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Figure I.1. Naturally birefringent uniaxial lithium niobate crystal view under converging

white light between crossed polarizers with its c-axis (optical axis) laying perpendicular to

the plane (upper) and on the plane (lower).
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INTRODUCTION

Photorefractive crystals are electro-optic and photoconductive materials. An electric

field applied to an electro-optic material produces changes in its refractive index, a

phenomenon also called Pockel’s effect. On the other hand, photoconductivity means

that light of adequate wavelength is able to produce electric charge carriers that are

free to move by diffusion and also by drift under the action of an electric field.

In the case of photorefractive materials the light excites charge carriers from

localized states (photoactive centers) in the forbidden band gap to extended states

(conduction or valence bands) where they move, are retrapped and excited again,

and so on. During this process the charge carriers progressively accumulate in the

darker regions of the sample. In this way, charges of one sign accumulate in the

darker regions while leaving charges of the opposite sign in the brighter regions.

This spatial modulation of charges produces an associated space-charge electric

field. The combination of both effects gives rise to the so-called photorefractive

effect: The light produces a photoconduction-based electric field spatial modulation

that in turn produces an index of refraction modulation via the electro-optic effect.

This change can be reversed by the action of light or by relaxation even in the dark.

The action of light on a photosensitive material may produce changes in the

electrical polarizability of the molecules, and by this means a change in the complex

index of refraction will result. This change may be sensible or not depending on the

wavelength spectral range analyzed. The imaginary part of the index (the extinction

coefficient, related to absorption) or the real part (the so-called ‘‘index of refraction’’

itself) may be more affected when observed in a certain wavelength spectral range.

This is the case of dyes, some silver salts, chalcogenic glasses, photoresists, and

other materials. When sensible changes occur in the real part of the complex index of

refraction, these materials are also called ‘‘photorefractives’’ because they actually

show changes in the real refractive index under the action of light. These changes

can be reversible or not. What is the essential difference between these processes and

those we have mentioned before and we are dealing with in this book? The

difference is that the latter always involve the establishment of a space-charge

electric field and the production of index of refraction changes via the electro-optic

(or Pockels) effect. We should therefore rather call them ‘‘photo-electro-refractive’’

materials instead of just using the ‘‘photorefractive’’ label. However, the latter

generic name is so widespread nowadays in the scientific literature that it would be

hard to change it now. In this book we shall therefore use the term ‘‘photorefractive’’

only, but the reader should be aware that materials of different nature are usually

referred to under this same label.

Chapter 1 contains a review of the electro-optic effect including a little bit of

tensorial analysis. The effect of an applied electric field over the index ellipsoid of

some usual electro-optic crystals is analyzed so that the reader may become familiar

with these procedures. We hope these examples will enable the reader to properly

handle different materials and optical configurations. Chapter 2 deals with

photoconductivity and light-induced absorption and their relation with the localized

states (photoactive centers) in the forbidden band.
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CHAPTER 1

ELECTRO-OPTIC EFFECT

The electro-optic effect and photoconductivity are the fundamental phenomena

underlying the photorefractive effect. Most photorefractive crystals are anisotropic

(their properties are different along different directions), and even those that are not

become anisotropic under the action of an externally applied electric field.

Therefore, we shall start with a review of light propagation in anisotropic media.

These materials usually exhibit a piezoelectric effect, too [Yariv, 1985, Shepelevich

et al., 1990, Stepanov et al., 1998] but, for the sake of simplicity, we shall not

consider it here.

The electro-optic effect in photorefractive materials is of the highest importance

because it is at the origin of the ‘‘imaging’’ of a space-charge field modulation into

an index of refraction modulation. In fact, the buildup of a holographic grating in

photorefractive materials consists of the spatial modulation of the index of refraction

in the volume of the sample. In these materials such a modulation arises from the

buildup of a modulated space-charge field that in turn modulates the index of

refraction via the electro-optic effect.

