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1.1. INTRODUCTION

Hyperspectral imaging has become a fast growing technique in remote sensing

image processing due to recent advances of hyperspectral imaging technology. It

makes use of as many as hundreds of contiguous spectral bands to expand the cap-

ability of multispectral sensors that use tens of discrete spectral bands. As a result,

with such high spectral resolution many subtle objects and materials can now be

uncovered and extracted by hyperspectral imaging sensors with very narrow diag-

nostic spectral bands for detection, discrimination, classification, identification,

recognition, and quantification. Many of its applications are yet to be explored. It

has been common sense to think of hyperspectral imaging as a natural extension of

multispectral imaging with band expansion. Accordingly, all techniques developed

for multispectral imagery are considered to be readily applicable to hyperspectral

imagery. Unfortunately, this intuitive interpretation may be somewhat misleading.

To understand the fundamental difference between multispectral and hyperspectral

images from a data processing perspective, we use a good example in mathematics

for illustration, which is the difference between real analysis and complex analysis

where the variables considered are real variables in real analysis as opposed to com-

plex variables in complex analysis. Since real variables can be considered as real

parts of complex variables, this may lead many to a belief that real analysis is a

special case of complex analysis, which is certainly not true. One piece of clear

evidence is derivatives. When a derivative is considered in real analysis, it has

only two directions along the real line: left limit and right limit. However, in

complex analysis, the direction of a derivative can be any curve in the complex

plane. As a result, only partial derivatives in complex analysis can be considered

as a natural extension of derivatives in real analysis. When a complex variable is
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differentiable in the complex plane, it is usually called total differentiable or ana-

lytic because it must satisfy the so-called Cauchy–Riemann equation. This simple

example provides a similar interpretation to explain the key difference between

multispectral and hyperspectral images. In the early days, multispectral imagery

was used in remote sensing mainly for land cover/use classification in agriculture

applications, disaster assessment and management, ecology, environmental moni-

toring, geology, geographical information system (GIS), and so on. In these cases,

low spectral resolution multispectral imagery may provide sufficient information

for data analysis, and the techniques developed for multispectral image processing

are primarily derived from the traditional two-dimensional spatial domain-based

image processing that takes advantage of spatial correlation to perform various

tasks. Compared to multispectral imagery, hyperspectral imagery utilizes hundreds

of spectral bands for data acquisition and collection with two prominent improve-

ments, very fine spectral resolution, and hundreds of spectral bands. It is these dif-

ferences that distinguish hyperspectral imagery from multispectral imagery in their

utility in many applications as demonstrated by the chapters presented in this book.

1.2. ISSUES OF MIXED PIXELS AND SUBPIXELS

Due to its low spectral resolution, a multispectral image pixel may not have infor-

mation that is as rich as that of a hyperspectral image pixel. In this case, it must rely

on its surrounding image pixels to provide spatial correlation and information to

help to make up insufficient spectral information provided by multiple discrete

spectral bands. Because of that, this may be one of main reasons that early devel-

opment of multsipectral image processing has been focused on spatial domain-

based techniques. The issues of subpixels and mixed pixels usually arise from

very high spectral resolution produced by hyperspectral imagery and have become

crucial but may not be critical to multispectral imagery. First of all, targets or

objects of interest are different. In multispectral imagery, land covers or patterns

are often of major interest. Therefore, the techniques developed for multispectral

image analysis generally perform pattern classification and recognition. As a com-

plete opposite, the objects of interest in hyperspectral imagery usually appear either

in a form mixed by a number of material substances or at subpixel level with targets

embedded in a single pixel due to their sizes smaller than the ground sampling dis-

tance (GSD). In both cases, these objects may not be identified a priori or by visual

inspection. Therefore, they are generally considered as insignificant targets but are

indeed of major interest from an intelligence or information point of view. More

specifically, in hyperspectral data exploitation the objects of particular interest

are those targets which have their small spatial presence and low probability exis-

tence in either form of a mixed pixel or a subpixel. Such targets may include special

spices in agriculture and ecology, toxic wastes in environmental monitoring, rare

minerals in geology, drug/smuggler trafficking in law enforcement, military vehi-

