
 Apache Tomcat

 If you’ve written any Java servlets or JavaServer Pages (JSPs), chances are good that you’ve down-
loaded Tomcat. That is because Tomcat is a free, feature-complete Servlet container that developers
of servlets and JSPs can use to run their code. Tomcat is used in Sun’s reference implementation of
the Servlet Container, which means that Tomcat’s first goal is to be 100 percent compliant with the
versions of the Servlet and JSP API specifications that it supports.

 However, Tomcat is more than just a test server. Many corporations are using Tomcat in produc-
tion environments because it has proven to be quite stable. These corporations range from Fortune
500 companies such as WalMart and General Motors to ISPs hosting multiple small-business
Web sites. Tomcat is used in the real world to run everything from online photo albums (Webshots)
to high performance financial Web applications (ETrade).

 A list of Tomcat-powered Web sites is at http://wiki.apache.org/tomcat/PoweredBy .

 Despite Tomcat’s popularity, it suffers from a common shortcoming among open source projects:
lack of complete documentation. Some documentation is distributed with Tomcat (mirrored at
 http://tomcat.apache.org), and there’s an open source effort to write a Tomcat book
(http://tomcatbook.sourceforge.net/). Even with these resources, however, there is a great
need for additional material.

 This book has been created not just to fill in some of the documentation holes, but to use the com-
bined experience of the authors to help Java developers and system administrators make the most
of the Tomcat product. Whether you’re trying to learn enough to just get started developing Web
applications or want to understand the more arcane aspects of Tomcat configuration, you should
find what you’re looking for within these pages.

 The first two chapters are designed to provide newcomers with some basic background informa-
tion that is prerequisite learning for subsequent chapters. If you’re a system administrator with no
previous Java experience, we advise you to read these first two chapters, and likewise if you’re a
Java developer who is new to Tomcat. If you’re well informed about Tomcat and Java, you’ll

c01.indd 1c01.indd 1 12/16/09 7:31:28 PM12/16/09 7:31:28 PM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: Apache Tomcat

2

 probably want to jump straight ahead to Chapter 3 , although skimming this chapter and its successor is
likely to add to your present understanding.

 The following topics are discussed in this chapter:

❑ The origins of the Tomcat server

❑ The terms of Tomcat’s license and how it compares to other open source licenses

❑ How Tomcat fits into the Java “big picture”

❑ An overview of integrating Tomcat with Apache and other Web servers

 Humble Beginnings: The Apache Project
 One of the earliest Web servers was developed by Rob McCool at the National Center for Supercomputer
Applications (NCSA), University of Illinois, Urbana-Champaign. This Web server was referred to collo-
quially as the NCSA project, or NCSA for short. By 1995, the NCSA server was quite popular, but its
 future was uncertain because the primary developer, McCool, had left NCSA the previous year. A group
of developers got together and compiled all the NCSA bug fixes and enhancements they had found, and
patched them into the NCSA code base. The developers released this new version in April 1995, and
called it Apache, which was somewhat of an acronym for “A PAtCHy Web Server.”

 Apache was readily accepted by the developer community from its earliest days, and less than a year
after its release, it unseated NCSA to become the most used Web server in the world (measured by the
total number of servers running Apache), a distinction that it has held ever since (according to Apache’s
Web site). Incidentally, during the same period that Apache’s use was spreading, NCSA’s popularity was
plummeting, and by 1999, NCSA was officially discontinued by its maintainers.

 For more information on the history of Apache and its developers, see http://httpd.apache.org/
ABOUT_APACHE.html .

 Today, the Apache Web server is available on just about any major operating system (in addition to the
source code download, Apache binaries are available for over a dozen operating systems). Apache can
be found running on some of the largest server farms in the world, as well as on some of the smallest
 devices (including several hand-held devices). In UNIX data centers, Apache is as ubiquitous as air
 conditioning and UPS systems.

 While Apache was originally a somewhat mangy collection of miscellaneous patches, today’s versions
are rock-solid production quality servers. The only real competitor to Apache in terms of market share
and feature set is Microsoft’s Internet Information Server (IIS), which is bundled free with certain ver-
sions of the Windows operating system. As of this writing, Apache’s market share is estimated at around
60 percent, with IIS at 30 percent (statistics courtesy of http://news.netcraft.com/archives/web_
server_survey.html).

