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1.1 INTRODUCTION AND HISTORICAL DEVELOPMENT OF DPSM

In this chapter, the historical evolution of distributed point source method
(DPSM) and its basic principles are presented. First, the magnetic field generated
by a magnetic transducer/sensor in a free space is obtained. A U-shaped magnetic
sensor with high-permeability core is first modeled (Placko and Kundu, 2001).
Then, the method is extended to problem geometries with one interface (Placko
et al., 2001, 2002). The source of the field is denoted as ‘“‘transducer” or
“sensor,” and the interface between two media is sometimes called “‘target.”
Observation points that are not necessarily on the interface are also called “‘target
points.” Figure 1.1 shows the relative orientations of the transducer and inter-
face. The interface or target can be an infinite plane or it can have a finite
dimension, acting as a finite scatterer. Only one reflection by the target surface is
first considered. The method is illustrated through some examples from electro-
magnetic and ultrasonic applications. In this chapter, different DPSM source
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Figure 1.1 Problem geometry with interface.

configurations are considered including controlled-space radiation (CSR) sources
and triplets, as it can be seen in the patent (Placko et al., 2002).

DPSM modeling is based on a spatial distribution of point sources and can be
applied to both two-dimensional (2D) and three-dimensional (3D) problem geome-
tries. Mostly, 3D modeling is presented in this book for magnetic, acoustic, electro-
static, and electromagnetic field problems. In the DPSM modeling technique the
transducer surface and interface are replaced by a distribution of point sources, as
shown in Figure 1.2a. One layer of sources is introduced near the transducer and a
second layer near the interface. Point sources that model the transducer are called the
‘““active” sources and those near the interface are called the “passive’ sources. It
should be noted here that a transducer generates a field and an interface alters that field
by introducing reflected, transmitted, and scattered fields. If the interface is removed,
the active point sources should still be present. However, if the active sources are
turned off, then the passive point sources must be turned off as well because in the
absence of active sources, the passive sources do not exist. Active and passive point
sources can be distributed very close to the transducer face and interface, respectively,
as shown in Figure 1.2a or away from them as shown in Figure 1.2b. It is also not

C C @

A (© Medium 2 A ©)
© edium © Medijum 2
S S 0
S () ®
o Medium 1 () Medium 1
S S ®
2 ()

B B ©®

D D

(a) (d)

Figure 1.2 Synthesizing the field by placing point sources: (a) close to the sensor and
interface, (b) away from the sensor and interface.
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necessary for the layer of point sources to be parallel to the surface (transducer or
interface) that is modeled by these sources. Strengths of the point sources are adjusted
such that the boundary conditions on the transducer surface and continuity conditions
across the interface are satisfied. This can be achieved by inverting some matrices. By
adjusting the point source strengths, the total field can be correctly modeled by
different layers of point sources placed in different orientations. Naturally, for
different orientations of the point sources, individual source strength vectors should
be different. The total field is computed by adding fields generated by all active and
passive point sources. Note that unlike the boundary element or finite element
techniques, in this formulation the discretization of the problem boundary or of the
problem domain is not necessary.

Like other numerical modeling schemes, accuracy of the computation depends
on the number of point sources considered. This process of introducing a number
of point sources can be called ‘““mesh generation.” In this chapter, we study the
effect of the spacing between two neighboring point sources on the accuracy of
the field computation and the optimum spacing for accurate numerical compu-
tation. It is shown here that for accurately modeling acoustic fields, the spacing
between two neighboring point sources should be less than the acoustic wave-
length (in fact, as we will see later, this condition has to be fulfilled for all kinds
of waves, but the proof is given for the acoustic wave modeling). This restric-
tion can be relaxed if we are interested in computing the field far away from the
point source locations. For example, if one is interested in computing the field
generated by a circular sensor of finite dimension in a homogeneous medium,
the point source spacing must be a fraction of the wavelength if one is
interested in computing the field accurately adjacent to the transducer
face. However, at a larger distance the field can be computed accurately by
considering fewer point sources of higher strength although it will not give good
results near the transducer. Flat transducers or sensors with circular and
rectangular cross-sections as well as point-focused concave transducers are
modeled accurately by taking appropriate source spacing and are presented in
this chapter.

Figures 1.3—1.5 show the steps of DPSM evolution, improvements in elemental
source modeling, and different problems that have been solved so far by this
technique (Placko, 1984, 1990; Placko and Kundu, 2001, 2004; Placko et al., 1985,
1989, 2002; Ahmad et al., 2003, 2005; Dufour and Placko, 1996; Lee et al., 2002;
Lemistre and Placko, 2004; Banerjee et al., 2006).

1.2 BASIC PRINCIPLES OF DPSM MODELING

1.2.1 The fundamental idea

In this subsection, we first describe the basic principle of this method, which is
based on the idea of using multiple point sources distributed over the active part of a
sensor or an interface. Active sources synthesize the transducer-generated signals in
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Figure 1.5 Different problems solved by DPSM.

a homogeneous medium, whereas the passive point sources distributed along the
interface generate signals to model the reflection and transmission fields. For a
finite interface the passive sources also model the scattered field. Because the
distributed point sources model the total field, we call this method the ““distributed
point source method” or DPSM. It should be mentioned here that this technique is
based on the analytical solutions of basic point source problems. Therefore, it can
be considered as a semi-analytical technique for solving sensor problems that
include magnetic, ultrasonic, and electrostatic sensors. For example, it is possible
to compute the magnetic field emitted by the open magnetic core of an eddy current
sensor, or acoustic pressure in front of an ultrasonic transducer without discretizing
the space by a large number of 3D finite elements. Magnetic and ultrasonic sensor
examples are presented in this chapter to illustrate the method because these
problems have some interesting properties as discussed later. It should be noted
here that for a magnetic sensor, the magnetic potential remains constant on the
sensor surface and the magnetic flux varies from point to point, whereas for the
acoustic sensor in a fluid, the particle velocity remains constant on the sensor
surface and the acoustic pressure varies. It requires an additional matrix inversion
in the magnetic field modeling, which is not necessary for the acoustic field
modeling.

An elemental point source is shown in Figure 1.6. In a nonconductive medium, it
involves both scalar potential and vector field, the field being proportional to the
gradient of the potential. Each source is surrounded by a surface (“‘bubble’’) on which
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Boundary condition bubble

Figure 1.6 Elemental point source.

the boundary conditions are applied. Because the boundary conditions are specified
on the sensor surface for active point sources and on the interface surface for the
passive point sources, the bubble surface should touch those surfaces such that the
transducer surface or interface are tangents to the surface. Therefore, the point
sources at the centers of the bubbles cannot be located on the transducer surface or
on the interface. Reason for this restriction will be discussed later.

1.2.1.1 Basic equations The basic principle of the DPSM is illustrated in
Figure 1.7. The implementation of the model simply requires the replacement of
the active surface of the transducer by an array of point sources, so that the initial

Array of point
sources Actual field

Transducer t —

Figure 1.7 Equivalent source radiation.
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Figure 1.8 Illustration of the controlled-space radiation source properties.

complexity associated with a complex finite shape of the transducer is changed into a
superposition of elementary point source problems. One way of replacing the surface
by an array of point sources is discussed below.

The active surface of the transducer is discretized into a finite number of elemen-
tary surfaces dS, a point source is placed at the centroid of every elemental surface.
The source strength and the radiation area of the sources are controlled. Unlike
ordinary point sources, the sources used in DPSM do not necessarily radiate energy in
all directions. For this reason these sources can be called CSR sources. For example, a
source can be defined to radiate only in the bottom or top half space, or right or left
half space (see Fig. 1.8).

In the generic derivation, symbols 0 and ¢ are used to represent different para-
meters for different engineering problems as described below. For magnetic sensors,
0 and ¢ represent the scalar magnetic potential © and the flux ®/piy of the magnetic
induction (H), respectively. For ultrasonic transducers, 0 and ¢ represent the acoustic
pressure P and the flux ® of the particle displacement (x), respectively. Note that the
particle velocity v = %. For electrostatic systems, 6 and ¢ represent the scalar
magnetic potential V and the flux Q/¢y of the electric field (E). The interaction
function that relates the field generated by the unit source (such as the elemental
charge for electrostatic problems) to 6 is denoted by f. Table 1.1 shows the funda-
mental equations in different fields of engineering. It should be mentioned here that it
is possible to obtain similar equivalent equations for problems from other fields of
engineering such as thermal problems, for example. Nevertheless, it will be shown
later that for electromagnetic waves the situation is slightly different because the
sources in this case are elemental vectors of current, and in addition, the potential is
often a vector and not a scalar, due to eddy currents generated in conductive media.

It is interesting to note that the energy (or the power) radiated by such a system is
the product of a scalar quantity and the flux of a vector (or the time derivative of the
flux, for power). Let us denote the scalar quantity by 0; and the flux emitted by the
point source k by ¢,. Figure 1.9 shows how the total field at a given point is computed
by adding fields generated by all the point sources. It also shows that because of
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TABLE 1.1 Some physical values in DPSM modeling

Surface
Surface power energy  Function f
- . d dD 1 —ilken)
Electrostatic  E = —grad(V)  [[E-dS = % % XV="CxV S0V ;Tor
[ —, Lo D ad, dB 1 e ithan)
Magnetostatic H = —grad(©) [[H-dS= ™ ke 0= % ) ECDXG) T
Ultrasonic F,=k-v= v [[%-dS=a d X P le —iopvo ek
TRV - d 2 2
—
= —grad(P)

[r is the distance of the point source, Ky is the wave number; for electrostatic systems, 0 is the scalar
magnetic potential V, ¢ is the flux Q/¢ of the electric field (E); for magnetic sensors, 6 is the scalar
magnetic potential O, ¢ is the @/, of the the magnetic induction (H); for ultrasonic problems, p is the
fluid density, P is the pressure, x is the particle displacement, ® is the flux of particle displacement, vy is
the transducer velocity,  is the signal frequency.]

rotating symmetry, the elemental surface dS can be changed into a hemispherical
surface dS with radius rs(dS = 2nr).

1.2.1.2 Boundary conditions One needs to introduce the boundary conditions
before solving the problem. For computing the values of the flux ¢, for N sources,
one needs N number of equations. These equations are obtained by introducing

Figure 1.9 Equivalent surface discretization.
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boundary conditions on the scalar quantity 0y at N given points. One possible choice
is to place these specific points (denoted by Py) at the apex of the hemispherical
surfaces (then rs is normal to the surface). Clearly, greater is the number of points,
smaller is the value of radius rs. Therefore, when N tends to infinity, rs tends to O,
and Py points tend to reach the surface on which the point sources are placed. Let us
now illustrate this technique to model the magnetic field generated by a magnetic
Sensor.

1.2.2 Example in the case of a magnetic open core sensor

Under assumptions of very high permeability core, the implementation of the model
simply requires discretization of the active surface (magnetic poles) of the core to
obtain an array of point sources. Let us denote the scalar quantity by 6; and the flux
emitted by the source k by ¢,. In the application described in this section, 0; and
@, represent the magnetic scalar potential and the flux of magnetic induction,
respectively.