cles and landmines in battlefields, chemical/biological agents in bioterrorism, and

weapon concealment and mass graves in intelligence gathering. Under such circum-
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stances, they can only be detected at mixed or subpixel level, and the traditional

spatial domain (i.e., literal)-based image processing techniques may not be suitable

and may also not be effective even if they can be applied. So, a great challenge in

extraction of such targets is that these targets provide very limited spatial informa-

tion and are generally difficult to be visualized in data. Therefore, the techniques

developed for hyperspectral image analysis generally perform target-based detec-

tion, discrimination, classification, identification, recognition, and quantification as

opposed to pattern-based multispectral imaging techniques. Consequently, a direct

extension of multispectral imaging techniques to hyperspectral imagery may not

be applicable in hyperspectral data exploitation. In order to address this issue, an

approach directly from a hyperspectral imagery point of view is highly desirable

and may offer insights into design and development of hyperspectral imaging algo-

rithms because a single hyperspectral image pixel alone may already provide a

wealth of spectral information for data processing without appealing to its spatial

correlation with other sample pixels due to its limited spatial information.

1.3. PIGEON-HOLE PRINCIPLE

The advent of hyperspectral imagery has changed the way we think of multispectral

imagery because we now have hundreds of spectral bands available for our use.

Thus, one major issue is how to effectively use and take advantage of spectral infor-

mation provided by these hundreds spectral bands to perform target detection, dis-

crimination, classification and identification. This interesting issue can be addressed

by the following well-known pigeon-hole principle in discrete mathematics [1].

Suppose that there are 13 pigeons flying into a dozen pigeon holes (nests).

According to the pigeon-hole principle, there exists at least one pigeon hole that

must accommodate at least two pigeons. Now, assume that L is the total number of

spectral bands and p is the number of target classes to be classified. A hyperspectral

image pixel is actually an L-dimensional column vector. By virtue of the pigeon-hole

principle, we interpret a pigeon hole as a spectral band while a pigeon is considered

as a target (or an object) so that we can actually use a spectral band to detect, dis-

criminate, and classify a distinct target. With this interpretation, L spectral bands can

be used to classify L different targets. Since there are hundreds of spectral bands

available from hyperspectral imagery, technically speaking, hundreds of spectrally

distinct targets can be also classified and discriminated by these spectral bands. In

order to make this idea work, three issues need to be addressed. One is that the num-

ber of spectral bands must be greater than or equal to the number of targets to be

classified; that is, L � p, which always seems true for hyperspectral imagery, but

not valid for multispectral imagery, in which L < p, such as three-band SPOT

data that may have more than three target substances present in the data. Further-

more, the first issue also gives rise to a second issue that is a well-known curse of

dimensionality [2]—that is, to determine the value of p if L � p. This has been a

most difficult and challenging issue for any hyperspectral image analyst to resolve,

since it is nearly impossible to know the exact value of p in real-world problems and
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it may not be reliable even if the value of p is provided by prior knowledge. In multi-

variate data analysis, the value of p can be estimated by so-called intrinsic dimen-

sionality (ID) [3], which is defined as the minimum number of parameters used to

specify the data. However, this concept is only of theoretic interest, and no method

has been proposed for this purpose in the literature regarding how to find it. A com-

mon strategy is on a trial-and-error basis. A similar problem is also encountered in

passive array processing where the number of signal sources arriving at an array of

sensors is of major interest and a key issue. In order to estimate this number, two

criteria—an information criterion (AIC) suggested by Akaike and minimum descrip-

tion length developed by Schwarz and Rissanen [4]—have been shown successfully

in such estimation. Unfortunately, a key assumption made on these criteria is that

the noise must be independent identically distributed, which is usually not a valid

assumption in hyperspectral images as shown in Chang [5] and in Chang and Du

[6]. In order to cope with this dilemma, a new concept coined and suggested by

Chang [5], called virtual dimensionality (VD), was recently proposed to estimate

the number of spectrally distinct signatures in hyperspectral imagery. Its applications

to hyperspectral data exploitation such as linear spectral unmixing (Chapters 4–6

in this book), dimensionality reduction (Chapter 8 in this book), band selection

(Chapters 9 and 10 in this book), and so on, are also reported in Chang [7, 8]. Finally,