1.1 LIGHT PROPAGATION IN CRYSTALS

Crystals are in general anisotropic, that is to say, they have different properties for

the light propagating along different directions.
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1.1.1 Wave Propagation in Anisotropic Media

Let us start with the general vectorial relations

~D ¼ e0
~E þ~P ð1:1Þ

~P ¼ e0ŵ~E ð1:2Þ

where e0 ¼ 8:82� 10�12 coul/(mV) is the permittivity of vacuum. The quantities~P,
~E, and ~D are the polarization, electric field, and displacement fields, respectively,

with ŵ (polarizability) being a tensor that, for isotropic media only, can be written as

a scalar, thus simplifying the relation in Equation (1.2)

~P ¼ e0w~E ð1:3Þ

The relation in Equation (1.2) can also be written as

P1

P2

P3

2
4

3
5 ¼ e0

w11 w12 w13

w21 w22 w23

w31 w32 w33

2
4

3
5 E1

E2

E3

2
4

3
5 ð1:4Þ

and also

~D ¼ e0ð1̂þ ŵÞ~E ð1:5Þ

where 1̂ and ŵ are tensors that are written as:

1̂ ¼
1 0 0

0 1 0

0 0 1

2
4

3
5 ŵ ¼

w11 w12 w13

w21 w22 w23

w31 w32 w33

2
4

3
5 ð1:6Þ

Let us recall that there is always a set of coordinate axes, called ‘‘principal axes,’’

where ŵ assumes a diagonal form

ŵ ¼
w11 0 0

0 w22 0

0 0 w33

2
4

3
5 ð1:7Þ

1.1.2 General Wave Equation

The equation describing the electromagnetic wave, in nonmagnetic and noncharged

media, can be deduced from the Maxwell’s equations

r�~E ¼ �m0

@~H

@t
ð1:8Þ

r � ~H ¼ e0

@~E

@t
þ @

~P

@t
þ~J with ~J ¼ s~E ð1:9Þ

r �~E ¼ � 1

e0

r �~P ð1:10Þ

r � ~H ¼ 0 ð1:11Þ
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In a system of principal coordinate axes it is

P1 ¼ e0 w11 E1

P2 ¼ e0 w22 E2

P3 ¼ e0 w33 E3

D1 ¼ e11 E1

D2 ¼ e22 E2

D3 ¼ e33 E3

e11 ¼ e0 ð1þ w11Þ
e22 ¼ e0 ð1þ w22Þ
e33 ¼ e0 ð1þ w33Þ

ð1:12Þ

1.1.3 Index Ellipsoid

We shall write the expressions for the electric we and magnetic wm energy densities

in electromagnetic waves as [Born and Wolf, 1975]

we ¼
1

2
~E � ~D ¼ 1

2

X
kl

EkEklEl wm ¼
1

2
~B � ~H ¼ 1

2
mH2 ð1:13Þ

and write the Poynting formulation for the energy flux as

~S ¼ ~E � ~H ð1:14Þ

After adequate substitutions and transformations taking into account Maxwell’s

equations we get, for the principal coordinate axes,

D2
x

Ex

þ
D2

y

Ey

þ
D2

z

Ez

¼ 8e0pwe ¼ constant

Ex 	 E11 ¼ 1þ w11

Ey 	 E22 ¼ 1þ w22

Ez 	 E33 ¼ 1þ w33

ð1:15Þ

Following the definitions

x ¼ Dxffiffiffiffiffiffiffiffiffi
wee0
p

y ¼ Dyffiffiffiffiffiffiffiffiffi
wee0
p

z ¼ Dzffiffiffiffiffiffiffiffiffi
wee0
p

with

n2
x ¼ Ex ¼ ex=e0

n2
y ¼ Ey ¼ ey=e0

n2
z ¼ Ez ¼ ez=e0

we get the indicatrix formulation

x2

n2
x

þ y2

n2
y

þ z2

n2
z

¼ 1 ð1:16Þ

where nx, ny and nz are the index of refraction along coordinates x, y, and z,

respectively, as represented in Figure 1.1. To use this ellipsoid to analyze the
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propagation of a plane wave with propagation vector~k we just intersect the indicatrix

with a plane orthogonal to the vector ~k. An elliptic figure results where the

extraordinary ne and ordinary n0 indexes, for this wave, are found from the

intersection with the corresponding direction of vibration of the electric field as

shown in Figure 1.2. In Section 1.2 we shall analyze Equation (1.16) in a more

general form.

