PART 1
Introduction






1 Mobile Agents and Applications in
Networking and Distributed
Computing

JIANNONG CAO
Department of Computing, Hong Kong Polytechnic University

SAJAL K. DAS

Department of Computer Science and Engineering, The University
of Texas at Arlington, USA

1.1 INTRODUCTION

Agent technology has evolved from two research areas: artificial intelligence
and distributed computing. The purpose of Al research is to use intelligent
computing entities to simplify human operations. An agent is just a computer
program targeting that purpose [1]. Distributed computing, on the other hand,
allows a complex task to be better executed by cooperation of several distrib-
uted agents on interconnected computers. So, networking and distribution
bring out the true flavor of software agent technology in terms of agent
autonomy, coordination, reactivity, heterogeneity, brokerage, and mobility.

Mobile agents refer to self-contained and identifiable computer programs
that can move over the network and act on behalf of the user or another
entity [2]. They can execute at a host for a while before halting the execution
and migrating to another host and resuming execution there. They are able to
detect the environment and adapt dynamically to changes. Mobile agents are
widely used for handling disconnected operations in distributed, mobile, and
wireless networking environments [3-6]. Also, many applications, including
network diagnostic, e-commerce, entertainment and broadcasting, intrusion
detection, and home health care, are benefited from the use of mobile agents
[7, 8].

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



4 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

Client Client Client Client

‘
|

it

Traditional Mobile agent-based

FIGURE 1.1 Mobile agent can reduce communication cost.

The term mobile agent contains two separate and distinct concepts: mobility
and agency [9]. Some authors (e.g., [10]) classify a mobile agent as a special case
of an agent, while others (e.g., [11]) separate the agency from mobility. Despite
the differences in definition, most research on the mobile agent paradigm as
reported in the literature has two general goals: reduction of network traffic
and asynchronous interaction. Mobile agents can reduce the connecting
time and bandwidth consumption by processing the data at the source and
sending only the relevant results. By moving the agents to data-residing hosts,
they can reduce communication costs. On the other hand, mobile agents sup-
port asynchronous interaction. They can continue computations even if the
user that has started it, is no longer connected to the system. Mobile agents
have been proposed as an alternative to the client—server paradigm which
can be a more efficient and flexible mode of communication in certain appli-
cation areas (Figure 1.1). It has been recognized that mobile agents provide a
promising approach to dealing with dynamic, heterogeneous, and changing
environments, which is tendency of modern Internet applications.

A mobile agent has the following properties or capabilities [12, 13]:

Mobility Transport itself from host to host within a network. This is the
most distinguishing property from other kinds of agents. Note that a
moving agent will carry its identity, execution state, and program code so
that it can be authenticated and hence can resume its execution on the
destination site after the move. Mobility refers to a wide range of new
concepts. Migration is undoubtedly the most important of these concepts.
Migration allows an agent to move from one location to another. The
migration of a mobile agent requires the agent system to support execu-
tion stopping, state collection, data serialization and transfer, data
deserialization, and execution resuming. From this point of view, mobile
agents strongly rely on mobile code technology, which will be described in
detail later in this chapter.

Intelligence Interact with and learn from the environment and make
decisions. A most advanced agent should be able to decide its action



1.2 MOBILE AGENT PLATFORMS 5

based on its knowledge and the information it gets en route, and thus be
able to generate new knowledge from its experience.

Autonomy Take control over its own actions. An agent should be able to
execute, move, and settle down independently without supervision even in
long-term running.

Recursion Create child agents for subtasks if necessary. An important
concept is agent cloning: The agent can clone itself, that is, create a new
mobile agent that is a copy of the parent. A pure cloning operation
implies that the cloned agent has the same behavior (code) and the same
knowledge (data) as the parent agent. A postcloning operation can
initialize specific values in the cloned agent, which starts its life cycle in
the same execution environment as the parent. Its location can however
be different from the parent’s.

Asynchrony In a distributed computing environment, perform computation
concurrently and possibly on different sites. Also, performing computation
on behalf of its user, an agent is responsible for the task assigned by a user
and allows the user to offer and/or obtain resources and services in order to
finish the task. All these can be done asynchronously with the user’s action.

