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 What Is Bootstrapping?        

  1.1.   BACKGROUND 

 The bootstrap is a form of a larger class of methods that resample from the 
original data set and thus are called resampling procedures. Some resampling 
procedures similar to the bootstrap go back a long way [e.g., the jackknife 
goes back to Quenouille ( 1949 ), and permutation methods go back to Fisher 
and Pitman in the 1930s]. Use of computers to do simulation also goes back 
to the early days of computing in the late 1940s. 

 However, it was Efron ( 1979a ) who unifi ed ideas and connected the simple 
nonparametric bootstrap, for independent and identically distributed (IID) 
observations, which  “ resamples the data with replacement, ”  with earlier 
accepted statistical tools for estimating standard errors such as the jackknife 
and the delta method. This fi rst method is now commonly called the nonpara-
metric IID bootstrap. It was only after the later papers by Efron and Gong 
( 1983 ), Efron and Tibshirani ( 1986 ), and Diaconis and Efron ( 1983 ) and the 
monograph Efron ( 1982a ) that the statistical and scientifi c community began 
to take notice of many of these ideas, appreciate the extensions of the methods 
and their wide applicability, and recognize their importance. 

 After the publication of the Efron ( 1982a ) monograph, research activity on 
the bootstrap grew exponentially. Early on, there were many theoretical 
developments on the asymptotic consistency of bootstrap estimates. In some 
of these works, cases where the bootstrap estimate failed to be a consistent 
estimator for the parameter were uncovered. 

 Real - world applications began to appear. In the early 1990s the emphasis 
shifted to fi nding applications and variants that would work well in practice. 
In the 1980s along with the theoretical developments, there were many simula-
tion studies that compared the bootstrap and its variants with other competing 
estimators for a variety of different problems. It also became clear that 

CO
PYRIG

HTED
 M

ATERIA
L



2 what is bootstrapping?

although the bootstrap had signifi cant practical value, it also had some 
limitations. 

 A special conference of the Institute of Mathematical Statistics was held in 
Ann Arbor Michigan in May 1990, where many of the prominent bootstrap 
researchers presented papers exploring the applications and limitations of the 
bootstrap. The proceedings of this conference were compiled in the book 
 Exploring the Limits of Bootstrap , edited by LePage and Billard and published 
by Wiley in 1992. 

 A second similar conference, also held in 1990 in Tier, Germany, covered 
many developments in bootstrapping. The European conference covered 
Monte Carlo methods, bootstrap confi dence bands and prediction intervals, 
hypothesis tests, time series methods, linear models, special topics, and applica-
tions. Limitations of the methods were not addressed at this conference. Its 
proceedings were published in 1992 by Springer - Verlag. The editors for the 
proceedings were J ö ckel, Rothe, and Sendler. 

 Although Efron introduced his version of the bootstrap in a 1977 Stanford 
University Technical Report [later published in a well - known paper in the 
 Annals of Statistics  (Efron,  1979a )], the procedure was slow to catch on. Many 
of the applications only began to be covered in textbooks in the 1990s. 

 Initially, there was a great deal of skepticism and distrust regarding boot-
strap methodology. As mentioned in Davison and Hinkley ( 1997 , p. 3):  “ In 
the simplest nonparametric problems, we do literally sample from the data, 
and a common initial reaction is that this is a fraud. In fact it is not. ”  The 
article in  Scientifi c American  (Diaconis and Efron,  1983 ) was an attempt to 
popularize the bootstrap in the scientifi c community by explaining it in lay-
man ’ s terms and exhibiting a variety of important applications. Unfortunately, 
by making the explanation simple, technical details were glossed over and the 
article tended to increase the skepticism rather than abate it. 

 Other efforts to popularize the bootstrap that were partially successful with 
the statistical community were Efron ( 1982a ), Efron and Gong ( 1981 ), Efron 
and Gong ( 1983 ), Efron ( 1979b ), and Efron and Tibshirani ( 1986 ). Unfortu-
nately it was only the  Scientifi c American  article that got signifi cant exposure 
to a wide audience of scientists and researchers. 

 While working at the Aerospace Corporation in the period from 1980 to 
1988, I observed that because of the  Scientifi c American  article, many of the 
scientist and engineers that I worked with had misconceptions about the 
methodology. Some supported it because they saw it as a way to use simula-
tion in place of additional sampling (a misunderstanding of what kind of 
information the Monte Carlo approximation to the bootstrap actually gives). 
Others rejected it because they interpreted the  Scientifi c American  article 
as saying that the technique allowed inferences to be made from data 
without assumptions by replacing the need for additional  “ real ”  data with 
 “ simulated ”  data, and they viewed this as phony science (this is a misunder-
standing that comes about because of the oversimplifi ed exposition in the 
article). 



 Both views were expressed by my engineering colleagues at the Aerospace 
Corporation, and I found myself having to try to dispel both of these notions. 
In so doing, I got to thinking about how the bootstrap could help me in my 
own research and I saw there was a need for a book like this one. I also felt 
that in order for articles or books to popularize bootstrap techniques among 
the scientist, engineers, and other potential practitioners, some of the mathe-
matical and statistical justifi cation had to be presented and any text that 
skimped over this would be doomed for failure. 