y
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x

nz
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nx

Figure 1.1. Refractive index ellipsoid.
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Figure 1.2. Refractive indices for a plane wave propagating in an anisotropic medium.
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1.2 TENSORIAL ANALYSIS

Let us write the general equation [Nye, 1979]

Xi¼N;j¼N

i¼1;j¼1

Sijxixj ¼ 1 or Si;jxixj ¼ 1 ð1:17Þ

where xi and xj are variables and Sij are coefficients. If we assume that Sij ¼ Sji, then

Equation (1.17) turns into the general ellipsoid representation:

S11x2
1 þ S22x2

2 þ S33x2
3 þ 2S12x1x2 þ 2S13x1x3 þ 2S23x2x3 ¼ 1 ð1:18Þ

Equation (1.18) can be transformed into new coordinate axes x0i, by using the axes

rotation transformation matrix, as follows

x01 ¼ a11x1 þ a12x2 þ a13x3

x02 ¼ a21x1 þ a22x2 þ a23x3

x03 ¼ a31x1 þ a32x2 þ a33x3

ð1:19Þ

which can be written in a matricial form

x01
x02
x03

2
4

3
5 ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 x1

x2

x3

2
4

3
5 ð1:20Þ

From the matricial relation above we should deduce that it is also

x1

x2

x3

2
4

3
5 ¼

a11 a21 a31

a12 a22 a32

a13 a23 a33

2
4

3
5 x01

x02
x03

2
4

3
5 ð1:21Þ

The relation above can be written in the form

xi ¼ akix
0
k xj ¼ aljx

0
l ð1:22Þ

which substituted into Equation (1.18) leads to

Sijxixj ¼ Sijakialjx
0
kx0l ¼ S0klx

0
kx0l ð1:23Þ

where S0kl are the coefficients in the new coordinate system. An ellipsoid can be used

to describe any symmetric tensor (Sij ¼ Sji) of second order and is specially useful to

decribe any property in a crystal that should be represented by a tensor. An important
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property of an ellipsoid is the presence of ‘‘principal axes’’ in which case

Equation (1.18) can be simplified to

S11x2
1 þ S22x2

2 þ S33x2
3 ¼ 1 ) Sij ¼

S11 0 0

0 S22 0

0 0 S33

2
4

3
5 ð1:24Þ

1.3 ELECTRO-OPTIC EFFECT

The indicatrix in Equation (1.16) is an ellipsoid in a principal coordinate axes

system. Its general formulation is [Nye, 1979]

Bijxixj ¼ 1 with Bij ¼
1

Eij

ð1:25Þ

The slight variation in the refractive index produced by an electric field can be

described by the third-order electro-optic tensor rijk (in the range of 10�12 m=V for

most materials) through the relation

�Bij ¼ rijkEk ð1:26Þ
from Bij ¼ Bji ) rijk ¼ rjik ð1:27Þ

The B tensor can be written as

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
64

3
75 ¼

B1 B6 B5

B6 B2 B4

B5 B4 B3

2
64

3
75 ð1:28Þ

ð1:29Þ

The electro-optic relation is therefore simplified to

�Bi ¼ rijEj ði ¼ 1; 2; 3; 4; 5; 6; j ¼ 1; 2; 3Þ ð1:30Þ

or explicitly written as

�B1

�B2

�B3

. . .