1.2.2.1 Governing equations and solution Magnetic fields emitted by open
magnetic cores (electrical motors, magnetic and eddy current sensors) are modeled
in this section. Solving such problems without any approximation will be very
difficult in this domain of electromagnetic modeling. A magnetic sensor with a
‘U’-shaped open magnetic core (see Fig. 1.10) is considered as an illustrative
example.

Let us assume that the active part of a sensor is composed of two ““poles”’—north
and south poles of the magnetic transducer, see Figure 1.11.

ANNNNNANNAN

I 4 N spires
exc
o)

Figure 1.10 Geometry of the magnetic sensor studied.
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North pole South pole

Figure 1.11 Discretization of magnetic sensor poles.

The active surfaces are discretized into elementary surfaces dS. At the center of the
ith elemental surface dS, a point source emitting a flux ¢, is placed. From the
conservation of the magnetic flux, one can write that the summation of the flux
emitted by all point sources is equal to zero.

§0N+§DSZZ§0Ni+Z€DSi:0 (L.1)

pole N pole S

The magnetic potential at a given point M in the space is obtained by considering the
contribution of all magnetic point sources.

0=> 0;+> 0 (1.2)

pole N pole S

General relations between the magnetic field and the scalar magnetic potential are
given by

ﬁ:_d—‘{,e and @zJJu0ﬁ~fS (1.3)
7

It yields in our case, for the ith point source

i =t
¢; = H; - 2muyr? and A
2npyr
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Hence, Eq. (1.2) becomes

0= Z oni *f (rni) + Z ¢s; *f(rs))

pole N pole S
where

1
C 2mugr

f(r) (1.5)

After introducing C; as the coordinate of the center of the source S;, Eq. (1.5) takes the
following form:

0= on+f(M—=C)+ Y o5 +f(M—C) (1.6)

pole N pole S

1.2.2.2 Solution of coupling equations At this step, the value of the magnetic flux
emitted by the point sources is unknown. An additional boundary condition is then
introduced to obtain a new equation set. This is done by computing the magnetic
potential 6, at each peak point (Py) of the hemispherical surface (radius r), due to all
sources S; (see Fig. 1.12).

0k can be obtained from Eq. (1.6)

Hk:Z(pNi*f(Pk_Ci)+Z@Sj*f(Pk_Cj) (1.7)

pole N pole S
As the magnetic circuit of the sensor is composed of a material of high permeability,
there is no difference in magnetic potential between the points of the same pole.

Therefore, 0; = On = o for the north pole and 0, = O0s = —f for the south pole,
where

BN_GS:O("‘ﬂ:N*Iexc (18)

North pole South pole

Figure 1.12 Definition of distances for coupling matrix computation.
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The number of equations thus obtained is equal to the number of point sources. Thus,
one gets a square matrix for the coupling equations

0Np1 +a
0Np2 +o
9Np3 = —+o
Ospi -B
Osp2 -B
[ TF F F F F P
NpINcl NpINc2 NpINc3 Np1Scl NplSc2
Frponet Fnpanez  FNpanes Fnposet Fnpase2 PN2
= FNp3Ncl FNpSNcZ FNp3Nc3 FNpSScl FNp3ScZ * PN3
Fspinel  Fspine2  Fspines Fspise1  Fspisc2 P51
Fsponel  Fspanes  Fspanes Fspaset  Fspasca
Psa
(1.9)
This system of equations with four submatrices can be rewritten as:
ON = Fnn o+ Uy + Fs * Us
Os = Fsn * UN + Fss * s
So that
O=FxU (1.10)

Inversion of Eq. (1.10) gives the magnetic flux for all point sources

v=Flo=GoO

which gives

NpINel  GNpiINe NpINc3 Npisel  FINpisc d
?NI Gp Gp 2 Gp 3 Hps HpSZ +o
DON2 GNpZNcl GNp2NcZ GNpZNc3 HNp2$c1 HNpZScZ +o
U= gn | = | LONp3Net  GnpaNez  Gnpane3 Hnpaset  Hnpase2 ] | | +a
®g Gspinet  Gspinez Gspines Hspiset  Hspisez —B
0y Gsponel Gspanes  Gspanes Hsposet Hsposer -B

(1.11)

The condition on the flux (Eq. 1.1) in combination with Eq. (1.11) gives a new
equation to determine the values of o and f:

§0N+<Ps:°‘Zsz—ﬁZHk1=0 (1.12a)
if kil
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Figure 1.13 Illustration of the DPSM method with 9 sources on each pole.

After knowing the magnetic flux values, the magnetic potential or the field in the
space in front of the magnetic circuit is computed from Eqgs. (1.3) and (1.5). We can
also compute some macroscopic parameters like the reluctance ¥} by

= (eNfes)*QDI?II :N*Iexc*qoijl (112b)

1.2.2.3 Results and discussion Some results obtained with the DPSM model are
presented and compared with the results obtained by the finite element method
(Ansys 3D software) (ANSYS, 1999). Geometry of the sensor, with 9 point sources
for each pole, is shown in Fig. 1.13.

For this simulation, Figure 1.14a and b shows the magnetic potential at the
surface of the north pole for 9 sources and 144 sources, respectively. Similar to
Figure 1.13, in Figure 1.14a, a small number of sources (9 sources) is kept to
illustrate the principle of the DPSM method. The boundary condition that the
magnetic potential is constant at the apex of every hemispherical surface can be
clearly seen in this figure. Same parameters are shown in Figure 1.14b when the
number of point sources in each pole is increased to 12 x 12 = 144. Dimensions
along the x- and y-axes are given in millimeters. Figure 1.15a and b presents the
normal component of the magnetic field at the surface of the north pole for 9 and 144
sources, respectively.
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Figure 1.14 Magnetic potential on north pole for (a) 9 and (b) 144 sources on each pole.

Figure 1.16a presents the H, component of the magnetic field at the level of the
poles, obtained with the DPSM model. Figure 1.16b shows the variation of the
magnitude of H, along a line in the y-direction on the poles’ plane. Figure 1.16b
shows the magnitude of H, obtained by DPSM (dashed line) and ANSYS 3D
simulation (continuous line). This figure shows that the DPSM results are in good
agreement with the ANSYS simulation results.

Furthermore, it should be pointed out that the DPSM synthesis of the magnetic
field has been made, in this simple example, by matching the boundary conditions
on the scalar term (magnetic potential) at the surface of the transducer. It should be
noticed here that the satisfaction of the boundary condition gives rise to some
interesting conditions on the vector term (magnetic field) because the scalar
and vector terms are linked by a gradient relation (see Eq. (1.3)). Therefore, a
first-order development of the scalar term applied to the neighboring points of the
boundary surface guarantees a matching of the first-order derivative terms in any
tangential direction to the boundary surface. In addition, it should be noted that the
surface does not correspond to the wave front; therefore, every point, where the

s vnrtpenznl e T gz ek e 8 sauress o sach po e s sunzarenl af e gt ks in = 144 spares ko asch i)

—15 " 4 ki

(a) {b)
Figure 1.15 Normal component of the magnetic field on north pole for (a) 9 and (b) 144
sources.
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Figure 1.16 (a) Tangential component of the magnetic field computed by DPSM; (b) compar-
ison of results obtained from DPSM (dashed line) and ANSYS (continuous line) simulation.

scalar condition is matched, corresponds to different components of the wave. This
interesting point can be easily observed in ultrasonic problems. In ultrasonic
modeling (discussed below) like magnetic problems, the DPSM synthesis can be
carried out by matching scalar boundary conditions (pressure). In the ultrasonic
modeling pressure, matching induces a variation for the vector terms (velocity).
This point is illustrated in Figure 1.17. It should be noted here that if the continuity
conditions must be satisfied on vectors (see examples on ultrasonic problems in
Chapter 4 and electromagnetic problems in Chapter 6) instead of scalars, then
triplet point sources must be used instead of simple point sources.

For all neighboring points j:

Boundary condition points

—_

P —
P, zPi+L><dr,~,~ +0

t,

1

POINT «i »

Neighboring points « j »

Transducer

Figure 1.17 Field synthesis properties and boundary conditions.
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It will be shown in subsequent developments that for some boundary value pro-
blems, the boundary conditions may be specified on vector quantities. A simple such
example is the ultrasonic transducer modeling. Ultrasonic transducer surfaces usually
have a normal vibration speed, which induces a model in which the velocity vector is
normal to the transducer surface. The next applications of DPSM will be illustrated
with examples taken from the ultrasonic transducer modeling problems. For ultrasonic
problems the point sources can be single elemental point source or triplet source.
Although single elemental point sources are capable of satisfying only one boundary
condition at a point, the triplet sources are capable of satisfying three boundary
conditions (x, y, and z components of the velocity vector, for example) at one point.

1.3 EXAMPLES FROM ULTRASONIC TRANSDUCER MODELING

Most derivations on ultrasonic transducer modeling presented in this section are taken
from Placko and Kundu (2004). For step by step development of DPSM formulation for
ultrasonic problems, readers are referred to Chapter 3 of this book, where the formula-
tion has been derived starting from the basic equations of ultrasonic problems.

Three most common ultrasonic wave fronts that are often used for modeling
purposes are spherical, cylindrical, and plane. Spherical waves are generated by a
point source in an infinite medium, cylindrical waves are generated by a line source,
whereas plane waves are generated by an infinite plane, as shown in Figure 1.18.

These waves can be harmonic or nonharmonic. Harmonic waves are generated
from harmonic (time dependence = e~'®) sources. The equation of the propagating
spherical wave generated by a harmonic point source in a fluid space is given by
(Kundu, 2004)

eikfr

G(r) (1.13.2)

" anr
and the equation of a propagating plane wave in a fluid is given by (Kundu, 2004)

G(x) = &' (1.13.b)

F F

s

Figure 1.18 Point source (left), line source (middle) and infinite plane source (right) generat-
ing spherical, cylindrical and plane wave fronts, respectively. Sources are denoted by S and the
wave fronts by F.
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where, k(= w/cy) is the wave number of the fluid and is defined as the ratio of the
angularfrequency (w) and the acoustic wave speed (cy ) in the fluid, ris theradial distance
of the spherical wave front from the point source, and x; is the propagation distance of the
plane wave front from the plane source. In Eqgs. (1.13a) and (1.13b) G can be either
pressure (p) or wave potential (¢). The wave potential-pressure relation is given by

p = pw’o (1.13¢)

If the wave sources of Figure 1.18 are located in a homogeneous solid instead of the
fluid medium, then only compressional waves are generated in the solid, and their
expressions can be obtained by simply substituting k¢ by kp, where kp is the P-wave
number of the solid. In the absence of any interface or boundary, the mode conversion
does not occur and shear waves are not generated from the compressional waves.

In many nondestructive evaluation (NDE) applications, elastic waves are gener-
ated by a source of finite dimension and the wave fronts are not spherical or cylindrical
or plane. Diameters of the commercially available ultrasonic transducers that are
most commonly used in NDE for ultrasonic wave generation vary from a quarter of an
inch to one inch. Of course, in special applications the ultrasonic sources can be much
smaller (in the order of microns for high-frequency acoustic microscopy applications)
or much larger (several inches for large-structure inspection). To correctly predict the
ultrasonic field (displacement, stress, and pressure fields), generated by such finite
sources, a semi-analytical modeling technique such as DPSM is needed.