the third and last issue is that once a spectral band is being used to accommodate one

target, it cannot be used again to accommodate another distinct target. How do we

make sure that this will not happen? One way to do so is to perform orthogonal sub-

space projection (OSP) developed in Harsanyi and Chang [9] on the hyperspectral

imagery so that no two or more distinct targets will be accommodated by a single

spectral band. This implies that no two pigeons will be allowed to fly into a single

pigeon hole (nest) in terms of the pigeon-hole principle. Once these three issues—

that is, (1) L � p, (2) determination of p, and (3) no two distinct target signatures to

be accommodated by a single spectral band—are addressed, the idea of using the

pigeon-hole principle for hyperspectral data exploitation can be realized and

becomes feasible. Most importantly, it provides an alternative approach that uses

spectral bands as a means to perform detection, and discrimination, classification,

and identification without counting on spatial information or correlation. This is

particularly important for targets that are small or insignificant due to their limited

spatial presence and cannot be captured by spatial correlation or information. As a

result, hyperspectral imaging techniques developed from this aspect are generally

carried out on a pixel-by-pixel basis rather than on a spatial domain basis.

1.4. ORGANIZATION OF CHAPTERS IN THE BOOK

This book has 13 chapters contributed by researchers from various disciplinary

areas whose expertise is in hyperspectral data exploitation. Each of these chapters

addresses different problems caused by the above-mentioned issues. In particular,

these 13 chapters are organized into three categories, Part I: Tutorials, Part II:

Theory, and Part III: Applications.
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1.4.1. Part I: Tutorials

The tutorials part consists of two tutorial chapters that review some basics of hyper-

spectral data exploitation, hyperspectral imaging systems, and algorithm design

rationale for target detection and classification. Chapter 2 by Kerekes and Schott

offers an excellent introduction of hyperspectral imaging systems including two

popular airborne hyperspectral imagers, known as Airborne Visible/InfraRed

Imaging Spectrometer (AVIRIS) and Hyperspectral Digital Image Collection

Experiment (HYDICE), and a satellite-operated HYPERION. It is then followed

by Chapter 3 by Chang, which is a review of matched filter-based target detection

and classification algorithms.

1.4.2. Part II: Theory

The theory part is comprised of eight chapters that essentially address key issues in

data modeling and representation by various approaches: linear mixing model

(LMM) with deterministic endmembers (Chapter 4) and random endmembers

(Chapters 5 and 6), endmember extraction (Chapter 7), dimensionality reduction

(Chapter 8), band selection (Chapter 9), band partition (Chapter 10), and semisu-

pervised support vector machines (Chapter 11).

Chapter 4 by Bowles and Gillis describes an optical real-time adaptive spectral

identification system developed by the Naval Research Laboratory, known as ORA-

SIS, which is a collection of algorithms to perform a series of tasks in sequence, an

exemplar set selection, basis selection, endmember selection, and spectral unmixing.

While the endmembers considered in Chapter 4 for spectral unmixing are determinis-

tic, Chapter 5 by Eismann and Stein develops a stochastic mixing model (SMM) to

describe statistical representation of hyperspectral data where the endmembers used

in the model are considered as random vectors with probability density functions

described by finite Gaussian mixtures. As an alternative to the stochastic mixing

model discussed in Chapter 5, Chapter 6 by Nascimento and Dias presents Indepen-

dent Component Analysis (ICA) and Independent Factor Analysis (IFA) for spectral

unmixing where the abundance fractions of endmembers used in the linear mixing

model for the ICA/IFA are described by a mixture of Dirichlet densities as opposed

to a mixture of Gaussian densities assumed in the SMM in Chapter 5. Two common

and key issues shared by Chapters 4–6 are (1) finding an appropriate set of endmem-

bers to be used to form a linear mixing model and (2) performing data dimensionality

reduction to reduce computational complexity. To address the first issue, Chapter 7 by

Winter revisits his well-known endmember extraction algorithm, N-finder algorithm

(N-FINDR), and further develops a new improved version of the N-FINDR, called

maximum volume transform (MVT). Chapter 8 by Jia and Richards addresses

the second issue by investigating data representation of hyperspectral data to

cope with the so-called curse of dimensionality where feature extraction becomes

a powerful and effective means to resolve this issue, such as variance used by the

