point on the transducer surface

where the velocity component is computed. As mentioned earlier in this formulation,

from 3N point sources, three boundary conditions on the velocity are satisfied at every

point of the N boundary points. However, for nonviscous fluids the slippage between

the transducer surface and the adjacent fluid surface is possible. Therefore, it is not

necessary to enforce the no-slip condition ðv1 ¼ v2 ¼ 0Þ on the fluid particles that are

adjacent to the transducer surface.

If point x in Figure 1.24 is denoted by xn, indicating that this point is located on the

nth boundary point, then the position vector connecting the mth point source and the

nth boundary point is denoted by rn
m, and its three components in x1, x2, and x3

directions are xn
jm, j ¼ 1; 2; 3, in Eqs. (1.25e) and (1.25f).

From Eq. (1.25a) one gets the point source strengths by inverting the matrix MSS.

AS ¼ ½MSS��1VS ¼ NSSVS ð1:25gÞ

If point sources are located very close to the transducer surface (rS in Fig. 1.24 is

small), then the point source strengths ðASÞ should be approximately equal to the

source strengths on the transducer surface. From Eqs. (1.14) and (1.16) we get,

Am ¼
B

4p
�Sm ¼ �

2iorv0

4p
S

N
ð1:25hÞ
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In Eq. (1.25h) S is the transducer surface area. Note that this equation gives the

same source strength for all values of m. Therefore, the vector AS, obtained from

Eq. (1.25h), should have the following form:

fASgT ¼ � iorv0S

2pN
½ 1 1 1 . . . . . . 1 � ð1:25iÞ

After getting the source strength vector AS from Eq. (1.25g) or (1.25i), the pressure

p(x) or velocity vector V(x) at any point (on the transducer surface or away) can be

obtained from Eq. (1.18) (for pressure) or Eqs. (1.24) and (1.25) (for velocity

components). If the points in the fluid where the pressure and velocity vector are to

be computed are called observation points or target points, then the pressure and

velocity components, at these observation or target points, are obtained from the

following matrix relation:

PT ¼ QTSAS

VT ¼MTSAS

ð1:25jÞ

where PT is an ðM � 1Þvector containing pressure values at M number of target points

and VT is a ð3M � 1Þ vector containing three velocity components at every target

point. The VT expression is similar to the VS expression given in Eq. (1.25b). The only

difference is that its dimension is ð3M � 1Þ instead of ð3N � 1Þ. Matrix MTS will be

the same as MSS of Eq. (1.25e) if the target points are identical to the transducer

surface points where the velocity components are matched to obtain the point source

strength vector AS in Eq. (1.25g). However, for computing the velocity field at

different points, the expression for MTS will be slightly different from the MSS

expression given in Eq. (1.25e). Then its dimension will be ð3M � 3NÞ as shown

below:

MTS¼

f ðx1
11;r

1
1Þ f ðx1

12;r
1
2Þ f ðx1

13;r
1
3Þ f ðx1

14;r
1
4Þ . . . . . . f ðx1

1ð3N�1Þ;r
1
ð3N�1ÞÞ f ðx1

1ð3NÞ;r
1
3NÞ

f ðx1
21;r

1
1Þ f ðx1

22;r
1
2Þ f ðx1

23;r
1
3Þ f ðx1

24;r
1
4Þ . . . . . . f ðx1

2ð3N�1Þ;r
1
ð3N�1ÞÞ f ðx1

2ð3NÞ;r
1
3NÞ

f ðx1
31;r

1
1Þ f ðx1

32;r
1
2Þ f ðx1

33;r
1
3Þ f ðx1

34;r
1
4Þ . . . . . . f ðx1

3ð3N�1Þ;r
1
ð3N�1ÞÞ f ðx1

3ð3NÞ;r
1
3NÞ

f ðx2
11;r

2
1Þ f ðx2

12;r
2
2Þ f ðx2

13;r
2
3Þ f ðx2

14;r
2
4Þ . . . . . . f ðx2

1ð3N�1Þ;r
2
ð3N�1ÞÞ f ðx2

1ð3NÞ;r
2
3NÞ

f ðx2
21;r

2
1Þ f ðx2

22;r
2
2Þ f ðx2

23;r
2
3Þ f ðx2

24;r
2
4Þ . . . . . . f ðx2

2ð3N�1Þ;r
2
ð3N�1ÞÞ f ðx2

2ð3NÞ;r
2
3NÞ

f ðx2
31;r

2
1Þ f ðx2

32;r
2
2Þ f ðx2

33;r
2
3Þ f ðx2

34;r
2
4Þ . . . . . . f ðx2

3ð3N�1Þ;r
2
ð3N�1ÞÞ f ðx2

3ð3NÞ;r
2
3NÞ

. . . . . . . . . . . . . . . . . . . . . . . .

f ðxM
31;r

M
1 Þ f ðxM

32;r
M
2 Þ f ðxM

33;r
M
3 Þ f ðxM

34;r
M
4 Þ . . . . . . f ðxM

3ð3N�1Þ;r
M
ð3N�1ÞÞ f ðxM

3ð3NÞ;r
M
3NÞ

2
6666666666666664

3
7777777777777775
ð3M�3NÞ

ð1:25kÞ

where f ðxn
jm; r

n
mÞ is identical to the expression given in Eq. (1.25f). Definitions of the

subscripts j and x do not change from those in Eq. (1.25f). The superscript n of x and r

can take any value between 1 and M depending on which target point is considered.

Note that MTS is not a square matrix when M and N are different.
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From Eq. (1.18) the matrix QTS can be obtained when there are 3N point sources

and M target points as shown in Eq. (1.25l).

QTS ¼

expðikfr
1
1Þ

r1
1

expðikfr
1
2Þ

r1
2

expðikfr
1
3Þ

r1
3

. . . . . .
expðikfr

1
3NÞ

r1
3N

expðikfr
2
1Þ

r2
1

expðikfr
2
2Þ

r2
2

expðikfr
2
3Þ

r2
3

. . . . . .
expðikfr

2
3NÞ

r2
3N

expðikfr
3
1Þ

r3
1

expðikfr
3
2Þ

r3
2

expðikfr
3
3Þ

r3
3

. . . . . .
expðikfr

3
3NÞ

r3
3N

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
expðikfr

M
1 Þ

rM
1

expðikfr
M
2 Þ

rM
2

expðikfr
M
3 Þ

rM
3

. . . . . .
expðikfr

M
3NÞ

rM
3N

2
66666666666666664

3
77777777777777775
ðM�3NÞ

ð1:25lÞ

The definition of rn
m is identical for Eqs. (1.25k) and (1.25j); it is the distance between

the mth point source and nth target point.

This alternative method and matrix formulation, discussed here, for computing the

ultrasonic field in a homogeneous fluid was first proposed by Placko and Kundu

(2001); then it was extended to solve different ultrasonic problems by Placko et al.

(2001, 2002) and Lee et al. (2002). This technique has been named by the authors as

the distributed point source method or DPSM. The advantage of the DPSM technique

is not obvious for this simple case of homogeneous medium. However, it will be

evident later in this chapter when the ultrasonic field, in the presence of a finite

inclusion or scatterer, will be computed.

Note that the DPSM technique, discussed in this section, is a general technique and

is not restricted to the case of small value of rS (see Fig. 1.24).

For small value of rS Eq. (1.25i) can be used; otherwise, Eq. (1.25g) will have to be

used. When Eq. (1.25g) is used, then Eq. (1.25j) is modified to

PT ¼ QTSNSSVS

VT ¼MTSNSSVS

ð1:25mÞ

Example 1.3.1

Give the modified expressions for VS (Eq. (1.25c)) and MSS (Eq. (1.25e)) for the case

when the triplet sources are replaced by single point sources, located at the centers of

the small spheres (see Figs. 1.23 and 1.24), and only the normal displacement

components (normal to the transducer surface) at the apex (or collocation points)

on the transducer surface are equated to the transducer surface velocity v0.

Solution

For N number of spheres distributed over the transducer surface, there will be N point

sources and N collocation points. Therefore, the velocity vector VS of Eq. (1.15c) will
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have N entries instead of 3N entries.

fVSgT ¼ v0 v0 v0 ::::::: v0½ �ðN�1Þ ð1:25nÞ

The matrix MSS of Eq. (1.25e) will have a dimension of ðN � NÞ instead of

ð3N � 3NÞ, because only the v3 component is to be matched. The final form of

MSS is given below.

