CHAPTER1

Fundamentals

This first chapter aims to introduce the notion of an abstract linear space to those who think of vectors as arrays of components. I want to point out that the class of abstract linear spaces is no larger than the class of spaces whose elements are arrays. So what is gained by this abstraction?

First of all, the freedom to use a single symbol for an array; this way we can think of vectors as basic building blocks, unencumbered by components. The abstract view leads to simple, transparent proofs of results.

More to the point, the elements of many interesting vector spaces are not presented in terms of components. For instance, take a linear ordinary differential equation of degree n; the set of its solutions form a vector space of dimension n, yet they are not presented as arrays.

Even if the elements of a vector space are presented as arrays of numbers, the elements of a subspace of it may not have a natural description as arrays. Take, for instance, the subspace of all vectors whose components add up to zero.

Last but not least, the abstract view of vector spaces is indispensable for infinitedimensional spaces; even though this text is strictly about finite-dimensional spaces, it is a good preparation for functional analysis.

Linear algebra abstracts the two basic operations with vectors: the addition of vectors, and their multiplication by numbers (scalars). It is astonishing that on such slender foundations an elaborate structure can be built, with romanesque, gothic, and baroque aspects. It is even more astounding that linear algebra has not only the right theorems but also the right language for many mathematical topics, including applications of mathematics.

A linear space X over a field K is a mathematical object in which two operations are defined:

Addition, denoted by + , as in

$$
\begin{equation*}
x+y \tag{1}
\end{equation*}
$$

[^0]and assumed to be commutative:
\[

$$
\begin{equation*}
x+y=y+x \tag{2}
\end{equation*}
$$

\]

and associative:

$$
\begin{equation*}
x+(y+z)=(x+y)+z \tag{3}
\end{equation*}
$$

and to form a group, with the neutral element denoted as 0 :

$$
\begin{equation*}
x+0=x \tag{4}
\end{equation*}
$$

The inverse of addition is denoted by - :

$$
\begin{equation*}
x+(-x) \equiv x-x=0 \tag{5}
\end{equation*}
$$

Exercise I. Show that the zero of vector addition is unique.
The second operation is multiplication of elements of X by elements k of the field K :

$$
k x
$$

The result of this multiplication is a vector, that is, an element of X.
Multiplication by elements of K is assumed to be associative:

$$
\begin{equation*}
k(a x)=(k a) x \tag{6}
\end{equation*}
$$

and distributive:

$$
\begin{equation*}
k(x+y)=k x+k y \tag{7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
(a+b) x=a x+b x \tag{8}
\end{equation*}
$$

We assume that multiplication by the unit of K, denoted as 1 , acts as the identity:

$$
\begin{equation*}
1 x=x \tag{9}
\end{equation*}
$$

These are the axioms of linear algebra. We proceed to draw some deductions:
Set $b=0$ in (8); it follows from Exercise 1 that for all x

$$
\begin{equation*}
0 x=0 \tag{10}
\end{equation*}
$$

Set $a=1, b=-1$ in (8); using (9) and (10) we deduce that for all x

$$
(-1) x=-x \text {. }
$$

Exercise 2. Show that the vector with all components zero serves as the zero element of classical vector addition.

In this analytically oriented text the field K will be either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers.

An interesting example of a linear space is the set of all functions $x(t)$ that satisfy the differential equation

$$
\frac{d^{2}}{d t^{2}} x+x=0 .
$$

The sum of two solutions is again a solution, and so is the constant multiple of one. This shows that the set of solutions of this differential equation form a linear space.

Solutions of this equation describe the motion of a mass connected to a fixed point by a spring. Once the initial position $x(0)=p$ and initial velocity $\frac{d}{d t} x(0)=v$ are given, the motion is completely determined for all t. So solutions can be described by a pair of numbers (p, v).

The relation between the two descriptions is linear; that is, if (p, v) are the initial data of a solution $x(t)$, and (q, w) the initial data of another solution $y(t)$, then the initial data of the solution $x(t)+y(t)$ are $(p+q, v+w)=(p, v)+(q, w)$. Similarly, the initial data of the solution $k x(t)$ are $(k p, k v)=k(p, v)$.

This kind of relation has been abstracted into the notion of isomorphism.
Definition. A one-to-one correspondence between two linear spaces over the same field that maps sums into sums and scalar multiples into scalar multiples is called an isomorphism.

Isomorphism is a basic notion in linear algebra. Isomorphic linear spaces are indistinguishable by means of operations available in linear spaces. Two linear spaces that are presented in very different ways can be, as we have seen, isomorphic.

