
1
The Online Diary

and Organizer

By the end of this chapter you’ll have created an online diary, organizer, and contacts manager. So
what exactly does the online diary and organizer do? Using a calendar-based interface it allows
you to add, delete, and edit a diary entry for any day. It also allows you to create events: for exam-
ple, to keep a note of your rich Uncle Bob’s birthday — wouldn’t want to forget that, would you?
It’s not just limited to birthdays, but any event: meetings, appointments, and so on.

The system has a basic username and password logon system, so that only you and no one else
can view your own diary. This is what differentiates it from a blog. This system is a private diary
and contacts manager — a place to put all those thoughts and comments you’d rather not have the
world see. Unlike a blog, where you want the world to see it!

This whole project demonstrates the power of ASP.NET 2.0 and how easy it makes creating pro-
jects like this. Gone are the days of hundreds of lines of code to do security logons, create new
users, and so on. This chapter employs the new security components of ASP.NET 2.0 to show just
how easy it is to create fun, exciting, and useful projects.

The first section takes you through using the diary and its main screens. Then, the “Design of the
Online Diary” section walks you through an overview of the system’s design. After that you get
into the nuts and bolts of the system and how it all hangs together. In the final section, you set up
the diary.

Using the Online Diary
Each user has his or her own online diary; to access it requires logging on. Enter username user5
with the password 123!abc to log in as a test user. The log on screen is shown in Figure 1-1.

Although the screenshot may suggest lots of controls and lots of code to make the security func-
tion, in fact with the new security controls in ASP.NET 2.0 it’s very easy and not much work at all.

If you have not registered, a link will take you to the Sign Up page, depicted in Figure 1-2.

04_749516 ch01.qxp 2/10/06 9:11 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Figure 1-1

Figure 1-2

This shows another of the new security controls in ASP.NET 2.0; creating a registration process is now
just a matter of adding a control to a form!

If you’ve forgotten your password, you can click the Forgotten Your Password? link, which directs you
to the Password Reminder wizard pages (see Figure 1-3).

Figure 1-3

Having logged on, you arrive at the main diary page, as displayed in Figure 1-4.

2

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 2

Figure 1-4

On this page you see a monthly calendar. Days with diary entries are marked with a blue background.
Days with events are marked in red text. Notice also on the right that upcoming events are highlighted,
as are recent diary entries.

Clicking on a day moves you through to the area where you can enter your diary entry for that day; and
add, edit, and delete events (see Figure 1-5).

Figure 1-5
3

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 3

You can also navigate your diary from here via the small calendar to the right.

Adding a diary entry simply involves typing in the Entry Title and Diary Text boxes and clicking the
Save Entry button.

Events happening on a particular day are listed in the Events table at the bottom-left of Figure 1-5. You
can edit and delete events, or click the Add New Event link to add a new event. The Edit and Add event
pages are almost identical in look. An example of the Edit Event page is shown in Figure 1-6.

Figure 1-6

In the Edit Event page, you can set the event’s name, include a brief description, what time the event
starts, and how long it lasts.

Returning to the main diary page (refer to Figure 1-4) you’ll see a Manage Your Contacts link, as shown
in Figure 1-7.

Figure 1-7

Clicking that link takes you to the Contact Management page (see Figure 1-8).

4

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 4

Figure 1-8

Here you see a list of your contacts, which you can edit and delete by clicking the appropriate link in the
Contacts table. You can also add a new contact by clicking the Add New Contact link, which takes you
to the New Contact page (no surprise there!), shown in Figure 1-9.

Figure 1-9

Currently the contacts functionality is fairly simple, with such things as linking events and contacts and
automatically e-mailing contacts to remind them of an event.

5

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 5

So you’ve seen what the Online Diary does, now you can look at how it does it! The next section
describes the overall design and how the system hangs together. You get a high-level tour of the
database setup and each of the classes the system uses.

Design of the Online Diary
The diary system is split into the common three-layer architecture. All data and direct data modifying
code are in the data layer, a combination of database tables and stored procedures. The data access layer
is examined next.

Above the data access layer is the business layer providing all the rules and intelligence of the system.
The business layer has been coded as seven classes, which you tour through shortly.

Finally, the bit the user sees is the presentation layer, consisting of a number of .aspx files that utilize the
business and data access layers to create the diary’s interface. This layer is discussed in the last part of
this section.

The Data Access Layer
The Online Diary uses a SQL Server 2005 Express database. However, there’s no reason why this couldn’t
be changed to work with other databases. If the database supports stored procedures, then in theory all
that’s needed is a change of connection string and creation of stored procedures matching those in the
current SQL Server database. If the database doesn’t support stored procedures — for example, MS
Access — changes to class code would be necessary but not difficult.

Figure 1-10 shows the tables in the Online Diary database (DiaryDB).

Figure 1-10

6

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 6

The default database created using the new membership features of ASP.NET 2.0 is also used. The
database is a SQL Server Express database and not modified from the one created by Visual Studio
Express. However, to link the log on and the diary details, the UserName field in the DiaryDB database
takes its value originally from the membership database. You go through this in more detail shortly.
Membership details are contained in the ASPNETDB database that Visual Web Developer Express cre-
ates for you. Although it contains quite a few tables, you never access them via the code in this project.
It’s accessed exclusively by the new Login controls — it does all the hard work behind the scenes!

This project only makes use of the aspnet_Users table, shown in Figure 1-11, to provide log on security
checking and provide a username for the main DiaryDB. You may well want to extend the membership
database to include extra functionality such as personalizing the user experience or providing different
levels of membership (admin, user, operator), among other things.

Figure 1-11

The tables of the main Online Diary database and their roles are listed in the following table:

Table Name Description

Diary Contains details of all Online Diary users, their DiaryId, and names.

DiaryEntry Contains all the diary entries for all diary users.

DiaryEvent Contains all the diary events for all diary users.

Contact Holds the details of all contacts for the diaries.

The key that links all of the tables together is the DiaryId field. It’s the primary key field in the Diary
table and a foreign key field in all the other tables. Why not use the UserName field? Basically speed —
it’s easier and therefore faster for the database to do joins and searches on an integer field than it is on
character-based fields.

All access to the database is via a stored procedure. The naming convention is simply as follows:

ActionThingThisActionRelatesTo

7

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 7

Consider this very simple stored procedure:

DeleteContact

Rather unsurprisingly, DeleteContact deletes a contact from the database. The naming convention
means the purpose of each stored procedure doesn’t need a lot of explanation. As the code is discussed,
you look at the stored procedures in more detail where necessary.

The Business Layer
The business layer is organized into seven classes. The four main classes are as follows:

❑ OnlineDiary

❑ DiaryEntry

❑ DiaryEvent

❑ Contact

These classes do most of the work of temporarily holding diary-related data and retrieving and storing
it in the database. There are also three collection classes. The first order of business is the OnlineDiary
class.