MSS ¼
f ðx1

31; r
1
1Þ f ðx1

32; r
1
2Þ f ðx1

33; r
1
3Þ f ðx1

34; r
1
4Þ . . . . . . f ðx1

3ðN�1Þ; r
1
ðN�1ÞÞ f ðx1

3N ; r
1
NÞ

f ðx2
31; r

2
1Þ f ðx2

32; r
2
2Þ f ðx2

33; r
2
3Þ f ðx2

34; r
2
4Þ . . . . . . f ðx2

3ðN�1Þ; r
2
ð3N�1ÞÞ f ðx2

3N ; r
2
NÞ

f ðx3
31; r

3
1Þ f ðx3

32; r
3
2Þ f ðx3

33; r
3
3Þ f ðx3

34; r
3
4Þ . . . . . . f ðx3

3ðN�1Þ; r
3
ðN�1ÞÞ f ðx3

3N ; r
3
NÞ

f ðx4
31; r

4
1Þ f ðx4

32; r
4
2Þ f ðx4

33; r
4
3Þ f ðx4

34; r
4
4Þ . . . . . . f ðx4

3ðN�1Þ; r
4
ð3N�1ÞÞ f ðx4

3N ; r
4
NÞ

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

f ðxN
31; r

N
1 Þ f ðxN

32; r
N
2 Þ f ðxN

33; r
N
3 Þ f ðxN

34; r
N
4 Þ . . . . . . f ðxN

3ðN�1Þ; r
N
ðN�1ÞÞ f ðxN

3N ; r
N
N Þ

2
6666666666666666664

3
7777777777777777775
ðN�NÞ

ð1:25oÞ

where, from Eq. (1.25f)

f ðxn
3m; r

n
mÞ ¼

xn
3m expðikfr

n
mÞ

iorðrn
mÞ

2
ikf �

1

rn
m

� �
ð1:25pÞ

Example 1.3.2

For a large number of point sources distributed along the transducer surface, as shown

in Figures 1.23 and 1.24, evaluate the source strength vector AS using Eq. (1.25g) for

the MSS and VS expressions given in Eqs. (1.25o) and (1.25n), respectively.

Solution

For a large number of distributed point sources, the radius of the individual

spheres becomes small (see Fig. 1.24). As the number of point sources approaches

infinity, the radius of individual spheres reduces to zero. Therefore, rn
m, the distance

between the mth point source and nth collocation point (or apex point), becomes zero

for m ¼ n. In other words, when the source is at the center of a sphere and the

collocation point is at the apex of the same sphere, then the distance between the

source and the collocation point is reduced to zero, as the number of point sources

approaches infinity.
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Note that in Eq. (1.25p) rn
m appears in the denominator. Therefore, for small values

of rn
m Eq. (1.25p) can be simplified in the following manner:

f ðxn
3m; r

n
mÞ ¼

xn
3m expðikfr

n
mÞ

iorðrn
mÞ

2
ikf �

1

rn
m

� �
� xn

3m expðikfr
n
mÞ

iorðrn
mÞ

2
� 1

rn
m

� �
¼� xn

3m expðikfr
n
mÞ

iorðrn
mÞ

3

Note that all spheres have the same radius rm ¼ rS ¼ r; therefore, xn
3m ¼ r. Substitut-

ing it into the above expression and expanding the exponential term in its series

expansion,

f ðxn
3m; r

n
mÞ � �

xn
3m expðikfr

n
mÞ

iorðrn
mÞ

3
� � r

iorðrn
mÞ

3
ð1þ ikfr

n
m þ . . .Þ � � r

iorðrn
mÞ

3

ð1:25qÞ

for m ¼ n, rn
m ¼ rm

m ¼ r. Substituting it into Eq. (1.25q), we get (no summation on m is

implied)

f ðxm
3m; r

m
mÞ � �

r

iorðrm
mÞ

3
� � r

iorr3
� � 1

iorr2
ð1:25rÞ

Substitution of Eqs. (1.25q) and (1.25r) into Eq. (1.25o) yields

MSS ¼ �
1

iorr2

1 r
r1

2

� �3
r
r1

3

� �3

. . . r
r1

N

� �3

r
r2

1

� �3

1 r
r2

3

� �3

. . . r
r2

N

� �3

r
r3

1

� �3
r
r3

2

� �3

1 . . . r
r3

N

� �3

. . . . . . . . . . . . . . .
r

rN
1

� �3
r

rN
2

� �3
r

rN
3

� �3

. . . 1

2
6666666664

3
7777777775
ðN�NÞ

It should be noted here that for m 6¼ n, rn
m > r. Therefore, in the above matrix

expression, the off-diagonal terms are smaller than the diagonal terms. With an

increasing number of point sources as r approaches zero, all off-diagonal terms

vanish and the above matrix simplifies to

MSS ¼ �
1

iorr2

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

2
666664

3
777775
ðN�NÞ
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Therefore, from Eq. (1.25g):

AS ¼ ½MSS��1
VS ¼ �iorr2

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

2
66664

3
77775

v0

v0

v0

. . .
v0

8>>>><
>>>>:

9>>>>=
>>>>;
¼ �iorv0r2

1

1

1

. . .
1

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:25sÞ

Example 1.3.3

Prove that the coefficients of Eqs. (1.25i) and (1.25s) are identical.

Solution

The total surface area from N hemispheres, associated with the N point sources, is

equated to the transducer surface area S. Therefore,

S ¼ 2pr2 � N ¼ 2pNr2

) r2 ¼ S

2pN

Substituting it into the coefficient of Eq. (1.25s) gives

�ioov0r2 ¼ � ioov0S

2pN

1.3.2.3 Restrictions on rS for point source distribution It is evident from

Figure 1.24 that as the number of point sources used to model the transducer surface

is increased, rS is decreased. It is expected that with larger number of point sources,

the computation time and accuracy both should increase. The question is what

optimum number of point sources should produce reliable results? To answer this

question the following analysis is carried out:

For a very small transducer of surface area dS vibrating with a velocity of

amplitude v0 in the x3 direction, the pressure at point x (at a distance r from the

source at point y) can be computed from Eq. (1.16).

pðxÞ ¼ � iorv0

2p
expðikfrÞ

r
dS ð1:26Þ

Using Eq. (1.20), the particle velocity in the radial direction can be computed from the

above pressure field.

vr ¼
1

ior
@p

@r
¼ 1

ior
�iorv0

2p

� �
ikf expðikfrÞ

r
� expðikfrÞ

r2

� �
dS

¼ � v0ðikfr � 1Þ
2pr2

expðikfrÞdS ð1:27Þ
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and the velocity in the x3 direction

v3 ¼
1

ior
@p

@x3

¼ 1

ior
@p

@r

@r

@x3

¼ � v0ðikfr � 1Þ
2pr2

expðikfrÞdS
x3 � y3

r
ð1:28Þ

where x3 and y3 are the x3 coordinate values of points x and y, respectively.

If the point x is taken on the surface of the sphere of radius rS as shown in

Figure 1.24, then r ¼ rS ¼ x3 � y3, and v3 of Eq. (1.28) is simplified to

v3 ¼ �
v0ðikfrS � 1Þ

2pr2
S

expðikfrSÞdS ¼ v0ð1� ikfrSÞð1þ ikfrS þ Oðk2
f r2

SÞÞ
dS

2pr2
S

� v0ð1þ k2
f r2

SÞ
dS

2pr2
S

ð1:29Þ

The right-hand side of Eq. (1.29) should be equal to v0 because the pressure computed

in Eq. (1.16) is obtained from the transducer surface velocity v0 in the x3 direction.