Examples of Linear Spaces. (i) Set of all row vectors: $\left(a_{1}, \ldots, a_{n}\right), a_{j}$ in K; addition, multiplication defined componentwise. This space is denoted as K^{n}.
(ii) Set of all real-valued functions $f(x)$ defined on the real line, $K=\mathbb{R}$.
(iii) Set of all functions with values in K, defined on an arbitrary set S.
(iv) Set of all polynomials of degree less than n with coefficients in K.

Exercise 3. Show that (i) and (iv) are isomorphic.
Exercise 4. Show that if S has n elements, (i) and (iii) are isomorphic.

Exercise 5. Show that when $K=\mathbb{R}$, (iv) is isomorphic with (iii) when S consists of n distinct points of \mathbb{R}.

Definition. A subset Y of a linear space X is called a subspace if sums and scalar multiples of elements of Y belong to Y.

Examples of Subspaces. (a) X as in Example (i), Y the set of vectors $\left(0, a_{2}, \ldots, a_{n-1}, 0\right)$ whose first and last component is zero.
(b) X as in Example (ii), Y the set of all periodic functions with period π.
(c) X as in Example (iii), Y the set of constant functions on S.
(d) X as in Example (iv), Y the set of all even polynomials.

Definition. The sum of two subsets Y and Z of a linear space X, denoted as $Y+Z$, is the set of all vectors of form $y+z, y$ in Y, z in Z.

Exercise 6. Prove that $Y+Z$ is a linear subspace of X if Y and Z are.
Definition. The intersection of two subsets Y and Z of a linear space X, denoted as $Y \cap Z$, consists of all vectors x that belong to both Y and Z.

Exercise 7. Prove that if Y and Z are linear subspaces of X, so is $Y \cap Z$.
Exercise 8. Show that the set $\{0\}$ consisting of the zero element of a linear space X is a subspace of X. It is called the trivial subspace.

Definition. A linear combination of j vectors x_{1}, \ldots, x_{j} of a linear space is a vector of the form

$$
k_{1} x_{1}+\cdots+k_{j} x_{j}, \quad k_{1}, \ldots, k_{j} \in K
$$

Exercise 9. Show that the set of all linear combinations of x_{1}, \ldots, x_{j} is a subspace of X, and that it is the smallest subspace of X containing x_{1}, \ldots, x_{j}. This is called the subspace spanned by x_{1}, \ldots, x_{j}.

Definition. A set of vectors x_{1}, \ldots, x_{m} in X span the whole space X if every x in X can be expressed as a linear combination of x_{1}, \ldots, x_{m}.

Definition. The vectors x_{1}, \ldots, x_{j} are called linearly dependent if there is a nontrivial linear relation between them, that is, a relation of the form

$$
k_{1} x_{1}+\cdots+k_{j} x_{j}=0
$$

where not all k_{1}, \ldots, k_{j} are zero.

Definition. A set of vectors x_{1}, \ldots, x_{j} that are not linearly dependent is called linearly independent.

Exercise io. Show that if the vectors x_{1}, \ldots, x_{j} are linearly independent, then none of the x_{i} is the zero vector.

Lemma 1. Suppose that the vectors x_{1}, \ldots, x_{n} span a linear space X and that the vectors y_{1}, \ldots, y_{j} in X are linearly independent. Then

$$
j \leq n
$$

Proof. Since x_{1}, \ldots, x_{n} span X, every vector in X can be written as a linear combination of x_{1}, \ldots, x_{n}. In particular, y_{1} :

$$
y_{1}=k_{1} x_{1}+\cdots+k_{n} x_{n}
$$

Since $y_{1} \neq 0$ (see Exercise 10), not all k are equal to 0 , say $k_{i} \neq 0$. Then x_{i} can be expressed as a linear combination of y_{1} and the remaining x_{s}. So the set consisting of the x 's, with x_{i} replaced by y_{1} span X. If $j \geq n$, repeat this step $n-1$ more times and conclude that y_{1}, \ldots, y_{n} span X : if $j>n$, this contradicts the linear independence of the y 's for then y_{n+1} is a linear combination of y_{1}, \ldots, y_{n}.

Definition. A finite set of vectors which span X and are linearly independent is called a basis for X.

Lemma 2. A linear space X which is spanned by a finite set of vectors x_{1}, \ldots, x_{n} has a basis.