The OnlineDiary Class
This class contains only two shared public methods, detailed in the following table:

Method Return Type Description

InsertDiary(ByVal UserName As String, None Inserts a new diary user
ByVal FirstName As String, ByVal into the OnlineDiary
LastName As String) database.

GetDiaryIdFromUserName(ByVal Integer Looks up the UserName
UserName As String) in the database and returns

the associated DiaryId.

The purpose of the OnlineDiary class is simply to provide a couple of handy shared methods relating
to an online diary as a whole. It could also be used to expand the diary system and add new functional-
ity that relates to the overall diary system, rather than a specific part such as contacts.

The Contact Class
The Contact class objectifies a single contact — a person or thing for which you want to store contact
information. It encapsulates everything to do with contacts, including the storing and retrieving of con-
tact information in the database.

8

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 8

It has two constructors, outlined in the following table:

Constructor Description

New(ByVal Diaryid as Integer) Creates a new Contact object with all properties set to
their default values.

New(ByVal ContactId As Long) Creates a new Contact object with its properties retrieved
from the database using the argument ContactId.

Having created a Contact object, saving it involves simply calling the Save() method. The class will
work out whether it’s a new contact that needs to be inserted into the database, or an existing one that
needs to be updated. In addition to the Save() method, the Contacts class contains two Delete()
methods, as well as two GetContacts() methods, all of which are outlined in the following table:

Method Return Type Description

Save() None Saves a fully populated Contact
object. If it’s a new contact, Save()
calls InsertNewContact sub, and
the details are inserted into the
database. The new ContactId is
returned from the database and
entered into mContactId. If the con-
tact already exists in the database,
Save() calls UpdateContact, which
updates the database values with
those in the Contact object.

DeleteContact() None Deletes from the database the Con-
tact object with ContactId equal to
mContactId of the object. Contact
object’s values are re-initialized to
their defaults.

DeleteContact(ByVal None Shared method that deletes the
ContactId As Long) Contact object from the database

with a ContactId value equal to the
ContactId argument of the method.

GetContactsByFirstLetter(ByVal SqlDataReader Shared method that returns a
DiaryId As SqlDataReaderobject populated
Integer,Optional ByVal with a list of contacts whose
FirstLetterOfSurname surname’s first letter matches the
As Char) FirstLetterOfSurname argu-

ment.This argument is optional; if
left off, all Contact objects regard-
less of surname’s first letter are
included in the DataSet’s rows.

Table continued on following page

9

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 9

Method Return Type Description

GetContactsByFirstLetterAsCollection(ByVal SqlDataReader Shared method
DiaryId As Integer, Optional ByVal that returns a
FirstLetterOfSurname As Char) ContactCollection

object populated
with Contact objects
whose surname’s first
letter matches the
FirstLetterOfSurname
argument. This argument
is optional; if left off, all
Contact objects regard-
less of surname’s first
letter are included in
the DataSet’s rows.

Finally, the Contact class contains the following properties:

Property Type Description

ContactId Long Each contact is represented by a unique ID. The ID is auto-
generated by the Contact table in the database whenever a
new contact is inserted.

FirstName String Contact’s first name.

LastName String Contact’s surname.

Email String Contact’s e-mail address.

Telephone String Contact’s telephone number.

MobilePhone String Contact’s mobile phone number.

AddressLine1 String Contact’s house name and street address.

City String Contact’s city of residence.

State String Contact’s state.

PostalCode String Contact’s zip or postal code.

The ContactCollection Class
The ContactCollection class inherits from the System.Collections.CollectionBase class. The
ContactCollection class’s purpose is simply to store a collection of Contact objects. This class gets
extensive use in the next chapter, when you create a contacts organizer.

10

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 10

The ContactCollection class has only one property:

Property Type Description

Item(ByVal Index As Integer) Integer Returns the Contact object stored at the
position in index in the collection.

The ContactCollection class’s public methods are as follows:

Method Return Type Description

Add(ByVal NewContact As Contact) None Adds a Contact object to
the collection held by the
ContactCollection object.

Add(ByVal ContactId As Long) None Creates a new Contact object.
ContactId is passed to the
Contact object’s constructor
to ensure it’s populated with
the contact’s details from the
database. The new Contact
object is then added to the
collection maintained by the
ContactCollection object.

Remove(ByVal Index as Integer) None Removes the Contact object
from the collection at the speci-
fied index.

That deals with the Contact classes; now take a look at the two classes dealing with diary entries.

The DiaryEntry Class
The DiaryEntry class objectifies a single entry in a diary. It encapsulates everything to do with diary
entries, including creating, updating, and retrieving diary entry data. It handles all the database access
for diary entries.

It has three constructors, outlined in the following table:

Constructor Description

New(ByVal DiaryId as Integer) Creates a new DiaryEntry object with all properties
set to their default values.

New(ByVal DiaryEntryId As Long) Creates a new DiaryEntry object with its properties
retrieved from the database using the argument
DiaryEntryId.

New(ByVal DiaryId AS Integer, Creates a new DiaryEntry object with its properties
ByVal EntryDate As Date) retrieved from the database using the arguments

DiaryId and EntryDate.

11

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 11

Having created a DiaryEntry object, saving it involves simply calling the Save() method. As with the
Save() method of the Contacts class, the DiaryEntry class will work out whether it’s a new diary
entry that needs to be inserted into the database, or an existing entry that needs to be updated. As well
as enabling retrieval of one diary entry’s details, the DiaryEntry class provides additional methods for
getting details of a number of diary entries as either a collection or as a DataSet by returning a
sqlDataReader object. The methods of this class are explained in the following table:

Method Return Type Description

Save() None Saves a fully populated
DiaryEntry object. If it’s a
new entry, Save() calls
InsertNewDiaryEntry
sub and the details are
inserted in to the database.
The new DiaryEntryId is
returned from the database
and entered in to mDi-
aryEntryId.
If the entry already exists
in the database, Save()
calls UpdateContact,
which updates the
database values with those
in the DiaryEntry object.

GetDaysInMonthWithEntries(ByVal Boolean Array Shared method that
DiaryId As Integer, ByVal Month returns a Boolean
As Integer, ByVal Year As
Integer) array detailing which days

have a diary entry associ-
ated with them. The array
index matches with the
day of the month (1 is the
first of the month, 2 the
second, and so on).

GetDiaryEntriesByDate(ByVal SqlDataReader Shared method
DiaryId As Integer, ByVal that returns a
FromDate As Date, ByVal ToDate SQLDataReader object
As Date) populated with rows from

the database detailing
diary entries between the
FromDate and ToDate
arguments.

12

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 12

Method Return Type Description

GetDiaryEntriesByDateAsCollection(ByVal DiaryEntryCollection Creates a new
DiaryId As Integer, ByVal FromDate DiaryEntry
As Date, ByVal ToDate As Date) Collection

object and populates
it with DiaryEntry
objects whose
EntryDate is
between the
FromDate and
ToDate arguments.

