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Fundamentals

This first chapter aims to introduce the notion of an abstract linear space to those

who think of vectors as arrays of components. I want to point out that the class of

abstract linear spaces is no larger than the class of spaces whose elements are arrays.

So what is gained by this abstraction?

First of all, the freedom to use a single symbol for an array; this way we can think

of vectors as basic building blocks, unencumbered by components. The abstract

view leads to simple, transparent proofs of results.

More to the point, the elements of many interesting vector spaces are not

presented in terms of components. For instance, take a linear ordinary differential

equation of degree n; the set of its solutions form a vector space of dimension n, yet

they are not presented as arrays.

Even if the elements of a vector space are presented as arrays of numbers, the

elements of a subspace of it may not have a natural description as arrays. Take, for

instance, the subspace of all vectors whose components add up to zero.

Last but not least, the abstract view of vector spaces is indispensable for infinite-

dimensional spaces; even though this text is strictly about finite-dimensional spaces,

it is a good preparation for functional analysis.

Linear algebra abstracts the two basic operations with vectors: the addition of

vectors, and their multiplication by numbers (scalars). It is astonishing that on such

slender foundations an elaborate structure can be built, with romanesque, gothic, and

baroque aspects. It is even more astounding that linear algebra has not only the right

theorems but also the right language for many mathematical topics, including

applications of mathematics.

A linear space X over a field K is a mathematical object in which two operations

are defined:

Addition, denoted by þ, as in

xþ y ð1Þ
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and assumed to be commutative:

xþ y ¼ yþ x; ð2Þ

and associative:

xþ ðyþ zÞ ¼ ðxþ yÞ þ z; ð3Þ

and to form a group, with the neutral element denoted as 0:

xþ 0 ¼ x: ð4Þ

The inverse of addition is denoted by �:

xþ ð�xÞ � x� x ¼ 0: ð5Þ

Exercise 1. Show that the zero of vector addition is unique.

The second operation is multiplication of elements of X by elements k of the

field K:

kx:

The result of this multiplication is a vector, that is, an element of X.

Multiplication by elements of K is assumed to be associative:

kðaxÞ ¼ ðkaÞx ð6Þ

and distributive:

kðxþ yÞ ¼ kxþ ky; ð7Þ

as well as

ðaþ bÞx ¼ axþ bx: ð8Þ

We assume that multiplication by the unit of K, denoted as 1, acts as the identity:

1x ¼ x: ð9Þ

These are the axioms of linear algebra. We proceed to draw some deductions:

Set b ¼ 0 in (8); it follows from Exercise 1 that for all x

0x ¼ 0: ð10Þ
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Set a ¼ 1; b ¼ �1 in (8); using (9) and (10) we deduce that for all x

ð�1Þx ¼ �x:

Exercise 2. Show that the vector with all components zero serves as the zero

element of classical vector addition.

In this analytically oriented text the field K will be either the field R of real

numbers or the field C of complex numbers.

An interesting example of a linear space is the set of all functions xðtÞ that satisfy

the differential equation

d2

dt2
xþ x ¼ 0:

The sum of two solutions is again a solution, and so is the constant multiple of one.

This shows that the set of solutions of this differential equation form a linear space.

Solutions of this equation describe the motion of a mass connected to a fixed

point by a spring. Once the initial position xð0Þ ¼ p and initial velocity d
dt

xð0Þ ¼ v

are given, the motion is completely determined for all t. So solutions can be

described by a pair of numbers ðp; vÞ.
The relation between the two descriptions is linear; that is, if ðp; vÞ are the initial

data of a solution xðtÞ, and ðq;wÞ the initial data of another solution yðtÞ, then the

initial data of the solution xðtÞ þ yðtÞ are ðpþ q; vþ wÞ ¼ ðp; vÞ þ ðq;wÞ. Similarly,

the initial data of the solution kxðtÞ are ðkp; kvÞ ¼ kðp; vÞ.
This kind of relation has been abstracted into the notion of isomorphism.