Proof. If x_{1}, \ldots, x_{n} are linearly dependent, there is a nontrivial relation between them; from this one of the x_{i} can be expressed as a linear combination of the rest. So we can drop that x_{i}. Repeat this step until the remaining x_{j} are linear independent: they still span X, and so they form a basis.

Definition. A linear space X is called finite dimensional if it has a basis.

A finite-dimensional space has many, many bases. When the elements of the space are represented as arrays with n components, we give preference to the special basis consisting of the vectors that have one component equal to 1 , while all the others equal 0 .

Theorem 3. All bases for a finite-dimensional linear space X contain the same number of vectors. This number is called the dimension of X and is denoted as

$$
\operatorname{dim} X
$$

Proof. Let x_{1}, \ldots, x_{n} be one basis, and let y_{1}, \ldots, y_{m} be another. By Lemma 1 and the definition of basis we conclude that $m \leq n$, and also $n \leq m$. So we conclude that n and m are equal.

We define the dimension of the trivial space consisting of the single element 0 to be zero.

Theorem 4. Every linearly independent set of vectors y_{1}, \ldots, y_{j} in a finitedimensional linear space X can be completed to a basis of X.

Proof. If y_{1}, \ldots, y_{j} do not span X, there is some x_{1} that cannot be expressed as a linear combination of y_{1}, \ldots, y_{j}. Adjoin this x_{1} to the y 's. Repeat this step until the y 's span X. This will happen in less than n steps, $n=\operatorname{dim} X$, because otherwise X would contain more than n linearly independent vectors, impossible for a space of dimension n.

Theorem 4 illustrates the many different ways of forming a basis for a linear space.

Theorem 5. (a) Every subspace Y of a finite-dimensional linear space X is finite dimensional.
(b) Every subspace Y has a complement in X, that is, another subspace Z such that every vector x in X can be decomposed uniquely as

$$
\begin{equation*}
x=y+z, \quad y \text { in } Y, z \text { in } Z . \tag{11}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} Z \tag{11}
\end{equation*}
$$

Proof. We can construct a basis in Y by starting with any nonzero vector y_{1}, and then adding another vector y_{2} and another, as long as they are linearly independent. According to Lemma 1, there can be no more of these y_{i} than the dimension of X. A maximal set of linearly independent vectors y_{1}, \ldots, y_{j} in Y spans Y, and so forms a basis of Y. According to Theorem 4 , this set can be completed to form a basis of X by adjoining Z_{j+1}, \ldots, Z_{n}. Define Z as the space spanned by Z_{j+1}, \ldots, Z_{n}; clearly Y and Z are complements, and

$$
\operatorname{dim} X=n=j+(n-j)=\operatorname{dim} Y+\operatorname{dim} Z .
$$

Definition. $\quad X$ is said to be the direct sum of two subspaces Y and Z that are complements of each other. More generally X is said to be the direct sum of its subspaces Y_{1}, \ldots, Y_{m} if every x in X can be expressed uniquely as

$$
\begin{equation*}
x=y_{1}+\cdots+y_{m}, \quad y_{j} \text { in } Y_{j} \tag{12}
\end{equation*}
$$

This relation is denoted as

$$
X=Y_{1} \oplus \cdots \oplus Y_{m}
$$

Exercise in. Prove that if X is finite dimensional and the direct sum of Y_{1}, \ldots, Y_{m}, then

$$
\begin{equation*}
\operatorname{dim} X=\sum \operatorname{dim} Y_{j} \tag{12}
\end{equation*}
$$

Definition. An $(n-1)$-dimensional subspace of an n-dimensional space is called a hyperplane.

Exercise i2. Show that every finite-dimensional space X over K is isomorphic to $K^{n}, n=\operatorname{dim} X$. Show that this isomorphism is not unique when n is >1.

Since every n-dimensional linear space over K is isomorphic to K^{n}, it follows that two linear spaces over the same field and of the same dimension are isomorphic.

Note: There are many ways of forming such an isomorphism; it is not unique.
The concept of congruence modulo a subspace, defined below, is a very useful tool.

Definition. For X a linear space, Y a subspace, we say that two vectors x_{1}, x_{2} in X are congruent modulo Y, denoted

$$
x_{1} \equiv x_{2} \bmod Y
$$

if $x_{1}-x_{2} \in Y$. Congruence $\bmod Y$ is an equivalence relation, that is, it is
(i) symmetric: if $x_{1} \equiv x_{2}$, then $x_{2} \equiv x_{1}$.
(ii) reflexive: $x \equiv x$ for all x in X.
(iii) transitive: if $x_{1} \equiv x_{2}, x_{2} \equiv x_{3}$, then $x_{1} \equiv x_{3}$.

