
Chapter 1

Examining the Big Picture
of Project Management

In This Chapter
� Defining what a software project is

� Examining project management attributes

� Starting and finishing a software project

� Dealing with software project nuances

� Leading and managing project teams

Here’s a tough decision for you: Manage a project to create a new piece
of software that can make or break your entire organization, or jump

from an airplane with a parachute that may — or may not — function. For
some project managers the decision is the same either way.

But not for you. At least you’re on the right track to capture, improve, and
successfully lead your projects to completion.

The adrenaline rush in skydiving (and in project management) may not be at
the same level, but the butterflies in your stomach definitely are. There’s
really one secret to skydiving and it’s the same secret to successful project
management. (No, it’s not “don’t do it.”) The key to successful software pro-
ject management and skydiving is preparation.

Many projects fail at the beginning rather than the end. After you do the prep
work, you must execute your plan, take control of your project, and ultimately
bring it to its natural (and successful) conclusion.

05_749346 ch01.qxp 8/30/06 10:18 PM Page 9

CO
PYRIG

HTED
 M

ATERIA
L

Defining Software Projects
Software project management is a type of project management that focuses
specifically on creating or updating software. Just as there are billions of ice
cream flavors, there are billions of types of software. Project managers, effec-
tive ones, can lick them both.

A project, technically, is a temporary endeavor to create a unique product or
service. For some people, everything is a project; for others, projects are spe-
cial, lofty activities that occur infrequently. A project is a unique entity. In
other words, the creation of a new application is unique, whereas the mainte-
nance and day-to-day support of an existing application is not so unique.
Projects can have many attributes:

� They change or improve environments in organizations.

� They get things done.

� They are unique from other work.

� They have a defined start and end date.

� They require resources and time.

� They solve problems.

� They seize opportunities.

� They are sometimes challenging.

Defining Software Project Management
For some people, project management is just a stack of work doled out to a
group of people by a goober called the project manager. For other folks, pro-
ject management is a foggy, scary science directed by a different goober with
a slide ruler. And for others still, a project manager is a goober that touts for-
mulas, certifications, and facts without ever really getting things done.

But in effective project management there ain’t no room for goobers. Effective
project management centers on the serious business of getting work done on
time and within budget while meeting customer expectations. Effective pro-
ject management is about accomplishment, leadership, and owning the pro-
ject scope. It’s an incredible feeling to sign off on the project and know that
you and your project team contributed to the project’s success.

Management is concerned with one thing: results.

10 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:18 PM Page 10

Project management involves coordinating people, vendors, and resources.
Project management requires excellent communication skills, a strong will to
protect the project scope, and leadership skills to enforce quality throughout
the project work.

According to the Project Management Institute (www.pmi.org), the defining
resource on all things related to project management, project management is
centered on nine knowledge areas. Events in each knowledge area affect what
happens in the other eight knowledge areas. Table 1-1 gives you the lowdown.

Table 1-1 The Nine Project Management Knowledge Areas
Knowledge Area What It Does

Project Scope Management Controlling the planning, execution, and
content of the project is essential. You
need to pay special attention to both
project and product scope so that the
software you end up with is what you
intended to make in the first place.

Project Time Management Managing everything that affects the
project’s schedule is crucial. Who
wants tax software that comes out on
April 16?

Project Cost Management Projects cost money, and this knowl-
edge area centers on cost estimating,
budgeting, and control.

Project Quality Management No project is a good project if the deliv-
erable stinks. Quality doesn’t happen by
accident, so this knowledge area works
to ensure that the product you are pro-
ducing is a quality product that meets
customer expectations.

Project Human Resources Management The members of the project team must
get their work done. Hiring or assigning
people who are competent and manag-
ing them well are at the center of this
knowledge area.

Project Communications Management Project managers spend 90 percent of
their time communicating. Communica-
tions management focuses on who
needs what information — and when.