1.3.1 Justification of modeling a finite plane source by a distribution
of point sources

The pressure field due to a finite plane source can be assumed to be the summation of
pressure fields generated by a number of point sources distributed over the finite
source area as shown in Figure 1.19. The finite source can be, for example, the front
face of a transducer as shown in this figure.
This assumption can be justified in the following manner:

A harmonic point source that expands and contracts alternately can be represented by
a point and a sphere as shown in Figure 1.20a. The point represents the contracted
position and the sphere (circle in a 2D figure) represents the expanded position. When
a large number of these point sources are placed side by side on a plane surface, then

Figure 1.19 Four point sources distributed over a finite source
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O,

(a) b
a (b) ©

Figure1.20 Contracted (dark) and expanded (thin line) positions of the particles for (a) a point
source, (b) distributed finite number of point sources, and (c) a very large number of point
sources.

the contracted and expanded positions of the point sources are shown in Figure 1.20b.
The combined effect of a large number of point sources, placed side by side, is shown
in Figure 1.20c, where the contracted (dark line) and expanded (thin line) positions of
a line source or the cross section of a plane source are seen.

From Figure 1.20 it is clear that the combined effect of a large number of point
sources distributed on a plane surface is the vibration of the particles in the direction
normal to the plane surface. Nonnormal components of motion at a point on the
surface, generated by neighboring source points, cancel each other. However, non-
normal components do not vanish along the edge of the surface. Therefore, the
particles not only vibrate normal to the surface but also expand to a hemisphere
and contract to the point along the edge, as shown in Figure 1.20c. If this edge effect
does not have a significant contribution on the total motion, then the normal vibration
of a finite plane surface can be approximately modeled by replacing the finite surface
by a large number of point sources distributed over the surface.

1.3.2 Planar piston transducer in a fluid

The pressure field in a fluid for the planar piston transducer of finite diameter, as
shown in Figure 1.21, is computed first. This problem can be solved in two ways as
described below.

1.3.2.1 Conventional surface integral technique If one distributes the point
sources over the transducer face, as discussed in Section 2.1, then the pressure field

X1

X

Figure 1.21 Point source y is on the transducer face, point x is where ultrasonic field is
computed
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at position x in the fluid, due to the point sources at position y distributed over the
transducer surface, can be given by integrating Eq. (1.13) over the transducer surface.

exp(iker)

p(x) = JB ds(y) (1.14a)

N

dnr

where B is proportional to the source velocity amplitude. The above integral can be
written in the following summation form:

p(x) = XN: <£A5m) exp(ikerm) _ ZN:AmM (1.14b)

4n T'm I'm

m=1 m=1

However, from the Rayleigh—Sommerfield theory (Schmerr, 1998),

C2r
S

) = =122 s () 22 s (1.15)

where v3(y) is the particle velocity component normal to the transducer surface; note
that v,(y) = v,(y) =0. For constant velocity of the transducer surface (v;=vy),
Eq. (1.15) is simplified to

px) = 220 [ g (1.16)

S
A comparison between Eqs. (1.14a) and (1.16) gives
B = —2iwpv (1.16a)

Eq. (1.16) can be evaluated in closed form for a circular transducer of radius a for the
following two special cases (Schmerr, 1998):

(1) when x is located on the x3-axis

p(xs) = pervo [exp(ikexs) — exp (ikf\/J% + a2>J (1.16b)

(2) when x is in the far field. In other words, when r is much greater than the
transducer radius

, exp(ik¢R) J1 (kra sin 0)
R kea sin 0

p(x1,x2,x3) = —iwpvoa (1.16¢c)

R and 0 of Egs. (1.16b) and (1.16c) are shown in Figure 1.22. J; is the Bessel function
of the first kind.
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X3

Figure 1.22 R and 0 denote the far field point x

1.3.2.2 Alternative DPSM for computing the ultrasonic field An alternative
technique to compute the strength of the distributed point sources on the transducer
surface is given in this section.

Let the strength of the mth point source be A,,, such that the pressure at a distance r,,,
from the point source is given by Eq. (1.17) (also see Eq. (1.14b)).

exp(ikery)

'm

pm(r) = An (1.17)

If there are N point sources distributed over the transducer surface, as shown in
Figure 1.23, then the total pressure at point X is given by

p(X) :me(rm) :ZA'"M (118)
m=1 m

m=1

where r,, is the distance of the mth point source from point x. Note that Eqs. (1.18) and
(1.14b) are identical.
From the pressure—velocity relation, it is possible to compute the velocity at x.

—— =p— = tiopv, (1.19)

Vam

X3

@ X3m
m
X2

Figure 1.23 Velocity v,, at point x due to the m-th point source
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Note that for e*™ time dependence of velocity, its derivative can be obtained by
simply multiplying v, by positive or negative iw. For e~ time dependence,

1 Op

Therefore, the velocity in the radial direction, at a distance r from the mth point
source, is given by

) (M) A, (ikf exp(ikir) _exp(ilqr))

Vm(")

iwp Or r iwp r r?
Am ik 1
iop r r
and the x3 component of the velocity is
A, O ik Ay ke 1
van(r) = 2 0 (—e"p(’ *r)) = Lm 33 expier) (ikf - —) (1.22)
iwp 0x3 r iop r r

When contributions of all N sources are added, see Figure 1.23, then the total velocity
in the x5 direction at point X is obtained.

N N .
Ay x3m exp(ikern) (. 1

v3(X) = vam(rm) = Z—iwp e (1.23)
m=1 m=1 m m

where x3,, is the x3 value measured from the mth source as shown in Figure 1.23.

If the transducer surface velocity in the x; direction is given by vy, then for all x
values on the transducer surface, the velocity in the x5 direction should be equal to v.
Therefore,

N

V3(X) = ZA—WL'%W (lkf — i) = (124)
= iwp rs T

By taking N points on the transducer surface, it is possible to obtain a system of N
linear equations to solve for N unknowns (A, A, As,...,Ay). However, difficulty
arises when the point source location and the point of interest, X, coincide because
then r,, becomes zero and v3,,, from Eq. (1.24), becomes unbounded. Note that if point
sources and points of interest x are both located on the transducer surface, only then
these two points may coincide and r,, can be zero. To avoid this possibility, the point
sources are placed slightly behind the transducer surface as shown in Figure 1.24. For
this arrangement the smallest value that r,, can take is rg.

When point x is located on the transducer surface as shown in Figure 1.24, then
its x3 component of velocity is matched with the transducer surface velocity vy. In
Figure 1.24 one can see that point x is located at the apex of the small spheres touching
the transducer surface and the point sources are placed at the centers of these small
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X3

Figure 1.24 Point sources are located at x3 = —rg while the transducer surface is at x3 = 0.

spheres. In addition to matching the v3 component to v, if one wants to equate the
other two components v; and v, to zero, then for each point x on the transducer
surface, there are a total of three conditions or equations to be satisfied, as shown in
Egs. (1.24) and (1.25).

N .
Ay x1mexp(ikern) (. 1
= E m zm e ke — —
V1 (X) LK - 0

—iwp rZ -
(1.25)
N .
A xom explikerm) (. 1
v2(x) V; imp r2 e T

Thus, from N points on the sphere surfaces, 3N equations are obtained. Therefore, we
get more equations than unknowns. To get the same number of unknowns as
equations, the number of unknowns can be increased from N to 3N by replacing
each point source by a triplet source. A triplet source is a combination of three point
sources with three different strengths put together as shown in Figure 1.25. All
sources are placed on the same plane at x3 = —rg parallel to the transducer surface.
The three point sources of each triplet are located at the three vertices of an isosceles
triangle that are oriented randomly, as shown in Figure 1.25, to preserve the isotropic
material properties and prevent any preferential orientation. Thus, by solving a
system of 3N linear equations (for triplet sources) or a system of N linear equations
(for simple point sources), the source strengths A,, associated with all point sources
can be obtained. After getting A,,, the pressure p(x) can be calculated at any point

Triplet
Source

Figure 1.25 Randomly oriented triplet sources
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from Eq. (1.18), on the transducer surface or away. The pressure field obtained in this
manner should be the same as that obtained from Eq. (1.16). Note that for a
nonviscous perfect fluid, only the normal velocity component (v3) at the fluid—solid
(transducer face) interface should be continuous. The velocity components parallel to
the transducer face are not necessarily continuous because slippage may occur
between the transducer face and the fluid. However, for viscous fluids such slippage
is not possible and all the three velocity components should be continuous across the
solid transducer face and fluid interface.

1.3.2.2.1 Matrix formulation The matrix formulation for computing the source
strengths is given below. The following formulation is presented for triplet sources
when all the three velocity components are matched at the transducer face and fluid
interface. This is the case for viscous fluids. However, for nonviscous perfect fluids
when only the normal velocity component needs to be matched, then simple ele-
mental point sources should be used instead of triplet sources. Then v, and v, velocity
components should be dropped from the following formulation. In that case the
matrix and vector dimensions will be reduced from 3N to N.
Egs. (1.24) and (1.25) can be combined into the following matrix equation:

Vs = MssAs (1.25a)

where Vg is the (3N X 1) vector of the velocity components at N number of surface
points x, and Agis the (3N x 1) vector containing the strengths of 3N number of point
sources. Mgg is the (3N x 3N) matrix relating the two vectors Vg and Ag. From
Egs. (1.24) and (1.25) one can write

(Vs}' =[v! Wl viovi v v W Y] (1.25b)

Note that the transpose of the column vector Vg is a row vector of dimension
(1 x 3N). Elements of this vector are denoted by v, where the subscript j can take
values 1, 2, or 3 and indicate the direction of the velocity component. Superscript n
can take any value between 1 and N corresponding to the point on the transducer
surface at which the velocity component is defined.

For most ultrasonic transducers, v/ = 0 for j = 1 and 2 (the velocity component
parallel to the transducer face) and v}’ = v, for j = 3 (the velocity component normal

to the transducer face). Then, Eq. (1.25b) is simplified to
(V"' =10 0 vy 0 0 v ... 0 0 ] (1.25¢)
Vector Ag of the source strengths is given by
{As}' =[A1 Ay A3 Ay As As ... Apy-z) Apn-n) A (1.25d)
Note that the upper limits of Egs. (1.24) and (1.25) are changed from N to 3N when

triplet sources are considered, because then for every small sphere three point sources
exist. Therefore, for N spheres 3N sources exist as shown in Figure 1.25.
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Finally, the square matrix Mgg is obtained from Eqs. (1.24) and (1.25).