 It is also worth noting that Apache has a reputation for being much more secure than Microsoft IIS.
When new vulnerabilities are discovered in either server, the Apache developers fix Apache far faster
than Microsoft fixes IIS.

c01.indd 2c01.indd 2 12/16/09 7:31:29 PM12/16/09 7:31:29 PM

Chapter 1: Apache Tomcat

3

 The Apache Software Foundation
 In 1999, the same folks who wrote the Apache server formed the Apache Software Foundation (ASF).
The ASF is a nonprofit organization that was created to facilitate the development of open source soft-
ware projects. Tomcat is developed under the auspices of the ASF. According to their Web site, the ASF
accomplishes this goal by doing the following:

❑ Providing a foundation for open, collaborative software development projects by supplying hard-
ware, communication, and business infrastructure

❑ Creating an independent legal entity to which companies and individuals can donate resources
and be assured that those resources will be used for the public benefit

❑ Providing a means for individual volunteers to be sheltered from legal suits directed at ASF
projects

❑ Protecting the Apache brand (as applied to its software products) from being abused by other
organizations

 In practice, the ASF does indeed sponsor a great many open source projects. While the best-known of
these projects is likely the aforementioned Apache Web server, the ASF hosts many other well-respected
and widely used projects, including such respected industry standards as the following:

❑ Xerces: A Java/C++ XML parser with JAXP bindings

❑ Ant: A Java-based build system (and much more)

❑ Axis: A Java-based Web services implementation

 The number of ASF-sponsored projects is growing fast. Visit www.apache.org to see the latest list.

 Tomcat
 The Tomcat project has its origins in the earliest days of Java’s servlet technology. Servlets are a certain
type of Java application that plug into special Web servers, called Servlet containers (originally called
Servlet engines). Sun created the first Servlet container, called the Java Web Server, which demonstrated
the technology but wasn’t terribly robust. Meanwhile, the ASF folks created the JServ product, which
was a Servlet engine that integrated with the Apache Web server.

 In 1999, Sun donated its Servlet container code to the ASF, and the two projects were merged to create
the Tomcat server. Today, Tomcat is used by Sun in its reference implementation (RI), which means that
Tomcat’s first priority is to be fully compliant with the Servlet and JavaServer Pages (JSP) specifications
published by Sun. This is discussed in more detail in Chapter 2 .

 The first version of Tomcat was the 3.x series, and it implemented the Servlet 2.2 and JSP 1.1 specifica-
tions. The Tomcat 3. x series was descended from the original code that Sun provided to the ASF in 1999.

 In 2001, Tomcat 4.0 (code-named Catalina) was released. Catalina was a complete redesign of the Tomcat
architecture, and built on a new code base. The Tomcat 4. x series was used in the RI of the Servlet 2.3 and
JSP 1.2 specifications.

c01.indd 3c01.indd 3 12/16/09 7:31:29 PM12/16/09 7:31:29 PM

Chapter 1: Apache Tomcat

4

 The latest version of Tomcat, Tomcat 6, implements the Servlet 2.5 and JSP 2.1 specifications. In addition,
it boasts of an improved clustering implementation over the previous iteration (Tomcat 5.5).

 Tomcat used to be a subproject under the Apache Jakarta project. The Jakarta project
is an umbrella under which the ASF sponsors the development of many Java sub-
projects, such as JMeter, Log4j, and Struts. However, Tomcat has now been promoted
to a top-level project.

 Distributing Tomcat: The Apache License
 Tomcat is open source software, and, as such, is free and freely distributable. However, if you have much
experience in dealing with open source software, you’re probably aware that the terms of distribution
can vary from project to project.

 Most open source software is released with an accompanying license that states what may and may not
be done to the software. At least 40 different open source licenses are in use, each of which has slightly
different terms.

 Providing a primer on all of the various open source licenses is beyond the scope of this chapter, but the
license governing Tomcat is discussed here and compared with a few of the more popular open source
licenses.

 Tomcat is distributed under the Apache License, which is listed at apache.org/licenses . The key
points of this license state the following:

❑ The Apache License must be included with any redistribution of Tomcat’s source code or
binaries.

❑ Any documentation included with redistribution must give a nod to the ASF.

❑ Products derived from the Tomcat source code can’t use the terms “Tomcat,” “The Jakarta
 Project,” “Apache,” or “Apache Software Foundation” to endorse or promote their software
without prior written permission from the ASF.

❑ Tomcat has no warranty of any kind.

 However, through omission, the license contains the following additional implicit permissions:

❑ Tomcat can be used by any entity (commercial or noncommercial) for free without limitation.