(continued)

11Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:18 PM Page 11

Table 1-1 (continued)
Knowledge Area What It Does

Project Risk Management This knowledge area is about avoiding
doom. The focus is on how to anticipate
risks, handle them when they arise, and
take advantage of the opportunities that
can help a project.

Project Procurement Management Sometimes during the course of your
software project, you may be required
to work with vendors to purchase
goods and/or services. You may even
be the vendor that someone else is
contracting for their project. This
knowledge area is concerned with the
processes to create vendor contracts
and to purchase goods and services.

Project Integration Management What happens in one knowledge area
affects attributes of the other knowl-
edge areas. The ninth knowledge area
is fan-freakin-tastic because its pur-
pose is to ensure the coordination of all
the other knowledge areas.

Comparing Projects and Operations
There is a distinct difference between projects and operations. Operations are
the day-to-day activities that your organization does. For example, a car man-
ufacturer makes cars. An airline flies people from one city to another. A help
desk supports technical solutions. Within each of these companies reside
various departments working on projects that enable operations to function.
A project at an automobile manufacturer might be to design a new sports car.
The car manufacturer’s operations involve manufacturing that design again
and again.

Software creation is special. Imagine you have customers around the world
who want you to create a piece of software that helps them keep track of
sports statistics. This is your new business — you create sports stat software
and you’re a gazillionaire.

Each flavor of the software you create could be a separate project; your com-
pany has software for baseball stats, football stats, soccer stats, field hockey
stats, and everyone’s favorite sport, water polo stats. Each project has its

12 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:18 PM Page 12

own requirements, its own purpose, its own budget, and its own project man-
ager and project team. Each project has its own resources, schedule, bud-
gets, and goals.

Your day-to-day support of the software, the sales of the software, the credit
card purchases, and the delivery of millions in cash to your bank account are
all part of operations.

Some companies have changed their approach to business by treating all of
their operations as projects. This microscale of their enterprise, where every
activity is part of a project and all projects contribute to the betterment of
the organization, is called management by projects.

Examining Project Constraints
A constraint is anything that restricts the project manager’s options.
Constraints are requirements, confines, or, if you’re a glass-is-half-empty
kind of person, prison walls. Constraints can include

� Resource constraints such as a team member being assigned to too
many concurrent projects

� Tight deadlines

� Budgetary limitations

� Government regulations

� Limitations of software

� Scope limitation, such as being required to use a particular existing
interface

� Hardware requirements

� Anything else that restricts your options

Understanding Universal Constraints
(Time, Cost, and Scope)

The three universal project constraints you will always face are

� Time: Time constraints may range from a reasonable schedule to an
impossibly short timeframe that can’t budge because the product
simply must be on shelves by September 15 (never mind that September
15 was last week).

13Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 13

� Cost: Cost constraints are the usual budgetary restrictions that you
expect. (“Here’s a nickel. Make it happen.”)

� Scope: Sometimes scope is a no-brainer (you’re working on the 700th
rev of Acme Wizware to fix a bug). On the other hand, scope can be a bit
trickier if you’re dealing with an executive who isn’t sure what he wants.

We guarantee that executives will always know when a product is needed
and how much money you can have to get it done. If there’s a single area
that the big-wigs won’t have nailed down, it’s scope.

These three constraints make up what we affectionately refer to as the some-
what inflexible-sounding nickname the Iron Triangle of project management.
Check out Figure 1-1. Each side of the Iron Triangle represents one of the
triple constraints. For a project to be successful, each side must remain in
balance with the other two. You will read more about project constraints in
Chapter 3.

In order to achieve quality in the project deliverable, and in the management
of the project, the Iron Triangle must remain balanced.

For example, say your boss decides to add more stuff to the project scope
(now instead of simply fixing a mathematical bug in your Wizware accounting
software, you have to create a whole new feature in the software that edits
photos and home movies). Even though your boss has changed the scope,
you have to deliver more stuff within the same amount of time and with the
same amount of cash, as Figure 1-2 depicts. You’ll need more time, more
money, or both for the triangle to remain equilateral.