Definition. A one-to-one correspondence between two linear spaces over the

same field that maps sums into sums and scalar multiples into scalar multiples is

called an isomorphism.

Isomorphism is a basic notion in linear algebra. Isomorphic linear spaces are

indistinguishable by means of operations available in linear spaces. Two linear

spaces that are presented in very different ways can be, as we have seen, isomorphic.

Examples of Linear Spaces. (i) Set of all row vectors: ða1; . . . ; anÞ; aj in K;

addition, multiplication defined componentwise. This space is denoted as Kn.

(ii) Set of all real-valued functions f ðxÞ defined on the real line, K ¼ R.

(iii) Set of all functions with values in K, defined on an arbitrary set S.

(iv) Set of all polynomials of degree less than n with coefficients in K.

Exercise 3. Show that (i) and (iv) are isomorphic.

Exercise 4. Show that if S has n elements, (i) and (iii) are isomorphic.
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Exercise 5. Show that when K ¼ R, (iv) is isomorphic with (iii) when S

consists of n distinct points of R.

Definition. A subset Yof a linear space X is called a subspace if sums and scalar

multiples of elements of Y belong to Y.

Examples of Subspaces. (a) X as in Example (i), Y the set of vectors

ð0; a2; . . . ; an�1; 0Þ whose first and last component is zero.

(b) X as in Example (ii), Y the set of all periodic functions with period p.

(c) X as in Example (iii), Y the set of constant functions on S.

(d) X as in Example (iv), Y the set of all even polynomials.

Definition. The sum of two subsets Y and Z of a linear space X, denoted as

Y þ Z, is the set of all vectors of form yþ z, y in Y, z in Z.

Exercise 6. Prove that Y þ Z is a linear subspace of X if Y and Z are.

Definition. The intersection of two subsets Y and Z of a linear space X, denoted

as Y \ Z, consists of all vectors x that belong to both Y and Z.

Exercise 7. Prove that if Y and Z are linear subspaces of X, so is Y \ Z.

Exercise 8. Show that the set f0g consisting of the zero element of a linear

space X is a subspace of X. It is called the trivial subspace.

Definition. A linear combination of j vectors x1; . . . ; xj of a linear space is a

vector of the form

k1x1 þ 
 
 
 þ kjxj; k1; . . . ; kj 2 K:

Exercise 9. Show that the set of all linear combinations of x1; . . . ; xj is a

subspace of X, and that it is the smallest subspace of X containing x1; . . . ; xj. This is

called the subspace spanned by x1; . . . ; xj.

Definition. A set of vectors x1; . . . ; xm in X span the whole space X if every x in

X can be expressed as a linear combination of x1; . . . ; xm.

Definition. The vectors x1; . . . ; xj are called linearly dependent if there is a

nontrivial linear relation between them, that is, a relation of the form

k1x1 þ 
 
 
 þ kjxj ¼ 0;

where not all k1; . . . ; kj are zero.
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Definition. A set of vectors x1; . . . ; xj that are not linearly dependent is called

linearly independent.

Exercise 10. Show that if the vectors x1; . . . ; xj are linearly independent, then

none of the xi is the zero vector.

Lemma 1. Suppose that the vectors x1; . . . ; xn span a linear space X and that the

vectors y1; . . . ; yj in X are linearly independent. Then

j � n:

Proof. Since x1; . . . ; xn span X, every vector in X can be written as a linear

combination of x1; . . . ; xn. In particular, y1:

y1 ¼ k1x1 þ 
 
 
 þ knxn:

Since y1 6¼ 0 (see Exercise 10), not all k are equal to 0, say ki 6¼ 0. Then xi can be

expressed as a linear combination of y1 and the remaining xs. So the set consisting of

the x’s, with xi replaced by y1 span X. If j � n, repeat this step n� 1 more times and

conclude that y1; . . . ; yn span X: if j > n, this contradicts the linear independence of

the y’s for then ynþ1 is a linear combination of y1; . . . ; yn. &

Definition. A finite set of vectors which span X and are linearly independent is

called a basis for X.