Exercise 13. Prove (i)-(iii) above. Show furthermore that if $x_{1} \equiv x_{2}$, then $k x_{1} \equiv k x_{2}$ for every scalar k.

We can divide elements of X into congruence classes mod Y. The congruence class containing the vector x is the set of all vectors congruent with X; we denote it by $\{x\}$.

Exercise i4. Show that two congruence classes are either identical or disjoint.
The set of congruence classes can be made into a linear space by defining addition and multiplication by scalars, as follows:

$$
\{x\}+\{z\}=\{x+z\}
$$

and

$$
k\{x\}=\{k x\} .
$$

That is, the sum of the congruence class containing x and the congruence class containing z is the class containing $x+z$. Similarly for multiplication by scalars.

Exercise i5. Show that the above definition of addition and multiplication by scalars is independent of the choice of representatives in the congruence class.

The linear space of congruence classes defined above is called the quotient space of $X \bmod Y$ and is denoted as

$$
X(\bmod Y) \quad \text { or } \quad X / Y .
$$

The following example is illuminating: Take X to be the linear space of all row vectors $\left(a_{1}, \ldots, a_{n}\right)$ with n components, and take Y to be all vectors $y=\left(0,0, a_{3}, \ldots, a_{n}\right)$ whose first two components are zero. Then two vectors are congruent mod Y iff their first two components are equal. Each equivalence class can be represented by a vector with two components, the common components of all vectors in the equivalence class.

This shows that forming a quotient space amounts to throwing away information contained in those components that pertain to Y. This is a very useful simplification when we do not need the information contained in the neglected components.

The next result shows the usefulness of quotient spaces for counting the dimension of a subspace.

Theorem 6. $\quad Y$ is a subspace of a finite-dimensional linear space X; then

$$
\begin{equation*}
\operatorname{dim} Y+\operatorname{dim}(X / Y)=\operatorname{dim} X \tag{13}
\end{equation*}
$$

Proof. Let y_{1}, \ldots, y_{j} be a basis for $Y, j=\operatorname{dim} Y$. According to Theorem 4, this set can be completed to form a basis for X by adjoining $x_{j+1}, \ldots, x_{n}, n=\operatorname{dim} X$. We claim that

$$
\begin{equation*}
\left\{x_{j+1}\right\}, \ldots,\left\{x_{n}\right\} \tag{13}
\end{equation*}
$$

form a basis for X / Y. To show this we have to verify two properties of the cosets (13)':
(i) They span X / Y.
(ii) They are linearly independent.
(i) Since y_{1}, \ldots, x_{n} form a basis for X, every x in X can be expressed as

$$
x=\sum a_{i} y_{i}+\sum b_{k} x_{k}
$$

It follows that

$$
\{x\}=\sum b_{k}\left\{x_{k}\right\}
$$

(ii) Suppose that

$$
\sum c_{k}\left\{x_{k}\right\}=0 .
$$

This means that

$$
\sum c_{k} x_{k}=y, \quad y \text { in } Y
$$

Express y as $\sum d_{i} y_{i}$; we get

$$
\sum c_{k} x_{k}-\sum d_{i} y_{i}=0
$$

Since y_{1}, \ldots, x_{n} form a basis, they are linearly independent, and so all the c_{k} and d_{i} are zero.

It follows that

$$
\operatorname{dim} X / Y=\# \text { of } x_{k}=n-j
$$

So

$$
\operatorname{dim} Y+\operatorname{dim} X / Y=j+n-j=n=\operatorname{dim} X
$$

Exercise i6. Denote by X the linear space of all polynomials $p(t)$ of degree $<n$, and denote by Y the set of polynomials that are zero at $t_{1}, \ldots, t_{j}, j<n$.
(i) Show that Y is a subspace of X.
(ii) Determine $\operatorname{dim} Y$.
(iii) Determine $\operatorname{dim} X / Y$.

The following corollary is a consequence of Theorem 6.
Corollary 6'. A subspace Y of a finite-dimensional linear space X whose dimension is the same as the dimension of X is all of X.

Exercise 17. Prove Corollary 6^{\prime}.
Theorem 7. Suppose X is a finite-dimensional linear space, U and V two subspaces of X such that X is the sum of U and V :

$$
X=U+V
$$

Denote by W the intersection of U and V :

$$
W=U \cap V
$$

Then

$$
\begin{equation*}
\operatorname{dim} X=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} W \tag{14}
\end{equation*}
$$

Proof. When the intersection W of U and V is the trivial space $\{0\}, \operatorname{dim} W=0$, and (14) is relation (11) ${ }^{\prime}$ of Theorem 5 . We show now how to use the notion of quotient space to reduce the general case to the simple case $\operatorname{dim} W=0$.