❑ Those that make modifications to Tomcat and distribute their modified version do not have to
include the source code of their modifications.

❑ Those who make modifications to Tomcat do not have to donate their modifications to the ASF.

 Thus, you’re free to deploy Tomcat in your company in any way you see fit. It can be your production
Web server or your test Servlet container used by your developers. You can also redistribute Tomcat with
any commercial application that you may be selling, provided that you include the license and give credit
to the ASF. You can even use the Tomcat source code as the foundation for your own commercial product.

c01.indd 4c01.indd 4 12/16/09 7:31:29 PM12/16/09 7:31:29 PM

Chapter 1: Apache Tomcat

5

 Comparison with Other Licenses
 Among the previously mentioned and rather large group of other open source licenses, two licenses are
particularly popular at the present time: the GNU General Public License (GPL) and the GNU Lesser
General Public License (LGPL). Let’s take a look at how each of these licenses compares to the Apache
License.

 GPL
 The GNU Project created and actively evangelizes the GPL. The GNU Project is somewhat similar to the
ASF, with the exception that the GNU Project would like all of the non-free (that is, closed source or pro-
prietary) software in the world to become free. The ASF has no such (stated) desire and simply wants to
provide free software.

 Free software can mean one of two entirely different things: software that doesn’t cost anything and soft-
ware that can be freely copied, distributed, and modified by anyone (thus, the source code is included or
is easily accessible). Such software can be distributed either free or for a fee. A simpler way to explain the
difference between these two types of free is to compare “free,” as in “free beer,” and “free,” as in “free
speech.” The GNU Project’s goal is to create free software of the latter category. All uses of the phrase
“free software” in the remainder of this section use this definition.

 The differences between the Apache License and the GPL thus mirror the distinct philosophies of the
two organizations. Specifically, the GPL has the following key differences from the Apache License:

❑ No “non-free” software may contain GPL-licensed products or use GPL-licensed source code.
If non-free software is found to contain GPL-licensed binaries or code, it must remove such
 elements or become free software itself.

❑ All modifications made to GPL-licensed products must be released as free software if the modi-
fications are also publicly released.

 These two differences have huge implications for commercial enterprises. If Tomcat were licensed under
the GPL, any product that contained Tomcat would also have to be free software.

 Furthermore, while the Apache License permits an organization to make modifications to Tomcat and
sell it under a different name as a closed source product, the GPL would not allow any such act to occur;
the new derived product would also have to be released as free software.

 LGPL
 The GNU Lesser General Public License (LGPL) is similar to the GPL, with one major difference: Non-
free software may contain LGPL-licensed products. The LGPL license is commonly referred to as the
 “library” GPL because it is intended primarily for software libraries that are themselves free software,
but whose authors want them to be available for use by companies who produce non-free software.

 If Tomcat were licensed under the LGPL, it could be embedded in non-free software, but Tomcat could
not itself be modified and released as a non-free software product.

 For more information on the GPL and LGPL licenses, see www.gnu.org .

c01.indd 5c01.indd 5 12/16/09 7:31:30 PM12/16/09 7:31:30 PM

Chapter 1: Apache Tomcat

6

 Other Licenses
 Understanding and comparing open source licenses can be a rather complex task. The preceding expla-
nations are an attempt to simplify the issues. For more detailed information on these and other licenses,
the following two resources can help you:

❑ The Open Source Initiative (OSI) maintains a database of open source licenses. Visit them at
 www.opensource.org .

❑ The GNU Project has an extensive comparison of open source licenses with the GPL license.
See it at www.gnu.org/licenses/license-list.html .

 The Big Picture: Java EE
 As a Servlet container, Tomcat is a key component of a larger set of standards collectively referred to as
the Java Enterprise Edition (Java EE) platform. The Java EE standard defines a group of Java-based APIs
that are suited to creating Web applications for enterprises (that is, large companies). To be sure, compa-
nies of any size can take advantage of Java EE, but many Java EE technologies are especially designed to
solve the problems associated with the creation of large software systems.

 Java EE is built on the Java Standard Edition (Java SE), which includes the Java binaries (such as the JVM
and bytecode compiler), as well as the core Java code libraries. Java EE depends on Java SE to function.
Both the Java SE and Java EE can be obtained from http://java.sun.com . Both Java SE and Java EE
are referred to as platforms , because they provide core functionality that acts as a sort of platform or foun-
dation upon which applications can be built.

