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Figure I.1. Naturally birefringent uniaxial lithium niobate crystal view under converging
white light between crossed polarizers with its c-axis (optical axis) laying perpendicular to
the plane (upper) and on the plane (lower).
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INTRODUCTION

Photorefractive crystals are electro-optic and photoconductive materials. An electric
field applied to an electro-optic material produces changes in its refractive index, a
phenomenon also called Pockel’s effect. On the other hand, photoconductivity means
that light of adequate wavelength is able to produce electric charge carriers that are
free to move by diffusion and also by drift under the action of an electric field.

In the case of photorefractive materials the light excites charge carriers from
localized states (photoactive centers) in the forbidden band gap to extended states
(conduction or valence bands) where they move, are retrapped and excited again,
and so on. During this process the charge carriers progressively accumulate in the
darker regions of the sample. In this way, charges of one sign accumulate in the
darker regions while leaving charges of the opposite sign in the brighter regions.
This spatial modulation of charges produces an associated space-charge electric
field. The combination of both effects gives rise to the so-called photorefractive
effect: The light produces a photoconduction-based electric field spatial modulation
that in turn produces an index of refraction modulation via the electro-optic effect.
This change can be reversed by the action of light or by relaxation even in the dark.

The action of light on a photosensitive material may produce changes in the
electrical polarizability of the molecules, and by this means a change in the complex
index of refraction will result. This change may be sensible or not depending on the
wavelength spectral range analyzed. The imaginary part of the index (the extinction
coefficient, related to absorption) or the real part (the so-called “‘index of refraction”
itself) may be more affected when observed in a certain wavelength spectral range.
This is the case of dyes, some silver salts, chalcogenic glasses, photoresists, and
other materials. When sensible changes occur in the real part of the complex index of
refraction, these materials are also called “‘photorefractives” because they actually
show changes in the real refractive index under the action of light. These changes
can be reversible or not. What is the essential difference between these processes and
those we have mentioned before and we are dealing with in this book? The
difference is that the latter always involve the establishment of a space-charge
electric field and the production of index of refraction changes via the electro-optic
(or Pockels) effect. We should therefore rather call them “‘photo-electro-refractive”
materials instead of just using the “photorefractive” label. However, the latter
generic name is so widespread nowadays in the scientific literature that it would be
hard to change it now. In this book we shall therefore use the term ‘““photorefractive”
only, but the reader should be aware that materials of different nature are usually
referred to under this same label.

Chapter 1 contains a review of the electro-optic effect including a little bit of
tensorial analysis. The effect of an applied electric field over the index ellipsoid of
some usual electro-optic crystals is analyzed so that the reader may become familiar
with these procedures. We hope these examples will enable the reader to properly
handle different materials and optical configurations. Chapter 2 deals with
photoconductivity and light-induced absorption and their relation with the localized
states (photoactive centers) in the forbidden band.






CHAPTER 1

ELECTRO-OPTIC EFFECT

The electro-optic effect and photoconductivity are the fundamental phenomena
underlying the photorefractive effect. Most photorefractive crystals are anisotropic
(their properties are different along different directions), and even those that are not
become anisotropic under the action of an externally applied electric field.
Therefore, we shall start with a review of light propagation in anisotropic media.
These materials usually exhibit a piezoelectric effect, too [Yariv, 1985, Shepelevich
et al., 1990, Stepanov et al., 1998] but, for the sake of simplicity, we shall not
consider it here.

The electro-optic effect in photorefractive materials is of the highest importance
because it is at the origin of the “imaging” of a space-charge field modulation into
an index of refraction modulation. In fact, the buildup of a holographic grating in
photorefractive materials consists of the spatial modulation of the index of refraction
in the volume of the sample. In these materials such a modulation arises from the
buildup of a modulated space-charge field that in turn modulates the index of
refraction via the electro-optic effect.

1.1 LIGHT PROPAGATION IN CRYSTALS

Crystals are in general anisotropic, that is to say, they have different properties for
the light propagating along different directions.

Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials
Characterization, By Jaime Frejlich
Copyright © 2007 John Wiley & Sons, Inc.
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1.1.1 Wave Propagation in Anisotropic Media

Let us start with the general vectorial relations

D =¢E + P (1.1)
P =¢oiE (1.2)

where ¢y = 8.82 x 10712 coul/(mV) is the permittivity of vacuum. The quantities P,
E, and D are the polarization, electric field, and displacement fields, respectively,
with 7 (polarizability) being a tensor that, for isotropic media only, can be written as
a scalar, thus simplifying the relation in Equation (1.2)

P = goyE (1.3)

The relation in Equation (1.2) can also be written as

Py X X2 X3 | | Ex
Pyl =¢ |1 %2 X3 ||E2 (1.4)
P 131 X3 Xl LEs
and also
D =g(i+})E (1.5)

where 1 and 7 are tensors that are written as:

R 1 00 X 1 X1z X13
1={0 1 O L= | X1 X2z X23 (1.6)
0 0 1 X311 X322 X33

Let us recall that there is always a set of coordinate axes, called “‘principal axes,”
where 7 assumes a diagonal form

R xu 0 0
1=10 x» O (1.7)
0 0 s

1.1.2 General Wave Equation

The equation describing the electromagnetic wave, in nonmagnetic and noncharged
media, can be deduced from the Maxwell’s equations

. OH
Vo E=—py—- (1.8)
. OE 0P - .
V><H_905+5+J with J =0E (1.9)
V.E——Ly.p (1.10)
)
V-H=0 (1.11)
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In a system of principal coordinate axes it is

Py =gy En D) = ¢ E) ent = ¢ (14 x11)
Py =&y pn B> D, =¢epn ks e = &0 (1 + y2) (1.12)
Py = ¢y y33 B3 D; = &3 E;3 €33 = &0 (14 x33)

1.1.3 Index Ellipsoid

We shall write the expressions for the electric w, and magnetic w,, energy densities
in electromagnetic waves as [Born and Wolf, 1975]

1. - 1 s - 1
w=-E-D==Y EwuE m==B-H=_uH" 1.13
w, ) 2 ; k€KL w 3 ) M ( )
and write the Poynting formulation for the energy flux as
S=ExH (1.14)

After adequate substitutions and transformations taking into account Maxwell’s
equations we get, for the principal coordinate axes,

p: D> D? G=en =1+
—~ + 2 4 —£ = 8gymw, = constant = =14y (L.15)
N =3 =143

Following the definitions

with

+E o (1.16)

where n,, n, and n, are the index of refraction along coordinates x, y, and z,
respectively, as represented in Figure 1.1. To use this ellipsoid to analyze the
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Figure 1.1. Refractive index ellipsoid.

propagation of a plane wave with propagation vector k we just intersect the indicatrix
with a plane orthogonal to the vector k. An elliptic figure results where the
extraordinary n, and ordinary ng indexes, for this wave, are found from the
intersection with the corresponding direction of vibration of the electric field as
shown in Figure 1.2. In Section 1.2 we shall analyze Equation (1.16) in a more
general form.

Figure 1.2. Refractive indices for a plane wave propagating in an anisotropic medium.



TENSORIAL ANALYSIS 9
1.2 TENSORIAL ANALYSIS
Let us write the general equation [Nye, 1979]
i=N,j=N
> Spxig =1 or Sy =1 (1.17)

i=1j=I

where x; and x; are variables and S;; are coefficients. If we assume that S;; = Sj;, then
Equation (1.17) turns into the general ellipsoid representation:

Snx% + SQQX% + S33x§ + 2512)61)62 + 2513X1X3 + 2323)(2)63 =1 (118)

Equation (1.18) can be transformed into new coordinate axes x}, by using the axes
rotation transformation matrix, as follows

x| = anx + apxy + ai3xs
x/z = a1 X1 + ax»xy + axx; (1.19)

