CHAPTER 1

Primary Syntheses of 1,5-Naphthyridines

The primary synthesis of 1,5-naphthyridines may be accomplished by double cyclization of appropriate aliphatic substrates; by cyclization of appropriately substituted pyridines; by cyclocondensation of pyridine substrates with one or more aliphatic synthons; or from other heterocyclic substrates by degradation, rearrangement, or the like. Partially or fully reduced 1,5-naphthyridines are often made by somewhat similar procedures; such cases are usually illustrated toward the end of each subsection. Some reviews of naphthyridine chemistry contain material on the primary synthesis of 1,5-naphthyridines.^{49–52,61,231,265,670,1260,1273,1430,1432}

1.1. FROM A SINGLE ALIPHATIC SUBSTRATE

This unlikely type of synthesis is represented by the reduction of 5,6dimethyl-5,6-dinitrodecane-2,9-dione (1) to give a mixture from which 2,4a,6,8a-tetramethyl-3,4,4a,7,8,8a-hexahydro-1,5-naphthyridine 1,5-dioxide (2) was isolated via its picrate (Zn, NH₄ Cl, H₂O, EtOH, 20°C, 6 h: ?%);¹⁰²² the structural configuration of the foregoing compound and related products were studied later,¹⁹⁶

An essentially similar type of reaction has been used to prepare fused 1,5-naphthyridines such as 2,8-dimethyl-6,12-bis(*p*-tolylimino)-5,6,11,12-tetrahydrodibenzo[*b*, *g*][1,5]-naphthyridine (**3**).⁶⁸⁸

The Naphthyridines: The Chemistry of Heterocyclic Compounds, Volume 63, by D.J. Brown Copyright © 2008 John Wiley & Sons, Inc.

1.2. FROM A SINGLE PYRIDINE SUBSTRATE

Such syntheses may be subdivided according to which bond of the resulting 1,5naphthyridine is formed in the process. Of the five possibilities, only three are represented in the literature.

1.2.1. By Formation of the N1,C2-Bond

Several preparations within this category are illustrated in the following examples.

2-(2-Ethoxycarbonylvinyl)-3-pyridinamine (4, R = H) gave 1,5-naphthyridin-2 (1*H*)-one (5, R = H) (EtONa, EtOH, reflux, 3 h: 72%);¹⁰⁴⁴ the homologous substrate (4, R = Me) likewise gave 6,8-dimethyl-1,5-naphthyridin-2(1*H*)-one (5, R = Me) (reflux, 2 h: 71%);¹⁰⁴⁴ and the analogous carboxy substrate, 2- (2-carboxyvinyl)-3-pyridinamine (6), also afforded 1,5-naphthyridine-2(1*H*)- one (5, R = H) using the Posner¹⁴²⁸ technique (H₂NOH, MeONa, MeOH, reflux, 12 h: 31%).¹⁰⁰⁰

2-(3-Cyano-1-isopropylprop-1-enyl)-6-methoxy-3-nitropyridine (7, $R = Pr^{i}$, X = CN) gave 6-methoxy-4-isopropyl-1,5-naphthyridine-2-carbonitrile 1oxide (8, $R = Pr^{i}$, X = CN) (Me₃SiCl, Et₃N, Me₂NCHO, 20°C, 6 h: 48%);⁵⁸⁸ somewhat similarly, 2-(3-ethoxycarbonylprop-1-enyl)-6-methoxy-3-nitropyridine (7, R = H, $X = CO_2Et$) gave ethyl 6-methoxy-1,5-naphthyridine-2carboxylate 1-oxide (8, R = H, $X = CO_2Et$) [Me₃SiC1, diazabicycloundecene (DBU), Me₂NCHO, 20°C, 1 h: 85%].⁵⁸⁸

2-Ethoxalylmethyl-6-methoxy-3-nitropyridine (**9**) underwent reductive cyclization to 3-hydroxy-6-methoxy-3,4-dihydro-1,5-naphthyridin-2(1*H*)-one (**10**) (PtO₂, H₂, 3 atm, EtOH, 20°C, 2 h: 69%) that was easily aromatized to give 6-methoxy-1,5-naphthyridine-2,3(1*H*, 5*H*)-dione (**11**) [TsCl, pyridine, 150°C (?), 4 h: 83%].²³⁴

2-(1-Hydroxy-3-phenylallyl)-6-methoxy-3-methylaminopyridine (**12**, R = Me) underwent thermolytic cyclization to give 2-methoxy-5-methyl-6-phenyl-5, 6-dihydro-1,5-naphthyridine (**13**, R = Me) (C₆H₄Cl₂, 180°C, 4 h: 31%). However, when the allylamino substrate (**12**, R = CH₂CH:CH₂) was so treated, the initial product, 1-allylamino-6-methoxy-2-phenyl-1, 5-naphthyridine (**13**, R = CH₂CH:CH₂) (180°C, 20 min: 65%), underwent subsequent aromatization to 2-methoxy-6-phenyl-1,5-naphthyridine (**14**), presumably by loss of propane [180°C, 20 h: 43%; or F₃CCO₂H, (Ph₃P)₄RhH, EtOH, reflux, 4 h: 54%].