PCA, Fisher’s ratio, or Rayleigh quotient used by Fisher’s linear discriminant analysis

(FLDA). Another approach to address the issue of data dimensionality reduction is
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band selection. Chapter 9 by Shen develops an entropy-based genetic algorithm

to select optimal band sets for spectral imaging systems including five existing

multispectral imaging systems and further substantiates the utility of optimal band

selection in target detection and material identification. As an alternative to band

selection, Chapter 10 by Serpico et al. proposes an approach to band partition which

is based on feature extraction/selection for a specific classification application.

Finally, Chapter 11 by Bruzzone et al. improves a well-known supervised classifier,

support vector machines (SVMs), by introducing semisupervised SVMs for classifi-

cation of hyperspectral remote sensing images.

1.4.3. Part III: Applications

The applications part consists of three chapters that address various data exploita-

tion issues by different approaches using classification as an application. Chapter 12

by Benediktsson and co-workers proposes a generic framework to fuse decisions of

multiple classifiers for hyperspectral classification including morphology-based

classifier, neural network classifier, and SVMs. Chapter 13 by Plaza develops a

morphology-based classification approach and its potential in parallel computing.

Finally, this book concludes with one of the most important applications in hyper-

spectral data exploitation, namely, hyperspectral data compression. Chapter 14 by

Fowler and Rucker which overviews 3-D wavelet-based hyperspectral data com-

pression with classification as an application.

1.5. BRIEF DESCRIPTIONS OF CHAPTERS IN THE BOOK

In order to provide a quick glimpse of all the chapters presented in the book, this section

intends to help the reader walk through each of these chapters by briefly summarizing

their works and suggesting coherent connections among different chapters as follows.

Part I: Tutorials

Chapter 2. Hyperspectral Imaging Systems

John P. Kerekes and John R. Schott

Chester F. Carlson Center for Imaging Science

Rochester Institute of Technology, Rochester, NY, USA

This chapter offers an excellent overview of some currently used hyperspectral

imaging systems: JPL/NASA developed the 224-band Airborne Visible InfraRed

Imaging Spectrometer in 1987, Hughes/NRL developed the 210-band HYperspec-

tral Digital Image Collection Experiment (HYDICE) in 1994, and TRW/NASA

developed the 220-band HYPERION in 2000. In addition, two sensor models

are also introduced for simulation in development and application of sensor tech-

nology: (1) Digital Imaging and Remote Sensing Image Generation (DIRSIG)
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developed by the Rochester Institute of Technology (RIT) and (2) Forecasting

and Analysis of Spectroradiometric System Performance (FASSP) developed

by Massachusetts Institute of Technology (MIT) Lincoln Laboratory. This chapter

provides a good tutorial introduction of hyperspectral sensor design and technology

to researchers working in the hyperspectral imaging area.

Chapter 3. Information-Processed Matched Filters for Hyperspectral

Target Detection and Classification

Chein-I Chang

Remote Sensing Signal and Image Processing Laboratory

Department of Computer Science and Electrical Engineering

University of Maryland—Baltimore County, Baltimore, MD, USA

This chapter reviews hyperspectral target detection and classification algorithms

from a matched filter perspective. Since most such algorithms share the same

design principles of using a matched filter as a framework, this chapter presents

an information-processed matched-filter approach to unifying these algorithms. It

interprets a hyperspectral target detection and classification algorithm using two

sequential filter operations. The first filter operation is an information-processed fil-

ter that processes a priori or a posteriori target information to suppress unwanted

interference and noise effects. The follow-up second filter operation is a matched

filter that extracts targets of interest for detection and classification. Three well-

known specific techniques—Orthogonal Subspace Projection (OSP), Constrained

Energy Mimimization (CEM), and Reed–Yu’s RX-anomaly detection—are selected

for this interpretation, each of which represents a particular category of algorithms

that process a different level of information to enhance performance of the

follow-up matched filter. While the OSP requires a complete prior knowledge,

the RX-anomaly detection relies only on the a posteriori information provided

by data samples. The CEM is somewhere in between, which requires a priori infor-

mation of the desired targets used in the matched filter with a posteriori information

obtained from data samples to suppress interfering effects while performing target

extraction. The relationship among these three types of techniques shows how a

priori target knowledge is approximated by a posteriori information as well as

how a matched filter is affected by the information used in its matched signal.