GetDiaryEntriesRecentlyChanged(ByVal SqlDataReader Returns a
DiaryId As Integer) SqlDataReader

containing a DataSet
of diary entries
recently created.

In addition to the constructors and methods, the DiaryEntry class contains the following properties:

Property Type Description

EntryTitle String Title for the day’s diary entry.

EntryText String Text of the day’s diary entry.

EntryDate Date Date the entry was posted.

The other class dealing with diary entries is the DiaryEntryCollection class, which is explained next.

The DiaryEntryCollection Class
The DiaryEntryCollection class inherits from the System.Collections.CollectionBase class. Its
purpose is simply to store a collection of DiaryEntry objects.

This class contains only one property, described in the following table:

Property Type Description

Item(ByVal Index As Integer Returns the DiaryEntry object stored
Integer) at the specified position in index in the

collection.

13

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 13

Along with the Item() property, the DiaryEntryCollection class has three public methods:

Method Return Type Description

Add(ByVal New DiaryEntry None Adds a DiaryEntry object to the collection
As DiaryEntry) held by the DiaryEntryCollection

object.

Add(ByVal DiaryEntryId None Creates a new DiaryEntry object.
As Long) DiaryEntryId is passed to the

DiaryEntry object’s constructor to ensure
it’s populated with the diary entry’s details
from the database. The new DiaryEntry
object is then added to the collection main-
tained by the DiaryEntryCollection
object.

Remove(ByVal Index as None Removes the DiaryEntry object from the
Integer) collection at the specified index.

So far the classes dealing with contacts and diary entries have been discussed. The next section discusses
the diary events.

The DiaryEvent Class
The DiaryEvent class objectifies a single entry in a diary. It encapsulates everything to do with diary
entries, including creating, updating, and retrieving diary events data. It handles all the database access
for diary events.

The DiaryEvent class has three constructors, outlined as follows:

Constructor Description

New(ByVal Diaryid as Integer) Creates a new DiaryEvent object with all properties set to
their default values.

New(ByVal EntryId As Long) Creates a new DiaryEvent object with its properties
retrieved from the database using the argument EventId.

New(ByVal DiaryId AS Integer, Creates a new DiaryEvent object with its properties
ByVal EventDate As Date) retrieved from the database using a combination of the

arguments DiaryId and EventDate.

Having created a DiaryEvent object, saving it involves simply calling the Save() method. The class
will work out whether it’s a new diary event to insert into the database, or an existing one in need of
updating. The DiaryEvent class also has two Delete() methods. One is a shared method and therefore
doesn’t require a DiaryEvent to be created, and requires an EventId parameter. It’s used by some of
the built-in data access components provided with ASP.NET 2.0. The second is an object method that
deletes the event referenced by the current DiaryEvent object. As well as enabling the details of one
diary entry to be retrieved, the DiaryEvent class provides additional methods for getting details of a
number of diary events as either a collection or as a DataSet by returning a SqlDataReader object.

14

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 14

The following table explains these methods in detail:

Method Return Type Description

Save() None Saves a fully populated
DiaryEvent object. If it’s
a new entry, Save() calls
InsertNew DiaryEvent
sub and the details are
inserted into the data-
base. The new EventId
is returned from the
database and entered
in to mEventId.
If the entry already
exists in the database,
Save() calls
UpdateDiaryEvent,
which updates the
database values with
those in the DiaryEvent
object.

GetDaysInMonthWithEvents(ByVal Boolean Array Shared method that
DiaryId As Integer, ByVal returns a Boolean array
Month As Integer, ByVal Year detailing which days
As Integer) have events associated

with them. The array
index matches with the
day of the month (1 is the
first of the month, 2 the
second, and so on).

GetDiaryEventsByDate(ByVal DiaryId SqlDataReader Shared method
As Integer, ByVal FromDate As Date, that returns a
ByVal ToDate As Date) SqlDataReader object

populated with rows
from the database detail-
ing diary events between
the FromDate and
ToDate arguments.

GetDiaryEventsByDateAsCollection(ByVal DiaryEventCollection Creates a new Diary
DiaryId As Integer, ByVal FromDate As EventCollection
Date, ByVal ToDate As Date) object and populates it

with DiaryEvent objects
whose EntryDate is
between the FromDate
and ToDate arguments.

Table continued on following page

15

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 15

Method Return Type Description

DeleteEvent() None Deletes from the database the
event with EventId equal to
mEventId of the object. The
DiaryEvent object’s values are
re-initialized to their defaults.

DeleteEvent(ByVal EventId As Long) None Shared method that deletes the
event from the database with
an EventId value equal to the
EventId argument of the
method.

In addition to the constructors and public methods, the DiaryEvent class has these four properties:

Property Type Description

EventDescription String Description of the event.

EventName String Short name for the event.

EventDate Date Date the event starts.

EventDuration Integer Length of time in minutes that the event lasts.

One more class to go. The next section looks at the diary collection handling class:
DiaryEventCollection.

The DiaryEventCollection Class
The DiaryEventCollection class inherits from the System.Collections.CollectionBase class. Its
purpose is simply to store a collection of DiaryEvent objects. The class employs the following methods:

Method Return Type Description

Add(ByVal NewDiaryEvent As None Adds a DiaryEvent object to the collection
DiaryEvent) held by the DiaryEventCollection

object.

Add(ByVal DiaryEventId None Creates a new DiaryEvent object.
As Long) DiaryEventId is passed to the

DiaryEvent object’s constructor to ensure
it’s populated with the event’s details from
the database. The new DiaryEvent object
is then added to the collection maintained
by the DiaryEventCollection object.

Remove(ByVal Index As None Removes the DiaryEvent object from the
Integer) collection at the specified index.

16

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 16

This class contains only one property:

Property Type Description

Item(ByVal Index As Integer) Integer Returns the DiaryEvent object stored at
the position in index in the collection.

That completes an overview of all the classes and their design, methods, and properties. The next section
takes a more in-depth look at the code and the .aspx pages dealing with presentation.

Code and Code Explanation
This section digs into each of the important pages and shows you how they interact with each other, as
well as how they use the classes in the business layer. This section doesn’t cover every single line of
every page, but rather it takes a general overview of how the application works and dives a bit deeper
where necessary.

Discussion of the project is approached in a functionality-based way. Instead of discussing a specific
page and what it does, the following sections discuss a process — such as registration — and how it’s
achieved.

It begins with an overview of the files and file structure.

File Structure
An overview of the file structure is shown in Figure 1-12.

Figure 1-12

17

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 17

Each of the seven class files is stored in the App_Code directory (at the top of the figure). The App_Data
directory contains the two databases: the login database (ASPNETDB.MDF) and the Online Diary
database (DiaryDB.mdf). Pages that require you to log in before viewing are stored separately in the
SecureDiary directory. Finally, the root directory contains login pages, registration pages, and password
reminder pages; basically anything that requires you to be logged in to view.