 The monograph by Mooney and Duvall ( 1993 ) presents only a little of the 
theory and in my view fails to provide the researcher with even an intuitive 
feel for why the methodology works. The text by Efron and Tibshirani ( 1993 ) 
was the fi rst attempt at presenting the general methodology and applications 
to a broad audience of social scientists and researchers. Although it seemed 
to me to do a very good job of reaching that broad audience, Efron mentioned 
that he felt that parts of the text were still a little too technical to be clear to 
everyone in his intended audience. 

 There is a fi ne line to draw between being too technical to be understood 
by those without a strong mathematical background and being too simple to 
provide a true picture of the methodology devoid of misconceptions. To 
explain the methodology to those who do not have the mathematical back-
ground for a deep understanding of the bootstrap theory, we must avoid 
technical details on stochastic convergence and other advanced probability 
tools. But we cannot simplify it to the extent of ignoring the theory because 
that leads to misconceptions such as the two main ones previously 
mentioned. 

 In the late 1970s when I was a graduate student at Stanford University, I 
saw the theory develop fi rst - hand. Although I understood the technique, I 
failed to appreciate its value. I was not alone, since many of my fellow gradu-
ate students also failed to recognize its great potential. Some statistics profes-
sors were skeptical about its usefulness as an addition to the current parametric, 
semiparametric, and nonparametric techniques. 

 Why didn ’ t we give the bootstrap more consideration? At that time the 
bootstrap seemed so simple and straightforward. We did not see it as a part 
of a revolution in statistical thinking and approaches to data analysis. But 
today it is clear that this is exactly what it was! 

 A second reason why some graduate students at Stanford, and possibly 
other universities, did not elect the bootstrap as a topic for their dissertation 
research (including Naihua Duan, who was one of Efron ’ s students at that 
time) is that the key asymptotic properties of the bootstrap appeared to be 
very diffi cult to prove. The mathematical approaches and results only began 
to be known when the papers by Bickel and Freedman ( 1981 ) and Singh 
( 1981 ) appeared, and this was two to three years after many of us had 
graduated. 

 Gail Gong was one of Efron ’ s students and the fi rst Stanford graduate 
student to do a dissertation on the bootstrap. From that point on, many 
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students at Stanford and other universities followed as the fl ood gates opened 
to bootstrap research. Rob Tibshirani was another graduate student of Efron 
who did his dissertation research on the bootstrap and followed it up with the 
statistical science article (Efron and Tibshirani,  1986 ), a book with Trevor 
Hastie on general additive models, and the text with Efron on the bootstrap 
(Efron and Tibshirani,  1993 ). Other Stanford dissertations on bootstrap were 
Therneau ( 1983 ) and Hesterberg ( 1988 ). Both dealt with variance reduction 
techniques for reducing the number of bootstrap iterations necessary to get 
the Monte Carlo approximation to the bootstrap estimate to achieve a desired 
level of accuracy with respect to the bootstrap estimate (which is the limit as 
the number of bootstrap iterations approaches infi nity). 

 My interest in bootstrap research began in earnest in 1983 after I read 
Efron ’ s paper (Efron,  1983 ) on the bias adjustment in error rate estimation 
for classifi cation problems. This applied directly to some of the work I was 
doing on target discrimination at the Aerospace Corporation and also later at 
Nichols Research Corporation. This led to a series of simulation studies that 
I published with Carlton Nealy and Krishna Murthy. 

 In the late 1980s I met Phil Good, who is an expert on permutation methods 
and was looking for a way to solve a particular problem that he was having 
trouble setting up in the framework of a permutation test. I suggested a 
straightforward bootstrap approach, and this led to comparisons of various 
procedures to solve the problem. It also opened up a dialogue between us 
about the virtues of permutation methods, bootstrap methods and other resa-
mpling methods, and the basic conditions for their applicability. We recog-
nized that bootstrap and permutation tests were both part of the various 
resampling procedures that were becoming so useful but were not taught in 
the introductory statistics courses. That led him to write a series of books on 
permutation tests and resampling methods and led me to write the fi rst edition 
of this text and later to incorporate the bootstrap in an introductory course in 
biostatistics and the text that Professor Robert Friis and I subsequently put 
together for the course (  Chernick and Friis,  2002 ). 

 In addition to both being resampling methods, bootstrap and permutation 
methods could be characterized as computer - intensive, depending on the 
application. Both approaches avoid unverifi ed parametric assumptions, by 
relying solely on the original sample. Both require minimal assumptions such 
as exchangeability of the observations under the null hypothesis. Exchange-
ability is a property of a random sample that is slightly weaker than the 
assumption that observations are independent and identically distributed. To 
be mathematically formal, for a sequence of  n  observations the sequence is 
exchangeable if the probability distribution of any  k  consecutive observations 
( k  = 1, 2, 3,  .  .  .  ,  n ) does not change when the order of the observations is 
changed through a permutation. 