Collaboration Cooperate and negotiate with other agents. Complicated tasks
can be carried out by collaboration of a group of agents.

1.2 MOBILE AGENT PLATFORMS

A mobile agent platform (MAP) is a software package for the development and
management of mobile agents. It is a distributed abstraction layer that provides
the concepts and mechanisms for mobility and communication on the one
hand, and security of the underlying system on the other hand. The platform
gives the user all the basic tools needed for creating some applications based on
the use of agents. It enables us to create, run, suspend, resume, deactivate, or
reactivate local agents, to stop their execution, to make them communicate with
each other, and to migrate them.

Some agent standards enable interoperability between agent platforms so
that software agents can communicate and achieve their objectives according to
standardized specifications. The most popular agent standards are FIP4 and
OMG-MASIF as discussed below.

1.2.1 FIPA

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to
produce software standards for heterogencous interacting agents and agent-
based systems. Currently, FIPA appears to be the dominant standards orga-
nization in the area of agent technology. Important efforts have been made
to address the interoperability issues between the agent platforms. Figure 1.2



6 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

Software
h
v Agent platform
Agent .
Agent manag ement Directory
g £ facilitator
system
A A A
A 4 A 4 N
Agent
Message transport system communication
channel

h

A 4

AgerN
Message transport system communication
channy

Agent platform

FIGURE 1.2 Agent system reference model of FIPA.

presents the overall architecture of an agent system as specified by FIPA. The
message transport is the main underlying mechanism devoted to communica-
tion between agents based on Agent Communication Language (ACL); at
this stage, mobile agents are not supported. The message transport itself relies
on standard communication techniques used by distributed system frame-
works, such as Common Object Request Broker Architecture (CORBA) or
Java remote method invocation (RMI).

Both Agent Management System (AMS) and Directory Facilitator (DF) are
FIPA agents: the AMS is responsible for the core management activities of
the agent platform whereas the DF acts as a yellow page service. Agents are reg-
istered in the DF and can be localized from their types by other agents. In addition,
agent communication is ensured through the Message Transport System (MTS),
including the Message Transport Protocol (MTP) and the Agent Communication
Channel (ACC), which directly provide agents with specific services for commu-
nication. The ACC may access information provided by the other agent platform
services such as the AMS and DF to carry out its message transport tasks.

1.2.2 OMG-MASIF

In 1997, the Object Management Group (OMG) released a draft version of
the Mobile Agent System Interoperability Facilities (MASIF) [14]. MASIF



1.2 MOBILE AGENT PLATFORMS 7

Region
/ Mobile agents Agency
A/
Enhanced | Place
€ > agency
services
A '\\
" |
Basic
agency
services 1:/[A1:‘ MAF
sen finder
system
¥ 3 K
v A y

Object request broker (ORB)

FIGURE 1.3 General architecture of OMG-MASIF mobile agent system.

proposes a specification of the communication infrastructure as well as inter-
faces defined in an interface definition language (IDL) to access mobility
services in order to promote the interoperability and diversity of MAP. From
the interoperability and heterogeneity perspectives, OMG follows the same
objectives as FIPA. The objectives in terms of requirements and functionalities
are clearly different, however. Whereas FIPA is concerned with a message-
based communication infrastructure, MASIF has to take into account the
migration of the agent and must consequently focus on the way to dynamically
create the agent, that is, to instantiate a new object at the right place and with
the right class.

In Figure 1.3, the MASIF architecture appears to be a hierarchical organi-
zation of regions, agencies, and places [15]. The place is a context within an
agent system in which an agent can execute its tasks and provide local access
control to mobile agents. A place is associated with a location which consists of
the place name and the address of the agent system within which the place
resides. The agency represents the agent system itself or is the core part of the
agent system. At a higher level, the region is a set of agent systems that have
the same authority but are not necessarily of the same type.

Considering its origin, MASIF strongly relies on a CORBA architecture
and therefore on the ORB. The services provided by the region, agency, and
place are defined through IDL interfaces; the most important interfaces are
MAFFinder and MAFAgentSystem: the MAFFinder supports the localization
of agents, agent systems and places in the scope of a region or in the whole



8 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

environment; on the other hand, the MAFAgentSystem interface provides
operations for the management and transfer of agents. In MASIF, the agent’s
migration requires the transfer of the agent class so that the agent can be
properly instantiated.