Registration, Logging On, and Security
The Online Diary application uses the new Login controls to provide the diary’s user handing features,
including new user registration, log in, and password reminder.

The Login controls are a real time saver, allowing a lot of sophisticated functionality to be added with
just a little work and hardly any code! ASP.NET 2.0 has seven new security or login controls:

❑ Login: Enables users to log in and verifies username and password.

❑ LoginView: Enables the display of different templates depending on whether a user is logged in
and also his or her role membership.

❑ PasswordRecovery: Provides password reminder functionality for users who forget their
password.

❑ LoginStatus: Displays whether a user is logged in or out.

❑ LoginName: Displays currently logged-in username.

❑ CreateUserWizard: Creates a new user wizard — registration of a new user in simple steps.

❑ ChangePassword: Enables users to change their password.

The Online Diary project, however, use only the Login, LoginName, CreateUserWizard, and
ChangePassword controls.

Logging On
The SignOn.aspx page contains a Login control. The user database is created using the web site admin-
istration tools. This goes through the steps needed one by one, and once it’s finished a new database
called ASPNETDB.MDF appears in the App_Data directory of the diary project.

The markup for the Login control is shown here:

<asp:Login ID=”Login1” runat=”server” BackColor=”#F7F6F3” BorderColor=”#E6E2D8”
BorderPadding=”4”

BorderStyle=”Solid” BorderWidth=”1px” CreateUserText=”Not
registered? Click here to register now.”

CreateUserUrl=”~/RegisterStart.aspx”
DestinationPageUrl=”~/SecureDiary/DiaryMain.aspx” Font-Names=”Verdana”

Font-Size=”0.8em” ForeColor=”#333333” Height=”197px”
PasswordRecoveryText=”Forgotten your password?”

PasswordRecoveryUrl=”~/PasswordReminder.aspx” Style=”z-
index: 100; left: 78px;

position: absolute; top: 55px” Width=”315px”>
<LoginButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”

BorderStyle=”Solid” BorderWidth=”1px”

18

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 18

Font-Names=”Verdana” Font-Size=”0.8em”
ForeColor=”#284775” />

<TextBoxStyle Font-Size=”0.8em” />
<TitleTextStyle BackColor=”#5D7B9D” Font-Bold=”True” Font-

Size=”0.9em” ForeColor=”White” />
<InstructionTextStyle Font-Italic=”True” ForeColor=”Black”

/>

</asp:Login>

Important attributes to note are DestinationPageUrl, which determines where the user is navigated to
if he or she enters a valid username and password. In the Online Diary project it’s the Diarymain.aspx
page, the center of the Online Diary’s interface.

To enable new users to register, the CreateUserText has been set to a friendly “register here” message;
the URL for registering is specified in CreateUserUrl.

Finally, just in case the user has already registered but forgotten his or her password, the
PasswordRecoveryText attribute displays a “Forgotten your password?” message and
PasswordRecoveryUrl sets the URL the users are navigated to if they need to find out their password.

The only code you need to write is in the Login control’s LoggedIn event, which fires if the user suc-
cessfully enters a username and password:

Protected Sub Login1_LoggedIn(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Login1.LoggedIn

Dim DiaryId As Integer = GetDiaryIdFromUserName(Login1.UserName)
Session(“DiaryId”) = DiaryId

End Sub

This uses the supplied username to look up the user’s DiaryId in the Online Diary database. This is
then stored in the session variable.

The SignOn.aspx page also allows new users to register.

New User Registration
The RegisterStart.aspx. page deals with the registration of a new user. As with SignOn.aspx, this page
also uses one of the new Login controls, this time the CreateUserWizard control. The markup for the
CreateUserWizard control is shown in the following code:

<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server”
BackColor=”#F7F6F3” BorderColor=”#E6E2D8”

BorderStyle=”Solid” BorderWidth=”1px” Font-Names=”Verdana” Font-
Size=”0.8em”

Style=”z-index: 100; left: 66px; position: absolute; top: 43px”
Height=”164px” Width=”300px” FinishDestinationPageUrl=”~/SignOn.aspx”>

<SideBarStyle BackColor=”#5D7B9D” BorderWidth=”0px” Font-Size=”0.9em”
VerticalAlign=”Top” />

<SideBarButtonStyle BorderWidth=”0px” Font-Names=”Verdana”
ForeColor=”White” />

19

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 19

<NavigationButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid”

BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />
<HeaderStyle BackColor=”#5D7B9D” BorderStyle=”Solid” Font-Bold=”True”

Font-Size=”0.9em”
ForeColor=”White” HorizontalAlign=”Left” />

<CreateUserButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid”

BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />
<ContinueButtonStyle BackColor=”#FFFBFF” BorderColor=”#CCCCCC”

BorderStyle=”Solid”
BorderWidth=”1px” Font-Names=”Verdana” ForeColor=”#284775” />

<StepStyle BorderWidth=”0px” />
<TitleTextStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<WizardSteps>

<asp:CreateUserWizardStep runat=”server”>
</asp:CreateUserWizardStep>
<asp:WizardStep ID=”personalDetailsStep” runat=”server” Title=”User

Details”>
<table border=”0” style=”font-size: 100%; font-family:

Verdana; z-index: 100; left: 0px; position: absolute; top: 0px;”>
<tr>

<td align=”center” colspan=”2” style=”font-weight:
bold; color: white; background-color: #5d7b9d”>

Your Personal Details</td>
</tr>
<tr>

<td align=”right” style=”height: 26px”>
<label for=”UserName”>

Your First Name:</label></td>
<td style=”width: 179px; height: 26px”>

<asp:TextBox ID=”firstNameTextBox”
runat=”server” CausesValidation=”True”></asp:TextBox>

</td>
</tr>
<tr>

<td align=”right”>
<label for=”Password”>

Your Last Name:</label></td>
<td style=”width: 179px”>

<asp:TextBox ID=”lastNameTextBox”
runat=”server” CausesValidation=”True”></asp:TextBox>

</td>
</tr>
<tr>

<td align=”center” colspan=”2” style=”height:
18px”>

 </td>
</tr>
<tr>

<td align=”center” colspan=”2” style=”color: red”>
 </td>

</tr>

20

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 20

</table>
</asp:WizardStep>
<asp:CompleteWizardStep runat=”server”>

<ContentTemplate>
<table border=”0” style=”font-size: 100%; width: 383px;

font-family: Verdana; height: 164px”>
<tr>

<td align=”center” colspan=”2” style=”font-weight:
bold; color: white; background-color: #5d7b9d”>

Complete</td>
</tr>
<tr>

<td>
Your account has been successfully

created.</td>
</tr>
<tr>

<td align=”right” colspan=”2”>
<asp:Button ID=”ContinueButton” runat=”server”

BackColor=”#FFFBFF” BorderColor=”#CCCCCC”
BorderStyle=”Solid” BorderWidth=”1px”

CausesValidation=”False” CommandName=”Continue”
Font-Names=”Verdana” ForeColor=”#284775”

Text=”Continue” ValidationGroup=”CreateUserWizard1” />
</td>

</tr>
</table>

</ContentTemplate>
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

Most of the markup and attributes relate to style settings. However, one essential attribute is the
FinishDestinationPageUrl. This is where the user is taken once the registration process is com-
pleted; in the Online Diary it’s the SignOn.aspx page.