/
X3 = az1X1 + anx; + aszxs

which can be written in a matricial form

X1 a ap a3 X1
/

Xy = | dp1 daxp azs X2 (1 20)
/

X3 aszy asy dass X3

From the matricial relation above we should deduce that it is also

/

X1 ayp azy a4z X1
/

X2 = |a;p daxyp as Xy (121)
/

X3 ap;z  dzy  dsz X3

The relation above can be written in the form
Xi = agx, Xj = ajx, (1.22)
which substituted into Equation (1.18) leads to
Sixixj = Syagagx,x; = S XX (1.23)
where S}, are the coefficients in the new coordinate system. An ellipsoid can be used

to describe any symmetric tensor (S;; = Sj;) of second order and is specially useful to
decribe any property in a crystal that should be represented by a tensor. An important
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property of an ellipsoid is the presence of ‘‘principal axes” in which case
Equation (1.18) can be simplified to

NTEERY 0
S“.X% + ngx% + S33x§ =1 = S,] = 0 S»n O (124)
0 0 S35

1.3 ELECTRO-OPTIC EFFECT

The indicatrix in Equation (1.16) is an ellipsoid in a principal coordinate axes
system. Its general formulation is [Nye, 1979]

1
B,-jx,-xj =1 with Bl] = 6— (125)
iy

The slight variation in the refractive index produced by an electric field can be
described by the third-order electro-optic tensor r; (in the range of 10712 m/V for
most materials) through the relation

ABjj = riEx (1.26)
from By = Bji = Tijk = Fjik (127)
The B tensor can be written as
Bii B2 Bz By Bs Bs
Bgl Bzz Bz3 = B6 32 B4 (128)
B3y1 B3y Bss Bs B, B;
(1.29)

The electro-optic relation is therefore simplified to
ABi:r,-jEj (121,2,3,4,5,6,12 1,2,3) (130)

or explicitly written as

ABy o T Fi3
AB; 1 rn s | [AE
ABy | = |1 rn 13| | AE (1.31)

AE3
ABg Tel Te2 163
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X4

Figure 1.3. Crystallographic axes of a sillenite and an applied 3D electric field.

Let us assume that an electric field is applied, with components E|, E;, E3 as shown
in Figure 1.3 so that Equation (1.25) turns into:

(Bi + riEy + riEy + ri3E3)x? 4 (By + i Ey + rpEs + r3E3)xd
+ (B3 + r31Ey + rpEy + V33E3)X§ + (Bs + 2rmEy + 2ranEs + 2rg3E3)x0x3
+ (Bs + 2r51E1 + 2rsEy + 2r53E3)x1 X3
+ (Bs + 2r61Ey + 2renEr + 2rg3E3)x1x0 = 1 (1.32)

We are interested in the slow index of refraction buildup produced by the slow
accumulation of electric charges. Therefore all the electro-optic coefficients referred
to in this chapter are the low-frequency ones only. In the following sections we shall
see what Equation (1.32) looks like for some particular materials.

1.3.1 Sillenite-Type Crystal

The well-known crystals of this family are: Bij;GeO,9 (BGO), Bi;,SiOy (BSO),
and Bi,TiOy (BTO). They belong to the cubic noncentrosymmetric crystal point
class 23 and are piezo-electric, electro-, and elasto-optic and optically active.
BTO is the crystal having the lowest optical activity (optical activity is
undesirable for most applications) but is also the most difficult to grow because the
chemical composition of the melt and the crystal are different—noncongruent.
These crystals are usually grown using the so-called “‘top seed solution growth”
(TSSG) that can be considered a modification of the Czochralski technique.
Growing is more easily carried out along the [001]-crystal axis, and during
growing there are frequently variations in the growing rate that produce the
characteristic striations along the growing direction as shown in the picture in
Figure 1.4. The latter result in small variations in the crystal composition and
associated index of refraction changes as well. To avoid this index of refraction
modulation being too visible through the polished (110)-face (the usual
configuration employed for holographic recording) the latter should be cut slanted
to these striations as illustrated in Figure 1.5. The axes in the sample are
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Figure 1.4. Raw Bi;,TiO,, boule grown by TSSG technique. The crystal was grown along
the [001]-axis and the striations are clearly perpendicular to this axis.