Mss =
[fdrt) fldpr) flgs, ) flgg,r) .. f(x}(w 1)’ r(l%N—l)) f(x}(SNﬁr;N)-
f(xélfrll) f(xé%ré) f(x;&r}l) f(xééhd) . f(xé(zN 1)”'(131\]71)) f(x;(y\/)’r?lN)
FOSr) fOdr)  flsry) fleg,ry) - f(x;(yv 1) r(l3N_1)) f(xé(m)ar%/v)
fOhLr) ) fOd,3) fider) - f(x%(BN—l) r(ZBN—l)) f(x%(3N)7r§N)
fO3,m1) f03.13)  fds,r3) f(gy,r3) .. f(x%(w 1) ”(221\171)) f(xg(yv)v’%/v)
f@G,m1) f(3,73) f(35,13) f(3erd) - f(x%(w 1)»’(221\171)) f(xg(w)v i)
FOSL ) FGRh ) F ) FOd ) Fan )) f(xgl(g,v) VNN)_ (3NX3N)
(1.25e)
where
X, exp(iker), 1
F, ) = L(fz) (ikf — ) (1.25¢f)
iop(ri,) "m

In Eq. (1.25f%), the first subscript j of x can take values 1, 2, or 3 and indicate whether x
is measured in the xy, x;, or x5 direction. The subscript m of x and r can take values
from 1 to 3N depending on which point source is considered, and the superscript n can
take any value between 1 and N corresponding to the point on the transducer surface
where the velocity component is computed. As mentioned earlier in this formulation,
from 3N point sources, three boundary conditions on the velocity are satisfied at every
point of the N boundary points. However, for nonviscous fluids the slippage between
the transducer surface and the adjacent fluid surface is possible. Therefore, it is not
necessary to enforce the no-slip condition (v; = v, = 0) on the fluid particles that are
adjacent to the transducer surface.

If point x in Figure 1.24 is denoted by X,,, indicating that this point is located on the
nth boundary point, then the position vector connecting the mth point source and the
nth boundary point is denoted by r};, and its three components in x;, x,, and x3
directions are x ,j=1,2,3,in Egs. (1.25¢) and (1.25f).

From Eq. (1. 25a) one gets the point source strengths by inverting the matrix Mss.

As = [Mss]™'Vs = NssVs (1.25g)

If point sources are located very close to the transducer surface (rs in Fig. 1.24 is
small), then the point source strengths (Ag) should be approximately equal to the
source strengths on the transducer surface. From Eqs. (1.14) and (1.16) we get,

pp— B g, — Zoms
4 . N

(1.25h)
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In Eq. (1.25h) S is the transducer surface area. Note that this equation gives the
same source strength for all values of m. Therefore, the vector Ag, obtained from
Eq. (1.25h), should have the following form:

iwpveS
27N

{As}' = M1 1 ... ... 1] (1.251)

After getting the source strength vector Ag from Eq. (1.25g) or (1.251), the pressure
p(x) or velocity vector V(x) at any point (on the transducer surface or away) can be
obtained from Eq. (1.18) (for pressure) or Eqs. (1.24) and (1.25) (for velocity
components). If the points in the fluid where the pressure and velocity vector are to
be computed are called observation points or target points, then the pressure and
velocity components, at these observation or target points, are obtained from the
following matrix relation:

Pr = QpsAs (1.250)

Vr = MrsAg
where Prisan (M X 1) vector containing pressure values at M number of target points
and Vr is a (3M x 1) vector containing three velocity components at every target
point. The V expression is similar to the Vg expression given in Eq. (1.25b). The only
difference is that its dimension is (3M X 1) instead of (3N x 1). Matrix Mrg will be
the same as Mgs of Eq. (1.25e) if the target points are identical to the transducer
surface points where the velocity components are matched to obtain the point source
strength vector Ag in Eq. (1.25g). However, for computing the velocity field at
different points, the expression for Mrs will be slightly different from the Mgg
expression given in Eq. (1.25¢). Then its dimension will be (3M x 3N) as shown
below:

[fOxir) fOpr) fOxdsry) ) oo Fav-1yvon) FOawyrin) |
feyrt) fg,ry) flasrs) flggry) oo f(xé(SN—l)/r(ISN—l)) f(x;(w),r;[v)
flart) flayr) fsr) fOen) .. f(xé(BN—l)’r(IBN—l)) f(x;(ww’%]/v)

Mg = fednr) fOaan) f(asr3) fOger) .. f(x%(3N—l)7r(23N—])) f(ﬁ@N)»’%N)
Fe3,rt) f(5,r3) fOa3r3) fOaerg) oo . f(x%(3N71),r(23N71)) f(X§<3N>J§N)
fO3nm) f(0Gr3) f(35.03) fO3erg) oo o f(xfzi(SN—l)'/r(ZSN—])) f(x.%(ww’%zv)

O3 ") ) s, ) FOde ) POy rtin- ) FGam ) | )
(1.25k)

where f (xj’-’m, ") is identical to the expression given in Eq. (1.25f). Definitions of the
subscripts j and x do not change from those in Eq. (1.25f). The superscript n of x and r
can take any value between 1 and M depending on which target point is considered.
Note that Mg is not a square matrix when M and N are different.
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From Eq. (1.18) the matrix Qg can be obtained when there are 3N point sources
and M target points as shown in Eq. (1.251).

[ exp(iker])  exp(ikerd)  exp(ikery) exp(ikeriy) |
r]l | | e T
exp(iker?)  exp(ikers)  exp(ikers) exp(iker3y)
7 2 2 e T
Qs = exp(iker})  exp(ikers)  exp(iker3) exp(ikersy)
g a A R N
exp(ikerd)  exp(ikerd!)  exp(ikerd) exp(ikerih,)
! ! ! iy 4 (mx3n)

(1.251)

The definition of 7/, is identical for Eqgs. (1.25k) and (1.25j); it is the distance between
the mth point source and nth target point.

This alternative method and matrix formulation, discussed here, for computing the
ultrasonic field in a homogeneous fluid was first proposed by Placko and Kundu
(2001); then it was extended to solve different ultrasonic problems by Placko et al.
(2001, 2002) and Lee et al. (2002). This technique has been named by the authors as
the distributed point source method or DPSM. The advantage of the DPSM technique
is not obvious for this simple case of homogeneous medium. However, it will be
evident later in this chapter when the ultrasonic field, in the presence of a finite
inclusion or scatterer, will be computed.

Note that the DPSM technique, discussed in this section, is a general technique and
is not restricted to the case of small value of rg (see Fig. 1.24).

For small value of rg Eq. (1.251) can be used; otherwise, Eq. (1.25g) will have to be
used. When Eq. (1.25g) is used, then Eq. (1.25j) is modified to

Pr = QpsNssVs

(1.25m)
V1 = MrsNss Vs

Example 1.3.1

Give the modified expressions for Vg (Eq. (1.25¢)) and Mg (Eq. (1.25¢)) for the case
when the triplet sources are replaced by single point sources, located at the centers of
the small spheres (see Figs. 1.23 and 1.24), and only the normal displacement
components (normal to the transducer surface) at the apex (or collocation points)
on the transducer surface are equated to the transducer surface velocity vg.

Solution

For N number of spheres distributed over the transducer surface, there will be N point
sources and N collocation points. Therefore, the velocity vector Vg of Eq. (1.15¢) will
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have N entries instead of 3N entries.
T
{Vs} = [V() Vo Vo o o....... VO](NXI) (125n)

The matrix Mgs of Eq. (1.25¢) will have a dimension of (N x N) instead of
(3N x 3N), because only the v3 component is to be matched. The final form of
Mgs is given below.

Mss =
[FOd,r) fOdasms) fOdasrd) fxdysrd) f(xé(zv—l)v r(lN—l)) F@yry) ]
FG3 ) [, r3) [, r3) [, ) f(x%(N—IV r(23N—1)) FOGy )
f(xglvr?) f(xgz’ r;) f(x;?ﬂrg) f(xgztv rZ) f(xg(]vq)a r?}vq)) -f(ngvr?V)
fOdr) f(5,r3) f(,13) £, 15) f(xg‘(N—l)’rEgN—l)) Fyry)
) A6 r) £ ) ) FO-1y ) ) |
(1.250)

where, from Eq. (1.25f)

f(xglm7r:ln) - . 2
iwp(ry,)

1l
m

i ke r!! 1
ix3m CXp(l f m) (lkf ) (125p)

Example 1.3.2

For a large number of point sources distributed along the transducer surface, as shown
in Figures 1.23 and 1.24, evaluate the source strength vector Ag using Eq. (1.25g) for
the Mg and Vg expressions given in Egs. (1.250) and (1.25n), respectively.

Solution

For a large number of distributed point sources, the radius of the individual
spheres becomes small (see Fig. 1.24). As the number of point sources approaches
infinity, the radius of individual spheres reduces to zero. Therefore, 7/, , the distance
between the mth point source and nth collocation point (or apex point), becomes zero
for m = n. In other words, when the source is at the center of a sphere and the
collocation point is at the apex of the same sphere, then the distance between the
source and the collocation point is reduced to zero, as the number of point sources
approaches infinity.
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Note that in Eq. (1.25p) , appears in the denominator. Therefore, for small values
of r! Eq. (1.25p) can be simplified in the following manner:

m

P x5, exp(ikery,) (ik _i) %xgmexp(ikfr:‘n) (_ 1) _ exp(iker)

T jop(r)? W iep(t? \ T iop(ry)’

m

Note that all spheres have the same radius r,, = rs = r; therefore, x3,, = r. Substitut-

ing it into the above expression and expanding the exponential term in its series
expansion,

_ X explkiry) 1 (1 + kel + )~ ——
iop(rm)’ iop(rn)’? " iwp(rt)’
(1.259)

fOGs 1) =

form = n, r, = r, = r.Substituting it into Eq. (1.25q), we get (no summation on m is
implied)
r N r 1

ia)p(r:n")3 a iwpr3 B impr?

FOg, )~ — (1.25r)

Substitution of Eqgs. (1.25q) and (1.25r) into Eq. (1.250) yields

H
S
S
N
(9%}
S
s
~—
(9%}
T
=t~
N
(98]

z‘~|\
N N——
w

Mgs = — 5 3 3 3
pr na I x
)G Z

Ju—
S
Yol
N
w
ot —_ ™
N~ —
N
\l‘
—_ wi
N———
(5]

S
TR

(98]
Sh|~

W
—
SNl
~_ .

w

—_

L

(NxN)

It should be noted here that for m # n, r), > r. Therefore, in the above matrix
expression, the off-diagonal terms are smaller than the diagonal terms. With an
increasing number of point sources as r approaches zero, all off-diagonal terms
vanish and the above matrix simplifies to

1 0 O 0
) 0 1 O 0
Mss = — 0 1 0

0 0 0 ... 1w
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Therefore, from Eq. (1.25g):

1 0 0 Vo 1
0 1 0 Vo 1
As = [Mss]71Vs = —ia)prz 0 1 0 Vo = —ia)pvor2 1
0o 0 O 1 Vo 1
(1.25s)

Example 1.3.3

Prove that the coefficients of Egs. (1.251) and (1.25s) are identical.

Solution

The total surface area from N hemispheres, associated with the N point sources, is
equated to the transducer surface area S. Therefore,

S =2nr? x N = 2aNr?