You’ve probably noticed a number of WizardStep tags in the markup, such as this one:

<asp:WizardStep ID=”personalDetailsStep” runat=”server” Title=”User Details”>

The CreateUserWizard works on a step-by-step basis. There must be least one step that allows the user
to choose a username and password and various security questions (see Figure 1-13).

This step and its style can be modified, but Figure 1-13 shows its default value. The control takes care of
inserting the new user data into the user database.

A second step, shown in Figure 1-14, is displayed after the user is created.

21

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 21

Figure 1-13

Figure 1-14

This screen asks users for their first name and last name. This time it’s up to you to store the data some-
where, and you do that in the CreateUserWizard control’s FinishButtonClick event:

Protected Sub CreateUserWizard1_FinishButtonClick(ByVal sender As Object, ByVal
e As System.Web.UI.WebControls.WizardNavigationEventArgs) Handles
CreateUserWizard1.FinishButtonClick

Dim myTextBox As TextBox
Dim UserName, FirstName, LastName
myTextBox = CreateUserWizard1.FindControl(“firstNameTextBox”)
FirstName = myTextBox.Text
myTextBox = CreateUserWizard1.FindControl(“lastNameTextBox”)
LastName = myTextBox.Text
UserName = CreateUserWizard1.UserName
OnlineDiary.InsertDiary(UserName, FirstName, LastName)

End Sub

22

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 22

This step creates a new diary for users and stores their first and last names. The UserName comes from
the CreateUserWizard control’s UserName property, and then uses the shared method InsertDiary()
to insert the new user in the Online Diary’s database.

Being human, sometimes people forget their passwords. Fortunately, ASP.NET 2.0 comes with the capa-
bility to refresh overloaded memories.

Password Reminder
Again with virtually no code, you can create a fully functional password reminder feature for the Online
Diary, this time courtesy of the PasswordRecovery control. Virtually all of its settings are at the default
values or simply related to style. Even better, there’s just one line of code and that’s in the SendingMail
event:

Protected Sub PasswordRecovery1_SendingMail(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.MailMessageEventArgs) Handles
PasswordRecovery1.SendingMail

returnToLogOnHyperLink.Visible = True
End Sub

The SendingMail event fires when the user presses the Send Email button and simply displays the
Return to Main Page link, rather than leaving the user guessing as to where to go next.

The main work involved is configuring the SMTP server settings that’ll be used to actually send the
password reminder e-mail. Visual Web Developer doesn’t come with an SMTP server. However, if you
are using Windows XP or 2000, all you need to do to install one is go to the Start➪Settings➪Control
Panel➪Add or Remove Programs. From there, select Add/Remove Windows Components. Select the
Internet Information Server (IIS) option and click Details at the bottom-right of the dialog. In the result-
ing dialog box, you’ll see a list. Check the box next to SMTP Service and click OK. Then click Next to
install an SMTP service.

Once the SMTP service is installed, add the following shaded code between the <configuration> tags
in the Web.config file:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<connectionStrings>
<add name=”DiaryDBConnectionString” connectionString=”Data

Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\DiaryDB.mdf;Integrated
Security=True;User Instance=True”

providerName=”System.Data.SqlClient” />
</connectionStrings>
<system.web>
<roleManager enabled=”true” />

<authentication mode=”Forms”/>
<compilation debug=”true”/></system.web>

<system.net>
<mailSettings>
<smtp from=”system@diary-system.com”>
<network host=”localhost” password=”” userName=”” />
</smtp>
</mailSettings>
</system.net>
</configuration>

23

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 23

Viewing the Online Calendar
The DiaryMain.aspx page is the central hub of the application. It displays a calendar of the current
month, showing which days have events or diary entries associated with them. It also displays a list of
upcoming events and diary entries for the current month.

To display when a day has events or a diary entry, the OnDayRender event of the Calendar control
is used:

Protected Sub Calendar1_OnDayRender(ByVal sender As Object, ByVal e As
System.Web.UI.WebControls.DayRenderEventArgs) Handles Calendar1.DayRender

If Not e.Day.IsOtherMonth Then
If entryArrayOfDays Is Nothing Then

entryArrayOfDays = GetDaysInMonthWithEntries(Session(“DiaryId”),
e.Day.Date.Month, e.Day.Date.Year)

End If

If eventArrayOfDays Is Nothing Then
eventArrayOfDays = GetDaysInMonthWithEvents(Session(“DiaryId”),

e.Day.Date.Month, e.Day.Date.Year)
End If

If entryArrayOfDays(CInt(e.Day.DayNumberText)) Then
e.Cell.BackColor = Drawing.Color.Blue

End If

If eventArrayOfDays(CInt(e.Day.DayNumberText)) Then
e.Cell.ForeColor = Drawing.Color.Red

End If

End If
End Sub

The first If block in the preceding event code deals with ensuring entryArrayOfDays and
eventArrayOfDays are populated with details of which days have an associated event or diary entry.
They are both Boolean arrays; if a day has an event or entry, the array element for that day contains
True. Arrays are populated by the DiaryEnty and DiaryEvent classes’ shared functions
GetDaysInMonthWithEntries() and GetDaysInMonthWithEvents().

In the second If block of the event the code checks to see whether the day of the month being rendered
has a diary event or diary entry. If there’s an event, the day’s text is set to red. If there’s a diary entry the
day’s background is rendered in blue.

As well as a Calendar control, the main page also has two GridView controls (discussed a bit later).
The upper one displays upcoming events; the lower one displays recent diary entries. Both GridView
controls get their data from an ObjectDataSource control, new to ASP.NET 2.0. In the past, data source
controls have interacted directly with the database. They are nice and easy to use — put on one a page,
set a few properties, drop in a few data-aware controls, and away you go. However, that’s not actually
good coding practice. Splitting up the data access, business, and presentation layers is generally consid-
ered good practice, but means leaving behind nice and easy-to-use data source controls.

24

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 24

However, the new ObjectDataSource lets you have the best of both: easy-to-use data controls and use of
classes to separate business, data, and presentation layers. Instead of connecting directly to a database,
the ObjectDataSource takes its data from one of the classes. diaryEntriesObjectDataSource on
DiaryMain.aspx, for example, takes its data from the GetDiaryEntriesRecentlyChanged() method
of the DiaryEntry class, whose markup is shown here:

<asp:ObjectDataSource ID=”diaryEntriesObjectDataSource” runat=”server”
SelectMethod=”GetDiaryEntriesRecentlyChanged”

TypeName=”DiaryEntry”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”-1” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

</SelectParameters>
</asp:ObjectDataSource>

The TypeName attribute specifies the class name to use, and the SelectMethod attribute specifies which
method of that class will provide the data. GetDiaryEntriesRecentlyChanged() is a shared method,
shown here:

Public Shared Function GetDiaryEntriesRecentlyChanged(ByVal DiaryId As Integer)
As SqlDataReader

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “GetRecentDiaryEntries”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, DiaryId)

diaryDBConn.Open()
Dim entrySQLDR As SqlDataReader =

sqlCmd.ExecuteReader(CommandBehavior.CloseConnection)
sqlCmd = Nothing
Return entrySQLDR

End Function

The method returns a SqlDataReader object populated with the data the ObjectDataSource control
will use.