Hence, the velocity at x when x is taken on the transducer surface should be equal to

v0. The right-hand side of Eq. (1.29) is v0 when dS ¼ 2pr2
S and k2

f r2
S � 1. Therefore,

dS should be the surface area of a hemisphere of radius rS, and the second condition

implies the following:

k2
f r2

S ¼
2pf

cf

rS

� �2

� 1:

) rS �
cf

2pf

) rS �
lf

2p

ð1:30Þ

where lf is the wavelength in the fluid. Eq. (1.30) is used to compute the number of

point sources in the following manner: Take a value of rS satisfying the condition

(1.30), then compute the number of point sources N from the transducer surface area S

from the relation

N ¼ S

2pr2
S

ð1:31Þ

Note that the spacing between two neighboring point sources is different from rS. If

the point sources are arranged uniformly at the vertex points of squares of side length

a, then each point source should be associated with an area of a2 of the flat transducer

face. This area is then equated to the hemispherical surface area of each point source

to obtain

a2 ¼ 2pr2
S

) a ¼ rS

ffiffiffiffiffiffi
2p
p ð1:31aÞ
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Substituting Eq. (1.30) into the above equation we get

a ¼ rS

ffiffiffiffiffiffi
2p
p

�
ffiffiffiffiffiffi
2p
p lf

2p

) a� lfffiffiffiffiffiffi
2p
p

ð1:31bÞ

1.3.3 Focused transducer in a homogeneous fluid

For a focused transducer, as shown in Figure 1.26, the ultrasonic field in the fluid can

be modeled by distributing the point sources along the curved transducer face. O’Neil

(1949) argued that for transducers with small curvature the Rayleigh–Sommerfield

integral representation (Eq. (1.16)) holds if the surface integral is carried out over the

curved surface. Therefore, the DPSM technique, discussed in Section 1.3.2.2, holds

good for the curved transducer face as well. In this case the point sources should be

distributed over a curved surface, instead of a flat surface.

The integral representation of the pressure field in the fluid for a focused transducer

should be the same as Eq. (1.16). This integral can be evaluated in closed form,

for computing the pressure variation on the central axis of the transducer; in other

words, for the on-axis pressure computation. The on-axis pressure field is given by

(Schmerr, 1998)

pðx3Þ ¼
rcv0

q0

expðikfx3Þ � expðikf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ a2

q
Þ

� �
¼ rcv0

q0

½expðikfx3Þ � expðikfreÞ�

ð1:32Þ
where

q0 ¼ 1� x3

R0

ð1:33Þ

R0 is the radius of curvature of the transducer face, re is the distance of the point of

interest from the transducer edge.

At the geometric focus point, x3 ¼ R0, the pressure is given by (Schmerr, 1998)

pðR0Þ ¼ �ircv0kfh expðikfR0Þ ð1:34Þ

R0

re

a

h

x3

x

R0

re

a

h

x3

x

Figure 1.26 Focused transducer�R0 is the radius of curvature of the transducer, a is its radius,

focal point is denoted as x.
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If, at x3 ¼ z, the on-axis pressure is maximum, then z should satisfy the following

equation (Schmerr, 1998):

cos
kfd
2

� �
¼ 2ðdþ zÞ sin kfd=2ð Þ

ðdþ hÞq0kfR0

ð1:35Þ

where

d ¼ re � z ¼ ½ðz� hÞ2 þ a2�
1
2 � z ð1:35aÞ

1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence

of an interface

If the fluid, in front of the transducer, is not homogeneous but is made of two fluids

with an interface between the two, then the ultrasonic signal generated by the

transducer will go through reflection and transmission at the interface as shown in

Figure 1.27. In this case, the pressure field in fluid 1, at point P, can be computed by

adding the contributions of the direct incident ray (R1) and reflected ray. To compute

the pressure at point Q in fluid 2, the contribution of only the transmitted ray needs to

be considered. Acoustic wave speed and density of the two fluids are denoted by cf

and rf for fluid 1, and cf2 and rf2 for fluid 2, as shown in Figure 1.27.

In Figure 1.27, point C is either on the transducer surface for Rayleigh–Sommerfield

integral representation of the pressure field, or just behind the transducer surface (as

shown in Figure 1.24) for the DPSM modeling, discussed in Section 1.2.2.2. We are

interested in computing the acoustic pressure at point P in fluid 1 and at point Q in fluid

2. As shown in the figure, point P receives a direct ray (R1) from point C and a ray (R3)

reflected by the interface at point T. Point Q can only receive a ray from point C after it is

transmitted at the interface at point T. Position vectors of points C, T, P, and Q are

denoted by y, z, x, and x, respectively, as shown in the figure. Because both points P and

Q are the points where thepressure field is tobe computed,we use the samesymbol x for

denoting the positions of these two points although those are not at the same location.

C  y(y1 , y2 , y3 )

Interface

x1

R1

R2

R3

R3

T  z(z1 , z2 , z3 )

Fluid 1
cf , ρf

θ
θ θ2

S
Fluid 2
cf2 , ρf2

z0 = z3

x2

x3

P
, x , xx(x1 2 3 )

Q
x(x1 , x2 , x3 )

Figure 1.27 Transducer in front of an interface between two fluids of different properties
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Now, the question is, when the coordinates (x1, x2, x3) and (y1, y2, y3) are known,

then how to obtain the coordinates (z1, z2, z3) of T on the interface, where the ray is

reflected or transmitted to reach point P or Q. This question can be answered from

geometric considerations, as given below.

1.3.4.1 Pressure field computation in fluid 1 at point P Let vectors A and B

represent CT and TP, respectively, in Figure 1.27; then,

A ¼ ðz1 � y1Þe1 þ ðz2 � y2Þe2 þ ðz3 � y3Þe3

B ¼ ðx1 � z1Þe1 þ ðx2 � z2Þe2 þ ðx3 � z3Þe3

ð1:36Þ

Note that the magnitudes of vectors A and B are R2 and R3, respectively.

R2 ¼ fðz1 � y1Þ2 þ ðz2 � y2Þ2 þ ðz3 � y3Þ2g
1
2

R3 ¼ fðx1 � z1Þ2 þ ðx2 � z2Þ2 þ ðx3 � z3Þ2g
1
2

ð1:37Þ

Unit vectors ÂA ¼ A

R2
and B̂B ¼ B

R3

Unit vector n̂n normal to the interface is given by

n̂n ¼
0

0

1

8<
:
9=
;: Note that for an inclined interface, n̂n ¼

n1

n2

n3

8<
:

9=
;

From the problem geometry one can easily see that

n̂n� ÂA ¼ n̂n� B̂B ð1:38Þ
n̂n � ÂA ¼ �n̂n � B̂B ð1:39Þ

Let

ÂA ¼
a1

a2

a3

8<
:

9=
;; B̂B ¼

b1

b2

b3

8<
:

9=
; ð1:40Þ

Substituting the above unit vector expressions in Eq. (1.38) one gets

det

e1 e2 e3

n1 n2 n3

a1 a2 a3

2
4

3
5 ¼ det

e1 e2 e3

n1 n2 n3

b1 b2 b3

2
4

3
5

or in an alternate representation

0 �n3 n2

n3 0 �n1

�n2 n1 0

2
4

3
5 a1

a2

a3

8<
:

9=
; ¼

0 �n3 n2

n3 0 �n1

�n2 n1 0

2
4

3
5 b1

b2

b3

8<
:

9=
;
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or

0 �1 0

�1 0 0

0 0 0

2
4

3
5 a1

a2

a3

8<
:

9=
; ¼

0 �1 0

�1 0 0

0 0 0

2
4

3
5 b1

b2

b3

8<
:

9=
;

or

�a2

a1

0

8<
:

9=
; ¼

�b2

b1

0

8<
:

9=
;

or

� z2 � y2

R2

z1 � y1

R2

8><
>:

9>=
>; ¼

z2 � x2

R3

� z1 � x1

R3

8><
>:

9>=
>; ð1:41Þ

Similarly from Eq. (1.39)

½n1 n2 n3�
a1

a2

a3

8<
:

9=
; ¼ �½n1 n2 n3�

b1

b2

b3

8<
:

9=
;

or

½0 0 0�
a1

a2

a3

8<
:

9=
; ¼ �½0 0 0�

b1

b2

b3

8<
:

9=
;

or

a3 ¼ �b3 )
z3 � y3

R2

¼ z3 � x3

R3

ð1:42Þ

Solving the above equations

z1 ¼
y1ðx3 � z3Þ � x1ðz3 � y3Þ

x3 � 2z3 þ y3

z2 ¼
y2ðx3 � z3Þ � x2ðz3 � y3Þ

x3 � 2z3 þ y3

ð1:43Þ

Note that if point C is on the x1x2 plane, then y3 ¼ 0, and for fluid 1, x3 is between 0

and z3; therefore, the denominator of Eq. (1.43) should never become zero. After

obtaining z1 and z2, from Eq. (1.43), the lengths R2 and R3 can be easily obtained from