 The importance of the bootstrap is now generally recognized as has been 
noted in the article in the supplemental volume of the  Encyclopedia of 
Statistical Sciences  (1989 Bootstrapping — II by David Banks, pp. 17 – 22), the 



inclusion of Efron ’ s  1979   Annals of Statistics  paper in  Breakthroughs in Sta-
tistics , Volume II:  Methodology and Distribution , S. Kotz and N. L. Johnson, 
editors (1992, pp. 565 – 595 with an introduction by R. Beran), and Hall ’ s  1988  
 Annals of Statistics  paper in  Breakthroughs in Statistics , Volume III, S. Kotz 
and N. L. Johnson, editors (1997, pp. 489 – 518 with an introduction by E. 
Mammen). We can also fi nd the bootstrap referenced prominently in the 
 Encyclopedia of Biostatistics , with two entries in Volume I: (1)  “ Bootstrap 
Methods ”  by DeAngelis and Young ( 1998 ) and (2)  “ Bootstrapping in Survival 
Analysis ”  by Sauerbrei ( 1998 ). 

 The bibliography in the fi rst edition contained 1650 references, and I have 
only expanded it as necessary. In the fi rst edition I put an asterisk next to each 
of the 619 references that were referenced directly in the text and also num-
bered them in the alphabetical order that they were listed. In this edition I 
continue to use the asterisk to identify those books and articles referenced 
directly in the text but no longer number them. 

 The idea of sampling with replacement from the original data did not begin 
with Efron. Also even earlier than the fi rst use of bootstrap sampling, there 
were a few related techniques that are now often referred to as resampling 
techniques. These other techniques predate Efron ’ s bootstrap. Among them 
are the jackknife, cross - validation, random subsampling, and permutation 
procedures. Permutation tests have been addressed in standard books on 
nonparametric inference and in specialized books devoted exclusively to per-
mutation tests including Good ( 1994, 2000 ), Edgington ( 1980, 1987, 1995 ), and 
Manly ( 1991, 1997 ). 

 The idea of resampling from the empirical distribution to form a Monte 
Carlo approximation to the bootstrap estimate may have been thought of and 
used prior to Efron. Simon ( 1969 ) has been referenced by some to indicate 
his use of the idea as a tool in teaching elementary statistics prior to Efron. 
Bruce and Simon have been instrumental in popularizing the bootstrap 
approach through their company Resampling Stats Inc. and their associated 
software. They also continue to use the Monte Carlo approximation to the 
bootstrap as a tool for introducing statistical concepts in a fi rst elementary 
course in statistics [see Simon and Bruce ( 1991, 1995 )]. Julian Simon died 
several years ago; but Peter Bruce continues to run the company and in addi-
tion to teaching resampling in online courses, he has set up a faculty to teach 
a variety of online statistics courses. 

 It is clear, however, that widespread use of the methods (particularly by 
professional statisticians) along with the many theoretical developments 
occurred only after Efron ’ s  1979  work. That paper (Efron,  1979a ) connected 
the simple bootstrap idea to established methods for estimating the standard 
error of an estimator, namely, the jackknife, cross - validation, and the delta 
method, thus providing the theoretical underpinnings that that were then 
further developed by Efron and other researchers. 

 There have been other procedures that have been called bootstrap that 
differ from Efron ’ s concept. I mention two of them in Section  1.4 . Whenever 
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I refer to the bootstrap in this text, I will be referring to Efron ’ s version. Even 
Efron ’ s bootstrap has many modifi cations. Among these are the double boot-
strap, the smoothed bootstrap, the parametric bootstrap (discussed in Chapter 
 6 ), and the Bayesian bootstrap (which was introduced by Rubin in the missing 
data application described in Section  8.7 ). Some of the variants of the boot-
strap are discussed in Section  2.1.2 , including specialized methods specifi c to 
the classifi cation problem [e.g., the 632 estimator introduced in Efron ( 1983 ) 
and the convex bootstrap introduced in Chernick, Murthy, and Nealy 
( 1985 )]. 

 In May 1998 a conference was held at Rutgers University, organized by 
Kesar Singh, a Rutgers statistics professor who is a prominent bootstrap 
researcher. The purpose of the conference was to provide a collection of 
papers on recent bootstrap developments by key bootstrap researchers and to 
celebrate the approximately 20 years of research since Efron ’ s original work 
[fi rst published as a Stanford Technical Report in 1977 and subsequently in 
the  Annals of Statistics  (Efron,  1979a )]. Abstracts of the papers presented were 
available from the Rutgers University Statistics Department web site. 

 Although no proceedings were published for the conference, I received 
copies of many of the papers by direct request to the authors. The presenters 
at the meeting included Michael Sherman, Brad Efron, Gutti Babu, C. R. Rao, 
Kesar Singh, Alastair Young, Dmitris Politis, J. - J. Ren, and Peter Hall. The 
papers that I received are included in the bibliography. They are Babu, Pathak, 
and Rao ( 1998 ),   Sherman and Carlstein ( 1997 ), Efron and Tibshirani ( 1998 ), 
and Babu ( 1998 ). 

 This book is organized as follows. Chapter 1 introduces the key ideas and 
describes the wide range of applications. Chapter  2  deals with estimation and 
particularly the bias - adjusted estimators with emphasis on error rate estima-
tion for discriminant functions. It shows through simulation studies how the 
bootstrap and variants such as the 632 estimator perform compared to the 
more traditional methods when the number of training samples is small. Also 
discussed are ratio estimates, estimates of medians, standard errors, and 
quantiles. 