Lemma 2. A linear space X which is spanned by a finite set of vectors x1; . . . ; xn

has a basis.

Proof. If x1; . . . ; xn are linearly dependent, there is a nontrivial relation between

them; from this one of the xi can be expressed as a linear combination of the rest. So

we can drop that xi. Repeat this step until the remaining xj are linear independent:

they still span X, and so they form a basis. &

Definition. A linear space X is called finite dimensional if it has a basis.

A finite-dimensional space has many, many bases. When the elements of the

space are represented as arrays with n components, we give preference to the special

basis consisting of the vectors that have one component equal to 1, while all the

others equal 0.

Theorem 3. All bases for a finite-dimensional linear space X contain the same

number of vectors. This number is called the dimension of X and is denoted as

dim X:
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Proof. Let x1; . . . ; xn be one basis, and let y1; . . . ; ym be another. By Lemma 1 and

the definition of basis we conclude that m � n, and also n � m. So we conclude that

n and m are equal. &

We define the dimension of the trivial space consisting of the single element 0 to

be zero.

Theorem 4. Every linearly independent set of vectors y1; . . . ; yj in a finite-

dimensional linear space X can be completed to a basis of X.

Proof. If y1; . . . ; yj do not span X, there is some x1 that cannot be expressed as a

linear combination of y1; . . . ; yj. Adjoin this x1 to the y’s. Repeat this step until the

y’s span X. This will happen in less than n steps, n ¼ dim X, because otherwise X

would contain more than n linearly independent vectors, impossible for a space of

dimension n. &

Theorem 4 illustrates the many different ways of forming a basis for a linear

space.

Theorem 5. (a) Every subspace Y of a finite-dimensional linear space X is

finite dimensional.

(b) Every subspace Y has a complement in X, that is, another subspace Z such

that every vector x in X can be decomposed uniquely as

x ¼ yþ z; y in Y ; z in Z: ð11Þ

Furthermore

dim X ¼ dim Y þ dim Z: ð11Þ0

Proof. We can construct a basis in Y by starting with any nonzero vector y1, and

then adding another vector y2 and another, as long as they are linearly independent.

According to Lemma 1, there can be no more of these yi than the dimension of X. A

maximal set of linearly independent vectors y1; . . . ; yj in Y spans Y, and so forms a

basis of Y. According to Theorem 4, this set can be completed to form a basis of X by

adjoining Zjþ1; . . . ;Zn. Define Z as the space spanned by Zjþ1; . . . ; Zn; clearly Y and

Z are complements, and

dim X ¼ n ¼ jþ ðn� jÞ ¼ dim Y þ dim Z: &

Definition. X is said to be the direct sum of two subspaces Y and Z that are

complements of each other. More generally X is said to be the direct sum of its

subspaces Y1; . . . ; Ym if every x in X can be expressed uniquely as

x ¼ y1 þ 
 
 
 þ ym; yj in Yj; ð12Þ
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This relation is denoted as

X ¼ Y1 � 
 
 
 � Ym:

Exercise 11. Prove that if X is finite dimensional and the direct sum of

Y1; . . . ; Ym, then

dim X ¼
X

dim Yj: ð12Þ0

Definition. An ðn� 1Þ-dimensional subspace of an n-dimensional space is

called a hyperplane.

Exercise 12. Show that every finite-dimensional space X over K is isomorphic

to Kn; n ¼ dim X. Show that this isomorphism is not unique when n is >1.

Since every n-dimensional linear space over K is isomorphic to Kn, it follows that

two linear spaces over the same field and of the same dimension are isomorphic.

Note: There are many ways of forming such an isomorphism; it is not unique.