 Since the middle of 2005, Sun has been re-branding some of the Java platform
names. Java Enterprise Edition, previously called J2EE, is now called Java EE. Java
Standard Edition, previously called J2SE, is now Java SE. Similarly, the mobile edi-
tion (previously J2ME) has been renamed to Java ME.

 Java APIs
 As mentioned, Java EE is a standardized collection of Java APIs. The term API (or application program-
ming interface) is used by software developers in general to describe services made available to applica-
tions by an underlying service provider (such as an operating system). In the Java world, this term is
used to describe many of the services that the Java Virtual Machine (JVM) and its code libraries make
available to Java programs.

 An important characteristic of APIs is that they are separated from the services that provide them. In
other words, an API is a kind of technical contract defining the functionality that two parties must pro-
vide: a service provider (often called an implementation) and an application. If both parties adhere to the
contract, an API is pluggable (that is, a new service provider can be plugged into the relationship). Of
course, if a service provider fails to conform to the contract, the applications that use the API will fail to
function properly.

c01.indd 6c01.indd 6 12/16/09 7:31:30 PM12/16/09 7:31:30 PM

Chapter 1: Apache Tomcat

7

 The Java Community Process
 APIs in the Java world are created and modified by a standards body known as the Java Community
Process (JCP). The JCP is composed of hundreds of Java Specification Requests (JSRs) . Each JSR is a request
to either change an existing aspect of Java (including its APIs) or introduce a new API or feature to Java.
New JSRs can be submitted by a member of the JCP. Anyone can become a member of the JCP and, nota-
bly, individuals may do so at no cost (organizations pay a nominal fee). Once submitted, the JCP Execu-
tive Committee must approve the JSR. The Executive Committee consists of JCP members who have been
elected to three-year terms in an annual election.

 When a JSR is approved, the submitter becomes the Spec Lead . The Spec Lead forms an Expert Group com-
posed of JCP members who assist the Spec Lead in creating a specification detailing the change or addi-
tion to the Java language. The Expert Group shepherds the specification along through various review
processes (to other JCP members and to the public) until, finally, the JSR is judged completed and is
 approved by the Executive Committee. If a JSR results in an API, the Expert Group must also provide a
reference implementation of the API (discussed earlier in this chapter in the context of Tomcat) and a
 technology compatibility kit (TCK) that other implementers can use to verify compatibility with the API.

 Thus, via the JCP, any Java developer can influence the Java platforms, by submitting a JSR, becoming a
member of an existing JSR’s Expert Group, or by simply giving feedback to JSR Expert Groups. While
not the first attempt to create a technology standards body, the JCP is probably the world’s best combina-
tion of accessibility and influence. As a contrast, the influential World Wide Web Consortium (W3C)
standards body charges almost $6,000 for individuals to join. Visit the JCP at www.jcp.org .

 The Java EE APIs
 As mentioned, the Java EE 5 platform consists of many individual APIs. The Servlet and JSP APIs are
two of these. The following table describes some of the other Java EE APIs, and a complete list can be
found at http://java.sun.com/javaee/technologies/ .

 Java EE API Description

Enterprise JavaBeans (EJB) Provides a mechanism that is intended to make it easy for
Java developers to use advanced features in their compo-
nents, such as remote method invocation (RMI), object/
relational mapping (that is, saving Java objects to a relational
database), distributed transactions across multiple data
sources, statefulness, and so on.

Java Message Service (JMS) Provides high-performance asynchronous messaging. Among
other things, it enables Java EE applications to communicate
with non-Java systems on top of various transports.

Web service APIs A set of APIs for Web services and XML processing. These
include JAX-WS, JAX-RPC, JAXB, SAAJ, and StAX.

Java Management Extensions (JMX) Standardizes a mechanism for interactively monitoring and
managing applications at runtime.

Table continued on following page

c01.indd 7c01.indd 7 12/16/09 7:31:30 PM12/16/09 7:31:30 PM

Chapter 1: Apache Tomcat

8

 Java EE API Description

Java Transaction API (JTA) JTA enables applications to gracefully handle failures in one or
more of their components by establishing transactions. During
a transaction, multiple events can occur, and if any one of
them fails, the state of the application can be rolled back to the
way it was before the transaction began. JTA provides the
functionality of database- transactions technology across an
entire distributed application.

 JavaMail Provides the capability to send and receive e-mail via the
industry-standard POP/SMTP/IMAP protocols.