Define $U_{0}=U / W, V_{0}=V / W$; then $U_{0} \cap V_{0}=\{0\}$, and so $X_{0}=X / W$ satisfies

$$
X_{0}=U_{0}+V_{0}
$$

So according to (11) ${ }^{\prime}$,

$$
\begin{equation*}
\operatorname{dim} X_{0}=\operatorname{dim} U_{0}+\operatorname{dim} V_{0} . \tag{14}
\end{equation*}
$$

Applying (13) of Theorem 6 three times, we get

$$
\begin{aligned}
\operatorname{dim} X_{0} & =\operatorname{dim} X-\operatorname{dim} W, \quad \operatorname{dim} U_{0}=\operatorname{dim} U-\operatorname{dim} W, \\
\operatorname{dim} V_{0} & =\operatorname{dim} V-\operatorname{dim} W .
\end{aligned}
$$

Setting this into relation (14) gives (14).
Definition. The Cartesian sum of two linear spaces over the same field is the set of pairs

$$
\left(x_{1}, x_{2}\right) ; \quad x_{1} \text { in } X_{1}, x_{2} \text { in } X_{2},
$$

where addition and multiplication by scalars is defined componentwise. The direct sum is denoted as

$$
X_{1} \oplus X_{2}
$$

It is easy to verify that $X_{1} \oplus X_{2}$ is indeed a linear space.

Exercise 18. Show that

$$
\operatorname{dim} X_{1} \oplus X_{2}=\operatorname{dim} X_{1}+\operatorname{dim} X_{2}
$$

Exercise i9. $\quad X$ a linear space, Y a subspace. Show that $Y \oplus X / Y$ is isomorphic to X.

Note: The most frequently occurring linear spaces in this text are our old friends \mathbb{R}^{n} and \mathbb{C}^{n}, the spaces of vectors $\left(a_{1}, \ldots, a_{n}\right)$ with n real, respectively complex, components.

So far the only means we have for showing that a linear space X is finite dimensional is to find a finite set of vectors that span it. In Chapter 7 we present another, powerful criterion for a Euclidean space to be finite dimensional. In Chapter 14 we extend this criterion to all normed linear spaces.

We have been talking about sets of vectors being linearly dependent or independent, but have given no indication how to decide which is the case. Here is an example:

Decide if the four vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
2 \\
3
\end{array}\right)
$$

are linearly dependent or not. That is, are there four numbers $k_{1}, k_{2}, k_{3}, k_{4}$, not all zero, such that

$$
k_{1}\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)+k_{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right)+k_{3}\left(\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right)+k_{4}\left(\begin{array}{c}
2 \\
-1 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) ?
$$

This vector equation is equivalent to four scalar equations:

$$
\begin{align*}
k_{1}+k_{2}+2 k_{3}+2 k_{4} & =0, \\
k_{1}-k_{2}+k_{3}-k_{4} & =0, \tag{15}\\
k_{2}+k_{3} & =0, \\
k_{1}+k_{2}+3 k_{3}+3 k_{4} & =0 .
\end{align*}
$$

The study of such systems of linear equations is the subject of Chapters 3 and 4. There we describe an algorithm for finding all solutions of such systems of equations.

EXERCISE 20. Which of the following sets of vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} are a subspace of \mathbb{R}^{n} ? Explain your answer.
(a) All x such that $x_{1} \geq 0$.
(b) All x such that $x_{1}+x_{2}=0$.
(c) All x such that $x_{1}+x_{2}+1=0$.
(d) All x such that $x_{1}=0$.
(e) All x such that x_{1} is an integer.

Exercise 2 i. Let U, V, and W be subspaces of some finite-dimensional vector space X. Is the statement

$$
\begin{aligned}
\operatorname{dim}(U+V+W)= & \operatorname{dim} U+\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(U \cap V)-\operatorname{dim}(U \cap W) \\
& -\operatorname{dim}(V \cap W)+\operatorname{dim}(U \cap V \cap W),
\end{aligned}
$$

true or false? If true, prove it. If false, provide a counterexample.

[^0]: Linear Algebra and Its Applications, Second Edition, by Peter D. Lax
 Copyright © 2007 John Wiley \& Sons, Inc.