Quality

Scope

CostTi
m

eFigure 1-1:
The Iron
Triangle

describes
constraints

that all
projects

must face.

14 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 14

Managing time constraints
Time constraints are simply deadlines. You have a project to create a new
piece of software within six months. Or there’s an opportunity in the market-
place for a new application, but the window of opportunity is small, so you
have no time to waste. Time can also be calculated as labor: Working or bill-
able hours, processor speed, database consistency, and even network
latency issues can be used to estimate time constraints.

Original Iron Triangle

Iron Triangle when
Scope Changes

Scope

CostTi
m

e
Figure 1-2:

Increases to
the project

scope
enlarge
the Iron

Triangle.

15Chapter 1: Examining the Big Picture of Project Management

Introducing the law of diminishing returns
Time is time. Don’t be fooled into thinking you
can buy more time — no one can. You can buy
more labor if you think it will help your team do
more work faster, but that’s not the same thing
as adding time to a project. The law of dimin-
ishing returns dictates that adding labor doesn’t
exponentially increase productivity; in fact, at
some point productivity can even go backwards
(is that antiductivity?). When that happens,
you’ve hit a plateau, and then everyone is sad
because you just can’t do more with the labor
you have.

For a real-life example of the law of diminishing
returns, consider that you may have two hard-
working, experienced programmers working on

a section of code. In your quest to finish the pro-
ject on time, you add one more programmer to
the mix. Now the programmers may be com-
pleting the code more quickly, and you’re so
excited that you decide to add six more pro-
grammers so that you can finish even sooner.
You soon realize that although adding one pro-
grammer increased your productivity, adding six
more only created chaos, with programmers
stepping on each other’s toes, inadvertently
neutralizing each other’s code, and creating a
contentious environment. You reached the point
of diminishing returns when you added six
programmers.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 15

Time constraints require more than just hitting a target deadline. Unavailable
resources (your ace programmer is on vacation), skewed milestone targets
within the project, conflicting versioning deadlines, and so on, all present
constraints on the project’s timeline. A time constraint is any factor or issue
that changes or impacts the original timeframe of the project. (No time
machines allowed in project management, sorry.)

Managing cost constraints
Cost constraints are easy to identify because they deal with cash money.
Well, it’s not always cash, but you get the idea; the miniscule funds in your
project budget to complete the project work create a unique constraint. Your
costs include computers and languages to code in, labor, and anything else
you need to buy in order to get the job done.

For some folks the funds are blue dollars, departmental dollars that shift from
one department to another based on the project costs. For other people the
budget is a very real number in dollars and cents: Customers hire you to
complete work for them; then they give you a satchel full of cash.

Projects almost always cost somebody something. Be sure to factor in hidden
costs for labor, resources, computers, pizza, celebrations, training, bribes,
and more. Just kidding about the bribes part. As far as you know.

Managing the scope
The third part of the Iron Triangle is the scope. There are two scopes within
project management:

� Product scope: The product scope describes, lists, and categorizes all
the features and components of the finished deliverable. This is what
the customers see in their minds’ eye.

� Project scope: This is where you focus. The project scope is all the
required work, and only the required work, to create the project deliver-
able. The project scope focuses on work, activities, and progress to
achieve the product scope. The project scope must be protected from
unapproved changes because it dictates what the project team will do
and what the end result of the project will be.

The product scope and the project scope are in love. The product scope
kisses details in the project scope and the project scope returns the favor. It’s
romantic. Each scope depends on the other, and what happens in either
scope affects the other. If there is disharmony between these two scopes,
trouble is brewing.

16 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 16

Controlling Scope Creep
Changes to the project scope can affect cost and time constraints, melting
your Iron Triangle. The Iron Triangle is a key tool in project management and
is ideal for negotiations with stakeholders. For example, if your stakeholder
insists on adding software functionality to your project scope, you can use
the Iron Triangle as a tool to explain that when you increase one side of the
triangle (the scope side) the triangle is no longer in balance. To change the
scope, you must change the cost or the schedule (or both) to keep the trian-
gle balanced. The Iron Triangle is also a terrific tool to use in discussions
with the project team, and to keep your own duties as project manager in
alignment (see “Understanding Universal Constraints (Time, Cost, and
Scope),” earlier in this chapter).