1.3 REPRESENTATIVE MAPs

In the following, we briefly describe some representative MAPs.

1.3.1 IBM Aglets Workbench (1997-2001)

This is a Java MAP and library that eases the development of agent-based
applications. Originally developed at the IBM Tokyo Research Laboratory, the
Aglets technology is now hosted at sourceforge.net as an open-source project,
where it is distributed under the IBM Public License. Aglets is completely made in
Java, granting a high portability of both the agents and the platform. The aglet
represents the next leap forward in the evolution of executable content on the
Internet, introducing program code that can be transported along with state
information. Aglets are Java objects that can move from one host on the Internet
to another. That is, an aglet that executes on one host can suddenly halt execu-
tion, dispatch itself to a remote host, and resume execution there. When the aglet
moves, it takes along its program code as well as its data.

1.3.2 Agent Tcl (1994-2002, later known as D’Agents)

This does not formally specify a mobile agent model. Instead, a mobile agent is
understood as a program that can be written in any language and that accesses
features that support mobility via a common service package implemented as a
server. This server provides mobile agent—specific services such as state capture,
transfer facility, and group communication as well as more traditional services
such as disk access, screen access, and CPU cycle. The philosophy was that all
functionalities an agent ever wants are available in the server. Agent mobility
then only concerns closure, which is the Tcl script (or scripts). There are no
additional codes to load (i.e., no external references). In Agent Tcl, the state
capture of an agent is handled automatically and transparently to the pro-
grammer. However, it is unclear what this state capture includes. Since Tcl is a
script language, a frequent example given is that the executing script resumes
after the instruction for mobility has been executed. There is also a plan to
introduce process migration—like behavior such that the states of the agent
would continue to evolve as it moves from place to place. However, this trend
could have adverse effects in areas such as the complexity of the transfer
mechanism and cost, adverse effects that are still being dealt with in the more
traditional process migration.



1.3 REPRESENTATIVE MAPs 9

1.3.3 Grasshopper (1998)

The agent development platform launched by IKV++ in August 1998,
enables the user to create a wealth of applications based on agent technology.
This platform is completely implemented in Java, a programming language
that has become widely known among programmers, giving them the
opportunity to work with Grasshopper without intensive further training.
Companies with an urgent need for true distributed systems can therefore
benefit almost immediately from the advantages of Java as well as from
Grasshopper’s unique suitability for such systems. Grasshopper is also the
first mobile agent environment that is compliant to the industry standard
supporting agent mobility and management (OMG-MASIF). This compliance
ensures compatibility with other agent environments or applications based on
the same standard, thus avoiding costly and time-consuming integration
procedures. From Grasshopper version 1.2 released in 1999, it is also com-
pliant with the specifications of the FIPA standards. Grasshopper can be used
in many different application contexts, telecommunications being one of the
most prominent application areas.

1.3.4 Concordia (1997)

This is another mobile agent framework built on Java. In Concordia an agent
is regarded as a collection of Java objects. A Concordia agent is modeled as a
Java program that uses services provided by a collection of server components
that would take care of mobility, persistence, security, communication,
administration, and resources. These server components would communicate
among themselves and can run in one or several Java virtual machines; the
collection of these components forms the agent execution environment (AEE)
at a given network node. Once arriving at a node, the Concordia agent accesses
regular services available to all Java-based programs such as database access,
file system, and graphics, as in Aglet. A Concordia agent is considered to have
internal states as well as external task states. The internal states are values of
the objects’ variables, while the external task states are the states of an itinerary
object that would be kept external to the agent’s code. This itinerary object
encapsulates the destination addresses of each Concordia agent and the
method that each would have to execute when arriving there. The designers of
Concordia claim that this approach allows greater flexibility by offering
multiple points of entry to agent execution, as compared to always executing
an “after-move” method as in Agent Tcl, or Aglet. This concept of an exter-
nally located itinerary is similarly supported in Odyssey via task object.
However, the infrastructure for management of these itinerary objects is not
clear from the publicly available literature on Concordia which has support for
transactional multiagent applications and knowledge discovery for collabo-
rating agents.