Eq. (1.37). To evaluate R1, one does not need z1 and z2. It is simply equal to

R1 ¼ fðx1 � y1Þ2 þ ðx2 � y2Þ2 þ ðx3 � y3Þ2g
1
2 ð1:44Þ

34 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)



Then the pressure field at point P can be obtained from the following equation:

pPðxÞ ¼ �
iorfvo

2p

ð
S

expðikfR1Þ
R1

dS� iorfvo

2p

ð
S

R � expfikfðR2 þ R3Þg
R2 þ R3

dS ð1:45Þ

In Eq. (1.45) the first integral corresponds to the wave path CP and the second integral

corresponds to the wave path CTP. Note that both these integrals are similar to the

expression given in Eq. (1.16); the only difference is that in the second integral

expression, the reflection coefficient R has been included because this wave reaches

point P after being reflected at the interface. The expression of the reflection

coefficient R is given in Eq. (1.208) of Kundu (2004).

R ¼ r2cf2 cos y1 � r1cf1 cos y2

r2cf2 cos y1 þ r1cf1 cos y2

In this case, the incident angle is y, transmitted angle is y2, fluid densities are rf and

rf2, and acoustic wave speeds in the two fluids are cf and cf2. Then, the transmitted

angle y2 can be expressed in terms of the incident angle y using Snell’s law (see

Eq. (1.204) of Kundu (2004)).

cos y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 y2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cf2 sin y

cf

� �2
s

¼ 1� cf2

cf

� �2

þ cf2

cf

cos y
� �2

( )1
2

ð1:46Þ

Therefore, R takes the following form:

R ¼
r2cf2 cos y� rcf 1� c2

f2

c2
f

þ c2
f2

c2
f

cos2 y
' (1

2

r2cf2 cos yþ rcf 1� c2
f2

c2
f

þ c2
f2

c2
f

cos2 y
' (1

2

ð1:47Þ

In the above equation cos y can be obtained from the relation given below.

Dot product between the unit vectors n̂n and ÂA is given by

n̂n � ÂA ¼ jn̂njjÂAj cos y ¼ n1a1 þ n2a2 þ n3a3

) cos y ¼ n3a3 ¼ a3 ¼
z3 � y3

R2

ð1:48Þ

1.3.4.2 Pressure field computation in fluid 2 at point Q Let us define two vectors

A and C, where A ¼ CT and C ¼ TQ; then,

A ¼ ðz1 � y1Þe1 þ ðz2 � y2Þe2 þ ðz3 � y3Þe3

C ¼ ðx1 � z1Þe1 þ ðx2 � z2Þe2 þ ðx3 � z3Þe3

ð1:49Þ
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Note that the magnitudes of vectors A and C are R2 and R3, respectively.

R2 ¼ fðz1 � y1Þ2 þ ðz2 � y2Þ2 þ ðz3 � y3Þ2g
1
2

R3 ¼ fðx1 � z1Þ2 þ ðx2 � z2Þ2 þ ðx3 � z3Þ2g
1
2

ð1:50Þ

Unit vectors ÂA ¼ A

R2
and ĈC ¼ C

R3

Unit vector n̂n normal to the interface is given by

n̂n ¼
0

0

1

8<
:
9=
;. Note that for an inclined interface, n̂n ¼

n1

n2

n3

8<
:

9=
;

From the problem geometry shown in Figure 1.27, the following equations are

obtained:

jn̂n� ÂAj ¼ sin y

n̂n � ÂA ¼ cos y

jn̂n� ĈCj ¼ sin y2

n̂n � ĈC ¼ cos y2

ð1:51Þ

Let

ÂA ¼
a1

a2

a3

8<
:

9=
;; ĈC ¼

c1

c2

c3

8<
:

9=
;

From Eqs. (1.51) and (1.49)

c3 ¼ cos y2 ¼
x3 � z3

R3

a3 ¼ cos y ¼ z3 � y3

R2

ð1:52Þ

and

n̂n� ĈC ¼ det

e1 e2 e3

n1 n2 n3

c1 c2 c3

2
664

3
775 ¼

0 �n3 n2

n3 0 �n1

�n2 n1 0

2
664

3
775

c1

c2

c3

8>><
>>:

9>>=
>>;

¼

0 �1 0

�1 0 0

0 0 0

2
664

3
775

c1

c2

c3

8>><
>>:

9>>=
>>; ¼

�c2

c1

0

8>><
>>:

9>>=
>>;

) jn̂n� ĈCj2 ¼ c2
1 þ c2

2 ¼ sin2 y2 ð1:53Þ
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or

sin2 y2 ¼
ðx1 � z1Þ2 þ ðx2 � z2Þ2

R2
3

ð1:54Þ

Similarly,

jn̂n� ÂAj2 ¼ a2
1 þ a2

2 ¼
ðz1 � y1Þ2 þ ðz2 � y2Þ2

R2
2

¼ sin2 y ð1:55Þ

Because ÂA, n̂n, and ĈC are located on the same plane

n̂n� ÂA ¼ êeS sin y

n̂n� ĈC ¼ êeS sin y2

ð1:56Þ

where êeS is the unit vector normal to the plane containing ÂA, n̂n, and ĈC.

From Eq. (1.56) and Snell’s law (see Eq. (1.204) of Kundu(2004)) one can write

n̂n� ÂA

sin y
¼ n̂n� ĈC

sin y2

) n̂n� ÂA

cf

¼ n̂n� ĈC

cf2

ð1:57Þ

or

1

cf

�a2

a1

0

8><
>:

9>=
>; ¼

1

cf2

�c2

c1

0

8><
>:

9>=
>;

)

� z1 � y1

cfR2

z2 � y2

cfR2

0

8>>>><
>>>>:

9>>>>=
>>>>;
¼

� x1 � z1

cf2R3

x2 � z2

cf2R3

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:58Þ

z1 and z2 can be obtained from Eq. (1.58) by minimizing the following error function:

E ¼ z1 � y1

cfR2

þ z1 � x1

cf2R3

� �2

þ z2 � y2

cfR2

þ z2 � x2

cf2R3

� �2

ð1:59Þ

E can be minimized by some optimization technique such as simplex algorithm. In

MATLAB code, ‘‘fminsearch’’ function can be used for this purpose. After evaluating
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z1 and z2, the pressure at point Q can be obtained from the following equation:

pðx1; x2; x3Þ ¼ �
iorfvo

2p

ð
S

Tp expbikfR2 þ kf2R3Þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ

cf2

cf

R3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R3

cf2 cos2 y
cf cos2 y2

s dS
ð1:60Þ

The numerator of the above integrand is similar to that in Eq. (1.16), the only

difference is that in Eq. (1.60) the numerator has been multiplied by Tp, the transmis-

sion coefficient at the interface, and the argument of the exponential term has two

entries, corresponding to the ray paths CT and TQ. However, the denominator of

Eq. (1.60) is much more complex in comparison to the one given in Eq. (1.16).

Derivation of this denominator expression can be found in Schmerr (1998).

The transmission coefficient is given in Eq. (1.208) of Kundu(2004).

Tp ¼
2rf2cf2 cos y2

rf2cf2 cos y1 þ rfcf cos y2

As mentioned above, in this case, the incident angle is y, angle of transmission is y2,

fluid densities are rf and rf2, and acoustic wave speeds in the two fluids are cf and cf2.

Angle y2 can be expressed in terms of the incident angle y (see Eq. (1.46)); then, Tp

takes the following form,

Tp ¼
2rf2cf2 cos y

rf2cf2 cos yþ rfcf 1� c2
f2

c2
f

þ c2
f2

c2
f

cos2 y
' (1

2 ð1:61Þ

1.3.5 DPSM technique for ultrasonic field modeling
in nonhomogeneous fluid

The steps discussed in Section 1.2.4 are based on the Rayleigh–Sommerfield integral

representation for the pressure field computation in fluids 1 and 2. In this section, an

alternative technique based on DPSM, developed by Placko and Kundu (2001) for

ultrasonic problems, is generalized to include the nonhomogeneous fluid case. In the

DPSM technique, the interface is replaced by a layer of equivalent point sources

instead of tracing the rays from the transducer face to the point of interest in fluid

media 1 or 2, as done in Section 1.3.4.