Unplanned changes to the project scope, sometimes called scope creep, are
the little extras that expand the scope without reflecting the changes in the
cost and time baselines. You’ll notice from the graphic that with scope creep,
the lines of the Iron Triangle are no longer even. See Figure 1-3.

17Chapter 1: Examining the Big Picture of Project Management

Delivering what’s promised
(and only what’s promised)

In the Iron Triangle the project manager’s con-
cern is on the project scope — the project work.
The project manager must direct the project
team to do the required work, nothing more or
less, to deliver exactly what the product scope
calls for.

Nothing more? Shouldn’t the project manager
and the project team always deliver more than
what was promised? No, no, no! This may shock
you, but the job of the project manager and the
project team is to deliver exactly what you and
the customer have agreed to create.

Let me write that again so you don’t think it’s a
typo: The project manager should deliver exactly
what the customer expects.

You and the project stakeholders should define
everything the project should deliver as soon as
possible. When value-added changes are made
after the project scope has been created, the
analysis of these changes takes time and
money and may impact the schedule.

We’re not saying the project manager should
hold back good designs, ideas, and incredible
features that the customer may want and can
use. We’re saying that neither the project man-
ager, nor any stakeholder, can arbitrarily add
features to the software because doing so
would be to change the project scope.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 17

The reason scope creep is so poisonous is because it can happen so easily,
and so innocently. And yet, it can be so deadly. When the scope goes off track,
time and funds are stolen from the original baselines. It’s not as if extra money
and time are magically added to the project to handle all the little extras.
Balancing the three sides of the triangle ensures a high-quality final product.

Changes to the project scope should be controlled and managed through a
change control system, which you can find out more about in Chapter 13. In
essence, a change control system accommodates a process for documenting
requested changes and requires obtaining appropriate approval for all
requested project changes. The key is to avoid changes that are not directly
approved or requested by the customer.

Making Sense of Project
Success (Or Failure)

Most projects start with an optimistic attitude about creating a deliverable,
keeping the customer happy, and making this the best software project ever.
And then things (bad things) happen. The good projects end on time and as
planned. Ah, paradise. We’d wager that these projects have three things in
common:

� A leader who knows what he or she is doing

� A tight change control system (see Chapter 13)

� Team members who understand what the project is supposed to deliver
and can therefore get results

Quality Scope
creep

Scope
creep

Scope

CostTi
m

e

Figure 1-3:
Scope

creep is
project

poison that
changes the
alignment of

the Iron
Triangle.

18 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 18

Commonly, projects limp to the finish line, late, overbudget, and after crush-
ing the morale of everyone involved. Done, but maybe not done well. These
projects typically have three attributes:

� Poor requirements from the project customers

� Poor communications through the project manager

� Poor morale from the project team

The saddest of projects are the ones that never make it to the finish. This
bunch misses deadlines, blows budgets, or experiences a radical change of
scope so often that no one (not even the PM) knows exactly what the project
should be creating anymore. Failed projects usually have some, if not all, of
these attributes:

� No clear vision of what the project priorities are

� Lack of leadership from the project manager and/or sponsor

� A timid project manager

� Lack of autonomy for the project manager

� New resumes being typed in unison

Starting and Finishing Software Projects
All projects, from your software creations to building the bridge over the
River Kwai, pass through five process groups as defined by the Project
Management Institute. A process group is a mini life cycle that moves the pro-
ject one step closer to completion. Process groups are cycles because the
processes don’t just happen once; they are repeated throughout the project
as many times as needed.

Figure 1-4 demonstrates a sequence for process groups; the processes flow
organically, in the order that best suits the needs of the project. Although we
hope you don’t have to keep repeating some of these stages, if your project
isn’t going according to plan you will have to do just that.