1.2.2. By Formation of the C3,C4-Bond

Such a synthesis is evident in the Dieckmann cyclization⁹⁸¹ of ethyl 3-[2-(ethoxycarbonyl)acetamido]-2-pyridinecarboxylate (15) (prepared *in situ*) to give

4-hydroxy-1, 8-naphthyridin-2(1*H*)-one (**16**) (EtONa, EtOH, reflux, 5 h; resulting solid, NaOH, H₂O, reflux until gas-ceased: 69%).¹⁰²³

1.2.3. By Formation of the C4,C4a-Bond

Although it involves the formation of a C,C-bond, this synthesis has been widely used, as illustrated in the following typical examples.

3-[(2,2-Diethoxycarbonylvinyl)amino]-5,6-dimethylpyridine (**17**) underwent regioselective thermal cyclization to give ethyl 6,7-dimethyl-4-oxo-1,4-dihy-dro-1,5-naphthyridine-3-carboxylate (**18**) (Dowtherm A, reflux, 15 min: 89%; analogs likewise).¹³⁹⁸

3-[(2,2-Diethoxycarbonylvinyl)amino]-4-methoxypyridine (**19**) gave ethyl 8methoxy-4-oxo-1,4-dihydro-1,5-naphthyridine-3-carboxylate (**20**) (Ph₂O, reflux, 25 min: 72%);³⁰¹ a similar substrate likewise gave ethyl 6-butoxy-4oxo-1,4-dihydro-1,5-naphthyridine-3-carboxylate (Ph₂O, reflux, 15 min: ~75%).¹⁰³⁶

In contrast, regioselectively was less marked in the thermal cyclization of 3-[(2-ethoxycarbonyl)amino]pyridine (21), which gave a 4:1 mixture of

2-methyl-1,5-naphthyridin-4(1*H*)-one (**22**) and 2-methyl-1,7-naphthyridin-4(1*H*)-one (**23**) (Ph₂O, reflux, 1 h: 75% of mixture).⁸²⁸

3-[(3-Hydroxy-2-methyl-3-phenylpropyl)amino]pyridine (**24**) underwent dehydrative cyclization to give 3-methyl-4-phenyl-1,2,3,4-tetrahydro-1,5-naphthyridine (**25**) (70% H₂SO₄, 0°C \rightarrow 25°C, \sim 15 h: 65%) that was easily dehydrogenated to give 3-methyl-4-phenyl-1,5-naphthyridine (**26**) (neat substrate, Pd/C, 200°C, 3 h: 56%).⁸⁷⁹ Also other examples.^{48,485,865,967,1232,1245}

1.3. FROM A PYRIDINE SUBSTRATE WITH ONE SYNTHON

Most primary syntheses of 1,5-naphthyridines fall into this basket. Procedures are divided initially into categories in which the synthon provides one, two, or three atoms to the final 1,5-naphthyridine; when necessary, such categories are further subdivided according to which specific atoms are provided by the synthon.

1.3.1. Where the Synthon Supplies One Atom

There appears to be no example of such a synthesis in the parent 1,5-naphthyridine series, but benzo-1,5-naphthyridines have been so made. Thus ethyl 3-dimethylamino-methyleneamino-6,7-dimethoxyquinoline (**27**) gave 7,8-dimethoxy-4-oxo-1,4-dihydrobenzo[*b*]-1,5-naphthyridine-3-carbonitrile (**28**)[NaCH₂CN (made *in situ*), THF, -78° C; substrates dropwise, -78° C, 3 h; then 20°C, 12 h: 58%].²⁰⁸

1.3.2. Where the Synthon Supplies Two Atoms

Nearly all the reported syntheses in this category have used the synthon to supply C2 + C3 of the resulting 1,5-naphthyridine, but C3 + C4 may be so supplied, as illustrated at the end of the following list of typical examples.