Actually displaying the data is then just a matter of pointing a data-aware control at the
ObjectDataSource:

<asp:GridView ID=”recentEntriesGridView” runat=”server”
AutoGenerateColumns=”False”

Caption=”Recent Entries” CaptionAlign=”Left” CellPadding=”4”
DataSourceID=”diaryEntriesObjectDataSource”

ForeColor=”#333333” GridLines=”None” Style=”z-index: 105; left:
535px; position: absolute;

top: 321px” Width=”476px” Height=”208px”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<Columns>

<asp:BoundField DataField=”EntryDate” />
<asp:BoundField DataField=”EntryTitle” />

25

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 25

<asp:BoundField DataField=”EntryText” />
</Columns>
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White”

/>
<EditRowStyle BackColor=”#999999” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

In the GridView control’s markup, the DataSourceID attribute specifies the source of the data, which is
the ObjectDataSource control. In addition, the markup specifies which columns to display by setting
AutoGenerateColumns to False. A final step is to create a list of columns:

<Columns>
<asp:BoundField DataField=”EntryDate” />
<asp:BoundField DataField=”EntryTitle” />
<asp:BoundField DataField=”EntryText” />

</Columns>

As well as enabling the display of data, the ObjectDataSource control can also update, insert, and
delete records from a database, as demonstrated shortly.

Creating, Editing, and Viewing a Diary Entry
The DayView.aspx page allows for diary editing. This page contains a simple form allowing you to enter
title and diary entry details. It also displays any existing diary entry.

All of the hard work is done by use of the DiaryEntry class. Its Page_Load event creates a new
DiaryEntry class, passing its constructor the current user’s DiaryId and also the date the page
refers to:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

mDiaryEntry = New DiaryEntry(CInt(Session(“DiaryId”)),
CDate(dayShownLabel.Text))

changeDayCalendar.SelectedDate = CDate(dayShownLabel.Text)
changeDayCalendar.VisibleDate = changeDayCalendar.SelectedDate
If Not IsPostBack Then

entryTextTextBox.Text = mDiaryEntry.EntryText
entryTitleTextBox.Text = mDiaryEntry.EntryTitle

End If
End Sub

26

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 26

mDiaryEntry is a global variable used to hold the DiaryEntry object relating to the day being edited.

The constructor, shown in the following code, does all the hard work of actually getting the data:

Public Sub New(ByVal DiaryId As Integer, ByVal EntryDate As Date)
mDiaryId = DiaryId
If mDiaryId > 0 Then

Try

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “GetDiaryEntryByDate”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, mDiaryId)
sqlCmd.Parameters.AddWithValue(“@EntryFromDate”, EntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryToDate”, EntryDate)

diaryDBConn.Open()
Dim diaryEntrySQLDR As SqlDataReader =

sqlCmd.ExecuteReader(CommandBehavior.CloseConnection)
sqlCmd = Nothing
If diaryEntrySQLDR.Read() Then

mDiaryEntryId = CLng(diaryEntrySQLDR(“DiaryEntryId”))
mEntryDate = CDate(diaryEntrySQLDR(“EntryDate”))
mEntryTitle = diaryEntrySQLDR(“EntryTitle”).ToString
mEntryText = diaryEntrySQLDR(“EntryText”).ToString

Else
mDiaryEntryId = -1
mEntryDate = EntryDate

End If

diaryEntrySQLDR.Close()
diaryEntrySQLDR = Nothing
diaryDBConn.Close()
diaryDBConn = Nothing

Catch ex As Exception
mDiaryEntryId = -1

End Try

End If
End Sub

The GetDiaryEntryByDate stored procedure is called to get the data. If there isn’t an existing entry for
that day, mDiaryEntryId is set to -1 and all the other properties are left at their default values.
Otherwise they are populated with the data from the database.

27

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 27

When the diary title or entry boxes are changed, mDiaryEntry is updated:

Protected Sub entryTitleTextBox_TextChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles entryTitleTextBox.TextChanged

mDiaryEntry.EntryTitle = entryTitleTextBox.Text
End Sub

Protected Sub entryTextTextBox_TextChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles entryTextTextBox.TextChanged

mDiaryEntry.EntryText = entryTextTextBox.Text
End Sub

Saving changes occurs when you click the Save button:

Protected Sub saveDiaryEntryButton_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles saveDiaryEntryButton.Click

mDiaryEntry.Save()
End Sub

All that’s involved is calling the Save() method of the DiaryEntry object:

Public Sub Save()
If mDiaryEntryId = -1 Then

InsertNewDiaryEntry()
Else

UpdateDiaryEntry()
End If

End Sub

Based on whether or not mDiaryEntryId is -1, the method either inserts a new entry into the database
or updates an existing one. The private method InsertNewDiaryEntry() inserts a new diary entry:

Private Sub InsertNewDiaryEntry()
If mDiaryId <> -1 Then

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “InsertDiaryEntry”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryId”, mDiaryId)
sqlCmd.Parameters.AddWithValue(“@EntryDate”, mEntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryTitle”, mEntryTitle)
sqlCmd.Parameters.AddWithValue(“@EntryText”, mEntryText)
sqlCmd.Parameters.Add(“@NewDiaryEntryId”, SqlDbType.BigInt)
sqlCmd.Parameters(“@NewDiaryEntryId”).Direction =

ParameterDirection.ReturnValue

diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
mDiaryEntryId = CLng(sqlCmd.Parameters(“@NewDiaryEntryId”).Value())

diaryDBConn.Close()
sqlCmd = Nothing

28

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 28

diaryDBConn = Nothing
End If

End Sub

The private method UpdateDiaryEntry() updates it:

Private Sub UpdateDiaryEntry()
If mDiaryEntryId <> -1 Then

Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “UpdateDiaryEntry”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@DiaryEntryId”, mDiaryEntryId)
sqlCmd.Parameters.AddWithValue(“@EntryDate”, mEntryDate)
sqlCmd.Parameters.AddWithValue(“@EntryTitle”, mEntryTitle)
sqlCmd.Parameters.AddWithValue(“@EntryText”, mEntryText)

diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
diaryDBConn.Close()
sqlCmd = Nothing
diaryDBConn = Nothing

End If
End Sub

Moving on, the next section discusses aspects of the code dealing with editing, viewing, and deleting
events.