All projects, software and otherwise, go through these project management
processes. Each of these project management processes has its nuances. We
describe them in more detail in Chapter 2.

19Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 19

� Initiating: That’s really where you are now. The project is in the process
of getting selected, sponsored, funded, and launched.

� Planning: As you can see in Figure 1-4, planning is an iterative
process. Planning basically determines how the project work will
get accomplished.

� Executing: After you get a plan, your project team does the work.

� Controlling: Your project team does the work, but you control them.

� Closing: Ah, paradise. After the project work has been completed, you
tie up loose ends and close out the software project.

Understanding What Makes Software
Project Management So Special

There’s nothing special about software project management that changes the
Iron Triangle or the five process groups. What is special about project man-
agement, however, is the nature of the work.

Just as the particulars of designing a new warehouse, building a house, or
creating a prototype for a remote controlled airplane are unique, so is the
creation of software:

� Software development is weird and requires a specialized skill set to do
it well.

� Software creation is tough.

� Software development can be boring, routine, and mind numbing.

� Software creation can create challenges within the development of the
code.

Initiating Processes Planning Processes

Controlling Processes

Closing Processes

Executing Processes

Figure 1-4:
All projects

follow
repeating

sequences
called

process
groups.

20 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 20

Breaking Moore’s Law
A long time ago, in 1965, Gordon Moore wrote a scientific paper called
“Cramming More Components onto Integrated Circuits.” The synopsis of his
paper is that the number of transistors per integrated circuit could double
every two years. The press loved it. The theory became known as Moore’s
Law. And he’s been pretty accurate on his prediction.

The importance of Moore’s Law in software project management is that more
transistors per circuit mean faster processors. Faster processors mean more
elaborate software. More elaborate software means we need faster proces-
sors. And on and on the cycle goes.

Because information technology (IT) drives many businesses today, there is
a direct connection between the speed of technology and an organization’s
bottom line. Between the two is the software the organization relies on.
Consequently, businesses demand software that’s reliable, secure, and scal-
able. Your organization’s profitability, stability, and ability to attract new cus-
tomers rely on you and your project team.

Although businesses rely on technology to remain competitive, many soft-
ware project managers miss this key point: It’s not about the technology.
Software project management is about the business. It’s about helping your
company, your colleagues, and even the stockholders of your organization to
be successful.

If you’re an IT guru you may easily fall in love with the bits and bytes of day-
to-day software development. However, if you’re a project manager, you
cannot. Your focus should be on one thing: getting the project done — on
time and on budget.

Dealing with Moore
As your project moves towards completion, chances are there will be
leapfrogs in the technology you’re dealing with. There’ll be new versions of
operating systems, service packs to address problems in versions of software
your software relies on, and more. Part of software project management is to
have a plan to address these potential changes. Every (yes, every) software
project manager should have an allotment of time added to the project
schedule specifically for planning and responding to Moore’s Law. You’re
saying, “My customers and management won’t give me more time just for
planning and responding. My customers and management barely give me

21Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 21

enough time to complete my project if everything goes perfectly.” Notice that
we said you “should” have more time. That doesn’t mean you will. After all,
time is money.

So what do you do? By relying on historical information, you can help your
project adjust to Moore’s Law. If you have documented instances of past pro-
jects that failed because of a lack of time to respond to changing technology,
use it. If you have records of your past projects, you can show how the pro-
ject would have, or at least could have, been more successful with this allot-
ment of time.

This is a good time to remind you to save your project documentation so that
you and other software project managers can use it for the same purpose in
the future. Check out Part V of this book for more on documentation.

Documented instances are your best argument. We’re not saying it’s a slam-
dunk, but we’d wager dollars to donuts you’ll at least have a meaningful con-
versation about the extra time allotment for planning. Ask your customer or
management to try it one time and see what happens. And then document,
document, document to prove your point.

If you don’t have these project records, well, there’s good news and bad
news. The bad news is that it’s hard to argue for additional time for planning
without proof of why the time will be needed. The good news is that you can
start now. Without the additional time allowed for your project, here’s what
we recommend:

� Do a thorough risk assessment. Document how the risks due to changes
in technology could contribute to failure.