�B6

2
666664

3
777775
¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

. . . . . . . . .

r61 r62 r63

2
666664

3
777775

�E1

�E2

�E3

2
4

3
5 ð1:31Þ
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Let us assume that an electric field is applied, with components E1;E2;E3 as shown

in Figure 1.3 so that Equation (1.25) turns into:

ðB1 þ r11E1 þ r12E2 þ r13E3Þx2
1 þ ðB2 þ r21E1 þ r22E2 þ r23E3Þx2

2

þ ðB3 þ r31E1 þ r32E2 þ r33E3Þx2
3 þ ðB4 þ 2r41E1 þ 2r42E2 þ 2r43E3Þx2x3

þ ðB5 þ 2r51E1 þ 2r52E2 þ 2r53E3Þx1x3

þ ðB6 þ 2r61E1 þ 2r62E2 þ 2r63E3Þx1x2 ¼ 1 ð1:32Þ

We are interested in the slow index of refraction buildup produced by the slow

accumulation of electric charges. Therefore all the electro-optic coefficients referred

to in this chapter are the low-frequency ones only. In the following sections we shall

see what Equation (1.32) looks like for some particular materials.

1.3.1 Sillenite-Type Crystal

The well-known crystals of this family are: Bi12GeO20 (BGO), Bi12SiO20 (BSO),

and Bi12TiO20 (BTO). They belong to the cubic noncentrosymmetric crystal point

class 23 and are piezo-electric, electro-, and elasto-optic and optically active.

BTO is the crystal having the lowest optical activity (optical activity is

undesirable for most applications) but is also the most difficult to grow because the

chemical composition of the melt and the crystal are different—noncongruent.

These crystals are usually grown using the so-called ‘‘top seed solution growth’’

(TSSG) that can be considered a modification of the Czochralski technique.

Growing is more easily carried out along the [001]-crystal axis, and during

growing there are frequently variations in the growing rate that produce the

characteristic striations along the growing direction as shown in the picture in

Figure 1.4. The latter result in small variations in the crystal composition and

associated index of refraction changes as well. To avoid this index of refraction

modulation being too visible through the polished (110)-face (the usual

configuration employed for holographic recording) the latter should be cut slanted

to these striations as illustrated in Figure 1.5. The axes in the sample are

y

z

(110)

(001)

E3

E2

E1

X3
X2

X1

x

Figure 1.3. Crystallographic axes of a sillenite and an applied 3D electric field.
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Figure 1.4. Raw Bi12TiO20 boule grown by TSSG technique. The crystal was grown along

the [001]-axis and the striations are clearly perpendicular to this axis.

(011)

(110)

[001]

[001]

[100]

Figure 1.5. From raw Bi12TiO20 boule to ready-to-use crystal sample. Schematic

representation of a raw crystal boule with its striations, indicating the way it will be sliced

(top left); already sliced crystal with striations not perpendicular to the (011)-face (top right);

ready-to-use crystal with renamed axes (bottom).
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conveniently renamed, accounting on its cubic and isotropic nature in which case

the axes [001], [010], and [100], for example, can be interchanged. In the slanted-

sliced sample in Figure 1.5, the striations are not visible through the polished

(110)-face. Figure 1.6 shows actual crystal samples.

Figure 1.6. Undoped sillenite crystals. Bi12SiO20 crystal with (110)-surface cut and polished

(center), raw Bi12TiO20 crystal boule grown along [001]-axis and showing striations on the

lateral surfaces with both opposite (001)-faces cut and polished (left) and Bi12TiO20 crystal

with (110)-face cut and polished, longer direction along [001]-axis (right).

2.70

2.65

2.60

2.55

2.50
450 500 550 600 650 700

n

λ (nm)

Figure 1.7. Index of refraction of BTO which is formulated by n ¼ 0:00863=l4þ
0:0199=l2 þ 2:46 [Riehemann et al., 1997].
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The electro-optic tensor of this crystal family in the principal axes coordinates

[X1;X2;X3] has the following elements [Grousson et al., 1984]:

r41 ¼ r52 ¼ r63 
 5� 10�12 m=V ð1:33Þ

all other elements being zero.