Part II: Theory

Chapter 4. An Optical Real-Time Adaptive Spectral Identification

System (ORASIS)

Jeffery H. Bowles and David B. Gillis

Remote Sensing Division

Naval Research Laboratory, Washington, DC, USA
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This chapter presents a popular system, called the Optical Real-Time Adaptive

Spectral Identification System (ORASIS), developed by the authors with their

colleagues in the Naval Research Laboratory. It is a collection of a number of

algorithms that are designed to perform various tasks in sequence. In its first-stage

process, it develops a prescreener that finds an exemplar set and uses the found

exemplar set as a code book to encode all image spectral signatures. This is followed

by a second-stage process, which is basis selection that projects the exemplar set into a

low-dimensional space spanned by an appropriate set of bases. This process is similar

to dimensionality reduction that is commonly accomplished by the Principal Compo-

nents Analysis (PCA). With this reduced data space the third-stage process performs a

simplex-based endmember extraction to select a desired set of endmembers that are

used to form a linear mixing model for least-squares error-based spectral unmixing

that is carried out in the fourth and final state process to exploit three applications:

automatic target recognition, terrain categorization, and compression.

Chapter 5. Stochastic Mixture Modeling

Michael T. Eismann1 and David W. J. Stein2

1AFRL’s Sensors Directorate, Electro Optical Technology Division

Electro Optical Targeting Branch, Wright-Patterson AFB, OH, USA
2MIT Lincoln Laboratory, Lexington, MA, USA

This chapter develops a stochastic mixing model (SMM) to address limita-

tions of the commonly used linear mixture model (LMM) by capturing data

variation that cannot be well described by linear mixing. Unlike the LMM which

considers image endmembers as deterministic signatures, the SMM treats

image endmembers used in a linear mixture model as random signatures.

More specifically, a data sample is described by a linear mixture of a finite

set of random endmembers that can be modeled by mixtures of Gaussian distri-

butions. Two approaches are developed to estimate mixture density functions:

(1) discrete SMM, which imposes physical abundance constraints, and (2) nor-

mal composition model (NCM), which is a continuous version of the SMM with

no constraints imposed on abundance fractions. As a result, the NCM does not

make assumption of existence of pure pixels as does in the discrete SMM. In

order to estimate mixture density functions used to describe both models, the

well-known Expectation-Maximization (EM) algorithm is used for this purpose.

Interestingly, a similar approach using linear mixtures of random endmembers

can be also found in Chapter 6 where two models, mixtures of Gaussian distri-

vutions and mixtures of Dirichlet distributions are introduced as counterparts of

the discrete SMM and NCM dealing with the issue of presence of pure pixels in

the data. The readers are strongly recommended to read this chapter along with

Chapter 6 to have maximum benefits in gaining insights into linear mixtures of

random endmembers.
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Chapter 6. Unmixing Hyperspectral Data: Independent
and Dependent Component Analysis

Jose M. P. Nascimento1 and Jose M. B. Dias2

1Instituto Superior De Engenharia de Lisboa, Lisbon, Portugal
2Instituto de Telecomunicações, Lisbon, Portugal

This chapter presents approaches using independent component analysis (ICA)

and independent factor analysis (IFA) to unmix hyperspectral data, and it further

addresses issues of limitations on data independency and dependency due to con-

straints imposed on abundance fractions in the unmxing processing. The criterion

used for finding an unmixing matrix for the ICA and IFA is the minimization

of mutual information based on the calculation of a finite mixture of Gaussian dis-

tributions via the expectation–maximization (EM) algorithm to estimate mixture

density functions where the resulting unmixng matrix is generally far from the

true one if there are no pure pixels present in the data. In order to mitigate this

problem, it introduces a new blind separation source unmixing technique where

abundance fractions are modeled by mixtures of Dirichlet sources which enforce

two physical constraints, namely, non-negativity and sum-to-one abundance frac-

tion constraints. Once again, the EM algorithm is also used to estimate mixture

density functions. Interestingly, the work in this chapter follows a very similar

approach to the work in Chapter 5, where a data sample is also described by a finite

mixture of Gaussian random endmembers whose mixture density functions are esti-

mated by the EM algorithm. It will be very beneficial to the readers if both Chapter

5 and Chapter 6 are read together to gain their ideas developed for the models.