10 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

1.3.5 In Mole (1997)

The agent is modeled as a cluster of Java objects, a closure without external
references except with the host system. The agent is thus a transitive closure
over all the objects to which the main agent object contains a reference. This
island concept was chosen by the designers of Mole to allow simple transfer of
agents without worrying about dangling references. Each Mole agent has a
unique name provided by the agent system which is used to identify the agent.
Also, a Mole agent can only communicate with other agents via defined
communication mechanisms which offer the ability to use different agent
programming languages to convert the information transparently when needed.
A Mole agent can only exist in a host environment call /ocation that serves as
the intermediate layer between the agent and the operating system. Mole also
supports the concept of abstract location to represent the collection of dis-
tributed physical machines. One machine can contain several locations, and
locations may be moved among machines. Mole limits the abstract location to
denote a configuration that would minimize cost due to communication. Thus,
a collection of machines in a subnet is an acceptable abstract location, whereas
a collection of machines that spans cities is not. Mole proposed the concept of a
system agent which has full access to the host facilities. It is through interacting
with these system agents that a given Mole agent (mobile) achieves tasks. A
Mole mobile agent can only communicate with other agents (systems and
mobile agents) and has no direct access to resources. The uniqueness of this
agent model is its requirement for closure of objects, whereas other facilities
such as static agent and communication are conceptually similar to other
systems. What is unclear is how the Mole system enforces the closure
requirement and whether there are mechanisms to handle closure management
automatically. The concept of closure is technically convenient, but without
helping tools it can be error prone and thus limiting.

1.3.6 The Odyssey

Project shares (or rather inherits) many features from a previous General
Magic product: Telescript. However, the amount of open documentation on
the Odyssey system is rather terse; therefore, its description is limited. The
Odyssey mobile agent model also centers on a collection of Java objects, more
similar in concept to Aglet than to Concordia or Mole. The top-level classes of
the Odyssey system are Agent, Worker, and Place. Worker is a subclass of
Agent and represents an example of what a developer can do with the Agent
class. A Place class is an abstraction of where an Odyssey agent exists and
performs work. A special facility such as directory service is associated with
Place. Odyssey agents communicate using simple method calls, and do not
support high-level communication. However, Odyssey agents can form and
destroy meeting places to exchange messages. There is also an undocumented
feature regarding global communication to a “published” object, but this



1.4 SOME APPLICATIONS 11

feature is not officially supported. The distinctive feature of Odyssey is its
design to accommodate multiple transport mechanisms. Currently, Odyssey
supports Java RMI, Microsoft Distributed Component Object Model (DCOM),
and CORBA Internet Inter-ORB Protocol (IIOP). However, the current release
of Odyssey does not add new or distinctive features from its Telescript prede-
cessor, and the mobile agent model is not yet stable.

1.4 SOME APPLICATIONS

All the above mobile agent platforms are targeted at providing execution
environment and programming support for developing applications. Primitive
language-level operations required by programmers for developing agent-based
applications are identified. They are (1) basic agent management functions, such
as creation, dispatching, cloning, and migration; (2) agent-to-agent communi-
cation and synchronization functions; (3) agent monitoring and control func-
tions, such as status queries, recall, and termination of agents; (4) fault tolerance
functions, such as check pointing, exception handling, and audit trails; and
(5) security-related functions, such as encryption, authentication, signing,
and data sealing.

As mentioned before, many mobile agent—based applications have been
studied. Readers can find surveys on various types of applications [7, 8]. Based
on earlier mobile agent platforms, several new platforms have been developed
to meet the requirements of newly emerging computing technologies and
applications, including mobile computing, ad hoc networking, and ubiquitous
or pervasive computing [6, 16-20].

For distributed and network computing, mobile agent technology has been
used to design both system functions and applications. This book includes
excellent tutorial and advanced materials that cover a wide range of topics.
Here, we just describe one of the typical mobile agent applications that can help
reduce network communication cost. The mobile agent is particularly attractive
as a promising technology for information retrieval in large-scale distributed
systems like the Internet. The mobile agent acts as task-specific executable
code traveling the relevant information source nodes to retrieve data. Several
approaches have been proposed with both experimental and analytical
evaluations [21-23].