 Chapter  3  covers confi dence intervals and hypothesis tests. The 1 – 1 corre-
spondence between confi dence intervals and hypothesis tests is used to con-
struct hypothesis tests based on bootstrap confi dence intervals. We cover two 
so - called percentile methods and show how more accurate and correct boot-
strap confi dence intervals can be constructed. In particular, the hierarchy of 
percentile methods improved by bias correction BC and then BCa is given 
along with the rate of convergence for these methods and the weakening 
assumptions required for the validity of the method. 

 An application in a clinical trial to demonstrate the effi cacy of the Tendril 
DX steroid lead in comparison to nonsteroid leads is also presented. Also 
covered is a very recent application to adaptive design clinical trials. In this 
application, proof of concept along with dose – response model identifi cation 
methods and minimum effective dose estimates are included based on an 



adaptive design. The author uses the MED as a parameter to generate  “ semi-
parametric ”  bootstrap percentile methods. 

 Chapter  4  covers regression problems, both linear and nonlinear. An appli-
cation of bootstrap estimates in nonlinear regression of the standard errors of 
parameters is given for a quasi - optical experiment. New in this edition is the 
coverage of bootstrap methods applied to outlier detection in least - squares 
regression. 

 Chapter  5  addresses time series models and related forecasting problems. 
This includes model based bootstrap and the various forms of block bootstrap. 
At the time of the fi rst edition, the moving block bootstrap had been devel-
oped but was not very mature. Over the eight intervening years, there have 
been additional variations on the block bootstrap and more theory and appli-
cations. Recently, these developments have been well summarized in the text 
Lahiri ( 2003a ). We have included some of those block bootstrap methods as 
well as the sieve bootstrap. 

 Chapter  6  provides a comparison with other resampling methods and rec-
ommends the preferred approach when there is clear evidence in the litera-
ture, either through theory or simulation, of its superiority. This was a unique 
feature of the book when the fi rst edition was published. We have added to 
our list of resampling methods the  m  out of  n  bootstrap that we did not cover 
in the fi rst edition. Although the  m  out of  n  bootstrap had been considered as 
a method to consider, it has only recently been proven to be important as a 
way to remedy inconsistency problems of the na ï ve bootstrap in many cases. 

 Chapter  7  deals with simulation methods, emphasizing the variety of avail-
able variance reduction techniques and showing the applications for which 
they can effectively be applied. This chapter is essentially the same as in the 
fi rst edition. 

 Chapter  8  gives an account of a variety of miscellaneous topics. These 
include kriging (a form of smoothing in the analysis of spatial data) and other 
applications to spatial data, survey sampling, subset selection in both regres-
sion and discriminant analysis, analysis of censored data,  p  - value adjustment 
for multiplicity, estimation of process capability indices (measures of manu-
facturing process performance in quality assurance work), application of the 
Bayesian bootstrap in missing data problems, and the estimation of individual 
and population bioequivalence in pharmaceutical studies (often used to get 
acceptance of a generic drug when compared to a similar market - approved 
drug). 

 Chapter  9  describes examples in the literature where the ordinary bootstrap 
procedures fail. In many instances, modifi cations have been devised to over-
come the problem, and these are discussed. In the fi rst edition, remedies for 
the case of simple random sampling were discussed. In this edition, we also 
include remedies for extreme values including the result of Zelterman ( 1993 ) 
and the use of the  m  out of  n  bootstrap. 

 Bootstrap diagnostics are also discussed in Chapter  9 . Efron ’ s jackknife -
 after - bootstrap is discussed because it is the fi rst tool devised to help identify 
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whether or not a nonparametric bootstrap will work in a given application. 
The work from Efron ( 1992c ) is described in Section  9.7 . 

 Chapter  9  differs from the other chapters in that it goes into some of the 
technical probability details that the practitioner lacking this background may 
choose to skip. The practitioner may not need 1992c to understand exactly 
why these cases fail but should have a general awareness of the cases where 
the ordinary bootstrap fails and whether or not remedies have been found. 

 Each chapter (except Chapter  6 ) has a historical notes section. This section 
is intended as a guide to the literature related to the chapter and puts the 
results into their chronological order of development. I found that this was a 
nice feature in several earlier bootstrap books, including Hall ( 1992a ), Efron 
and Tibshirani ( 1993 ), and Davison and Hinkley ( 1997 ). Although related 
references are cited throughout the text, the historical notes are intended to 
provide a perspective regarding when the techniques were originally proposed 
and how the key developments followed chronologically. 

 One notable change in the second edition is the increased description of 
techniques, particularly in Chapters  8  and  9 .  

  1.2.   INTRODUCTION 

 Two of the most important problems in applied statistics are the determination 
of an estimator for a particular parameter of interest and the evaluation of 
the accuracy of that estimator through estimates of the standard error of the 
estimator and the determination of confi dence intervals for the parameter. 
Efron, when introducing his version of the  “ bootstrap ”  (Efron,  1979a ), was 
particularly motivated by these two problems. Most important was the estima-
tion of the standard error of the parameter estimator, particularly when the 
estimator was complex and standard approximations such as the delta methods 
were either not appropriate or too inaccurate. 