The concept of congruence modulo a subspace, defined below, is a very useful

tool.

Definition. For X a linear space, Ya subspace, we say that two vectors x1; x2 in X

are congruent modulo Y, denoted

x1 � x2 mod Y ;

if x1 � x2 2 Y . Congruence mod Y is an equivalence relation, that is, it is

(i) symmetric: if x1 � x2, then x2 � x1.

(ii) reflexive: x � x for all x in X.

(iii) transitive: if x1 � x2; x2 � x3, then x1 � x3.

Exercise 13. Prove (i)–(iii) above. Show furthermore that if x1 � x2, then

kx1 � kx2 for every scalar k.

We can divide elements of X into congruence classes mod Y. The congruence

class containing the vector x is the set of all vectors congruent with X; we denote it

by fxg:

Exercise 14. Show that two congruence classes are either identical or disjoint.

The set of congruence classes can be made into a linear space by defining addition

and multiplication by scalars, as follows:

fxg þ fzg ¼ fxþ zg
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and

kfxg ¼ fkxg:

That is, the sum of the congruence class containing x and the congruence

class containing z is the class containing xþ z. Similarly for multiplication by

scalars.

Exercise 15. Show that the above definition of addition and multiplication

by scalars is independent of the choice of representatives in the congruence

class.

The linear space of congruence classes defined above is called the quotient space

of X mod Y and is denoted as

Xðmod YÞ or X=Y:

The following example is illuminating: Take X to be the linear space of all row

vectors ða1; . . . ; anÞ with n components, and take Y to be all vectors

y ¼ ð0; 0; a3; . . . ; anÞ whose first two components are zero. Then two vectors are

congruent mod Y iff their first two components are equal. Each equivalence class can

be represented by a vector with two components, the common components of all

vectors in the equivalence class.

This shows that forming a quotient space amounts to throwing away information

contained in those components that pertain to Y. This is a very useful simplification

when we do not need the information contained in the neglected components.

The next result shows the usefulness of quotient spaces for counting the

dimension of a subspace.

Theorem 6. Y is a subspace of a finite-dimensional linear space X; then

dim Y þ dimðX=YÞ ¼ dim X: ð13Þ

Proof. Let y1; . . . ; yj be a basis for Y, j ¼ dim Y . According to Theorem 4, this set

can be completed to form a basis for X by adjoining xjþ1; . . . ; xn; n ¼ dim X. We

claim that

fxjþ1g; . . . ; fxng ð13Þ0

form a basis for X=Y. To show this we have to verify two properties of the cosets

(13)0:

(i) They span X=Y .

(ii) They are linearly independent.
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(i) Since y1; . . . ; xn form a basis for X, every x in X can be expressed as

x ¼
X

aiyi þ
X

bkxk:

It follows that

fxg ¼
X

bkfxkg:

(ii) Suppose that

X
ckfxkg ¼ 0:

This means that

X
ckxk ¼ y; y in Y:

Express y as
P

diyi; we get

X
ckxk �

X
diyi ¼ 0:

Since y1; . . . ; xn form a basis, they are linearly independent, and so all the ck and di

are zero.

It follows that

dim X=Y ¼ # of xk ¼ n� j:

So

dim Y þ dim X=Y ¼ jþ n� j ¼ n ¼ dim X: &

Exercise 16. Denote by X the linear space of all polynomials pðtÞ of degree

< n, and denote by Y the set of polynomials that are zero at t1; . . . ; tj; j < n.

(i) Show that Y is a subspace of X.

(ii) Determine dim Y.

(iii) Determine dim X=Y .

The following corollary is a consequence of Theorem 6.

Corollary 60. A subspace Y of a finite-dimensional linear space X whose

dimension is the same as the dimension of X is all of X.
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Exercise 17. Prove Corollary 60.