2
=P =—
TN

Substituting it into the coefficient of Eq. (1.25s) gives

iwovyS
2nN

—iwavor2 = —

1.3.2.3 Restrictions on rs for point source distribution It is evident from
Figure 1.24 that as the number of point sources used to model the transducer surface
is increased, ry is decreased. It is expected that with larger number of point sources,
the computation time and accuracy both should increase. The question is what
optimum number of point sources should produce reliable results? To answer this
question the following analysis is carried out:

For a very small transducer of surface area dS vibrating with a velocity of
amplitude v, in the x; direction, the pressure at point x (at a distance r from the
source at point y) can be computed from Eq. (1.16).

iwpvy exp(iker)

p(x) =

Using Eq. (1.20), the particle velocity in the radial direction can be computed from the
above pressure field.

Lo 1 (—iwpv0> (ikf exp(iker) exp(ikfr)>ds

d, 1.26
2n r S ( )

V= iop Or  iwp

2n r r?

voliker — 1 .
= f%exp(lkfr)dS (1.27)
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and the velocity in the x5 direction

Lop 1 opor i —1)

. X3 —)3
= = = ker)dS ——— 1.28
3 iwp Ox3  iwp Or Ox3 2nr? exp(ikir) r (1.28)

where x3 and y3 are the x3 coordinate values of points x and y, respectively.
If the point x is taken on the surface of the sphere of radius rg as shown in
Figure 1.24, then r = rs = x3 — y3, and v3 of Eq. (1.28) is simplified to

vo(ikers — 1) ~ j ' “
V3 = _Tr%exp(zkfrs)dS = vo(1 — ikers) (1 + ikers + O(K{rg)) 2nrg
ds
w1+ 5, (1.29)
s

The right-hand side of Eq. (1.29) should be equal to vy because the pressure computed
in Eq. (1.16) is obtained from the transducer surface velocity vy in the x5 direction.
Hence, the velocity at x when x is taken on the transducer surface should be equal to
vo. The right-hand side of Eq. (1.29) is vo when dS = 2nrg and k23 < 1. Therefore,
dS should be the surface area of a hemisphere of radius rs, and the second condition
implies the following:

o g <€ —1 (1.30)

where /¢ is the wavelength in the fluid. Eq. (1.30) is used to compute the number of
point sources in the following manner: Take a value of rg satisfying the condition
(1.30), then compute the number of point sources N from the transducer surface area S
from the relation

S

N=——
2nr§

(1.31)

Note that the spacing between two neighboring point sources is different from rg. If
the point sources are arranged uniformly at the vertex points of squares of side length
a, then each point source should be associated with an area of a’ of the flat transducer
face. This area is then equated to the hemispherical surface area of each point source
to obtain

2 _ 2
a® = 2nrg

1.31a
=a=rsV2n ( )
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Substituting Eq. (1.30) into the above equation we get

A
a=rsV2n K 2712—f
T (1.31b)

=a< =

V2n

1.3.3 Focused transducer in a homogeneous fluid

For a focused transducer, as shown in Figure 1.26, the ultrasonic field in the fluid can
be modeled by distributing the point sources along the curved transducer face. O’Neil
(1949) argued that for transducers with small curvature the Rayleigh—Sommerfield
integral representation (Eq. (1.16)) holds if the surface integral is carried out over the
curved surface. Therefore, the DPSM technique, discussed in Section 1.3.2.2, holds
good for the curved transducer face as well. In this case the point sources should be
distributed over a curved surface, instead of a flat surface.

The integral representation of the pressure field in the fluid for a focused transducer
should be the same as Eq. (1.16). This integral can be evaluated in closed form,
for computing the pressure variation on the central axis of the transducer; in other
words, for the on-axis pressure computation. The on-axis pressure field is given by
(Schmerr, 1998)

cv ¢
plxs) = % exp(ikexs) — exp(ikey/x3 + aZ)] _ %o [exp(ikexs) — exp(iker, )]

q0
(1.32)

where
X3
=1-= 1.33
q0 Ro ( )

Ry is the radius of curvature of the transducer face, r. is the distance of the point of
interest from the transducer edge.
At the geometric focus point, x3 = Ry, the pressure is given by (Schmerr, 1998)

p(Ro) = —ipcvokeh CXp(ikfR()) (134)

\ |

X3

S

h

Figure 1.26 Focused transducer —R is the radius of curvature of the transducer, a is its radius,
focal point is denoted as x.
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If, at x3 = z, the on-axis pressure is maximum, then z should satisfy the following
equation (Schmerr, 1998):

kid\ _ 2(0 +2) sin(ked/2)
COS( 2 ) (84 h)qokRo (1.35)
where

5:refZ:[(z—h)2+a2]%—z (1.35a)

1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence
of an interface

If the fluid, in front of the transducer, is not homogeneous but is made of two fluids
with an interface between the two, then the ultrasonic signal generated by the
transducer will go through reflection and transmission at the interface as shown in
Figure 1.27. In this case, the pressure field in fluid 1, at point P, can be computed by
adding the contributions of the direct incident ray (R;) and reflected ray. To compute
the pressure at point Q in fluid 2, the contribution of only the transmitted ray needs to
be considered. Acoustic wave speed and density of the two fluids are denoted by ¢y
and p; for fluid 1, and ¢f, and py, for fluid 2, as shown in Figure 1.27.

InFigure 1.27, point Cis either on the transducer surface for Rayleigh—Sommerfield
integral representation of the pressure field, or just behind the transducer surface (as
shown in Figure 1.24) for the DPSM modeling, discussed in Section 1.2.2.2. We are
interested in computing the acoustic pressure at point P in fluid 1 and at point Q in fluid
2. As shown in the figure, point P receives a direct ray (R;) from point C and a ray (R3)
reflected by the interface at point T. Point Q can only receive aray from point C afteritis
transmitted at the interface at point T. Position vectors of points C, T, P, and Q are
denoted by, z, X, and x, respectively, as shown in the figure. Because both points P and
Q are the points where the pressure field is to be computed, we use the same symbol x for
denoting the positions of these two points although those are not at the same location.

X1
C yO;, ¥2,53)

R,
X(x;, X5, X3) Interface 0

Fluid 1 Fluid 2
| Py | > Pp

X(x], Xy, -xj)

| p— |

Figure 1.27 Transducer in front of an interface between two fluids of different properties
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Now, the question is, when the coordinates (x1, x5, x3) and (yy, y», ¥3) are known,
then how to obtain the coordinates (z;, z,, z3) of T on the interface, where the ray is
reflected or transmitted to reach point P or Q. This question can be answered from
geometric considerations, as given below.

1.3.4.1 Pressure field computation in fluid 1 at point P Let vectors A and B
represent CT and TP, respectively, in Figure 1.27; then,

A= (z1 —y1)ei + (22 —y2)es + (z3 — y3)e3

(1.36)
B=(xi—z)ei+ (2 —2)ex + (x3 — 23)e3
Note that the magnitudes of vectors A and B are R, and Rj3, respectively.
1
Ry={(z1 =)+ (@2 = 32)* + (zs = 33)*} (137)
. .
Ry ={(x; — 21)2 + ( — Zz)2 + (x5 — 23)2}2
. i A s B
Unit vectors A = £ and B = -
Unit vector 72 normal to the interface is given by
0 ni
7= 1< 0 ». Note that for an inclined interface, n = ¢ n,
1 n3
From the problem geometry one can easily see that
AxA=nxB (1.38)
A-A=—-n-B (1.39)
Let
R a R b
A= an y B = b2 (140)
as b3

Substituting the above unit vector expressions in Eq. (1.38) one gets

ey e e3 ey e e3
det|{ny n, n3| =det|{n, n, nj
aq a az b] b2 b3

or in an alternate representation

0 —n3 np a 0 —n3 np b1
ns 0 —ny ay = ns 0 —ny b2
—ny n 0 as —ny n 0 b3
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or
0 -1 0 a 0o -1 0 b,
-1 0 0 a=|-1 0 0 b,
0O 0 O az 0 0 O b3
or
—ay —by
ap = b]
0 0
or
2= 22X
R, _ R;
a=—yi () _a—-xn (141)
Ry R3
Similarly from Eq. (1.39)
a bl
[}’ll ny }’l3] as = —[n1 ny n3] b2
as b3
or
a bl
[0 0 0]< aa p =—1[0 0 0]< by
as b3
or
3—)Y3 3—X3
=—-b —_— = 1.42
as 3 = R, R ( )
Solving the above equations
7= yi(s —23) —xi(zs — y3)
X3 = 223 103 (1.43)
~ valxs —z3) —xa(z3 —y3)
2=
X3 — 223+ y3

Note that if point C is on the x;x; plane, then y; = 0, and for fluid 1, x5 is between O
and z3; therefore, the denominator of Eq. (1.43) should never become zero. After
obtaining z; and z,, from Eq. (1.43), the lengths R, and R3 can be easily obtained from
Eq. (1.37). To evaluate R;, one does not need z; and z,. It is simply equal to

Ri={(x1 =)’ + (2 — y2)* + (13 — y3)p? (1.44)
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Then the pressure field at point P can be obtained from the following equation:

0PV, Jexp(ikle)

das
2n R, 2n

S S

iopgv, JR -exp{ike(R2 + R3)}

s (1.45)
R+ R

pr(x) =

In Eq. (1.45) the first integral corresponds to the wave path CP and the second integral
corresponds to the wave path CTP. Note that both these integrals are similar to the
expression given in Eq. (1.16); the only difference is that in the second integral
expression, the reflection coefficient R has been included because this wave reaches
point P after being reflected at the interface. The expression of the reflection
coefficient R is given in Eq. (1.208) of Kundu (2004).

poc2 c0s 01 — pcpy cos 0

poc2 08 01 + pcr cos 0

In this case, the incident angle is 0, transmitted angle is 0,, fluid densities are p; and
Py, and acoustic wave speeds in the two fluids are ¢; and cg,. Then, the transmitted
angle 0, can be expressed in terms of the incident angle 0 using Snell’s law (see
Eq. (1.204) of Kundu (2004)).

cpp sin 6 2 cr : Cr2 2)*
cosbr =1/1 —sin’ 6, = 1—<7> =<1- (—) +(—cos€)
cf Cf Ct

(1.46)
Therefore, R takes the following form:
> 2 3
PyCrr cos 0 — pcf{ 1-— %2 + CL;COSZ 9}
R— GG (1.47)
& & L,
Pocp2 cos 0 + pCf{ 1 — %2 + izzcos 0}
G G
In the above equation cos 0 can be obtained from the relation given below.
Dot product between the unit vectors 72 and A is given by
A= |f1||A| cos 0 = nia; + nyap + n3as
3= (1.48)

= cosf = n3az = az =
Ry

1.3.4.2 Pressure field computation in fluid 2 at point Q Let us define two vectors
A and C, where A = CT and C = TQ); then,

= (z1 —y1)er + (2 —y)ea + (z3 — y3)es

A
- (1.49)
C=(x — Zl)e_lJr (2 — Z2)€_2+ (3 — Z3)€_3
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Note that the magnitudes of vectors A and C are R, and Rj, respectively.