 Because of the bootstrap ’ s generality, it has been applied to a much wider 
class of problems than just the estimation of standard errors and confi dence 
intervals. Applications include error rate estimation in discriminant analysis, 
subset selection in regression, logistic regression, and classifi cation problems, 
cluster analysis, kriging (i.e., a form of spatial modeling), nonlinear regression, 
time series analysis, complex surveys,  p  - value adjustment in multiple testing 
problems, and survival and reliability analysis. 

 It has been applied in various disciplines including psychology, geology, 
econometrics, biology, engineering, chemistry, and accounting. It is our 
purpose to describe some of these applications in detail for the practitioner in 
order to exemplify its usefulness and illustrate its limitations. In some cases 
the bootstrap will offer a solution that may not be very good but may still be 
used for lack of an alternative approach. Since the publication of the fi rst 
edition of this text, research has emphasized applications and has added to 
the long list of applications including particular applications in the pharma-



ceutical industry. In addition, modifi cations to the bootstrap have been devised 
that overcome some of the limitations that had been identifi ed. 

 Before providing a formal defi nition of the bootstrap, here is an informal 
description of how it works. In its most general form, we have a sample of size 
 n  and we want to estimate a parameter or determine the standard error or a 
confi dence interval for the parameter or even test a hypothesis about the 
parameter. If we do not make any parametric assumptions, we may fi nd this 
diffi cult to do. The bootstrap provides a way to do this. 

 We look at the sample and consider the empirical distribution. The empiri-
cal distribution is the probability distribution that has probability 1/ n  assigned 
to each sample value. The bootstrap idea is simply to replace the unknown 
population distribution with the known empirical distribution. 

 Properties of the estimator such as its standard error are then determined 
based on the empirical distribution. Sometimes these properties can be deter-
mined analytically, but more often they are approximated by Monte Carlo 
methods (i.e., we sample with replacement from the empirical distribution). 

 Now here is a more formal defi nition. Efron ’ s bootstrap is defi ned as 
follows: Given a sample of  n  independent identically distributed random 
vectors  X  1 ,  X  2 ,   .  .  .   ,  X n   and a real - valued estimator ( X  1 ,  X  2 ,   .  .  .   ,  X n  ) (denoted 
by   θ̂ ) of the parameter     , a procedure to assess the accuracy of   θ̂  is defi ned in 
terms of the empirical distribution function  F n  . This empirical distribution 
function assigns probability mass 1/ n  to each observed value of the random 
vectors  X i   for  i  = 1, 2,   .  .  .   ,  n . 

 The empirical distribution function is the maximum likelihood estimator of 
the distribution for the observations when no parametric assumptions are 
made. The bootstrap distribution for   θ̂ θ−  is the distribution obtained by 
generating   ˆ ’θ s  by sampling independently with replacement from the empiri-
cal distribution  F n  . The bootstrap estimate of the standard error of   θ̂  is then 
the standard deviation of the bootstrap distribution for   θ̂ θ− . 

 It should be noted here that almost any parameter of the bootstrap distribu-
tion can be used as a  “ bootstrap ”  estimate of the corresponding population 
parameter. We could consider the skewness, the kurtosis, the median, or the 
95th percentile of the bootstrap distribution for   θ̂. 

 Practical application of the technique usually requires the generation of 
bootstrap samples or resamples (i.e., samples obtained by independently sam-
pling with replacement from the empirical distribution). From the bootstrap 
sampling, a Monte Carlo approximation of the bootstrap estimate is obtained. 
The procedure is straightforward. 

  1.     Generate a sample with replacement from the empirical distribution (a 
bootstrap sample),  

  2.     Compute      *  the value of   θ̂  obtained by using the bootstrap sample in 
place of the original sample,  

  3.     Repeat steps 1 and 2  k  times.    
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10 what is bootstrapping?

 For standard error estimation,  k  is recommended to be at least 100. This 
recommendation can be attributed to the article Efron ( 1987 ). It has recently 
been challenged in a paper by Booth and Sarkar ( 1998 ). Further discussion 
on this recommendation can be found in Chapter  7 . 

 By replicating steps 1 and 2  k  times, we obtain a Monte Carlo approxima-
tion to the distribution of   q   * . The standard deviation of this Monte Carlo dis-
tribution of   q   *  is the Monte Carlo approximation to the bootstrap estimate of 
the standard error for   θ̂. Often this estimate is simply referred to as the boot-
strap estimate, and for  k  very large (e.g., 500) there is very little difference 
between the bootstrap estimator and this Monte Carlo approximation. 

 What we would like to know for inference is the distribution of   θ̂ θ− . What 
we have is a Monte Carlo approximation to the distribution of   θ θ* − ˆ . The key 
idea of the bootstrap is that for  n  suffi ciently large, we expect the two distribu-
tions to be nearly the same. 

 In a few cases, we are able to compute the bootstrap estimator directly 
without the Monte Carlo approximation. For example, in the case of the esti-
mator being the mean of the distribution of a real - valued random variable, 
Efron ( 1982a , p. 2) states that the bootstrap estimate of the standard error of      
is   ˆ [( ) ] ˆσ σBOOT
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 where  x i   is the value of the  i th observation and   x  is the mean of the sample. 
As a second example, consider the case of testing the hypothesis of equality 
of distributions for censored matched pairs (i.e., observations whose values 
may be truncated). The bootstrap test applied to paired differences is equiva-
lent to the sign test and the distribution under the null hypothesis is binomial 
with  p  = 1/2. So no bootstrap sampling is required to determine the critical 
region for the test. 