Creating, Editing, and Viewing Diary Events
Events are created by clicking the Add New Event link on the DayView.aspx page. This takes you to a
simple form on the AddEvent.aspx page. When the Save button is clicked, the button’s click event cre-
ates a new DiaryEvent object, populates its properties from the form, and then calls its Save() method.
The code flow is much the same as for the DiaryEvent object’s Save() method. Where the functionality
is similar or the same, the names of methods on different objects have been kept the same. It reduces
confusion and makes your life easier.

All events relating to a particular day are shown on the DayView.aspx page. An ObjectDataSource con-
trol on the DayView.aspx page draws its data from the DiaryEvent object’s GetDiaryEventsByDate()
shared method. The markup for the ObjectDataSource control is shown here:

<asp:ObjectDataSource ID=”eventsObjectDataSource” runat=”server”
SelectMethod=”GetDiaryEventsByDate”

TypeName=”DiaryEvent” DeleteMethod=”DeleteEvent”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”-1” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

<asp:ControlParameter ControlID=”dayShownLabel” DefaultValue=””
Name=”FromDate” PropertyName=”Text”

Type=”DateTime” />
<asp:ControlParameter ControlID=”dayShownLabel” DefaultValue=””

Name=”ToDate” PropertyName=”Text”

29

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 29

Type=”DateTime” />
<asp:Parameter DefaultValue=”0” Name=”MaxRows” Type=”Int32” />

</SelectParameters>
<DeleteParameters>

<asp:Parameter Name=”EventId” Type=”Int64” />
</DeleteParameters>

</asp:ObjectDataSource>

Notice that the SelectParameters and the DeleteParameters are set to specify the data passed to the
GetDiaryEventsByDate() method used to pull back the data, and the DeleteEvent() method is used
to delete diary events.

A GridView control is hooked to the ObjectDataSource in the code above:

<asp:GridView ID=”eventsGridView” runat=”server”
AutoGenerateColumns=”False” CellPadding=”4”

DataSourceID=”eventsObjectDataSource” ForeColor=”#333333”
GridLines=”None” Height=”1px”

PageSize=”5” Style=”z-index: 108; left: 78px; position: absolute; top:
357px”

Width=”542px” DataKeyNames=”EventId”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<Columns>

<asp:HyperLinkField DataNavigateUrlFields=”EventId” Text=”Edit”
DataNavigateUrlFormatString=”~/SecureDiary/EditEvent.aspx?EventId={0}” />

<asp:CommandField ShowDeleteButton=”True” />
<asp:BoundField DataField=”EventName” HeaderText=”Event” />
<asp:BoundField DataField=”EventDescription”

HeaderText=”Description” />
</Columns>
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<EditRowStyle BackColor=”#999999” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

Again, the AutoGenerateColumns parameter is set to False, and the columns are specified as follows:

<Columns>
<asp:HyperLinkField DataNavigateUrlFields=”EventId” Text=”Edit”

DataNavigateUrlFormatString=”~/SecureDiary/EditEvent.aspx?EventId={0}” />
<asp:CommandField ShowDeleteButton=”True” />
<asp:BoundField DataField=”EventName” HeaderText=”Event” />
<asp:BoundField DataField=”EventDescription”

HeaderText=”Description” />
</Columns>

Notice the hyperlink and field that when clicked will take the user to the EditEvent.aspx page, and the
URL contains data passed to the EventId in the URL by way of the EventId querystring parameter. It’s set
to be {0}, which at run time will be substituted by the value of the first column for each row in the DataSet.

30

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 30

In addition, the code specifies a Delete button on each row in the grid:

<asp:CommandField ShowDeleteButton=”True” />

When you click the Delete button, the GridView control asks the ObjectDataSource control to call the
specified delete method of the data providing class. In this case it’s the DeleteEvent() method of the
DiaryEvent class. The DataKeyNames attribute in the GridView control’s markup specifies the primary
key field that needs to be used to delete the row.

Returning to editing the event: When you click the Edit link you are taken to the EditEvent.aspx page.
The clicked Edit link’s EventId is passed as a URL parameter. The EditEvent.aspx page is virtually iden-
tical to the AddEvent.aspx page discussed previously. The main difference is when the page initializes.
The Page_Init event handler is shown in the following code, and it’s here that the event details are
entered into the form:

Protected Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Init

Dim EventBeingEdited As New
DiaryEvent(CLng(Request.QueryString(“EventId”)))

eventNameTextBox.Text = EventBeingEdited.EventName
eventDescriptionTextBox.Text = EventBeingEdited.EventDescription
dayShownLabel.Text = EventBeingEdited.EventDate.Day & “ “ &

MonthName(EventBeingEdited.EventDate.Month) & “ “ & EventBeingEdited.EventDate.Year

Dim NewListItem As ListItem, HourCount, MinuteCount

For HourCount = 0 To 23
If HourCount < 10 Then

NewListItem = New ListItem(“0” & HourCount, HourCount.ToString)
Else

NewListItem = New ListItem(HourCount.ToString, HourCount.ToString)
End If
If EventBeingEdited.EventDate.Hour = HourCount Then

NewListItem.Selected = True
End If
StartHourDropDownList.Items.Add(NewListItem)

Next

For MinuteCount = 0 To 59
If MinuteCount < 10 Then

NewListItem = New ListItem(“0” & MinuteCount.ToString,
MinuteCount.ToString)

Else
NewListItem = New ListItem(MinuteCount.ToString,

MinuteCount.ToString)
End If
If EventBeingEdited.EventDate.Minute = MinuteCount Then

NewListItem.Selected = True
End If
StartMinuteDropDownList.Items.Add(NewListItem)

Next
Dim itemToSelect As ListItem

31

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 31

itemToSelect =
eventDurationDropDownList.Items.FindByValue(EventBeingEdited.EventDuration.ToString
())

itemToSelect.Selected = True

EventBeingEdited = Nothing
End Sub

The EventId is extracted from the URL parameters and used to create a new DiaryEvent object.
Populating the event text boxes is easy enough, but the details of time and duration of the event involve
populating the Hour and Minute drop-down boxes and ensuring the correct value is selected. This is
achieved by looping through hours from 0 to 23 and then minutes from 0 to 59. If the hour to be added
to the list is the same as the hour about to be added to the list box, make sure it’s the default selected
one. The same goes for the minute list box population.

Managing Contacts
Managing contacts is the last aspect of the Online Diary you’ll examine, and uses many of the same
principles as the other sections. YourContacts.aspx is the central contact management page. Here a list of
current contacts is displayed, and the option to add, edit, and delete contacts is possible.

All contacts are displayed using a DataObjectSource and a GridView control; the principles being
identical to the displaying, deleting, and editing of the diary events. This time the Contact class is used
for editing and display contact details, but otherwise the code is very similar to the events code.