 In addition to the Java EE–specific APIs, Java EE applications also rely heavily on Java SE APIs. In fact,
over the years, several of the Java EE APIs have been migrated to the Java SE platform. Two such APIs
are the Java Naming and Directory Interface (JNDI), used for interfacing with LDAP-compliant directo-
ries (and much more), and the Java API for XML Processing (JAXP), which is used for parsing and
 transforming XML (using XSLT). The vast collection of Java EE and Java SE APIs form a platform for
 enterprise software development unparalleled in the industry.

 Java EE Application Servers
 As mentioned, an API simply defines services that a service provider (i.e., the implementation) makes
available to applications. Thus, an API without an implementation is useless. While the JCP does provide
RIs of all the APIs, using them piecemeal is not the most efficient way to build applications. Enter the
 Java EE application server .

 Various third parties provide commercial-grade implementations of the Java EE APIs. These implementations
are typically packaged as a Java EE application server. Whereas Tomcat provides an implementation of the
Servlet and JSP APIs (and is thus called a Servlet container), application servers provide a superset of Tomcat’s
functionality: the Servlet and JSP APIs plus all the other Java EE APIs, and some Java SE APIs (such as JNDI).

 Dozens of vendors have created Java EE–compatible application servers. Being called “Java EE–compliant”
means that a vendor of an application server has paid Sun a considerable sum, and has passed various
compatibility tests. Such vendors are said to be Java EE licensees .

 The two most widely used commercial Java EE application servers are Websphere from IBM and Weblogic
from BEA. Other than these, there are a number of open source implementations too, such as the following:

❑ JBoss (www.jboss.org)

❑ JOnAS (jonas.objectweb.org)

❑ Geronimo (geronimo.apache.org)

❑ Glassfish (glassfish.dev.java.net)

 “Agree on Standards, Compete on Implementation”
 Developers who use the Java EE APIs can use a Java EE–compatible application server from any vendor,
and it is guaranteed to work with their applications. This flexibility is intended to help customers avoid

c01.indd 8c01.indd 8 12/16/09 7:31:30 PM12/16/09 7:31:30 PM

Chapter 1: Apache Tomcat

9

vendor lock-in problems, enabling users to enjoy the benefits of a competitive marketplace. The Java
 slogan along these lines is “Agree on standards, compete on implementation,” meaning that the vendors
all cooperate in establishing universal Java EE standards (through participation in the JCP) and then
work hard to create the best application server implementation of those standards.

 That’s the theory, at least. In reality, this happy vision of vendor neutrality and open standards is
slightly marred by at least two factors. First, each application server is likely to have its own eccentrici-
ties and bugs. This leads to a popular variation on the famous “Write Once, Run Anywhere” Java
 slogan: “Write Once, Test Everywhere.” Second, vendors are rarely altruistic. Each application server
typically includes a series of powerful features that are outside the scope of the Java EE APIs. Once
 developers take advantage of these features, their application is no longer portable, resulting in vendor
lock-in. Developers must, therefore, be vigilant to maintain their application’s portability, if such a
 capability is desirable.

 Tomcat and Application Servers
 Up to this point, Tomcat has been referred to as an implementation of the Servlet/JSP APIs (i.e., a Servlet
container). However, Tomcat is more than this. It also provides an implementation of the JNDI and JMX
APIs. However, Tomcat is not a complete Java EE application server; it doesn’t provide support for even
a majority of the Java EE APIs.

 Interestingly, many application servers actually use Tomcat as their implementation of the Servlet and
JSP APIs. Because Tomcat permits developers to embed Tomcat in their applications with only a one-line
acknowledgment, many commercial application servers quietly rely on Tomcat without emphasizing
that fact. The JBoss and JOnAS application servers mentioned previously make explicit use of Tomcat.

 Developers seeking to create Java Web applications that utilize the Servlet, JSP, JNDI, and JMX APIs will
find Tomcat an excellent solution. However, those seeking support for additional APIs will probably be
better served to either find an application server, or use Tomcat in addition to an application server.
A third option is to find an implementation of the individual Java EE APIs required and use them in
 conjunction with Tomcat. This piecemeal approach is perfectly valid, although integration problems
may manifest themselves.

 Do you always need a full-fledged Java EE application server to develop enterprise applications? The
short answer is “It depends on your requirements.” An increasing number of Web sites eschew the tradi-
tional Java EE technologies — especially EJB — and develop fairly complex applications with “light-
weight” and often open source components. These typically use an application framework such as Struts
or Spring, or an object-relational mapping framework such as Hibernate — all running in a state-of-the-
art Servlet container, i.e., Tomcat!