In the absence of electric field (E ¼ 0) the ellipsoid is

x2
1 þ x2

2 þ x2
3

n2
0

¼ 1 ð1:34Þ

showing that we are dealing with an isotropic crystal. Applying an electric field

along direction ‘‘x’’ as indicated in Figure 1.8, we have the field components:

E1 ¼ E2 ¼ E

ffiffiffi
2
p

2
E3 ¼ 0 ð1:35Þ

so that the index ellipsoid is modified to:

x2
1

n2
0

þ x2
2

n2
0

þ x2
3

n2
0

þ 2r41E1x2x3 þ 2r52E2x1x3 ¼ 1 ð1:36Þ

or

x2
1

n2
0

þ x2
2

n2
0

þ x2
3

n2
0

þ 2r41E

ffiffiffi
2
p

2
ðx2x3 þ x1x3Þ ¼ 1 ð1:37Þ

Let us now rotate the system from coordinates X1;X2;X3 to coordinates X; Y ; Z

x ¼ ðx1 þ x2Þ
ffiffiffi
2
p

2
ð1:38Þ

y ¼ ðx2 � x1Þ
ffiffiffi
2
p

2
ð1:39Þ

z ¼ x3 ð1:40Þ

z

y

E

X1

X2X3

X

(110)

(001)

Figure 1.8. Bi12SiO20-type cubic crystal orientation and its crystallographic axes X1;X2 and

X3. The electric field E applied along the ‘‘x’’-direction is also shown.
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which substituted into Equation (1.37) with rearranging gives

x2

n2
0

þ y2

n2
0

þ z2

n2
0

þ 2r41Exz ¼ 1 ð1:41Þ

To eliminate the above term in ‘‘xz’’ it is necessary to carry out another rotation,

now in the ‘‘x-z’’ plane as shown in Figure 1.9

x ¼ ðZþ �Þ
ffiffiffi
2
p

2
ð1:42Þ

z ¼ ðZ� �Þ
ffiffiffi
2
p

2
ð1:43Þ

which substituted into Equation (1.41) gives the relation

�2 1

n2
0

� r41E

	 

þ Z2 1

n2
0

þ r41E

	 

þ y2

n2
0

¼ 1 ð1:44Þ

which means that the refractive indexes along the new axes �, Z, and y are:

n� ¼ n0 þ
1

2
n3

0r41E ð1:45Þ

nZ ¼ n0 �
1

2
n3

0r41E ð1:46Þ

ny ¼ n0 ð1:47Þ

for n0 � n3
0r41E=2. The wavelength dependence of n0 for BTO is reported in

Figure 1.7.

45°

45°

z z z

no no

x
x x

h

nz

nz

nh

nh

h h

z
z zE E

Figure 1.9. Principal coordinate axes system Z� � arising by the effect of an electric field E

applied along the ‘‘x’’-axis, as shown in Fig. 1.8.
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Exercise: Following the mathematical development above, show that for an

electric field E along the axis [001] the principal axes of the index ellipsoid are

directed along x, y, and z with the index ellipsoid having the form

x2 1

n2
0

þ r63E

	 

þ y2 1

n2
0

� r63E

	 

þ z2

n2
0

¼ 1 ð1:48Þ

thus meaning that, in the input crystal plane (110) that is also the x-z plane, the index

of refraction changes only along x and is constant along z.

GaAs, InP, and CdTe are also cubic noncentrosymmetric crystals though belong

to the point class 43m but have the same electro-optic tensor structure as sillenites,

that is to say, all elements are zero except

r41 ¼ r52 ¼ r63 ¼ 1:72 pm=V for GaAs ð1:49Þ
r41 ¼ r52 ¼ r63 ¼ 1:34 pm=V for InP ð1:50Þ
r41 ¼ r52 ¼ r63 ¼ 5:5 pm=V for CdTe ð1:51Þ