1.3.5.1 Field computation in fluid 1 The field in fluid 1 is computed by super-

imposing the contributions of the two layers of point sources distributed over the

transducer face and the interface, respectively, as shown in Figure 1.28. The two

layers of the sources are located at a small distance rS away from the transducer face

and interface, respectively, such that the apex of the spheres (of radius rS) touch the

transducer face or interface, as shown in the figure.
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The strength of the point sources distributed along the transducer surface can be

obtained from Eq. (1.25g) or (1.25i). For finding the strength of the point sources

attached to the interface, velocity components at the interface due to the reflected

waves at the interface are to be matched, as described below.

As shown in Figure 1.29, any point P in fluid 1 can receive only two rays, 1 and 2,

from a single point source on the transducer surface. Ray 1 is the direct ray reaching P,

and ray 2 arrives at P after being reflected at the interface. The total ultrasonic field at

point P can be obtained by superimposing the contributions of a number of point

sources ðymÞ distributed over the transducer surface. The total field at P, generated

only by the reflected rays (ray number 2), from all the point sources on the transducer

surface should be the same as the total contributions of all point sources distributed

over the interface.

Let us take a point P at xn on the interface. In Figure 1.29, the point P is shown very

close to the interface. Let us assume that this point is now moved to the interface. Let

there be N point sources ðym;m ¼ 1; 2; . . . ;NÞ on the transducer surface and M points

ðxn; n ¼ 1; 2; . . . ;MÞ on the interface where the boundary conditions should be

satisfied. If the boundary conditions are to be satisfied for the three components of

velocity at all M points, then there are a total of 3M boundary conditions. It should be

noted here that for nonviscous fluids, matching of the normal velocity component

only is sufficient. In that case, from M points M boundary conditions will be obtained.

x1

x3

rS
rS

x

Fluid 1 Fluid 2

Figure 1.28 Point sources (at the center of small circles) for computing ultrasonic field in fluid 1

x1

x3

rS

xnFluid Fluid

ym

1
2

P
x1

x3

rS

xnFluid 1 Fluid 2

ym

1
2

P

Figure 1.29 Point P can receive two rays, 1 (direct ray) and 2 (reflected from the interface),

from a single point source ym:
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Velocity components at M interface points due to ray 1 only (ignoring reflection)

can be easily obtained from the N triplet or elementary simple point sources in the

following manner (see Eq. (1.25j)):

Vi
T ¼Mi

TSAS ð1:62Þ

where Vi
T is the ð3M � 1Þ or ðM � 1Þ vector of the velocity components at the target

points ðxnÞ on the interface due to the incident beam only. AS is the ð3N � 1Þ or

ðN � 1Þ vector of the point source strengths on the transducer surface. For the triplet

source, there are three point sources inside every small sphere. The following

formulation is given for triplet source only but can be easily modified to simple

elemental sources used for nonviscous fluids.

Because the normal velocity component (v0) at the transducer surface is known, AS

can be obtained from Eq. (1.25g) or (1.25i). Mi
TS is the ð3M � 3NÞmatrix that relates

the two vectors Vi
T and AS of Eq. (1.62). Note that the components of Mi

TS are

identical to those for MTS given in Eq. (1.25k).

In Eq. (1.62) and in subsequent equations, the superscripts and subscripts have the

following meanings:

Superscripts

i – direct incident ray

r – reflected ray

t – transmitted ray

Subscripts

S – ultrasonic source or transducer points

I – interface points

T – target points or observation points (these points can be placed anywhere—in

fluid 1, fluid 2, on the transducer surface, or on the interface).

For the reflected field computation at the interface, the velocity vector and the

source strength vector are computed in a similar manner.

Vr
T ¼Mr

TSAS ð1:63Þ

where Vr
T is the ð3M � 1Þ vector of the three velocity components at the target points

ðxnÞ on the interface due to the reflected beam only (ray 2 of Fig. 1.29). Mr
TS is the

ð3M � 3NÞ matrix that relates the two vectors Vr
T and AS of Eq. (1.63). Note that

components of Mr
TS can be obtained by multiplying Mi

TS by appropriate reflection

coefficients for velocity fields.

Next we would like to obtain the same Vr
T vector from the 3M point sources

distributed along the interface. Within each sphere shown in Figure 1.29, three point
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sources or triplet (see Fig. 1.25) are placed; thus, from M spheres one gets 3M sources.

Note that the interface point sources are located around the centers of the small

spheres of Figure 1.29, and three sources of each triplet are placed parallel to the

interface. Points xn are located on the surface of the small spheres. Vr
T at M points,

generated by the 3M sources at the interface, can be written as

Vr
T ¼Mi

TIAI ð1:64Þ

where Vr
T is the ð3M � 1Þ vector, same as in Eq. (1.63). AI is the ð3M � 1Þ vector of

the strength of interface sources; this vector is unknown. Mi
TI is the ð3M � 3MÞ

matrix that relates the two vectors Vr
T and AI of Eq. (1.64). Note that the components

of Mi
TI are similar to those for MSS given in Eq. (1.25e) and MTS of Eq. (1.25k). The

two variables xn
jm and rn

m for Mi
TI computation can be obtained after knowing the point

source coordinates zmðm ¼ 1; 2; . . . ; 3MÞ distributed along the interface, and coor-

dinates xnðn ¼ 1; 2; . . . ;MÞ of the interface points.

From Eqs. (1.63) and (1.64)

AI ¼ ½Mi
TI�
�1Vr

T ¼ ð½Mi
TI�
�1Mr

TSÞAS ð1:65Þ

Eq. (1.65) gives the strength of the interface sources. After obtaining the interface

source strengths, the ultrasonic field at any set of target points xnðn ¼ 1; 2; . . . ;NTÞ
between the transducer face and interface can be obtained by adding the contributions

of the incident waves from the two layers of point sources at the transducer face and

interface as shown in Figure 1.28. In other words, the field at any point can be obtained

by adding the expressions given in Eqs. (1.62) and (1.64).

VT ¼ Vi
T þ Vr

T ¼Mi
TSAS þMi

TIAI ð1:66Þ

The only difference between the two components of Eq. (1.66) and those in

Eqs. (1.62) and (1.64) is in the definitions of xn
jm and rn

m for Mi
TI and Mi

TS. In Eqs.

(1.62) and (1.64), the target points are located on the interface, whereas in Eq. (1.66)

the target points are in between the transducer face and the interface. Therefore, the

values of xn
jm and rn

m will change accordingly. As mentioned earlier rn
m is the distance

between the mth point source and nth target point, xn
jm are the three components of rn

m.

1.3.5.1.1 Approximations in computing the field The approximation of the above

section in deriving Eq. (1.66) is that the presence of the interface does not affect the

source strength vector AS. Note that AS of Eq. (1.62) is computed from Eq. (1.25g) or

(1.25i). With this assumption, the velocity vector computed on the transducer surface,

using Eq. (1.66), will give a different value than v0. If the interface is close to the

transducer surface, then the transducer surface velocity will be significantly different

from v0 due to the interface effect.

To make sure that the velocity vector on the interface is equal to a constant value

(v0) in the x3 direction and zero in x1 and x2 directions, the following formulation is

followed.
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Similar to the previous section, it is again assumed that there are N triplet sources

on the transducer surface and M sources along the interface. The velocity vector on

the transducer surface, due to the point sources representing the transducer effect

only, can be obtained from Eq. (2.49).

Vi
S ¼Mi

SSAS ð1:66aÞ

where Vi
S is the ð3N � 1Þ vector of the velocity components at the transducer surface.

AS is the ð3N � 1Þ vector of the point source strengths distributed over the transducer

face, and Mi
SS is the ð3N � 3NÞ matrix, identical to the one given in Eq. (1.25e).