 Tomcat and Web Servers
 Tomcat’s purpose is to provide standards-compliant support for Servlets and JSPs. The purpose of
 Servlets and JSPs is to generate Web content such as HTML files or GIF files on demand, using changing
data. Web content that is generated on demand is said to be dynamic . Conversely, Web content that never
changes and is served up as is, is called static . Web applications commonly include a great deal of static
content, such as images or Cascading Style Sheets (CSS).

c01.indd 9c01.indd 9 12/16/09 7:31:31 PM12/16/09 7:31:31 PM

Chapter 1: Apache Tomcat

10

 While Tomcat is capable of serving dynamic and static content, many production deployments use a
 native Web server, such as Apache HTTP Server or IIS, to handle the static content. There are many
 reasons for choosing to do this, some of which relate to performance and others relate to support of
 legacy code. Chapters 11 and 12 address these issues in greater detail.

 Recognizing that Tomcat could enjoy a synergistic relationship with conventional Web servers, the earli-
est versions of Tomcat included a “Connector” that enabled a Tomcat and Apache Web server to work
 together. In such a relationship, Apache receives all of the HTTP requests made to the Web application.
Apache then recognizes which requests are intended for Servlets/JSPs, and passes these requests to
Tomcat. Tomcat fulfills the request and passes the response back to Apache, which then returns the
 response to the requestor.

 The Apache Connector was initially crucial to the Tomcat 3. x series, because Tomcat’s support for both
static content and its implementation of the HTTP protocol were somewhat limited.

 Starting with the 4. x series, Tomcat featured a much more complete implementation of HTTP and better
support for serving up static content, and should by itself be sufficient for most deployments.

 If you’re not using either Apache or IIS or any other Web server officially supported by Tomcat, then
don’t give up hope entirely. It is still very possible to integrate Tomcat with other Web servers, even one
that resides on the same machine. If you wish to run them on the same machine for instance, all you
have to do is to set up Tomcat and the Web server to run on different network ports. You then can then
design your Web application to request its static resources from the Web server, and have Tomcat handle
the requests for dynamic content.

 In many situations it might be simpler to just use Tomcat’s own Web server imple-
mentation. Tomcat has an “HTTP Connector“ — i.e., a component that implements
an HTTP server. More on this, including when it makes sense to use this, and when
a native Web server is a better choice, is explained in Chapter 10 .

 Summary
 To conclude this chapter overview of Tomcat, let’s review some of the key points we discussed:

❑ The Apache Software Foundation (ASF) is a nonprofit organization created to provide the world
with quality open source software.

❑ The ASF maintains an extensive collection of open source projects. Many of the ASF’s Java proj-
ects are collected under the umbrella of a parent project called Jakarta.

❑ Tomcat started as a subproject of the Jakarta project, but now is independent of it.

❑ Tomcat can be freely used in any organization. It can be freely redistributed in any commercial
project so long as its license is also included with the redistribution and proper recognition is
given.

c01.indd 10c01.indd 10 12/16/09 7:31:31 PM12/16/09 7:31:31 PM

Chapter 1: Apache Tomcat

11

❑ Java EE is a series of Java APIs designed to facilitate the creation of complex enterprise applica-
tions. Java EE–compatible application servers provide implementations of the Java EE APIs.

❑ Tomcat is a Java EE–compliant Servlet container and is the official reference implementation for
the Java Servlet and JavaServer Pages APIs. Tomcat also includes implementations of the JNDI
and JMX APIs, but not the rest of the Java EE APIs, and is not, thus, a complete Java EE applica-
tion server.

❑ While Tomcat can function as a Web server, it can also be integrated with other Web servers.

❑ Tomcat has special support for integrating with the Apache, IIS, and Netscape Enterprise Server
(NES) servers, among others.

 This chapter has provided a basic introduction to Tomcat. Chapter 2 describes what Tomcat-served Web
applications look like and what files they comprise. It also provides a quick background to Web applica-
tions, which should be useful for administrators who do not have a background in Java technologies.

c01.indd 11c01.indd 11 12/16/09 7:31:31 PM12/16/09 7:31:31 PM

c01.indd 12c01.indd 12 12/16/09 7:31:32 PM12/16/09 7:31:32 PM