Chapter 7. Maximum Volume Transform for Endmember Spectra

Determination

Michael E. Winter

Hawaii Institute of Geophysics and Planetology

University of Hawaii, Honolulu, HI, USA

This chapter revisits the well-known endmember extraction algorithm, called

the N-finder algorithm (N-FINDR), which was developed by the author and

further presents a new development of the N-FINDR, called the N-FINDR-based

maximum volume transform (MVT). Endmember extraction has been a fundamen-

tal issue arising in hyperspectral data exploitations (as indicated in Chapters 4–6),

where endmembers form a base of a linear mixing model. The N-FINDR is

probably one of most widely used endmember extraction algorithms available

in the literature. The work presented in this chapter offers a good review of the

N-FINDR which should interest researchers working in automatic exploitation of

hyperspectral imagery.
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Chapter 8. Hyperspectral Data Representation

Xiuping. Jia1 and John A. Richards2

1Australian Defense Force Academy, Australia
2The Australia National University, Australia

This chapter investigates hyperspectral data representation to explore the issue

of the curse of dimensionality. In doing so, several selected supervised classification

methods including standard maximum likelihood classification (MLC) with its var-

iants—block-wise MLC, regularized MLC, and nonparametric weighted feature

extraction (NWFE)—are used to reduce data dimensionality. In order to conduct

a comparative analysis among these four algorithms, two sets of hyperspectral

image data, Hyperion data, and Purdue’s Indiana Indian Pine AVIRIS data are

used for performance evaluation.

Chapter 9. Optimal Band Selection and Utility Evaluation

for Spectral Systems

Sylvia S. Shen

The Aerospace Corporation, Chantilly, VA, USA

This chapter considers optimal band selection and utility evaluation for spectral

imaging systems. For a given number of bands, it develops an information theoretic

criterion-based genetic algorithm to find an optimal band set that yields the highest

possible material separability. One of interesting findings in this chapter is to use

612 adjusted spectra obtained from a combined data base to conduct a comparative

study of various optimal band sets with their respective five different existing spec-

tral imaging systems: Landsat-7 ETMþ, Multispectral Thermal Imager (MTI),

Advanced Land Imager (ALI), Daedalus AADS 1268, and M7. Additionally, in

order to assess utility of optimal band sets, two applications of anomaly detection

by spectral unmixing and material identification by spectral matching are investi-

gated for performance evaluation where two HYDICE data cubes are used for

experiments to perform qualitative and quantitative study. The results demonstrate

that a judicious selection of a band subset from original bands (e.g., as few as nine

bands) can perform very effectively in separating man-made objects from

natural background. This useful information provide insights into the development

and optimization of multiband spectral sensors and algorithms using an exploita-

tion-based optimal band selection to reduce data transmission and storage while

retaining features used for target detection and material identification.

Chapter 10. Feature Reduction for Classification Purpose

Sebastiano B. Serpico, Gabriele Moser, and Andrea F. Cattoni

Department of Biophysical and Electronic Engineering

University of Genoa, Genoa, Italy
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This chapter investigates approaches to feature extraction-based band partition

where four band partition algorithms, called sequential forward band partitioning

(SFBP), steepest ascent band partitioning (SABP), fast constrained band partition-

ing (FCBP), and convergent constrained band partitioning (CCBP), are developed

with the Jeffries–Matusita distance used as the criterion for band partition from a

classification point of view. It is interesting to compare the work in this chapter to

that in Chapter 9, where the former performs a classification-based band partition,

whereas the latter proposes a genetic algorithm-based band selection with its utility

substantiated by anomaly detection and material identification.