In the same manner, velocity components on the transducer surface due to the

interface sources are given by,

Vr
S ¼Mi

SIAI ð1:66bÞ

The above equation is obtained from Eq. (1.64), when the target points are placed on

the transducer surface. Here, Vr
S is a ð3N � 1Þ vector of the velocity components at N

points on the transducer surface, AI is the ð3M � 1Þ vector of the interface source

strengths, and Mi
SI is the ð3N � 3MÞ matrix, similar to the one given in Eq. (1.25k).

Adding Eqs. (1.66a) and (1.66b) the total velocity at the transducer surface is

obtained.

VS ¼ Vi
S þ Vr

S ¼Mi
SSAS þMi

SIAI ð1:66cÞ

Substituting Eq. (1.65) into Eq. (1.66c):

VS ¼Mi
SSAS þMi

SIAI ¼Mi
SSAS þMi

SI½Mi
TI�
�1Mr

TSAS

) VS ¼ ½Mi
SS þMi

SI½Mi
TI�
�1Mr

TS�AS

ð1:66dÞ

or

AS ¼ ½Mi
SS þMi

SI½Mi
TI�
�1Mr

TS�
�1VS ð1:66eÞ

where

VS ¼ 0 0 v0 0 0 v0 :::::::::::: 0 0 v0½ �T ð1:66fÞ

If AS is computed from Eq. (1.66e) instead of Eq. (1.25g), then the constant velocity at

the transducer surface is guaranteed even when the interface is located very close to

the transducer surface.

1.3.5.2 Field in fluid 2 For ultrasonic field computation in fluid 2, only one layer

of point sources, adjacent to the interface, is considered as shown in Figure 1.30. The

total field at x should be the superposition of fields generated by all these point sources,

located at various distances from x, as shown by the dotted lines in Figure 1.30.

Strengths of these sources are obtained, as before, by equating the velocity compo-

nents computed by the point sources, distributed along the interface, to those obtained

from the transmitted wave contribution.
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Following similar analysis as outlined in section 2.5.1, strengths of the interface

point sources in this case can be obtained from the relation (see Eq. (1.65)).

AI ¼ ½Mi
TI�
�1

Vt
T ¼ ð½Mi

TI�
�1

Mt
TSÞAS ð1:67Þ

where AI is the ð3M � 1Þ vector of the interface source strengths, Mi
TI is the

ð3M � 3MÞ matrix that relates the two vectors Vt
T and AI, and Mt

TS is the

ð3M � 3NÞ matrix relating the velocity vector Vt
T at the interface points and AS,

the source strength vector for point sources, distributed along the transducer face.

Note that in this case, the equations relating the interface velocity components to

the transducer source strengths and interface source strengths are similar to Eqs.

(1.63) and (1.64) and can be written as

Vt
T ¼Mt

TSAS ð1:68Þ
Vt

T ¼Mi
TIAI ð1:69Þ

After computing the interface source strengths using Eq. (1.67), the ultrasonic field at

any new target points xn ðn ¼ 1; 2; . . . ;NTÞ on the right side of the interface (or in

fluid 2) can be obtained from Eq. (1.69). While computing the field at new points,

appropriate changes in the values of xn
jm and rn

m appearing in matrix Mi
TI should be

taken into account. As mentioned earlier, rn
m is the distance between the mth point

source and nth target point, xn
jm are the three components of rn

m.

1.3.6 Ultrasonic field in the presence of a scatterer

DPSM technique is then applied to model ultrasonic field near a scatterer of finite

dimensions for which no closed-form analytical solution exists. Problem geometry

showing the transducer and scatterer is given in Figure 1.31.

To compute the ultrasonic field in front of a scatterer (left of the scatterer), point

sources are distributed along the transducer face and the solid–fluid interface as well

as along the imaginary interface (extending the front face of the solid scatterer, shown

by the dotted line in Figure 1.31). Triplet sources are located around the centres of the

x1

x3

rS

x

Fluid 1 Fluid 2

Figure 1.30 One layer of point sources (at the center of small circles) for computing ultrasonic

field in fluid 2

1.3 EXAMPLES FROM ULTRASONIC TRANSDUCER MODELING 43



small spheres. Strength of the point sources on the transducer face is known from the

normal velocity component v0 of the transducer surface (Eq. (1.25i) or (1.66e)).

However, strength of the point sources distributed along the real and imaginary

interface is not known. This is carried out in a manner similar to the one described

in Section 2.5.1. The only difference here is that in Eq. (1.63), Mr
TS must be obtained

by multiplying Mi
TS by appropriate reflection coefficients. The technique to compute

the reflection coefficient for this case differs from the one given in Section 2.5.1. In the

previous case, the same expression of the reflection coefficient (Eq. (1.47)) was used

for all interface points xn. However, for this problem geometry when the interface

points xn are located on the scatterer surface, then the reflection coefficient for a solid

plate immersed in a fluid (see Section 1.2.17 of Kundu(2004)) should be used.

However, when the interface points xn are located on the dotted line, along the

imaginary interface between two identical fluids, then the reflection coefficient

should be zero. Except for this difference in the reflection coefficient definition, the

steps to compute the interface source strengths for these two problem geometries are

identical, and the source strength vector can be obtained from Eq. (1.65)

AI ¼ ½Mi
TI�
�1Vr

T ¼ ð½Mi
TI�
�1Mr

TSÞAS

For computing the ultrasonic field behind the scatterer, or on the right side of the

dotted line, the point sources should be taken as shown in Figure 1.32. Note that now

some of the point sources are aligned with the right edge of the scatterer whereas the

ym

xn

zj

x1

x3Fluid

Fluid

Solid
scatterer

Figure 1.31 A finite solid scatterer immersed in a fluid in front of a transducer face - two layers

of point source contribute to the ultrasonic field in between the transducer and the scatterer.

ym

xn

zj

x1

x3Fluid

Fluid

Solid
scatterer

Figure 1.32 A finite solid scatterer immersed in a fluid in front of a transducer face - only the

right layer of point sources contribute to the ultrasonic field in the fluid on the right side of the

scatterer.
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rest are aligned with the imaginary interface along the left edge, and marked by the

dotted line. Of course, for thin scatterer these two planes coincide.

Following similar steps as in Section 2.5.2, the strengths of the interface point

sources in this case can be obtained from Eq. (1.67),

AI ¼ ½Mi
TI�
�1

Vt
T ¼ ð½Mi

TI�
�1

Mt
TSÞAS

where AI is the ð3M � 1Þ vector of the interface source strengths, Mi
TI is the ð3M�

3MÞmatrix that relates the velocity vector Vt
T at the interface points xn to the interface

source strengths AI, and Mt
TS is the ð3M � 3NÞmatrix that relates the velocity vector

Vt
T at the interface points to the transducer source strength vector AS.

Note that in this case, equations relating the interface velocity components to the

transducer source strengths and interface source strengths are similar to Eqs. (1.63)

and (1.64) and can be written as

Vt
T ¼Mt

TSAS

Vt
T ¼Mi

TIAI

After computing the interface source strengths using Eq. (2.54), the ultrasonic field at

any new target points xnðn ¼ 1; 2; . . . ;NTÞ on the right side of the interface can be

obtained from Eq. (1.69). For computing the field at new points, appropriate changes

in the values of xn
jm and rn

m appearing in matrix Mi
TI should be taken into account. As

mentioned earlier, rn
m is the distance between the mth point source and nth target point

and xn
jm are the three components of rn

m.

1.3.7 Numerical results

Sections 1.3.1–1.3.6 describe the theory of the ultrasonic field modeling by using the

DPSM technique in homogeneous and nonhomogeneous fluids. Based on this theory

the authors have developed a number of MATLAB computer codes to model the

ultrasonic fields generated by the ultrasonic transducers of finite dimension, which are

immersed in a fluid. In the simplest case, the transducer is immersed in a homo-

geneous fluid. More complex problem geometries involve two fluids with a plane

interface and a solid scatterer of finite size immersed in a homogeneous fluid. The

numerical results clearly show how the ultrasonic field decays as the distance from

the transducer increases and the field becomes more collimated as the size of the

transducer increases. It also shows that the field is reflected and transmitted at an

interface, and how a finite size scatterer can give rise to the reflection and transmission

as well as diffraction of the incident field.