Theorem 7. Suppose X is a finite-dimensional linear space, U and V two

subspaces of X such that X is the sum of U and V:

X ¼ U þ V:

Denote by W the intersection of U and V:

W ¼ U \ V:

Then

dim X ¼ dim U þ dim V � dim W : ð14Þ

Proof. When the intersection W of U and V is the trivial space f0g; dim W ¼ 0,

and (14) is relation (11)0 of Theorem 5. We show now how to use the notion of

quotient space to reduce the general case to the simple case dim W ¼ 0.

Define U0 ¼ U=W ;V0 ¼ V=W; then U0 \ V0 ¼ f0g, and so X0 ¼ X=W satisfies

X0 ¼ U0 þ V0:

So according to (11)0,

dim X0 ¼ dim U0 þ dim V0: ð14Þ0

Applying (13) of Theorem 6 three times, we get

dim X0 ¼ dim X � dim W ; dim U0 ¼ dim U � dim W ;

dim V0 ¼ dim V � dim W :

Setting this into relation (14)0 gives (14). &

Definition. The Cartesian sum of two linear spaces over the same field is the set

of pairs

ðx1; x2Þ; x1 in X1; x2 in X2;

where addition and multiplication by scalars is defined componentwise. The direct

sum is denoted as

X1 � X2:

It is easy to verify that X1 � X2 is indeed a linear space.
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Exercise 18. Show that

dim X1 � X2 ¼ dim X1 þ dim X2:

Exercise 19. X a linear space, Y a subspace. Show that Y � X=Y is isomorphic

to X.

Note: The most frequently occurring linear spaces in this text are our old friends

Rn and Cn, the spaces of vectors ða1; . . . ; anÞ with n real, respectively complex,

components.

So far the only means we have for showing that a linear space X is finite

dimensional is to find a finite set of vectors that span it. In Chapter 7 we present

another, powerful criterion for a Euclidean space to be finite dimensional. In Chapter

14 we extend this criterion to all normed linear spaces.

We have been talking about sets of vectors being linearly dependent or

independent, but have given no indication how to decide which is the case. Here is an

example:

Decide if the four vectors

1

1

0

1

0
BB@

1
CCA;

1

�1

1

1

0
BB@

1
CCA;

2

1

1

3

0
BB@

1
CCA;

2

�1

2

3

0
BB@

1
CCA

are linearly dependent or not. That is, are there four numbers k1; k2; k3; k4, not all

zero, such that

k1

1

1

0

1

0
BB@

1
CCAþ k2

1

�1

1

1

0
BB@

1
CCAþ k3

2

1

1

3

0
BB@

1
CCAþ k4

2

�1

0

3

0
BB@

1
CCA ¼

0

0

0

0

0
BB@

1
CCA?

This vector equation is equivalent to four scalar equations:

k1 þ k2 þ 2k3 þ 2k4 ¼ 0;

k1 � k2 þ k3 � k4 ¼ 0;

k2 þ k3 ¼ 0;

k1 þ k2 þ 3k3 þ 3k4 ¼ 0:

ð15Þ

The study of such systems of linear equations is the subject of Chapters 3 and 4.

There we describe an algorithm for finding all solutions of such systems of

equations.
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Exercise 20. Which of the following sets of vectors x ¼ ðx1; . . . ; xnÞ in Rn are a

subspace of Rn? Explain your answer.

(a) All x such that x1 � 0.

(b) All x such that x1 þ x2 ¼ 0.

(c) All x such that x1 þ x2 þ 1 ¼ 0.

(d) All x such that x1 ¼ 0.

(e) All x such that x1 is an integer.

Exercise 21. Let U;V ; and W be subspaces of some finite-dimensional vector

space X. Is the statement

dimðU þ V þWÞ ¼ dim U þ dim V þ dim W � dimðU \ VÞ � dimðU \WÞ
� dimðV \WÞ þ dimðU \ V \WÞ;

true or false? If true, prove it. If false, provide a counterexample.
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