Chapter 11. Semisupervised Support Vector Machines for

Classification of Hyperspectral Remote Sensing Images

Lorenzo Bruzzone, Mingmin Chi, and Mattia Marconcini

Department of Information, and Communication Technology

University of Trento, Trento, Italy

This chapter presents an approach based on semisupervised support vector

machines (SVMs) which combine advantages of semisupervised classification

approaches with the advantages of distribution-free kernel-based methods based

on SVMs so as to achieve better classification. Two such semisupervised SVM tech-

niques are developed. One is a transductive SVM based on an iterative self-labeling

procedure implemented in the dual formulation of the optimization problem related

to the learning of the classifier. The other is a transductive SVM based on the clus-

ter assumption implemented in the primal formulation of the optimization problem

associated with the learning of the classification algorithm. A comparative analysis

between these two techniques along with a standard inductive SVM is conducted

by using a real hypersepctral data set for experiments. Experimental results demon-

strate that the proposed semisupervised support vector machines perform effectively

and increase the classification accuracy compared to standard inductive SVMs.

Part III: Applications

Chapter 12. Decision Fusion for Hyperspectral Classification

Mathieu Fauvel1,2, Jocelyn Chanussot1, and Jon Atli Benediktsson2

1 Laboratoire des Images et des Signaux, Saint Martin d’Heres, France
2 Department of Electrical and Computer Engineering

University of Iceland, Reykjavik, Iceland

This chapter presents a generic framework where the redundant or complemen-

tary results provided by multiple classifiers can actually be aggregated. Taking

advantage of the specificities of each classifier, the decision fusion thus increases

the overall classification performances. The proposed fusion approach is in two
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steps. In a first step, data are processed by each classifier separately and the algo-

rithms provide for each pixel membership degrees for the considered classes. Then

in a second step, a fuzzy decision rule is used to aggregate the results provided by

the algorithms according to the classifiers’ capabilities. The general framework pro-

posed for combining information from several individual classifiers in multiclass

classification is based on the definition of two measures of accuracy. The first

one is a pointwise measure that estimates for each pixel the reliability of the infor-

mation provided by each classifier. By modeling the output of a classifier as a fuzzy

set, this pointwise reliability is defined as the degree of uncertainty of the fuzzy set.

The second measure estimates the global accuracy of each classifier. It is defined

a priori by the user. Finally, the results are aggregated with an adaptive fuzzy fusion

ruled by these two accuracy measures. The method is illustrated by considering the

classification of hyperspectral remote sensing images from urban areas. It is tested

and validated with two classifiers on a ROSIS image from Pavia, Italy. The pro-

posed method improves the classification results when compared with the separate

use of the different classifiers.

Chapter 13. Morphological Hyperspectral Image Classification:

A Parallel Processing Perspective

Antonio J. Plaza

Computer Science Department

University of Extremadura, Caceres, Spain

This chapter provides a detailed overview of recently developed approaches

to morphological analysis of remotely sensed data. It first explores vector order-

ing strategies for the generalization of concepts from mathematical morphology

to multichannel image data and further develops new, physically meaningful

distance-based organization schemes to define morphological vector operations

by extension. The problem of ties resulting from partial vector ordering is also

addressed. Then, two new morphological algorithms for hyperspectral image

classification are developed, which are (1) a supervised mixed pixel classifica-

tion algorithm which integrates spatial and spectral information in simultaneous

fashion and (2) an unsupervised morphological watershed-based image segmen-

tation algorithm that first analyzes the data using spectral information and then

refines the result using spatial context. While such integrated spatial/spectral

approaches hold great promise in several applications, they also introduce new

processing challenges. Several applications exist, however, where having the

desired information calculated in (near) real time is highly desirable. For

that purpose, this chapter also develops efficient parallel implementations of

the morphological techniques addressed above. Three parallel computing

platform used in experiments is a massively parallel Beowulf cluster called

Thunderhead, made up of 256 processors and located at NASA’s Goddard Space

Flight Center in Maryland.
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Chapter 14. Three-Dimensional Wavelet-Based Compression of
Hyperspectral Imagery

James E. Fowler and Justin T. Rucker

Department of Electrical and Computer Engineering

GeoResources Institute

Mississippi State University, Mississippi State, MS USA

This chapter overviews 3D embedded wavelet-based algorithms with their

applications to hyperspectral data compression. Six JPEG2000-based compression

algorithms, (1) JPEG2000-band-independent fixed-rate (BIFR), (2) 2D JPEG2000-

band-independent fixed-rate (BIFR), (3) JPEG2000-band-independent rate alloca-

tion (BIRA), (4) 2D JPEG2000-band-independent rate allocation (BIRA),

(5) JPEG2000 multicomponent (JPEG2000-MC), (6) 2D JPEG2000 multicompo-

nent (JPEG2000-MC), are studied for compression of hyperspectral image data.