Ethyl 3-aminopicolinate (**29**) with diethyl malonate gave 4-hydroxy-1,5naphthyridin-2(1*H*)-one (**30**) [neat reactants, 120°C, 5 h; solid, EtONa, EtOH, reflux, 5 h; solid, 2.5M NaOH, reflux until gas ceased: 96%].¹¹⁵¹

- Somewhat similarly, 3-aminopicolinic acid with ethyl acetoacetate gave 2methyl-1,5-naphthyridin-4(1*H*)-one (neat reactants, reflux, 4 h: 13%).¹⁰⁰⁰
- 3-Amino-2-pyridinecarbonitrile (**31**) with diethyl malonate gave 4-amino-1,5-naphthyridin-2(1*H*)-one (**32**) (neat reactants, EtONa, reflux, 7.5 h: 36%).⁷²⁵

2-(α-Hydroxybenzyl)-6-methoxy-3-methylaminopyridine (**33**) with allyltrimethylsilane gave 2-methoxy-5-methyl-8-phenyl-6-(trimethylsilylmethyl)-5,6, 7,8-tetrahydro-1,5-naphthyridine (**34**) (reactants, BF.₃,Et₂O. 60–80°C, 4.5 h: 50%); analogs likewise.⁶¹⁹

3-Benzylideneamino-6-methoxypyridine (35) underwent partially regioselective cyclocondensation with phenylacetylene in the presence of oxidizing agents to afford a separable mixture of 2-methoxy-6,8-diphenyl-1,5-naphthyridine (36) and 6-methoxy-2,4-diphenyl-1,7-naphthyridine (37) (reactants, FeCl₃,

tetrachlorobenzoquinone, MeCN, reflux, \sim 45 min; 50% and 7%, respectively, after separation).⁴⁵⁵ Also other examples.^{312,1302}

1.3.3. Where the Synthon Supplies Three Atoms

Of the two possibilities in this category (to supply N1 + C2 + C3 or C2 + C3 + C4), only the latter has been employed, often by submission of a 3-pyridinamine to a Skraup-like synthesis. Typical examples follows.

3-Pyridinamine (**38**) and acrolein (**39**) (formed from glycerol under Skraup-like conditions) gave 1,5-naphthyridine (**40**) $[O_2NC_6H_4SO_3Na-m, H_2SO_4, H_3BO_3, FeSO_4, 0°C; HOHC(CH_2OH)_2\downarrow$, substrate \downarrow , H₂O \downarrow ; 135°C, 4 h: 90%;⁸⁷³ HOCH(CH₂OH)₂, $O_2NC_6H_4SO_3Na-m$, ~70% H₂SO₄, 135°C, 4 h: 50%;⁴⁵ earlier versions, using As₂O₅ as the oxidizing agent, gave <30% yields.^{14,32,113,155,104},

6-Methyl-3-pyridinamine (**41**, R = Me) gave 2-methyl-1,5-naphthyridine (**42**, R = Me) [96% H₂SO₄,O₂NC₆H₄SO₃Na-*m*, H₃BO₃, FeSO₄, 7H₂O, HOHC (CH₂OH)₂↓, substrate↓, H₂O↓, then 135°C, 18 h: 55%];²⁶⁸ 2,5-pyridinediamine (**41**; R = NH₂) gave 1,5-naphthyridine-2-amine (**42**, R = NH₂) [70% H₂SO₄, O₂NC₆H₄SO₃Na-*m*, HOCH(CH₂OH)₂, 135°C, 5 h: 88%].^{811,1371}

Appropriate pyridine substrates similarly gave 1,5-naphthyridine-2(1*H*)-one (**43**) [HOHC(CH₂OH)₂, As₂O₅, 165°C, ~90 min: 57%;¹⁰³⁷ likewise but 160°C, 45 min: 15%];¹⁰⁵¹ 1,5-naphthyridin-4(1*H*)-one (**44**)(likewise, 160°C, ~2.5 h:

37%);¹⁰⁴⁷ and 1,5-naphthyridine 1-oxide (**45**) $[O_2NC_6H_4SO_3H, H_2SO_4, FeSO_4, 7H_2O, H_3BO_3, 0^{\circ}C; HOCH(CH_2OH)_2\downarrow$, substrate \downarrow , H₂O \downarrow ; then 130°C, 5 h: 19%].¹⁰³³

3-Pyridinamine (**47**) with crotonaldehyde gave 2-methyl-1,5-naphthyridine (**46**)(substrate, O₂NC₆H₄SO₃H, H₂SO₄, H₂O, 125°C; MeCH=CHCHO in dropwise, 1 h: then 150°C, 12 h: ~10%), with methacrylaldehyde gave 3-methyl-1,5-naphthyridine (**48**) (substrate, FeSO₄.7H₂O, As₂O₅, 96% H₂SO₄, 120°C; H₂CCMeCHO in dropwise during 7 h; the 170°C, 15 h: 30%); or with methyl vinyl ketone gave 4-methyl-1,5-naphthyridine (**49**)[as for isomer (**46**) but MeCOCH=CH₂; 11%].¹⁵⁵