(110)

Figure 1.5. From raw Bi;,TiO,y boule to ready-to-use crystal sample. Schematic
representation of a raw crystal boule with its striations, indicating the way it will be sliced
(top left); already sliced crystal with striations not perpendicular to the (011)-face (top right);
ready-to-use crystal with renamed axes (bottom).
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Figure 1.6. Undoped sillenite crystals. Bi;»SiO, crystal with (110)-surface cut and polished
(center), raw Bi;,TiOyq crystal boule grown along [001]-axis and showing striations on the
lateral surfaces with both opposite (001)-faces cut and polished (left) and Bi;,TiO,q crystal
with (110)-face cut and polished, longer direction along [001]-axis (right).

conveniently renamed, accounting on its cubic and isotropic nature in which case
the axes [001], [010], and [100], for example, can be interchanged. In the slanted-
sliced sample in Figure 1.5, the striations are not visible through the polished
(110)-face. Figure 1.6 shows actual crystal samples.
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Figure 1.7. Index of refraction of BTO which is formulated by n:0.00863//14+
0.0199/2% + 2.46 [Riehemann et al., 1997].
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(001)

(110)

Figure 1.8. Bi;,SiO,-type cubic crystal orientation and its crystallographic axes X;, X, and
X3. The electric field E applied along the “x’’-direction is also shown.

The electro-optic tensor of this crystal family in the principal axes coordinates
[X1, X3, X3] has the following elements [Grousson et al., 1984]:

ra =rs; =re3 ~5x 1072 m/V (1.33)

all other elements being zero.
In the absence of electric field (E = 0) the ellipsoid is

2 2 2
X]+ x5 +x3

2
Un)

=1 (1.34)

showing that we are dealing with an isotropic crystal. Applying an electric field
along direction “x” as indicated in Figure 1.8, we have the field components:

2
E1:E2:E§ E;=0 (1.35)

so that the index ellipsoid is modified to:

2 2 2

x x5
L + 2+ 3+ 2r Evxoxs + 2rspEoxyxg = 1 (1.36)
"0 ”0 ”0
or
2 2 i V2
=1 + =2 + = +2V41E7()C2)C3 +X1X3) 1 (137)
5 N5 m

Let us now rotate the system from coordinates X, X, X3 to coordinates X, Y,Z

(1.38)
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Figure 1.9. Principal coordinate axes system # — ( arising by the effect of an electric field E
applied along the “x’’-axis, as shown in Fig. 1.8.

which substituted into Equation (1.37) with rearranging gives

2 2 P
7—1—%4— 5+ 2y Exz = 1 (1.41)

ng  ng Ny

To eliminate the above term in “xz” it is necessary to carry out another rotation,
now in the “x-z” plane as shown in Figure 1.9

V2
V2
Z:(U*C)T (1.43)
which substituted into Equation (1.41) gives the relation
1 1 2
(2(—2—r41E) +;72(—2+r41E) +y_2: 1 (1.44)
Ul Ul U
which means that the refractive indexes along the new axes (, #, and y are:
13
ne =no+ EnbnuE (] 45)
1
ny =ny — EngmlE (1.46)
ny, = ng (1.47)

for ny > n8r41E /2. The wavelength dependence of ny for BTO is reported in
Figure 1.7.
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Exercise: Following the mathematical development above, show that for an
electric field E along the axis [001] the principal axes of the index ellipsoid are
directed along x, y, and z with the index ellipsoid having the form