The main page for displaying contacts is YourContacts.aspx, which contains a GridView control in
which all current contacts are listed:

<asp:GridView ID=”GridView1” runat=”server” AutoGenerateColumns=”False”
CellPadding=”4”

DataSourceID=”ObjectDataSource1” ForeColor=”#333333” GridLines=”None”
Style=”z-index: 101;

left: 36px; position: absolute; top: 137px” DataKeyNames=”ContactId”>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<Columns>

<asp:CommandField ShowDeleteButton=”True” />
<asp:HyperLinkField DataNavigateUrlFields=”ContactId”

DataNavigateUrlFormatString=”~/SecureDiary/EditContact.aspx?ContactId={0}”
Text=”Edit” />

<asp:BoundField DataField=”LastName” HeaderText=”Last Name” />
<asp:BoundField DataField=”FirstName” HeaderText=”First Name” />
<asp:BoundField DataField=”Telephone” HeaderText=”Telephone” />
<asp:BoundField DataField=”Email” HeaderText=”Email Address” />

</Columns>
<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<EditRowStyle BackColor=”#999999” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<PagerStyle BackColor=”#284775” ForeColor=”White”

HorizontalAlign=”Center” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>

32

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 32

It gets its data from the ObjectDataSource control ObjectDataSource1, which in turn connects to the
Contact class’s GetContactByFirstLetter() shared method:

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”GetContactsByFirstLetter”

TypeName=”Contact” DeleteMethod=”DeleteContact”>
<SelectParameters>

<asp:SessionParameter DefaultValue=”6” Name=”DiaryId”
SessionField=”DiaryId” Type=”Int32” />

<asp:Parameter Name=”FirstLetterOfSurname” Type=”Char” />
</SelectParameters>
<DeleteParameters>

<asp:ControlParameter ControlID=”GridView1” Name=”ContactId”
PropertyName=”SelectedValue”

Type=”Int64” />
</DeleteParameters>

</asp:ObjectDataSource>

The ObjectDataSource control’s DeleteMethod parameter is also hooked to the Contact class’s
DeleteContact. The GridView control has been set to show a link to delete each contact, and it’s this
method that does the actual deleting:

Public Shared Sub DeleteContact(ByVal ContactId As Long)
Dim diaryDBConn As New SqlConnection(conString)
Dim sqlString As String = “DeleteContact”
Dim sqlCmd As New SqlCommand(sqlString, diaryDBConn)
sqlCmd.CommandType = CommandType.StoredProcedure

sqlCmd.Parameters.AddWithValue(“@ContactId”, ContactId)
diaryDBConn.Open()
sqlCmd.ExecuteNonQuery()
diaryDBConn.Close()
sqlCmd = Nothing
diaryDBConn = Nothing

End Sub

The GridView also includes an Edit link, which when clicked navigates the user to the EditContact.aspx
page:

<asp:HyperLinkField DataNavigateUrlFields=”ContactId”
DataNavigateUrlFormatString=”~/SecureDiary/EditContact.aspx?ContactId={0}”

Text=”Edit” />

The corresponding ContactId is passed in the URL as URL data.

Adding a new user involves clicking the Add Contact link on the YourContacts.aspx page. This takes
you to a basic form for adding contact information such as name, e-mail, phone number, and so on. This
page and the EditContact.aspx page are identical in operation except for one important detail: The
EditContact.aspx page retrieves the details of the contact to be edited using the Contact class. This hap-
pens in the Page_Load event:

33

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 33

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

If IsPostBack Then
Dim currentContact As New

Contact(CLng(Request.QueryString(“ContactId”)))
currentContact.FirstName = firstNameTextBox.Text
currentContact.LastName = lastNameTextBox.Text
currentContact.AddressLine1 = addressLine1TextBox.Text
currentContact.City = cityTextBox.Text
currentContact.PostalCode = postalCodeTextBox.Text
currentContact.State = stateTextBox.Text
currentContact.Telephone = telephoneTextBox.Text
currentContact.MobilePhone = mobilePhoneTextBox.Text
currentContact.Email = emailTextBox.Text
currentContact.SaveContact()
currentContact = Nothing
Response.Redirect(“YourContacts.aspx”)

Else
Dim currentContact As New

Contact(CLng(Request.QueryString(“ContactId”)))
firstNameTextBox.Text = currentContact.FirstName
lastNameTextBox.Text = currentContact.LastName
addressLine1TextBox.Text = currentContact.AddressLine1
cityTextBox.Text = currentContact.City
postalCodeTextBox.Text = currentContact.PostalCode
stateTextBox.Text = currentContact.State
telephoneTextBox.Text = currentContact.Telephone
mobilePhoneTextBox.Text = currentContact.MobilePhone
emailTextBox.Text = currentContact.Email
currentContact = Nothing

End If
End Sub

The If statement determines whether this is a postback (the form has been submitted to itself) or
whether the page has just been loaded. If it’s a postback, you need to save the data and then move back
to the main contacts section. If it’s a new page load, it’s necessary to create a new Contact object, and
use the data from that to populate the form fields with the contact information.

The AddContact.aspx page is identical except there’s no need to populate with existing contact data,
because a new contact has no prior data!

Setting up the Online Diary
One of the great things about ASP.NET 2.0 is how easy it is to set up web applications created on one
machine onto another. To install the application on your PC, simply copy the entire directory and files
from the accompanying CD-ROM (or download it from www.wrox.com) onto a directory on your PC
(for example, C:\Websites). In VWD, all you have to do is choose File➪Open Web Site and browse to
the folder where you copied the files. Then press F5 to run it.

34

Chapter 1

04_749516 ch01.qxp 2/10/06 9:11 PM Page 34

Alternatively, if you have IIS installed make the OnlineDiary directory you copied over a virtual direc-
tory and then simply browse to SignOn.aspx.

To find out how to modify the Online Diary application, visit www.wrox.com and download this chapter’s
code, or you can grab it from the companion CD-ROM in the back of the book.

Summary
In this chapter you’ve seen how to create a fully functioning diary and contacts management system, all
with only a little code thanks to ASP.NET 2.0’s new controls and functionality. The new security controls
in particular help save a lot of time and coding. In this chapter they’ve been used to create users and
login control. However, they can also help provide a lot more functionality like creating different types
of user roles, which then allows you to specify what users can and cannot do based on their role. Or you
can let users determine the look and feel of their pages using their account details and ASP.NET 2.0’s
new login and role controls.

Another great control you discovered in this chapter is the ObjectDataSource control. In the past data
source controls have made life nice and easy. But they were quick and dirty, which meant poor code
design, and you had to wave goodbye to a three-tier architecture. Now with the ObjectDataSource
control you can have quick and dirty and three-tier architecture — great news for creating easily main-
tainable, well-designed projects.

In the next chapter you will be creating a file sharing project and learning some more about ASP.NET 2.0’s
great new features.

35

The Online Diary and Organizer

04_749516 ch01.qxp 2/10/06 9:11 PM Page 35

04_749516 ch01.qxp 2/10/06 9:11 PM Page 36