1.3.7.1 Ultrasonic field in a homogeneous fluid In this example the ultrasonic

field in front of a flat circular, flat rectangular, and concave circular transducer faces

are generated. The transducer front face geometries are shown in Figure 1.33. The

area of the flat transducer face is 5.76 mm2 for both circular and square transducers.

Note that a 2.7 mm diameter circular transducer gives an area of 5.76 mm2. A concave
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transducer face has different dimensions; its diameter is 12.7 mm (0.5 in.) and its

radius of curvature is 8 mm, as shown in Figure 1.33. All of the dimensions in the figure

are given in meter, but the scales are not necessarily the same in the horizontal

and vertical directions. These three transducers are denoted as circular, square, and

focused transducers. Note that the flat transducer face is located on the xy plane.

We would like to compute the ultrasonic field in front of the transducer face in

the xz plane or the yz plane. Both xz and yz planes are planes of symmetry and are

perpendicular to each other.

The ultrasonic pressure field variations along the xz and yz planes in front of the

transducer face are shown in Figure 1.34 for 5 MHz frequency of the transducers. The

top-left and top-right images of Figure 1.34 are for the circular and square transdu-

cers, respectively. Note that the field is less collimated for the square transducer. For

both transducer geometries the ultrasonic field has a number of peaks (or maxima) and

dips (or minima) along the central axis (z-axis) of the transducer near the transducer

face. The peaks and dips are a result of constructive and destructive interferences

between the fields generated by different point sources on the transducer face.

For the concave transducer the field intensity increases as we approach the focal

point. Note that the focal point is at a distance of 8 mm from the transducer face,

whereas the plot is shown for a distance varying from 3 to 6 mm.

It should be mentioned here that the focused transducer surface area is 21 times

that of the flat transducers. To maintain the same spacing between neighboring point

Figure 1.33 Distribution of the point sources just behind the front face (see Fig. 1.24) of a flat

circular (top left) and flat square (top right) transducer. Bottom figure - side view of the concave

front face of a transducer
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sources (see Section 1.3.2.3), the number of point sources for the focused transducer

is made about 25 times that of the flat transducers. Thus, the number of point sources

for the focused transducer is 6470 whereas for the flat transducers the two numbers are

256 and 259, respectively.

Variations of the pressure field along the z-axis, in front of the transducer face, are

clearly shown in Figure 1.35. The top two figures of 1.35 are for the circular and

square transducers, and the bottom figure is for the focused transducer. The analytical

solutions (Eq. (1.16b) for the flat circular transducer and Eq. (1.32) for the focused

transducer) give results that are very close to the one obtained by the DPSM technique

(Eq. (1.25j)), see Figure 1.35. Three peaks between 0 and 4 mm along the z-axis in

Figure 1.35 correspond for both circular and square transducers to the three bright red

dots in Figure 1.34 along the central axis of the ultrasonic beam.

Example 1.3.4

Check if Eq. (1.30) is satisfied for the flat circular cylinder with 259 point sources for

1 MHz signal.

Figure 1.34 Ultrasonic pressure fields generated by a circular (top left), a square (top right),

and a concave circular (bottom) transducer. Transducer face geometries are shown in Fig.1.33.

Transducer frequency is 1 MHz. The surface area of the flat transducers is 5 mm2. The concave

transducer has a radius of curvature of 8 mm, and the diameter of its periphery is 12.7 mm. The

number of point sources is 259 for the top-left figure, 256 for the top-right figure, and 6470 for

the bottom figure. The ultrasonic field is plotted up to an axial distance of 6 mm. Note that the

focal point for the concave transducer is at a distance of 8 mm, which is beyond the plotted

region.
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Solution

The area for each point source ðASÞ is computed from the surface area of the

transducer face in the following manner:

AS ¼
pr2

n
¼ p1:272

259
¼ 0:01956 mm2

Because AS ¼ 2pr2
S (see Fig. 1.24 and also the discussion on Eqs. (1.29) and (1.30)),

we can write,

rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01956

2p

r
¼ 0:0558 mm

From the wavelength ðlfÞ, wave speed ðcfÞ, and frequency (f) relation, we get the

wavelength in water for 1 MHz frequency

lf ¼
cf

f
¼ 1:5� 106

106
¼ 1:5 mm

Figure 1.35 Ultrasonic pressure fields generated by circular (left top), square (right top) and

focused (bottom) transducers. Thin dashed curves in top left and bottom figures have been

generated by the closed form expressions [Eq.(1.16b) for the flat circular transducer and

Eq.(1.32) for the focused transducer]. Continuous curves are obtained by the DPSM technique.
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From Eq. (1.30),

rS �
1:5

2p
mm

) rS � 0:24 mm

Because rS ¼ 0:0558 mm, the above condition is satisfied.

Pressure field variations in front of the transducer face along the xz plane for the

three transducer geometries of Figure 1.33 are shown in Figure 1.36. In this figure one

can clearly see how the pressure field oscillates near the transducer face and decays

laterally (in the positive and negative x directions) and axially (in the z direction) for

the flat transducers. For the focused transducer a clear peak can be observed near the

focal point. Contour plots for the pressure field variations in the xz plane for the same

three transducers are shown in Figure 1.37.

Figure 1.38 shows the effect of increasing the number of point sources. As more

sources are considered, the computed field becomes smoother. Because the oscillat-

ing velocity amplitudes at the transducer surface are different for the left and right

columns of Figure 1.38 and so are the scales along the vertical axes, the numerical

values in the two columns should not be compared. However, a comparison of the

Figure 1.36 Ultrasonic pressure fields in the xz plane are generated by circular (top left),

square (top right) and focused (bottom) transducers. The central axis of the transducer coincides

with the z-axis.
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relative variations of the pressure fields between the two columns clearly demon-

strates the effect of the increasing number of point sources on the computed pressure

field.

The effect of the presence of a small circular hole at the center of a 2.54 mm

(0.1 in.) diameter flat circular transducer is shown in Figure 1.39. The pressure field in

the xz plane (top-right plot of Fig. 1.39) is very similar to the one given in Figure 1.37

(top left). Therefore, a small hole at the center of a flat circular transducer does not

significantly affect the generated pressure field in the fluid. The bottom two plots of

Figure 1.39 show the pressure and normal velocity (Vz) variations in the xy plane, very

close to the transducer surface. It should be noted here that an oscillating pattern is

present in the pressure plot but not in the velocity plot. Theoretically, the velocity

component should be a constant and equal to v0 on the transducer surface, see Eq.

(1.16) and (1.25c). However, a small level of noise in the velocity plot exists due to the

numerical error.

1.3.7.2 Ultrasonic field in a nonhomogeneous fluid – DPSM technique The

pressure field generated by a circular transducer placed parallel to the interface of two

fluids is computed. As before, the transducer frequency is set at 1 MHz and its

diameter is 2.54 mm. The distance between the transducer face and the interface

between two fluids is 10 mm. The transducer is immersed in fluid 1 (P-wave

Figure 1.37 Contour plots for the ultrasonic pressure fields in the xz plane are generated by

circular (top left), square (top right) and focused (bottom) transducers. The same as Fig. 1.36

but contour plots are given here instead of surface plots.
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speed¼ 1.49 km/s, density¼ 1 g/cc). The P-wave speed and density of fluid 2 are set

at 2 km/s and 1.5 g/cc, respectively.

One hundred point sources are used to model the transducer surface and four

hundred point sources (each point source is a triplet source) model the interface effect,

see Figures 1.28 and 1.29. Point sources distributed over the interface, which are also

called target sources, are distributed over a square area of 20 mm side length. Note

that the interface source positions change (see Figs. 1.29 and 1.30) when computing

the acoustic fields in fluids 1 and 2.

Pressure fields computed in the two fluids are plotted in Figure 1.40. Note how the

pressure variation in the xy plane is changed, as the distance of the observation (xy)

plane from the transducer surface is increased from zero (middle-left figure) to 10 mm

(bottom-left figure). Pressure variations in the xz plane in both fluids are shown as a

contour plot (top-right) and a surface plot (middle-right). Pressure along the z-axis is

plotted in the bottom-right figure. Oscillations in the acoustic pressure in fluid 1 are

the effects of constructive and destructive interferences between two rays that can

reach a point in fluid 1—the first ray travels from the transducer face to the point of

interest and the second ray reaches the same point after being reflected at the inter-

face, see Figure 1.27.