2
x? (12 + r63E) +y? (12 - r63E) + % =1 (1.48)
"o "o N
thus meaning that, in the input crystal plane (110) that is also the x-z plane, the index
of refraction changes only along x and is constant along z.
GaAs, InP, and CdTe are also cubic noncentrosymmetric crystals though belong
to the point class 43m but have the same electro-optic tensor structure as sillenites,
that is to say, all elements are zero except

r41 =rsp = rg3 = 1.72pm/V  for GaAs (1.49)
ry =rsp = re3 = 1.34pm/V  for InP (1.50)
ry1 = rsp = re3 = 5.5pm/V for CdTe (1.51)

The 43m symmetry, however, guarantees that there is no optical activity. The index
of refraction of CdTe varies from 2.86 at A = 1.06 um to 2.73 at A = 1.55 um and
follows the relation [Verstraeten, 2002]:

2.424)7
=474 4 = (1.52)
)7 —282181.61

1.3.2 Lithium Niobate

The electro-optic tensor in the principal axes system [X;, X, X3] for this material has
zero elements everywhere except the following [Weis and Gaylord, 1985]:

ri2 = —rn =re1 ®6.8pm/V  ri3 =ry3 =10.0pm/V
r3z = 322pm/V Fgp = 51 = 32 pm/V (153)

For an electric field E3 applied along axis x3 as shown in Figure 1.10, tensorial
Equation (1.32) becomes:

1 1 1
<n—(2)—|— r|3E3>x% + (n—%—F I"|3E3>X§ + (; + r33E3>x§ =1 (154)

e

Figure 1.10. Lithium niobate crystal with an applied electric field along the photovoltaic
c-axis.
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Ng + An, ny— An,

Ny + An; N — Any

Figure 1.11. Lithium niobate crystal ellipsoid (black) and its modified (gray) size by the
action of an applied field in opposite directions (left and right pictures) along the c-axis.

with ny = 2.286 and n, = 2.200 at A = 633 nm [Yariv, 1985] and the following
relations

1 1 ny

A<_2) = 2L A) = By = Alm) =~ By (155)
n n} 2
1 1 ng

A — | = —2—3A(n2) =riEs = A(m) = — = ri3E; (1.56)
n N 2
1 1 ng’

Al = | = 25Am3) = r3ks = A(ns) = ——rks (1.57)
n3 n, 2

and the index ellipsoid is modified as shown in Figure 1.11.

1.3.3 KDP-(KH2PO,)

This crystal is actually not a photorefractive one but is included here as an example
of electro-optic tensor somewhat similar to that of sillenites. It has the following
electrooptic tensor:

0O 0 O
0O 0 O
0O 0 O
rij = r 00 rqy1 = rs; = 8.6pm/V re3 = 10.6pm/V  (1.58)
0 rsp 0
0 0 re3

The index of refraction for this material is reported Table 1.1.

TABLE 1.1. Index of Refraction of KDP

A (nm) Mo Me

546 1.5115 1.4698
633 1.5074 1.4669




18 ELECTRO-OPTIC EFFECT

The indicatrix equation formulated in the principal coordinate (crystallographic)
axes X1, X, and X3, as represented in Figure 1.8, is
o5 5
?"‘—2 +—2 + 27’41 E1 X2 X3 + 2}"52 E2 X1 X3 + 2}"63 E3 X1 X = 1 (159)
0 0 e

Let us assume an externally applied field E5 along axis x3 only. In this case we
should proceed as for the case of Bij3SiO,y in Figure 1.9 to get the following
ellipsoid

1 1 g
¢ (—2— r63E3> + 1’ (—2+763E3> +y_2: 1 (1.60)
no nQ ng
with
1 5
n¢ = no + 5 nyresEs (1.61)
1
ny = ny — Engr@E (1.62)
ny = ne (1.63)

1.4 CONCLUDING REMARKS

The aim of this chapter was just to recall some fundamental properties of optically
anisotropic materials and the way an electric field is able to modify the index
ellipsoid via the electro-optic effect. We have briefly shown how to calculate these
effects in a few kinds of crystals having different electro-optic tensors. We hope
these examples will enable the reader to understand how to operate on different
materials, different crystals, and different optical configurations.