Ro={(m =)+ (@ — ) + (3 — )}

(1.50)
Ry = {(x; — 11)2 + ( — 22)2 + (x5 — Z3)2}i

Unit vectors A = 1’% and C = R£
2 3

Unit vector 72 normal to the interface is given by

0 n
7= < 0 ». Note that for an inclined interface, n = { ny
1 n3

From the problem geometry shown in Figure 1.27, the following equations are
obtained:

A -A=cosb
. (1.51)
|t x C| = sin 6,
#i-C=cosb,
Let
. ai R C1
A= ay ,C = C
as C3
From Egs. (1.51) and (1.49)
c3 =costh = x31; “
3
-3 (1.52)
a3 =cosf) = ———=
R,
and
er e e3] [0 —n3 m ¢l
n x C =det|n, n, n3| = n3 0 —ny ()]
C1 C2 C3_ _—I’l2 n 0 C3
0 -1 0 C1 —C2
= -1 0 0 C = C1
0 0 O c3 0

:>|ﬁxé|2:cf+c§:sin262 (1.53)
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or
2 2
sin g, = K1 a) + o —2) (1.54)
R3
Similarly,
2 2
i x AP =+ = =) I;(ZZ 2 Gng (1.55)
2
Because A, n, and C are located on the same plane
AxA=eégsinf
(1.56)

X C:éssinﬁz

>

where ég is the unit vector normal to the plane containing A, n, and C.
From Eq. (1.56) and Snell’s law (see Eq. (1.204) of Kundu(2004)) one can write

ﬁxA_ﬁxC

sin 0 sin 0,

N R (1.57)
nxA nxC
= =
Ct Cf2
or
—ap —C2
1 1
— a) = — C1
Ct 2
0 0
N Xz (1.58)
ctRy cpR3
= 22— = X2 —22
iRy cpR3
0 0

z1 and z, can be obtained from Eq. (1.58) by minimizing the following error function:

2 2

i —Y1 41 —X 2—=Y2 2—X
E=(——F—""+—¢—] +| ——+—— 1.59
( ciRy cnR3 ) ( ciRy cnR3 ) ( )

E can be minimized by some optimization technique such as simplex algorithm. In
MATLAB code, “fminsearch’ function can be used for this purpose. After evaluating
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71 and zp, the pressure at point Q can be obtained from the following equation:

p(x1,x2,X3) = _ 10peb J p explikiR + kpRs) | S

21 29 1.60
S Ry + 2Ryt Ry + R, S2E050 (1.60)
Ct Cf008202

The numerator of the above integrand is similar to that in Eq. (1.16), the only
difference is that in Eq. (1.60) the numerator has been multiplied by 7),, the transmis-
sion coefficient at the interface, and the argument of the exponential term has two
entries, corresponding to the ray paths CT and TQ. However, the denominator of
Eq. (1.60) is much more complex in comparison to the one given in Eq. (1.16).
Derivation of this denominator expression can be found in Schmerr (1998).

The transmission coefficient is given in Eq. (1.208) of Kundu(2004).

2ppyCp2 €08 0
Ty = cncos 6 -cos 0
PprCr2 cOS Uy + pece cos U

As mentioned above, in this case, the incident angle is 6, angle of transmission is 0,,
fluid densities are p; and py,, and acoustic wave speeds in the two fluids are ¢ and cy;.
Angle 0, can be expressed in terms of the incident angle 0 (see Eq. (1.46)); then, 7,
takes the following form,

T, - 2p¢y ¢t cOs 0

22 : 1.61
PrCra €08 0 + pfcf{l - C—fzz + %20052 0} (1.61)
G O

1.3.5 DPSM technique for ultrasonic field modeling
in nonhomogeneous fluid

The steps discussed in Section 1.2.4 are based on the Rayleigh—-Sommerfield integral
representation for the pressure field computation in fluids 1 and 2. In this section, an
alternative technique based on DPSM, developed by Placko and Kundu (2001) for
ultrasonic problems, is generalized to include the nonhomogeneous fluid case. In the
DPSM technique, the interface is replaced by a layer of equivalent point sources
instead of tracing the rays from the transducer face to the point of interest in fluid
media 1 or 2, as done in Section 1.3.4.

1.3.5.1 Field computation in fluid 1 The field in fluid 1 is computed by super-
imposing the contributions of the two layers of point sources distributed over the
transducer face and the interface, respectively, as shown in Figure 1.28. The two
layers of the sources are located at a small distance rs away from the transducer face
and interface, respectively, such that the apex of the spheres (of radius rg) touch the
transducer face or interface, as shown in the figure.
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Figure 1.28 Pointsources (at the center of small circles) for computing ultrasonic field in fluid 1

The strength of the point sources distributed along the transducer surface can be
obtained from Eq. (1.25g) or (1.251). For finding the strength of the point sources
attached to the interface, velocity components at the interface due to the reflected
waves at the interface are to be matched, as described below.

As shown in Figure 1.29, any point P in fluid 1 can receive only two rays, 1 and 2,
from a single point source on the transducer surface. Ray 1 is the direct ray reaching P,
and ray 2 arrives at P after being reflected at the interface. The total ultrasonic field at
point P can be obtained by superimposing the contributions of a number of point
sources (y,,) distributed over the transducer surface. The total field at P, generated
only by the reflected rays (ray number 2), from all the point sources on the transducer
surface should be the same as the total contributions of all point sources distributed
over the interface.

Let us take a point P at x,, on the interface. In Figure 1.29, the point P is shown very
close to the interface. Let us assume that this point is now moved to the interface. Let
there be N point sources (y,,,m = 1,2, ..., N) on the transducer surface and M points
(X,,n=1,2,...,M) on the interface where the boundary conditions should be
satisfied. If the boundary conditions are to be satisfied for the three components of
velocity at all M points, then there are a total of 3M boundary conditions. It should be
noted here that for nonviscous fluids, matching of the normal velocity component
only is sufficient. In that case, from M points M boundary conditions will be obtained.

X1

X3

Fluid1  x./ Fluid 2

'e—

Figure 1.29 Point P can receive two rays, 1 (direct ray) and 2 (reflected from the interface),
from a single point source yp,.
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Velocity components at M interface points due to ray 1 only (ignoring reflection)
can be easily obtained from the N triplet or elementary simple point sources in the
following manner (see Eq. (1.25j)):

Vi = MigAs (1.62)

where Vi is the (3M x 1) or (M x 1) vector of the velocity components at the target
points (x,) on the interface due to the incident beam only. Ag is the (3N x 1) or
(N x 1) vector of the point source strengths on the transducer surface. For the triplet
source, there are three point sources inside every small sphere. The following
formulation is given for triplet source only but can be easily modified to simple
elemental sources used for nonviscous fluids.

Because the normal velocity component (vg) at the transducer surface is known, Ag
can be obtained from Eq. (1.25g) or (1.251). M%S isthe (3M x 3N) matrix that relates
the two vectors Vi and As of Eq. (1.62). Note that the components of Mi are
identical to those for Mrg given in Eq. (1.25k).

In Eq. (1.62) and in subsequent equations, the superscripts and subscripts have the
following meanings:

Superscripts

i — direct incident ray
r — reflected ray
t — transmitted ray

Subscripts

S — ultrasonic source or transducer points
I - interface points

T — target points or observation points (these points can be placed anywhere—in
fluid 1, fluid 2, on the transducer surface, or on the interface).

For the reflected field computation at the interface, the velocity vector and the
source strength vector are computed in a similar manner.

VI = MicAs (1.63)

where V7 is the (3M x 1) vector of the three velocity components at the target points
(x,) on the interface due to the reflected beam only (ray 2 of Fig. 1.29). M is the
(3M x 3N) matrix that relates the two vectors Vi and Ag of Eq. (1.63). Note that
components of Mrq can be obtained by multiplying MiTS by appropriate reflection
coefficients for velocity fields.

Next we would like to obtain the same V7. vector from the 3M point sources
distributed along the interface. Within each sphere shown in Figure 1.29, three point
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sources or triplet (see Fig. 1.25) are placed; thus, from M spheres one gets 3M sources.
Note that the interface point sources are located around the centers of the small
spheres of Figure 1.29, and three sources of each triplet are placed parallel to the
interface. Points x,, are located on the surface of the small spheres. V7. at M points,
generated by the 3M sources at the interface, can be written as

Vi = M A (1.64)

where V7 is the (3M x 1) vector, same as in Eq. (1.63). Ay is the (3M x 1) vector of
the strength of interface sources; this vector is unknown. M, is the (3M x 3M)
matrix that relates the two vectors Vi and A; of Eq. (1.64). Note that the components
of MiTI are similar to those for Mgg given in Eq. (1.25¢) and Mg of Eq. (1.25k). The
two variables x7, and r;, for MiTI computation can be obtained after knowing the point
source coordinates z,,(m = 1,2, ...,3M) distributed along the interface, and coor-
dinates x,(n = 1,2,..., M) of the interface points.
From Eqgs. (1.63) and (1.64)

A= [MiTI]ilvrT = ([Mifl]ilMEFS)AS (1-65)

Eq. (1.65) gives the strength of the interface sources. After obtaining the interface
source strengths, the ultrasonic field at any set of target points x,(n = 1,2,...,Nr)
between the transducer face and interface can be obtained by adding the contributions
of the incident waves from the two layers of point sources at the transducer face and
interface as shown in Figure 1.28. In other words, the field at any point can be obtained
by adding the expressions given in Egs. (1.62) and (1.64).

Vi = Vi + Vi = MigAg + M A, (1.66)

The only difference between the two components of Eq. (1.66) and those in
Egs. (1.62) and (1.64) is in the definitions of xj”m and r) for MiTI and MiTS. In Egs.
(1.62) and (1.64), the target points are located on the interface, whereas in Eq. (1.66)
the target points are in between the transducer face and the interface. Therefore, the
values of xj, and r;, will change accordingly. As mentioned earlier r;, is the distance
between the mth point source and nth target point, x;, are the three components of 7;,..

1.3.5.1.1 Approximations in computing the field The approximation of the above
section in deriving Eq. (1.66) is that the presence of the interface does not affect the
source strength vector Ag. Note that Ag of Eq. (1.62) is computed from Eq. (1.25¢g) or
(1.251). With this assumption, the velocity vector computed on the transducer surface,
using Eq. (1.66), will give a different value than vy. If the interface is close to the
transducer surface, then the transducer surface velocity will be significantly different
from vg due to the interface effect.

To make sure that the velocity vector on the interface is equal to a constant value
(vp) in the x5 direction and zero in x; and x, directions, the following formulation is
followed.
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Similar to the previous section, it is again assumed that there are N triplet sources
on the transducer surface and M sources along the interface. The velocity vector on
the transducer surface, due to the point sources representing the transducer effect
only, can be obtained from Eq. (2.49).

Vi = Mi As (1.66a)

where VL is the (3N x 1) vector of the velocity components at the transducer surface.
Asisthe (3N x 1) vector of the point source strengths distributed over the transducer
face, and MiSS is the (3N x 3N) matrix, identical to the one given in Eq. (1.25e).

In the same manner, velocity components on the transducer surface due to the
interface sources are given by,

Vi = Mg A; (1.66b)

The above equation is obtained from Eq. (1.64), when the target points are placed on
the transducer surface. Here, Vg is a (3N x 1) vector of the velocity components at N
points on the transducer surface, A; is the (3M x 1) vector of the interface source
strengths, and MiSI is the (3N x 3M) matrix, similar to the one given in Eq. (1.25k).