 The bootstrap is often referred to as a computer - intensive method. It gets 
this label because in most practical problems where it is deemed to be useful 
the estimation is complex and bootstrap samples are required. In the case of 
confi dence interval estimation and hypothesis testing problems, this may mean 
at least 1000 bootstrap replications (i.e.,  k  = 1000). In Section  7.1 , we address 
the important practical issue of what value to use for  k . 

 Methods for reducing the computer time by more effi cient Monte Carlo 
sampling are discussed in Section  7.2 . The examples above illustrate that there 
are cases for which the bootstrap is not computer - intensive at all! 

 Another point worth emphasizing here is that the bootstrap samples differ 
from the original sample because some of the observations will be repeated 
once, twice, or more in a bootstrap sample. There will also be some observa-
tions that will not appear at all in a particular bootstrap sample. Consequently, 
the values for   q   *  will vary from one bootstrap sample to the next. 



 The actual probability that a particular  X i   will appear  j  times in a bootstrap 
sample for  j  = 0, 1, 2,  .  .  .  ,  n , can be determined using the multinomial distribu-
tion or alternatively by using classical occupancy theory. For the latter approach 
see (Chernick and Murthy,  1985 ). Efron ( 1983 ) calls these probabilities the 
repetition rates and discusses them in motivating the use of the .632 estimator 
(a particular bootstrap type estimator) for classifi cation error rate estimation. 
A general account of the classical occupancy problem can be found in Johnson 
and Kotz ( 1977 ). 

 The basic idea behind the bootstrap is the variability of   q   *  (based on  F n  ) 
around   θ̂  will be similar to (or mimic) the variability of   θ̂  (based on the true 
population distribution  F ) around the true parameter value,   q  . There is good 
reason to believe that this will be true for large sample sizes, since as  n  gets 
larger and larger,  F n   comes closer and closer to  F  and so sampling with replace-
ments from  F n   is almost like random sampling from  F . 

 The strong law of large numbers for independent identically distributed 
random variables implies that with probability one,  F n   converges to  F  point-
wise [see Chung ( 1974 , pp. 131 – 132) for details]. Strong laws pertaining to the 
bootstrap can be found in Athreya ( 1983 ). A stronger result, the Glivenko –
 Cantelli theorem [see Chung ( 1974 , p. 133)], asserts that the empirical distribu-
tion converges uniformly with probability 1 to the distribution  F  when the 
observations are independent and identically distributed. Although not stated 
explicitly in the early bootstrap literature, this fundamental theoretical result 
lends credence to the bootstrap approach. The theorem was extended in 
Tucker ( 1959 ) to the case of a random sequence from a strictly stationary 
stochastic process. 

 In addition to the Glivenko – Cantelli theorem, the validity of the bootstrap 
requires that the estimator (a functional of the empirical distribution function) 
converge to the  “ true parameter value ”  (i.e., the functional for the  “ true ”  
population distribution). A functional is simply a mapping that assigns a real 
value to a function. Most commonly used parameters of distribution functions 
can be expressed as functionals of the distribution, including the mean, the 
variance, the skewness, and the kurtosis. 

 Interestingly, sample estimates such as the sample mean can be expressed 
as the same functional applied to the empirical distribution. For more discus-
sion of this see Chernick ( 1982 ), who deal with a form of a functional deriva-
tive called an infl uence function. The concept of an infl uence function was fi rst 
introduced by Hampel ( 1974 ) as a method for comparing robust estimators. 

 Infl uence functions have had uses in robust statistical methods and in the 
detection of outlying observations in data sets. Formal treatment of statistical 
functionals can be found in Fernholtz ( 1983 ). There are also connections for 
the infl uence function with the jackknife and the bootstrap as shown by Efron 
( 1982a ). 

 Convergence of the bootstrap estimate to the appropriate limit (consis-
tency) requires some sort of smoothness condition on the functional corre-
sponding to the estimator. In particular, conditions given in Hall ( 1992a ) 
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employ asymptotic normality for the functional and further allow for the 
existence of an Edgeworth expansion for its distribution function. So there is 
more needed. For independent and identically distributed observations we 
require (1) the convergence of  F n   to  F  (this is satisfi ed by virtue of the 
Glivenko – Cantelli theorem), (2) an estimate that is the corresponding func-
tional of  F n   as the parameter is of  F  (satisfi ed for means, standard deviations, 
variances, medians, and other sample quantiles of the distribution), and (3) a 
smoothness condition on the functional. Some of the consistency proofs also 
make use of the well - known Berry – Esseen theorem [see Lahiri ( 2003a , 
pp. 21 – 22, Theorem 2.1) for the sample mean]. When the bootstrap fails (i.e., 
bootstrap estimates are inconsistent), it is often because the smoothness condi-
tion is not satisfi ed (e.g., extreme order statistics such as the minimum or 
maximum of the sample). 

 These Edgeworth expansions along with the Cornish – Fisher expansions not 
only can be used to assure the consistency of the bootstrap, but they also 
provide asymptotic rates of convergence. Examples where the bootstrap fails 
asymptotically, due to a lack of smoothness of the functional, are given in 
Chapter  9 . 