It is well known that the commonly used compression criteria mean-squared error

(MSE) and signal-to-noise ratio (SNR) are not appropriate measures to evaluate

hyperspectral data compression. In order to address this issue, this chapter intro-

duces an application specific measure, called preservation of classification

(POC), as a compression criterion where an unsupervised classifier, ISODATA, is

used for evaluation of classification performance. Three hyperspectral AVIRIS

data—Moffett, Jasper Ridge, and Cuprite—are then used to conduct a comparative

analysis among the six considered compression algorithms using three different

compression criteria, MSE, SNR, and POC. The experimental results have demon-

started that JPEG2000 can always benefit from a 1D spectral wavelet transform.

Finally, in order to provide a guide for what topics and techniques are discussed

in each of the chapters, Table 1.1 summarizes the major tasks accomplished in each

of chapters with acronyms defined as follows for reference. However, it should be

noted that since Chapter 2 is completely devoted to design and development of

hyperspectral imaging systems, it is not included in Table 1.1.

ACRONYMS

DR Dimensionality reduction

EM Expectation–maximization algorithm

FE Feature extraction

GA Genetic algorithm

ICA Independent component analysis

IFA Independent factor analysis

LMM Linear–mixing model

LSE Least–squares error

MNF Maximum noise fraction

MLE Maximum likelihood estimation
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NCM Normal composition model

NN Neural network

NWFE Nonparametric weighted feature extraction

OSP Orthogonal subspace projection

PCA Principal components analysis

SMM Stochastic mixing model

SVM Support vector machine

Additionally, Table 1.2 also provides information about the types of image data

that are used in Chapters 2–14, where a check symbol ‘‘
p

’’ indicates that an image

scene is not specified in a particular chapter.

1.6. CONCLUSIONS

Hyperspectral imaging offers an effective means of detecting, discriminating,

classifying, quantifying, and identifying targets via their spectral characteristics

captured by high spectral-resolution sensors without accounting for their spatial

information. The processing techniques that only make use of spectral properties

TABLE 1.1. Techniques Used to Perform Various Functionalities in Chapters

Data Model and Endmember Spectral

Chapters Representation Extraction Unmixing Applications

Chapter 3 OSP-DR, LMM OSP Detection,

classification

Chapter 4 Basis-DR, LMM Simplex LSE Detection,

classification,

compression

Chapter 5 PCA-DR, N-FINDR MLE

SMM/NCM

Chapter 6 PCA-DR, LMM Mutual ICA/IFA

information

Chapter 7 MNF-DR N-FINDR

Chapter 8 FE-DR MLE Classification

Chapter 9 GA-based Unspecified Spectral matching,

Band selection detection,

identification

Chapter 10 Band partition SVM/classification

Chapter 11 SVM/classification

Chapter 12 Morphology-NN

SVM/classification

Chapter 13 PCA/MNF-DR Morphology

classification

Chapter 14 3D wavelet ISODATA/

compression classification
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without taking into account spatial information are generally referred to as

nonliteral (spectral) processing techniques as opposed to literal techniques referred

to as traditional spatial domain-based image processing techniques. Over the past

years, significant research efforts have been devoted to design and development of

such nonliteral processing techniques with applications in hypespectral data exploi-

tation. Many results have been published in various journals and presented in dif-

ferent conference meetings. Despite the fact that several books have recently been

published [5,10–13], the subjects covered in these books are somewhat selective.

The chapters presented in this book provide the most recent advances of many tech-

niques which are not available in these books. In particular, it addresses many

important key issues that should serve as a nice guide for researchers who are inter-

ested in exploitation of hyperspectral data.
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