More recently, the mobile agent has been used in designing dynamic and ad
hoc systems. It enables the system to have the ability to deal with the uncer-
tainty in a dynamic environment. For example, works have been reported
[24, 25] on using mobile agents for monitoring, traffic detection, and man-
agement in highly dynamic distributed systems. Other examples include using
mobile agents for ad hoc networks [6, 26].

Mobile agents are also being used for developing applications for wireless
sensor networks (WSNs). Various operations and system functions in WSNs
can be designed and implemented using mobile agents, which can greatly



12 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

reduce the communication cost, especially over low-bandwidth links. Efficient
data dissemination and data fusion in sensor networks using mobile agents
have been proposed [4, 27, 28]. Solutions to location tracking in sensor net-
works using mobile agents are also proposed [29]. Location tacking aims to
monitor the roaming path of a moving object. There are two primary chal-
lenges: no central control mechanism and backbone network in such envi-
ronment and the very limited wireless communication bandwidth. A mobile
agent can assist in tracking such a mobile object by choosing to migrate in the
sensor closest to the object. For programming support, mobile agent—based
WSN middleware has been developed as a better foundation for rapidly
developing flexible applications for WSNs [5, 30]. Also WSN-based structural
health monitoring applications use mobile agent-based network middleware
[31] to enhance flexibility and to reduce raw data transmission. Design of
wireless sensor networks for structural health monitoring presents a number of
challenges, such as adaptability and the limited communication bandwidth. In
[31], an integrated wireless sensor network consisting of a mobile agent—based
network middleware and distributed high computational power sensor nodes
has been developed. The mobile agent middleware is built on a mobile agent
system called Mobile-C that allows a sensor network to move computational
programs to the data source. With mobile agent middleware, a sensor network
is able to adopt newly developed diagnosis algorithms and make adjustments in
response to operational or task changes.

1.5 OVERVIEW OF THE BOOK

As briefly described in the previous sections, there exists many applications to
benefit from mobile agent technology such as e-commerce, information
retrieval, process coordination, mobile computing, personal assistance, and
network management. Still more and more applications are switching to use
mobile agents due to their flexibility and adaptability. Also their abilities of
asynchronous and autonomous execution make connectionless execution
possible, which might be extremely valuable in the mobile computing context.
By moving computation to data rather than data to computation, mobile
agents can also reduce the flow of raw data in the network and therefore
overcome network latency, which is especially critical to real-time applications.
Additionally, other distinguishable features, such as fault tolerance, natural
heterogeneity, and protocol encapsulation enhance the utilization and appli-
cation horizon of the mobile agent technology over traditional approaches.

This book focuses on cutting-edge research and applications of mobile agent
technology in the areas of networking and distributed computing. The book is
divided into four parts: (1) introduction, (2) principles of applying mobile
agents to networking and distributed computing, (3) mobile agents techniques
as applied to networking and distributed computing, and (4) design and
evaluation.



1.5 OVERVIEW OF THE BOOK 13

The first part introduces the idea of mobile agents and discusses their
potential as an important tool in networking and distributed computing.

The second part will show how to apply mobile agents to networking and
distributed computing. In this part, we cover mobile agent communication,
coordination, and cooperations as well as mobile agent security mechanisms.
Agents must communicate with each other in order to solve problems together.
Communication has been viewed between agents as planned actions that are not
aimed at changing the environment; rather the aim is to change the beliefs and
intentions of the agent to whom the message is sent. This implies that social
agents should have a framework with which to analyze each other’s behavior.
Mobile agent coordination is mainly required for distributed programs con-
sisting of a team of cooperating agents, where each agent is responsible for
performing part of a common, global task. Teams of mobile agents are likely to
become the means to implement several distributed and networked applications
in the future. For example, one possible application is the search for some
information in the network to be performed in parallel by a group of agents
that will not visit the same host more than once. Cooperation between a col-
lection of mobile agents is required for exchanging information or for engaging
in cooperative task-oriented behaviors. In addition to the advantages of the
mobile agent, using a cooperating mobile agent allows us to provide clear and
useful abstractions in building network services through the separation of
different concerns. Furthermore, mobile agents can be used to perform intru-
sion detection. With mobile agent technology, the collection nodes, internal
aggregation nodes, and command and control nodes do not have to continu-
ously reside on the same physical machine. For example, a mobile agent may
function as an aggregation node and move to whatever physical location in the
network is best for its purposes.