The 43m symmetry, however, guarantees that there is no optical activity. The index

of refraction of CdTe varies from 2.86 at l ¼ 1:06 mm to 2.73 at l ¼ 1:55 mm and

follows the relation [Verstraeten, 2002]:

n2 ¼ 4:744þ 2:424l2

l2 � 282181:61
ð1:52Þ

1.3.2 Lithium Niobate

The electro-optic tensor in the principal axes system [X1;X2;X3] for this material has

zero elements everywhere except the following [Weis and Gaylord, 1985]:

r12 ¼ �r22 ¼ r61 
 6:8 pm=V r13 ¼ r23 ¼ 10:0 pm=V

r33 ¼ 32:2 pm=V r42 ¼ r51 ¼ 32 pm=V ð1:53Þ

For an electric field E3 applied along axis x3 as shown in Figure 1.10, tensorial

Equation (1.32) becomes:

1

n2
0

þ r13E3

	 

x2

1 þ
1

n2
0

þ r13E3

	 

x2

2 þ
1

n2
e

þ r33E3

	 

x2

3 ¼ 1 ð1:54Þ

x1

x2 E3

x3

c

Figure 1.10. Lithium niobate crystal with an applied electric field along the photovoltaic

c-axis.
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with n0 ¼ 2:286 and ne ¼ 2:200 at l ¼ 633 nm [Yariv, 1985] and the following

relations

�
1

n2
1

	 

¼ �2

1

n3
0

�ðn1Þ ¼ r13E3 ) �ðn1Þ ¼ �
n3

0

2
r13E3 ð1:55Þ

�
1

n2
2

	 

¼ �2

1

n3
0

�ðn2Þ ¼ r13E3 ) �ðn2Þ ¼ �
n3

0

2
r13E3 ð1:56Þ

�
1

n2
3

	 

¼ �2

1

n3
e

�ðn3Þ ¼ r33E3 ) �ðn3Þ ¼ �
n3

e

2
r33E3 ð1:57Þ

and the index ellipsoid is modified as shown in Figure 1.11.

1.3.3 KDP-(KH2PO4)

This crystal is actually not a photorefractive one but is included here as an example

of electro-optic tensor somewhat similar to that of sillenites. It has the following

electrooptic tensor:

rij ¼

0 0 0

0 0 0

0 0 0

r41 0 0

0 r52 0

0 0 r63

2
6666664

3
7777775

r41 ¼ r52 ¼ 8:6 pm=V r63 ¼ 10:6 pm=V ð1:58Þ

The index of refraction for this material is reported Table 1.1.

ne + Dn3 ne – Dn3

n0 + Dn1
n0 – Dn1

n0 + Dn2 n0 – Dn2

E3 E3

Figure 1.11. Lithium niobate crystal ellipsoid (black) and its modified (gray) size by the

action of an applied field in opposite directions (left and right pictures) along the c-axis.

TABLE 1.1. Index of Refraction of KDP

l ðnmÞ n0 ne

546 1.5115 1.4698

633 1.5074 1.4669
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The indicatrix equation formulated in the principal coordinate (crystallographic)

axes X1, X2, and X3, as represented in Figure 1.8, is

x2
1

n2
0

þ x2
2

n2
0

þ x2
3

n2
e

þ 2r41 E1 x2 x3 þ 2r52 E2 x1 x3 þ 2r63 E3 x1 x2 ¼ 1 ð1:59Þ

Let us assume an externally applied field E3 along axis x3 only. In this case we

should proceed as for the case of Bi12SiO20 in Figure 1.9 to get the following

ellipsoid

�2 1

n2
0

� r63E3

	 

þ Z2 1

n2
0

þ r63E3

	 

þ y2

n2
e

¼ 1 ð1:60Þ

with

n� ¼ n0 þ
1

2
n3

0r63E3 ð1:61Þ

nZ ¼ n0 �
1

2
n3

0r63E ð1:62Þ

ny ¼ ne ð1:63Þ

1.4 CONCLUDING REMARKS

The aim of this chapter was just to recall some fundamental properties of optically

anisotropic materials and the way an electric field is able to modify the index

ellipsoid via the electro-optic effect. We have briefly shown how to calculate these

effects in a few kinds of crystals having different electro-optic tensors. We hope

these examples will enable the reader to understand how to operate on different

materials, different crystals, and different optical configurations.
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