6-Methyl-3-pyridinamine (**50**) with crotonaldehyde gave 2,6-dimethyl-1,5naphthyridine (**51**) [substrate, $O_2NC_6H_4SO_3H$, H_2SO_4 (?), H_2O , 125°C; MeCH=CHCHO in slowly; then 150°C, 8 h: ~10%];¹¹⁶⁹ analogs somewhat similarly.²⁶⁹

2-Bromo-6-ethoxy-3-pyridinamine (**52**) reacted with methyl 3-methoxyacrylate (2 equiv) to give 6-ethoxy-4-methoxy-1-(1-methoxy-2-methoxycarbony-

lethyl)-1,5-naphthyridin-2(1*H*)-one (**53**) [Pd(OAc)₂, P(C₆H₄Me-p)₃, Et₃N, N₂, 100°C bath, 5 days: 28%].¹⁰¹⁵

3-Pyridinamine (**54**) with diethyl ethoxymethylenemalonate gave ethyl 4-oxo-1,4-dihydro-1,5-naphthyridine-3-carboxylate (**55**) (reactants, Dowtherm A, 150°C, reflux, 1 h: 80%);¹⁰¹ somewhat similarly, 5-amino-2(1*H*)-pyridinone gave ethyl 4,6-dioxo-1,4,5,6-tetrahydro-1,5-naphthyridine-3-carboxylate (**56**) [EtOCH=C(CO₂Et)₂, Ph₂O, reflux, 1 h: 20%].²³³

3-Aminopicolinic acid (**57**) with ethyl acetoacetate gave 2-methyl-1,5-naphthyridin-4(1*H*)-one (**58**) (neat reactants, reflux, 4 h: 13%).^{828,1000}

2-Methoxy-5-nitropyridine (59) with 1-phenyl-3-phenylsulfonylpropane (60) gave 2-methyl-6-phenyl-8-phenylsulfonyl-1,5-naphthyridine (61) (reactants, MeCN, Bu'Me₃ SiCl, DBU, 20°C, 3 days: 54%),^{521,554} Also other examples,^{181,273,316,760,827,1272,1377}

1.4. FROM A PYRIDINE SUBSTRATE AND TWO SYNTHONS

This type of synthesis is represented only by several procedures akin to the Doebner–Miller quinoline synthesis, in which both synthons are the same.

4-Methyl-3-pyridinamine (62) and an excess of acetaldehyde gave 2,8-dimethyl-1,5-naphthyridine (63) (substrate, 10M HCl, 5°C; MeCHO in dropwise; 0°C, 1 h; then reflux, 1 h; 16%; note the necessity for oxidation, either aerial or by the excess of MeCHO?),²⁶⁸

Similar treatment of 6-methoxy-3-pyridinamine (**64**) involved an additional hydrolysis of the methoxy group to afford 6-methyl-1,5-naphthyridin-2(1H)-one (**65**)(36%).²⁶⁸

Also other examples.94

1.5. FROM OTHER HETEROCYCLIC SUBSTRATES

This general approach to 1,5-naphthyridines has seldom been used, but classified examples follow.

From Benzo[b]-1,5-naphthyridines

7,9-Dihydroxybenzo[*b*]-1,5-naphthyridin-10(5*H*)-one (**66**), easily made by fusion of 3-aminopicolinic acid with phloroglucinol, underwent oxidation to 4-oxo-1,4-dihydro-1,5-naphthyridine-2,3-dicarboxylic acid (**67**) [HNO₃ (d. 1.5), 20°C, then 95°C, 40 min: ?%, after separation from a byproduct].¹⁷

From 1,3-Dioxolanes

4,5-Diamino-2,7-bis(1,3-dioxolan-2-yl)-4,5-dimethyloctane (68) [a bis(cycloacetal) of the corresponding dialdehyde] gave 2,4a,6,8a-tetramethyl-3,4,4a,7,8,8a-hexahydro-1,5-naphthyridine (69) (1M H₂SO₄: no details).¹⁹⁶

From 1,2,4-Triazines

5,6-Diphenyl-3-[3-(2-phenylimidazol-1-yl)propyl]-1,2,4-triazine (**70**) underwent thermal intramolecular addition (with loss of nitrogen) to give the tricyclic intermediate (**71**) and thence (by loss of benzonitrile) 2,3-diphenyl-5,6,7,8-tetrahydro-1,5-naphthyridine (**72**) [substrate, antioxidant (2,6-di-*tert*-butyl-4-methylphenol), 1,3,5- $Pr_{3}^{i}C_{6}H_{3}$, reflux, 3 h: 92%] that could be aromatized to 2,3-diphenyl-1,5-naphthyridine (**73**) (1,3,5- $Pr_{3}^{i}C_{6}H_{3}$, reflux, air, 24 h: 91%); the latter product (**73**) was also made directly from the triazine (**70**) (neat substrate, Se, 330°C, 10 h: 85%); analogs likewise.^{137,522}