 Also, the original bootstrap idea applies to independent identically dis-
tributed observations and is guaranteed to work only in large samples. Using 
the Monte Carlo approximation, bootstrapping can be applied to many practi-
cal problems such as parameter estimation in time series, regression, and 
analysis of variance problems, and even to problems involving small 
samples. 

 For some of these problems, we may be on shaky ground, particularly when 
small sample sizes are involved. Nevertheless, through the extensive research 
that took place in the 1980s and 1990s, it was discovered that the bootstrap 
sometimes works better than conventional approaches even in small samples 
(e.g., the case of error rate estimation for linear discriminant functions to be 
discussed in Section 2.1.2). 

 There is also a strong temptation to apply the bootstrap to a number of 
complex statistical problems where we cannot resort to classical theory to 
resort to. At least for some of these problems, we recommend that the prac-
titioner try the bootstrap. Only for cases where there is theoretical evidence 
that the bootstrap leads us astray would we advise against its use. 

 The determination of variability in subset selection for regression, logistic 
regression, and its use in discriminant analysis problems provide examples of 
such complex problems. Another example is the determination of the vari-
ability of spatial contours based on the method of kriging. The bootstrap and 
alternatives in spatial problems are treated in Cressie ( 1991 ). Other books that 
cover spatial data problems are Mardia, Kent, and Bibby ( 1979 ) and Hall 
( 1988c ). Tibshirani ( 1992 ) provides some examples of the usefulness of the 
bootstrap in complex problems. 

 Diaconis and Efron ( 1983 ) demonstrate, with just fi ve bootstrap sample 
contour maps, the value of the bootstrap approach in uncovering the vari-



ability in the contours. These problems that can be addressed by the bootstrap 
approach are discussed in more detail in Chapter  8 .  

  1.3.   WIDE RANGE OF APPLICATIONS 

 As mentioned at the end of the last section, there is a great deal of temptation 
to apply the bootstrap in a wide number of settings. In the regression case, for 
example, we may treat the vector including the dependent variable and the 
explanatory variable as independent random vectors, or alternatively we may 
compute residuals and bootstrap them. These are two distinct approaches to 
bootstrapping in regression problems which will be discussed in detail in 
Chapter  5 . 

 In the case of estimating the error rate of a linear discriminant function, 
Efron showed in Efron ( 1982a , pp. 49 – 58) and Efron ( 1983 ) that the bootstrap 
could be used to (1) estimate the bias of the  “ apparent error rate ”  estimate 
(a na ï ve estimate of error rate that is also referred to as the resubstitution 
estimate) and (2) produce an improved error rate estimate by adjusting for 
the bias. 

 The most attractive feature of the bootstrap and the permutation tests 
described in Good ( 1994 ) is the freedom they provide from restrictive para-
metric assumptions and simplifi ed models. There is no need to force Gaussian 
or other parametric distributional assumptions on the data. 

 In many problems, the data may be skewed or have a heavy - tailed dis-
tribution or may even be multimodal. The model does not need to be sim-
plifi ed to some  “ linear ”  approximation, and the estimator itself can be 
complicated. 

 We do not require an analytic expression for the estimator. The bootstrap 
Monte Carlo approximation can be applied as long as there is a computational 
method for deriving the estimator. That means that we can numerical inte-
grate using iterative schemes to calculate the estimator. The bootstrap doesn ’ t 
care. The only price we pay for such complications is in the time and cost for 
the computer usage (which is becoming cheaper and faster). 

 Another feature that makes the bootstrap approach attractive is its simplic-
ity. We can formulate bootstrap simulations for almost any conceivable 
problem. Once we program the computer to carry out the bootstrap replica-
tions, we let the computer do all the work. A danger to this approach is that 
a practitioner might bootstrap at will, without consulting a statistician (or 
considering the statistical implications) and without giving careful thought to 
the problem. 

 This book will aid the practitioner in the proper use of the bootstrap by 
acquainting him with its advantages and limitations, lending theoretical support 
where available and Monte Carlo results where the theory is not yet available. 
Theoretical counterexamples to the consistency of bootstrap estimates also 
provide guidelines to its limitations and warn the practitioner when not to 
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apply the bootstrap. Some simulation studies also provide such negative 
results. 

 However, over the past 9 years, modifi cations to the basic or na ï ve boot-
strap that fails due to inconsistency have been constructed to be consistent. 
One notable approach to be covered in Chapter  9  is the  m  - out - of -  n  bootstrap. 
Instead of sampling  n  times with replacement from the empirical distribution 
where  n  is the original sample size, the  m  - out - of -  n  bootstrap samples  m  times 
with replacement from the empirical distribution where  m  is chosen to be less 
than  n . In the asymptotic theory both  m  and  n  tend to infi nity but  m  increases 
at a slower rate. The rate to choose depends on the application. 

 I believe, as do many others now, that many simulation studies indicate that 
the bootstrap can safely be applied to a large number of problems even where 
strong theoretical justifi cation does not yet exist. For many problems where 
realistic assumptions make other statistical approaches impossible or at least 
intractable, the bootstrap at least provides a solution even if it is not a very 
good one. For some people in certain situations, even a poor solution is better 
than no solution. 