Adding Egs. (1.66a) and (1.66b) the total velocity at the transducer surface is
obtained.

Vs = VL + VL = Mi A + ML A, (1.66¢)

Substituting Eq. (1.65) into Eq. (1.66¢):

Vs = MigAs + My A; = MigAs + My M| MiAs

‘ o (1.66d)
= Vs = [Mig + MMy, Mig]As
or
As = [Miss + MiSI[MiFI]ilM{FS}71VS (1.66e)
where
Vs=[0 0 vog 0 0 Vo ooerreee. 0 0 " (1.66f)

If Ag is computed from Eq. (1.66e) instead of Eq. (1.25g), then the constant velocity at
the transducer surface is guaranteed even when the interface is located very close to
the transducer surface.

1.3.5.2 Field in fluid 2 For ultrasonic field computation in fluid 2, only one layer
of point sources, adjacent to the interface, is considered as shown in Figure 1.30. The
total field at x should be the superposition of fields generated by all these point sources,
located at various distances from x, as shown by the dotted lines in Figure 1.30.
Strengths of these sources are obtained, as before, by equating the velocity compo-
nents computed by the point sources, distributed along the interface, to those obtained
from the transmitted wave contribution.
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X1

Fluid 1 Fluid 2

Figure1.30 One layer of point sources (at the center of small circles) for computing ultrasonic
field in fluid 2

Following similar analysis as outlined in section 2.5.1, strengths of the interface
point sources in this case can be obtained from the relation (see Eq. (1.65)).

A= [MiTl]ilvtT = ([Mil"l]ilMEFS)AS (1'67)

where Ap is the (3M x 1) vector of the interface source strengths, MiTI is the
(3M x 3M) matrix that relates the two vectors Vi and A, and Mg is the
(3M x 3N) matrix relating the velocity vector Vi at the interface points and Asg,
the source strength vector for point sources, distributed along the transducer face.

Note that in this case, the equations relating the interface velocity components to
the transducer source strengths and interface source strengths are similar to Eqs.
(1.63) and (1.64) and can be written as

Vi = MiAs (1.68)
Vi = M A (1.69)

After computing the interface source strengths using Eq. (1.67), the ultrasonic field at
any new target points X, (n =1,2,...,Nr) on the right side of the interface (or in
fluid 2) can be obtained from Eq. (1.69). While computing the field at new points,
appropriate changes in the values of xj, and r;, appearing in matrix MiTI should be
taken into account. As mentioned earlier, 7 is the distance between the mth point

>'m

source and nth target point, x7,, are the three components of ;.

1.3.6 Ultrasonic field in the presence of a scatterer

DPSM technique is then applied to model ultrasonic field near a scatterer of finite
dimensions for which no closed-form analytical solution exists. Problem geometry
showing the transducer and scatterer is given in Figure 1.31.

To compute the ultrasonic field in front of a scatterer (left of the scatterer), point
sources are distributed along the transducer face and the solid—fluid interface as well
as along the imaginary interface (extending the front face of the solid scatterer, shown
by the dotted line in Figure 1.31). Triplet sources are located around the centres of the
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. 7
x;  Solid Xn
scatterer

Figure1.31 A finite solid scatterer immersed in a fluid in front of a transducer face - two layers
of point source contribute to the ultrasonic field in between the transducer and the scatterer.

small spheres. Strength of the point sources on the transducer face is known from the
normal velocity component vy of the transducer surface (Eq. (1.25i) or (1.66e)).
However, strength of the point sources distributed along the real and imaginary
interface is not known. This is carried out in a manner similar to the one described
in Section 2.5.1. The only difference here is that in Eq. (1.63), Mg must be obtained
by multiplying MiTS by appropriate reflection coefficients. The technique to compute
the reflection coefficient for this case differs from the one given in Section 2.5.1. In the
previous case, the same expression of the reflection coefficient (Eq. (1.47)) was used
for all interface points x,,. However, for this problem geometry when the interface
points x,, are located on the scatterer surface, then the reflection coefficient for a solid
plate immersed in a fluid (see Section 1.2.17 of Kundu(2004)) should be used.
However, when the interface points x, are located on the dotted line, along the
imaginary interface between two identical fluids, then the reflection coefficient
should be zero. Except for this difference in the reflection coefficient definition, the
steps to compute the interface source strengths for these two problem geometries are
identical, and the source strength vector can be obtained from Eq. (1.65)

Ar= [Mj] Vi = (M) Mig)As

For computing the ultrasonic field behind the scatterer, or on the right side of the
dotted line, the point sources should be taken as shown in Figure 1.32. Note that now
some of the point sources are aligned with the right edge of the scatterer whereas the

Solid X
x; Soli s
scatterer

Fluid

Fluid g/
|z,
ym :

Figure 1.32 A finite solid scatterer immersed in a fluid in front of a transducer face - only the
right layer of point sources contribute to the ultrasonic field in the fluid on the right side of the
scatterer.

A3
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rest are aligned with the imaginary interface along the left edge, and marked by the
dotted line. Of course, for thin scatterer these two planes coincide.

Following similar steps as in Section 2.5.2, the strengths of the interface point
sources in this case can be obtained from Eq. (1.67),

A= [Mil"l]ilvﬁl“ = ([MiTl]ilMlTs)AS

where A is the (3M x 1) vector of the interface source strengths, M, is the (3M x
3M) matrix that relates the velocity vector VY at the interface points x,, to the interface
source strengths Ay, and My is the (3M x 3N) matrix that relates the velocity vector
VI at the interface points to the transducer source strength vector As.

Note that in this case, equations relating the interface velocity components to the
transducer source strengths and interface source strengths are similar to Eqs. (1.63)
and (1.64) and can be written as

Vi = MYAg
Vi = M A

After computing the interface source strengths using Eq. (2.54), the ultrasonic field at
any new target points x,(n = 1,2, ..., Nr) on the right side of the interface can be
obtained from Eq. (1.69). For computing the field at new points, appropriate changes
in the values of x7, and r;, appearing in matrix MiTI should be taken into account. As
mentioned earlier, 7/, is the distance between the mth point source and nth target point

n n
and xj, are the three components of r;,.

1.3.7 Numerical results

Sections 1.3.1-1.3.6 describe the theory of the ultrasonic field modeling by using the
DPSM technique in homogeneous and nonhomogeneous fluids. Based on this theory
the authors have developed a number of MATLAB computer codes to model the
ultrasonic fields generated by the ultrasonic transducers of finite dimension, which are
immersed in a fluid. In the simplest case, the transducer is immersed in a homo-
geneous fluid. More complex problem geometries involve two fluids with a plane
interface and a solid scatterer of finite size immersed in a homogeneous fluid. The
numerical results clearly show how the ultrasonic field decays as the distance from
the transducer increases and the field becomes more collimated as the size of the
transducer increases. It also shows that the field is reflected and transmitted at an
interface, and how a finite size scatterer can give rise to the reflection and transmission
as well as diffraction of the incident field.

1.3.7.1 Ultrasonic field in a homogeneous fluid In this example the ultrasonic
field in front of a flat circular, flat rectangular, and concave circular transducer faces
are generated. The transducer front face geometries are shown in Figure 1.33. The
area of the flat transducer face is 5.76 mm? for both circular and square transducers.
Note that a 2.7 mm diameter circular transducer gives an area of 5.76 mm?. A concave
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Figure 1.33 Distribution of the point sources just behind the front face (see Fig. 1.24) of a flat
circular (top left) and flat square (top right) transducer. Bottom figure - side view of the concave
front face of a transducer

transducer face has different dimensions; its diameter is 12.7 mm (0.5 in.) and its
radius of curvature is 8§ mm, as shown in Figure 1.33. All of the dimensions in the figure
are given in meter, but the scales are not necessarily the same in the horizontal
and vertical directions. These three transducers are denoted as circular, square, and
focused transducers. Note that the flat transducer face is located on the xy plane.
We would like to compute the ultrasonic field in front of the transducer face in
the xz plane or the yz plane. Both xz and yz planes are planes of symmetry and are
perpendicular to each other.

The ultrasonic pressure field variations along the xz and yz planes in front of the
transducer face are shown in Figure 1.34 for 5 MHz frequency of the transducers. The
top-left and top-right images of Figure 1.34 are for the circular and square transdu-
cers, respectively. Note that the field is less collimated for the square transducer. For
both transducer geometries the ultrasonic field has a number of peaks (or maxima) and
dips (or minima) along the central axis (z-axis) of the transducer near the transducer
face. The peaks and dips are a result of constructive and destructive interferences
between the fields generated by different point sources on the transducer face.

For the concave transducer the field intensity increases as we approach the focal
point. Note that the focal point is at a distance of 8 mm from the transducer face,
whereas the plot is shown for a distance varying from 3 to 6 mm.

It should be mentioned here that the focused transducer surface area is 21 times
that of the flat transducers. To maintain the same spacing between neighboring point
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Figure 1.34 Ultrasonic pressure fields generated by a circular (top left), a square (top right),
and a concave circular (bottom) transducer. Transducer face geometries are shown in Fig.1.33.
Transducer frequency is 1 MHz. The surface area of the flat transducers is 5 mm?. The concave
transducer has a radius of curvature of § mm, and the diameter of its periphery is 12.7 mm. The
number of point sources is 259 for the top-left figure, 256 for the top-right figure, and 6470 for
the bottom figure. The ultrasonic field is plotted up to an axial distance of 6 mm. Note that the
focal point for the concave transducer is at a distance of 8 mm, which is beyond the plotted
region.

sources (see Section 1.3.2.3), the number of point sources for the focused transducer
is made about 25 times that of the flat transducers. Thus, the number of point sources
for the focused transducer is 6470 whereas for the flat transducers the two numbers are
256 and 259, respectively.

Variations of the pressure field along the z-axis, in front of the transducer face, are
clearly shown in Figure 1.35. The top two figures of 1.35 are for the circular and
square transducers, and the bottom figure is for the focused transducer. The analytical
solutions (Eq. (1.16b) for the flat circular transducer and Eq. (1.32) for the focused
transducer) give results that are very close to the one obtained by the DPSM technique
(Eq. (1.25j)), see Figure 1.35. Three peaks between 0 and 4 mm along the z-axis in
Figure 1.35 correspond for both circular and square transducers to the three bright red
dots in Figure 1.34 along the central axis of the ultrasonic beam.

Example 1.3.4

Check if Eq. (1.30) is satisfied for the flat circular cylinder with 259 point sources for
1 MHz signal.
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Figure 1.35 Ultrasonic pressure fields generated by circular (left top), square (right top) and
focused (bottom) transducers. Thin dashed curves in top left and bottom figures have been
generated by the closed form expressions [Eq.(1.16b) for the flat circular transducer and
Eq.(1.32) for the focused transducer]. Continuous curves are obtained by the DPSM technique.