Pressure and velocity variations in the two fluids for an inclined transducer

(inclination angle¼ 20�) are shown in Figure 1.41. The fluid properties and the

Figure 1.38 Pressure variations in the xz plane (top row) and xy plane (bottom row), close

to the transducer surface for a rectangular transducer. Left (256 point sources) and right (1296

point sources) columns correspond to two different discretizations of the transducer surface.
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transducer dimension are the same as those in Figures 1.40 and 1.41. The only

difference between the problem geometries of Figures 1.40 and 1.41 is that in

Figure 1.40 the transducer face is parallel to the interface and in Figure 1.41 it is

inclined.

From Snell’s law the transmission angle in the second fluid can be computed.

yT ¼ sin�1 2

1:49
sinð20Þ

� �
¼ 27:33�

Incident and transmission angles, measured from the middle-left plot of Figure 1.41,

give values close to 20� and 27.33�, respectively. Note that the Vz variation (bottom-

right) and the pressure variation (middle-right) in the two fluids are similar.

1.3.7.3 Ultrasonic field in a nonhomogeneous fluid – surface integral method The

ultrasonic field in the nonhomogeneous fluid can also be computed by the conven-

tional surface integral technique instead of the DPSM technique. Unlike the DPSM

technique, in the surface integral method the fluid–fluid interface is not modeled by the

Figure 1.39 Top left - Circular transducer with a small hole at the center is modeled by 1040

point sources; top right - pressure field in the xz plane; bottom left - pressure field in the xy plane,

close to the transducer surface; bottom right - normal velocity component (Vz) in the xy plane,

close to the transducer surface.
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distributed point sources. Here, only the transducer surface is discretized into the

distributed point sources. In this method, the pressure fields in fluids 1 and 2 are

computed by Eqs. (1.45) and (1.60), respectively. The theory of this computation is

given in Section 2.4 whereas the theory of the DPSM computation is given in Section

2.5. Figure 1.42 shows the pressure field along the z-axis in fluids 1 and 2, computed by

the surface integral technique. A comparison of Figure 1.42 with the bottom-right plot

of Figure 1.40 shows a perfect matching between the results obtained by these two

methods.

1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer Following the

theory described in Section 1.3.6, a computer code has been developed to compute the

ultrasonic pressure field in the presence of a finite-size scatterer. This computer code

is used to solve the problem of ultrasonic field scattering by a finite-size steel plate,

immersed in water. The problem geometry is shown in Figure 1.43. A finite-size thin

steel plate (1 mm thick) is placed at the interface between the two fluids—fluid 1 and

fluid 2. The results are presented for the case in which both fluids are water. Scattered

fields are computed for a large plate (20 mm� 20 mm, shown by the dashed line in Fig

1.43), and for a small plate (5 mm� 5 mm shown by the solid line in Fig 1.43).

Figure 1.40 Circular transducer in a non-homogeneous fluid. Top left: 2.54 mm diameter

transducer modeled by 100 point sources; middle left - acoustic pressure in the xy plane, close to

the transducer surface (z ~ 0 mm); bottom left - acoustic pressure in the xy plane in fluid 1 at the

interface position (z = 10 mm); top right - contour plot of the pressure variation in fluid 1 (z = 0 to

10 mm) and fluid 2 (z = 10 to 20 mm); middle right - surface plot of the pressure variation in fluid

1 (z = 0 to 10 mm) and fluid 2 (z = 10 to 20 mm); bottom right - pressure variation along the z-axis

in fluid 1 (z = 0 to 10 mm) and fluid 2 (z = 10 to 20 mm).
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The ultrasonic beam, generated by a 6.28 mm diameter cylindrical transducer,

strikes the plate at angles yi¼ 25� and 38.37�. Signal frequency is 1 MHz. The

ultrasonic fields for these two striking angles are computed and plotted in Figures 1.44

and 1.45, respectively (Placko et al., 2003). Material properties for this computation

are shown in Table 1.2.

Figure 1.41 Top left: Inclined transducer face modeled with 100 point sources, angle between

the interface and the transducer face is 20�; top right - acoustic pressure in the xy plane in fluid 1

at the interface position (z = 10 mm); middle left - contour plot of the pressure field variation in

fluid 1 (z = 1 to 10 mm) and fluid 2 (z = 10 to 20 mm); middle right - surface plot of the pressure

field variation in fluid 1 (z = 1 to 10 mm) and fluid 2 (z = 10 to 20 mm); bottom left - pressure

variation along the z-axis in fluid 1 (z = 1 to 10 mm) and fluid 2 (z = 10 to 20 mm); bottom right -

surface plot of the velocity (Vz) variation in fluid 1 (z = 1 to 10 mm) and fluid 2 (z = 10 to 20 mm).

Figure 1.42 Pressure variation along the z-axis in fluid 1 (left figure) and fluid 2 (right figure).

54 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)



The plate is placed at a distance of 10 mm from the transducer face. Thirty-two

point sources distributed slightly behind the transducer face, as shown in Figure 1.24,

model the transducer.

Note that in both Figures 1.44 and 1.45, scattered fields behind the steel plate are

much stronger for the small plate. For the large steel plate, very little acoustic energy

1Fluid

Transducer

Fluid 2
Steel plate

Rp

Tp

i

Figure 1.43 A bounded ultrasonic beam from an inclined transducer strikes a finite steel plate

immersed in water at an angle yi (numerical results are provided for fluid 1 = fluid 2 = water).

Figure 1.44 Total ultrasonic pressure distributions (incident plus scattered fields) near a steel

plate scatterer, immersed in water. Left and right columns are for large (20 mm� 20 mm) and

small (5 mm � 5 mm) plates, respectively. Incident angle is 25�. In top and bottom rows, the

same pressure fields are plotted in two different ways.
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is transmitted into the fluid, behind the plate, because of the large impedance

mismatch between the steel plate and the water. It should also be noted that in

addition to the transmitted field, the reflected field for the large plate is also relatively

weak. The weak specular reflection for the large plate is more evident in Figure 1.45.

Specular reflected beam means the reflected beam in the position predicted by the

optics theory. The probable cause for a weak specular reflection by the large plate is

that part of the ultrasonic energy generates leaky guided waves in the plate and

propagates away from the striking zone. Therefore, less energy is specularly reflected

by the larger plate. In Figure 1.46 we can see that for 38.37� incident angle, a guided

wave mode is generated; thus, less energy is specularly reflected for this incident

angle when the plate is large. This phenomenon of guided wave generation at the

fluid–solid interface is discussed in detail in chapter 4.

TABLE 1.2. Water and steel properties for the results presented

in Figures 1.44 and 1.45

Material and P-wave S-wave

Properties Speed (km/s) Speed (km/s) Density (g/cc)

Steel 5.96 3.26 7.93

Water 1.49 - 1

Figure 1.45 Same as Fig.1.44, but these plots are for 38.37� angle of incidence
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structures intégré’’, Patent Application N� BFF 040003 ENS Cachan/CNRS/ONERA,

March 31, 2004, European extension March 31, 2005.

0.0 1.0 2.0 3.0 4.0 5.0
0.0

2.0

4.0

6.0

8.0

10.0

Frequency (MHz)

25o

38.37o

Cph
km/s
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Cachan/CNRS/Université d’Arizona, November 8, 2002. European and USA Extension

November 10, 2003.

Placko, D., and Kundu, T., Chapter 2: Modeling of Ultrasonic Field by Distributed Point Source

Method, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material

Characterization, Ed. T. Kundu, Pub. CRC Press, pp. 143–202, 2004.

Placko, D., T. Kundu, and R. Ahmad, ‘‘Ultrasonic Field Computation in Presence of a Scatterer

of Finite Dimension’’, Smart Nondestructive Evaluation and Health Monitoring of Struc-

tural and Biological Systems, Ed. T. Kundu, SPIE’s 8th Annual International Symposium on

NDE for Health Monitoring and Diagnostics, March 3–5, 2003, San Diego, California,

Vol. 5047, 2003.

Schmerr L.W., Fundamentals of Ultrasonic Nondestructive Evaluation—A Modeling

Approach, Pub. Plenum Press, 1998.

58 BASIC THEORY OF DISTRIBUTED POINT SOURCE METHOD (DPSM)