The third part of the book, describes in detail the techniques of mobile
agents in networking. Especially we discuss the applications of agents in net-
work routing, resource and service discovery, distributed control, distributed
databases and transaction processing, and wireless and mobile computing.
Mobile agents can have interesting applications at the network infrastructure
layer. Agents can adapt the network infrastructure to changing needs over
time and can facilitate network routing. Mobile agents can also dynamically
discover resources they need to accomplish their tasks. When an agent arrives
at a site, it should be able to discover the services offered at that site or things
it could do. Distributed control using mobile agents is a useful approach for
load balancing, deadlock detection, mutual exclusion, and so on. Character-
istics of mobile agents make them useful in achieving load balance in the whole
system. We also present some distributed algorithms using mobile agent sys-
tems for mutual exclusion, deadlock detection, consensus, and so on. Using
transactions for managing large data collections will guarantee the consistency
of data records when multiple users or processes perform concurrent opera-
tions on them. Owing to the heterogeneous and autonomous environment
that the mobile agents operate in and their typical longevity, agent-based



14 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

transactions have specific requirements. We discuss those requirements and
possible recovery mechanisms. With the advent of mobile wireless commu-
nications and the growth of mobile computing devices, such as laptop com-
puters, personal digital assistants (PDAs), and cell/smart phones, there is a
growing demand for mobile agent—based mobile computing middleware and
the mobile agent platforms for wireless hand-held devices and pervasive
computing [32].

In the final part, we will discuss the means of measuring performances of
mobile agent systems during the development of agent code, such as capturing
the overhead of local agent creation, point-to-point messaging, and overhead
for agent roaming. We can a keep track of the execution-related performances
of mobile agents, such as the migration performance.

REFERENCES

1. A. Lingnau, O. Drobnik, and P. Domel, An HTTP-based infrastructure for mobile
agents, WWW J., Proceedings 4th International WWW Conference, Vol. 1, Dec.
1995, pp. 461-471.

2. K. Rothermel and R. Popescu-Zeletin, Eds., Mobile agents, Lecture Notes in
Computer Science, 1219, Springer, 1997.

3. J. Cao, Y. Sun, X. Wang, and S. K. Das, Scalable load balancing on distributed web
servers using mobile agents, J. Parallel Distrib. Comput., 63(10):996-1005, Oct.
2003.

4. M. Chen, S. Gonzalez, and V. C. M. Leung, Applications and design issues for mobile
agents in wireless sensor network, IEEE Wireless Commun., 14(6):20-26, Dec. 2007.

5. C.-L. Fok, G.-C. Roman, and C. Lu, Agilla: a mobile agent middleware for self-
adaptive wireless sensor networks, ACM Trans. Auton. Adapt. Syst., 4(3), July 2009.

6. J. Park, H. Yong, and E. Lee, A mobile agent platform for supporting ad hoc
network environment, Int. J. Grid Distrib. Comput., 1(1), 2008.

7. D. Milojicic, Mobile agent applications, IEEE Concurrency, July-Sept. 1999.

8. A. Outtagarts, Mobile agent-based applications: A survey, IJCSNS Int. J. Comput.
Sci. Network Security, 9(11), Nov. 2009.

9. V. A.Pham and A. Karmouch, Mobile software agents: An overview, I[EEE Commun.
Mag., 36(7):26-37, July 1998.

10. H. S. Nwana and N. Azarmi, Eds., Software agents and soft computing: Towards
enhancing machine intelligence, Lecture Notes Al Series, 1198, Springer, 1997.

11. J. Vitek and C. Tschudin, Eds., Mobile object systems: Towards the programmable
internet, Lecture Notes in Computer Science, 1222, Springer, 1997.

12. J. White, Prospectus for an open simple agent transfer protocol. White paper,
General Magic, online, 1996.

13. A. Piszcz, A brief overview of software agent technology. White paper, The MITRE
Corporation, McLean, VA, 1998.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

REFERENCES 15

GMD Fokus, Mobile agent system interoperability facilities specification, OMG TC
Document orbos/97-10-05, Nov. 1997. (OMG homepage - www.omg.org)

C. Baumer, M. Breugst, S. Choy, and T. Magedanz, Grasshoper: a universal agent
platform based on OMG MASIF and FIPA Standards, http://www.ikv.de/products/
grasshopper.html.