Solution

The area for each point source (Ag) is computed from the surface area of the
transducer face in the following manner:

7 _ 71.277

_ - _ _ 2
Ag = ; 759 0.01956 mm

Because Ag = 2nr§ (see Fig. 1.24 and also the discussion on Egs. (1.29) and (1.30)),

we can write,
0.01956
rs = {\/——=—— = 0.0558 mm
2n

From the wavelength (4¢), wave speed (cr), and frequency (f) relation, we get the
wavelength in water for 1 MHz frequency

Lo _Lsx10°
M=—=———=15mm
7 106
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Figure 1.36 Ultrasonic pressure fields in the xz plane are generated by circular (top left),
square (top right) and focused (bottom) transducers. The central axis of the transducer coincides
with the z-axis.

From Eq. (1.30),

1.5
rg < — mm
2n

= rs < 0.24 mm

Because rg = 0.0558 mm, the above condition is satisfied.

Pressure field variations in front of the transducer face along the xz plane for the
three transducer geometries of Figure 1.33 are shown in Figure 1.36. In this figure one
can clearly see how the pressure field oscillates near the transducer face and decays
laterally (in the positive and negative x directions) and axially (in the z direction) for
the flat transducers. For the focused transducer a clear peak can be observed near the
focal point. Contour plots for the pressure field variations in the xz plane for the same
three transducers are shown in Figure 1.37.

Figure 1.38 shows the effect of increasing the number of point sources. As more
sources are considered, the computed field becomes smoother. Because the oscillat-
ing velocity amplitudes at the transducer surface are different for the left and right
columns of Figure 1.38 and so are the scales along the vertical axes, the numerical
values in the two columns should not be compared. However, a comparison of the
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Figure 1.37 Contour plots for the ultrasonic pressure fields in the xz plane are generated by
circular (top left), square (top right) and focused (bottom) transducers. The same as Fig. 1.36
but contour plots are given here instead of surface plots.

relative variations of the pressure fields between the two columns clearly demon-
strates the effect of the increasing number of point sources on the computed pressure
field.

The effect of the presence of a small circular hole at the center of a 2.54 mm
(0.1 in.) diameter flat circular transducer is shown in Figure 1.39. The pressure field in
the xz plane (top-right plot of Fig. 1.39) is very similar to the one given in Figure 1.37
(top left). Therefore, a small hole at the center of a flat circular transducer does not
significantly affect the generated pressure field in the fluid. The bottom two plots of
Figure 1.39 show the pressure and normal velocity (V) variations in the xy plane, very
close to the transducer surface. It should be noted here that an oscillating pattern is
present in the pressure plot but not in the velocity plot. Theoretically, the velocity
component should be a constant and equal to vy on the transducer surface, see Eq.
(1.16) and (1.25¢). However, a small level of noise in the velocity plot exists due to the
numerical error.

1.3.7.2 Ultrasonic field in a nonhomogeneous fluid — DPSM technique The
pressure field generated by a circular transducer placed parallel to the interface of two
fluids is computed. As before, the transducer frequency is set at 1 MHz and its
diameter is 2.54 mm. The distance between the transducer face and the interface
between two fluids is 10 mm. The transducer is immersed in fluid 1 (P-wave
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Figure 1.38 Pressure variations in the xz plane (top row) and xy plane (bottom row), close
to the transducer surface for a rectangular transducer. Left (256 point sources) and right (1296
point sources) columns correspond to two different discretizations of the transducer surface.

speed = 1.49 km/s, density = 1 g/cc). The P-wave speed and density of fluid 2 are set
at 2 km/s and 1.5 g/cc, respectively.

One hundred point sources are used to model the transducer surface and four
hundred point sources (each point source is a triplet source) model the interface effect,
see Figures 1.28 and 1.29. Point sources distributed over the interface, which are also
called target sources, are distributed over a square area of 20 mm side length. Note
that the interface source positions change (see Figs. 1.29 and 1.30) when computing
the acoustic fields in fluids 1 and 2.

Pressure fields computed in the two fluids are plotted in Figure 1.40. Note how the
pressure variation in the xy plane is changed, as the distance of the observation (xy)
plane from the transducer surface is increased from zero (middle-left figure) to 10 mm
(bottom-left figure). Pressure variations in the xz plane in both fluids are shown as a
contour plot (top-right) and a surface plot (middle-right). Pressure along the z-axis is
plotted in the bottom-right figure. Oscillations in the acoustic pressure in fluid 1 are
the effects of constructive and destructive interferences between two rays that can
reach a point in fluid 1—the first ray travels from the transducer face to the point of
interest and the second ray reaches the same point after being reflected at the inter-
face, see Figure 1.27.

Pressure and velocity variations in the two fluids for an inclined transducer
(inclination angle = 20°) are shown in Figure 1.41. The fluid properties and the
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Figure 1.39 Top left - Circular transducer with a small hole at the center is modeled by 1040
point sources; top right - pressure field in the xz plane; bottom left - pressure field in the xy plane,
close to the transducer surface; bottom right - normal velocity component (V) in the xy plane,
close to the transducer surface.

transducer dimension are the same as those in Figures 1.40 and 1.41. The only
difference between the problem geometries of Figures 1.40 and 1.41 is that in
Figure 1.40 the transducer face is parallel to the interface and in Figure 1.41 it is
inclined.

From Snell’s law the transmission angle in the second fluid can be computed.

2
Op = sin”! (1.49 sin(ZO)) =27.33°

Incident and transmission angles, measured from the middle-left plot of Figure 1.41,
give values close to 20° and 27.33°, respectively. Note that the V, variation (bottom-
right) and the pressure variation (middle-right) in the two fluids are similar.

1.3.7.3 Ultrasonic fieldin anonhomogeneous fluid - surface integral method The
ultrasonic field in the nonhomogeneous fluid can also be computed by the conven-
tional surface integral technique instead of the DPSM technique. Unlike the DPSM
technique, in the surface integral method the fluid—fluid interface is not modeled by the
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Figure 1.40 Circular transducer in a non-homogeneous fluid. Top left: 2.54 mm diameter
transducer modeled by 100 point sources; middle left - acoustic pressure in the xy plane, close to
the transducer surface (z ~ 0 mm); bottom left - acoustic pressure in the xy plane in fluid 1 at the
interface position (z = 10 mm); top right - contour plot of the pressure variation in fluid 1 (z=0to
10 mm) and fluid 2 (z= 10 to 20 mm); middle right - surface plot of the pressure variation in fluid
1 (z=0to 10 mm) and fluid 2 (z= 10 to 20 mm); bottom right - pressure variation along the z-axis
in fluid 1 (z=0 to 10 mm) and fluid 2 (z = 10 to 20 mm).

distributed point sources. Here, only the transducer surface is discretized into the
distributed point sources. In this method, the pressure fields in fluids 1 and 2 are
computed by Eqgs. (1.45) and (1.60), respectively. The theory of this computation is
given in Section 2.4 whereas the theory of the DPSM computation is given in Section
2.5.Figure 1.42 shows the pressure field along the z-axis in fluids 1 and 2, computed by
the surface integral technique. A comparison of Figure 1.42 with the bottom-right plot
of Figure 1.40 shows a perfect matching between the results obtained by these two
methods.

1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer Following the
theory described in Section 1.3.6, a computer code has been developed to compute the
ultrasonic pressure field in the presence of a finite-size scatterer. This computer code
is used to solve the problem of ultrasonic field scattering by a finite-size steel plate,
immersed in water. The problem geometry is shown in Figure 1.43. A finite-size thin
steel plate (1 mm thick) is placed at the interface between the two fluids—fluid 1 and
fluid 2. The results are presented for the case in which both fluids are water. Scattered
fields are computed for a large plate (20 mm x 20 mm, shown by the dashed line in Fig
1.43), and for a small plate (5 mm X 5 mm shown by the solid line in Fig 1.43).
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Figure1.41 Top left: Inclined transducer face modeled with 100 point sources, angle between

the interface and the transducer face is 20°; top right - acoustic pressure in the xy plane in fluid 1
at the interface position (z = 10 mm); middle left - contour plot of the pressure field variation in
fluid 1 (z =1 to 10 mm) and fluid 2 (z = 10 to 20 mm); middle right - surface plot of the pressure
field variation in fluid 1 (z = 1 to 10 mm) and fluid 2 (z = 10 to 20 mm); bottom left - pressure
variation along the z-axis in fluid 1 (z=1 to 10 mm) and fluid 2 (z = 10 to 20 mm); bottom right -
surface plot of the velocity (V) variation in fluid 1 (z=1 to 10 mm) and fluid 2 (z = 10 to 20 mm).

The ultrasonic beam, generated by a 6.28 mm diameter cylindrical transducer,
strikes the plate at angles 6, =25° and 38.37°. Signal frequency is 1 MHz. The
ultrasonic fields for these two striking angles are computed and plotted in Figures 1.44
and 1.45, respectively (Placko et al., 2003). Material properties for this computation
are shown in Table 1.2.
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Figure 1.42 Pressure variation along the z-axis in fluid 1 (left figure) and fluid 2 (right figure).
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Figure 1.43 A bounded ultrasonic beam from an inclined transducer strikes a finite steel plate
immersed in water at an angle 0; (numerical results are provided for fluid 1 = fluid 2 = water).

The plate is placed at a distance of 10 mm from the transducer face. Thirty-two

point sources distributed slightly behind the transducer face, as shown in Figure 1.24,
model the transducer.

Note that in both Figures 1.44 and 1.45, scattered fields behind the steel plate are
much stronger for the small plate. For the large steel plate, very little acoustic energy
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Figure 1.44 Total ultrasonic pressure distributions (incident plus scattered fields) near a steel
plate scatterer, immersed in water. Left and right columns are for large (20 mm x 20 mm) and
small (5 mm x 5 mm) plates, respectively. Incident angle is 25°. In top and bottom rows, the
same pressure fields are plotted in two different ways.
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Figure 1.45 Same as Fig.1.44, but these plots are for 38.37° angle of incidence

is transmitted into the fluid, behind the plate, because of the large impedance
mismatch between the steel plate and the water. It should also be noted that in
addition to the transmitted field, the reflected field for the large plate is also relatively
weak. The weak specular reflection for the large plate is more evident in Figure 1.45.
Specular reflected beam means the reflected beam in the position predicted by the
optics theory. The probable cause for a weak specular reflection by the large plate is
that part of the ultrasonic energy generates leaky guided waves in the plate and
propagates away from the striking zone. Therefore, less energy is specularly reflected
by the larger plate. In Figure 1.46 we can see that for 38.37° incident angle, a guided
wave mode is generated; thus, less energy is specularly reflected for this incident
angle when the plate is large. This phenomenon of guided wave generation at the
fluid—solid interface is discussed in detail in chapter 4.

TABLE 1.2. Water and steel properties for the results presented
in Figures 1.44 and 1.45

Material and P-wave S-wave
Properties Speed (km/s) Speed (km/s) Density (g/cc)
Steel 5.96 3.26 7.93

‘Water 1.49 - 1
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Figure1.46 Dispersion curves for 1 mm thick steel plate (properties given in Table 1.2). Phase
velocities corresponding to the two striking angles of Figs.1.44 (25°) and 1.45 (38.37°) are
shown in the figure. Note that 38.37° incidence is capable of generating guided wave in the
plate.
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