� Document lost time. Document any lost time tied to technical changes
(research, team training, subject matter experts, and so on).

� Document lessons learned. Begin your lessons learned documentation,
a document that highlights all the lessons learned, with attention to
technology changes, at the start of the project, and as your software
project progresses, complete your lessons learned documentation.

� Communicate proactively. Communicate to your stakeholders when
changes to technology enter and influence your project.

As a technology professional, it’s your job to have your finger on the
pulse of change in your industry. You don’t want to be blindsided by
some major technological event, and you never want to withhold infor-
mation to your stakeholders that could affect the longevity of a software
product. The most important thing you can do is balance cost effective-
ness and profitability.

22 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 22

Dealing with the first-time,
first-use penalty
One of the most common questions when it comes to software project man-
agement is, “How can we tell how much this’ll cost or how long this’ll take if
it’s never been done before?”

This is the first-time, first-use penalty. The penalty is that you just don’t know.
It may cost thousands, even millions, if the technology has never, ever been
done before. And time? Well, that’s even more difficult to grasp.

You’ve experienced this. The first time your project team develops code in a
new language, productivity slides. The first time an end user loads and uses
your application, there’s a learning curve.

23Chapter 1: Examining the Big Picture of Project Management

Leading versus managing
When you think of leadership you probably think
of positive attributes; a leader is honest, inspir-
ing, and motivating. All true. And when you think
of a manager you probably have thoughts
like work-centric, accountability, and results-
oriented. Also true.

A project manager has to be both a leader and
a manager. A leader aligns, motivates, and
directs people towards accomplishments. A
leader is interested in what others want and
what others need. A leader can empathize,
inspire, and help others reach their goals. A
leader cares.

A manager is concerned about one thing:
results. A manager needs the team members to
deliver on their promises. A manager needs to
see progress and accomplishment. A manager
may care about the project team, but not as
much as he cares about the project team’s abil-
ity to get the work done.

A truly effective project manager, regardless of
the situation, organizational structure, or tech-
nology the project focuses on, must be a leader
and a manager. You have to be both.

Take note. If you’ve got any skills at all and
you’re just starting out in this business, you are
probably either a good manager or a good
leader, but not yet both. You’ll soon find out
which category you fall into. Remember, not
everyone has to like you, but everyone has to
respect you. If team members refer to you as
Mussolini when they’re standing around the
water cooler, you’re probably overdoing the
management part of your job. If they call you “all
talk and no action,” you may need to beef up
those management skills and lay off the motiva-
tional seminars. As you evolve as a PM, you’ll
find the right balance between these two
extremes.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 23

The first time you stretch your teams, you face challenges with deadlines,
cost, and even attitude. Productivity slides, but eventually productivity
should curve beyond current levels to a new plateau. At least that’s the
theory. Actual mileage may vary.

Chances are your team has worked with the programming language before.
Chances are you’ve done a similar project before. Chances are you have a gut
feeling for the time, cost, and feasibility of the project. Chances are, based on
your experience, you have some idea of how the project is going to go.

Of course, out here in the real world, you can’t go on hunches. Even though
it’s not feasible to expect these things, your customers, your boss, and your
stakeholders want just the facts, only the most definite answers, and the
most exact time and cost figures possible.

This is where an acceptable range of variances must be introduced. A range of
variance is a cushion based on your estimates. No, we’re not talking about
bloating your estimates, but establishing a level of confidence in the esti-
mates you give. A range of variance is the +/– percentage, time, or cost you
append to your estimates. See Figure 1-5.

Acceptable Low Range

Actual Costs

Acceptable High Range

Co
st

s

115,000

100,000

95,000

0

Estimated baseline

BaselineBaseline

Figure 1-5:
The ideal
baseline,

the
accepted

range of
variance,

and the
actual

results for a
typical

software
project can
vary wildly.

24 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 24