J. Cao, D. C. K. Tse, A. T. S. Chan, PDAgent: A platform for developing and
deploying mobile agent-enabled applications for wireless devices, in Proceedings of
2004 International Conference on Parallel Processing (ICPP’2004), Montreal,
Quebec, Canada, Aug. 2004, pp. 510-517.

F. Bagci, J. Petzold, W. Trumler, and T. Ungerer, Ubiquitous mobile agent system
in a P2P-Network, paper presented at the UbiSys-Workshop at the Fifth Annual
Conference on Ubiquitous Computing, Seattle, WA, Oct. 12-15, 2003.

M. Kumar, B. Shirazi, S. K. Das, B. Sung, D. Levine, and M. Singhal, PICO:
A middleware framework for pervasive computing, IEEE Pervasive Comput.,
2(3):72-79, July—Sept. 2003.

J. R. Kim and J. D. Huh, Context-aware services platform supporting mobile agents
for ubiquitous home network, in Proceedings of the 8th International Conference on
Advanced Communication Technology (ICACT 2006 ), Phoenix Park, Gangwon-Do,
Korea, February 20-22, 2006.

G. S. Kim, J. Kim, H.-j. Cho, W.-t. Lim, and Y. I. Eom, Development of a
lightweight middleware technologies supporting mobile agents, Lecture Notes in
Computer Science, Vol. 4078, 2009.

S. Pears, J. Xu, C. Boldyreff, Mobile agent fault tolerance for information
retrieval applications: An exception handling approach, in Proceedings of the
6th International Symposium on Autonomous Decentralized Systems (ISADS03),
2003.

W. Qu, M. Kitsaregawa, and K. Li, Performance analysis on mobile-agent based
parallel information retrieval approaches, in Proceedings of 2007 IEEE International
Conference on Parallel and Distributed Systems, Dec. 5-7, 2007.

W. Qu, W. Zhou, and M. Kitsaregawa, An parallel information retrieval method for
e-commerce, Int. J. Comut. Syst. Sci. Eng., 5:29-37, 2009.

B. Chen, H. H. Cheng, and J. Pelen, Integrating mobile agent technology with multi-
agent systems for distributed traffic detection and management, Transport. Res.
Part-C., 17, 2009.

J. Ahn, Fault tolerant mobile-agent based monitoring mechanism for highly
dynamic distributed networks, Int. J. Comput. Sci. Iss., 7(3):1-7, May 2010.

G. Stoian, Improvement of handoff in mobile WiMAX network using mobile agent,
in Latest Trends in Computers, Vol. 1, WSEAS Press, 2010, pp. 300-305.

Q. Hairong, S. Iyengar, and K. Chakrabarty, Multiresolution data integration using
mobile agents in distributed sensor networks, IEEE Trans. Syst. Man Cybernet.,
31(3):383-391, August 2001.

Q. Wu, N. S. V. Rao, and J. Barhen, On computing mobile agent routes for
data fusion in distributed sensor networks, /EEE Trans. Knowledge Data Eng.,
16(6):740-753, June 2004.



16

29.

30.

31

32.

MOBILE AGENTS AND APPLICATIONS IN NETWORKING

Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, Location tracking in
a wireless sensor network by mobile agents and its data fusion strategies, Comput.
J., 47(4):448-460, July 2004.

C.-L. Fok, G.-C. Roman, and C. Lu, Mobile agent middleware for sensor networks: An
application case study, Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks (IPSN), Los Angeles, CA, 2005, pp. 382-287.

B. Chen and W. Liu, Mobile agent computing paradigm for building a flexible
structural health monitoring sensor network, Comput.- Aided Civil Infrastruct. Eng.,
25(7):504-516, October 2010.

Y. Feng, J. Cao, I. Lau, Z. Ming, and J. Kee-Yin Ng, A component-level self-
configuring personal agent platform for pervasive computing, Int. J. Parallel,
Emergent Distrib. Syst. 26(3):223-238, June 2011.