 Another problem that creates diffi culties for the scientist and engineer is 
that of missing data. In designing an experiment or a survey, we may strive 
for balance in the design and choose specifi c samples sizes in order to make 
the planned inferences from the data. The correct inference can be made only 
if we observe the complete data set. 

 Unfortunately, in the real world, the cost of experimentation, faulty mea-
surement, or lack of response from those selected for the survey may lead to 
incomplete and possibly unbalanced designs. Milliken and Johnson ( 1984 ) 
refer to such problem data as messy data. 

 In Milliken and Johnson ( 1984, 1989 ) they provide ways to analyze messy 
data. When data are missing or censored, bootstrapping provides another 
approach for dealing with the messy data (see Section  8.4  for more details on 
censored data, and see Section 8.7 for an application to missing data). 

 The bootstrap alerts the practitioner to variability in his data, of which he 
or she may not be aware. In regression, logistic regression, or discriminant 
analysis, stepwise subset selection is a commonly used method available in 
most statistical computer packages. The computer does not tell the user 
how arbitrary the fi nal selection actually is. When a large number of variables 
or features are included and many are correlated or redundant, there can 
be a great deal of variability to the selection. The bootstrap samples enable 
the user to see how the chosen variables or features change from bootstrap 
sample to bootstrap sample and provide some insight as to which variables or 
features are really important and which ones are correlated and easily substi-
tuted for by others. This is particularly well illustrated by the logistic regres-
sion problem studied in Gong ( 1986 ). This problem is discussed in detail in 
Section  8.2 . 

 In the case of kriging, spatial contours of features such as pollution concen-
tration are generated based on data at monitoring stations. The method is a 



form of interpolation between the stations based on certain statistical spatial 
modeling assumptions. However, the contour maps themselves do not provide 
the practitioner with an understanding of the variability of these estimates. 
Kriging plots for different bootstrap samples provide the practitioner with a 
graphical display of this variability and at least warn him of variability in the 
data and analytic results. Diaconis and Efron ( 1983 ) make this point convinc-
ingly, and I will demonstrate this application in Section  8.1 . The practical value 
of this cannot be underestimated! 

 Babu and Feigelson ( 1996 ) discuss applications in astronomy. They devote 
a whole chapter (Chapter  5 , pp. 93 – 103) to resampling methods, emphasizing 
the importance of the bootstrap. 

 In clinical trials, sample sizes are determined based on achieving a certain 
power for a statistical hypothesis of effi cacy of the treatment. In Section  3.3 , 
I show an example of a clinical trial for a pacemaker lead (Pacesetter ’ s Tendril 
DX model). In this trial, the sample sizes for the treatment and control leads 
were chosen to provide an 80% chance of detecting a clinically signifi cant 
improvement (decrease of 0.5 volts) in the average capture threshold at the 
three - month follow - up for the experimental Tendril DX lead (model 1388T) 
compared to the respective control lead (Tendril model 1188T) when applying 
a one - sided signifi cance test at the 5% signifi cance level. This was based on 
the standard normal distribution theory. In the study, nonparametric methods 
were also considered. Bootstrap confi dence intervals based on Efron ’ s percen-
tile method were used to do the hypothesis test without needing parametric 
assumptions. The Wilcoxon rank sum test was another nonparametric proce-
dure that was used to test for a statistically signifi cant change in capture 
threshold. 

 A similar study for a passive fi xation lead, the Passive Plus DX lead, was 
conducted to get FDA approval for the steroid eluting version of this type of 
lead. In addition to comparing the investigational (steroid eluting) lead with 
the non - steroid control lead, using both the bootstrap (percentile method) and 
Wilcoxon rank sum tests, I also tried the bootstrap percentile t confi dence 
intervals for the test. This method theoretically can give a more accurate 
confi dence interval. The results were very similar and conclusive at showing 
the effi cacy of the steroid lead. The percentile  t  method of confi dence interval 
estimation is described in Section  3.1.5 . 

 However, the statistical conclusion for such a trial is based on a single test 
at the three - month follow - up after all 99 experimental and 33 control leads 
have been implanted, and the patients had threshold tests at the three - month 
follow - up. 

 In the practice of clinical trials, the investigators do not want to wait for all 
the patients to reach their three - month follow - up before doing the analysis. 
Consequently, it is quite common to do interim analyses at some point or 
points in the trial (it could be one in the middle of the trial or two at the one -
 third and two - thirds points in the trial). Also, separate analyses are sometimes 
done on subsets of the population. Furthermore, sometimes separate analyses 
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are done on subsets of the population. These examples are all situations where 
multiple testing is involved. Multiple testing requires specifi c techniques for 
controlling the type I error rate (in this context the so - called family - wise error 
rate is the error rate that is controlled. Equivalent to controlling the family -
 wise type I error rate the  p  - values for the individual tests can be adjusted. 
Probability bounds such as the Bonferroni can be used to give conservative 
estimates of the  p  - value or simultaneous inference methods can be used [see 
Miller ( 1981b ) for a thorough treatment of this subject]. 

 An alternative approach would be to estimate the  p  - value adjustment by 
bootstrapping. This idea has been exploited by Westfall and Young and is 
described in detail in Westfall and Young ( 1993 ). We will attempt to convey 
the key concepts. The application of bootstrap  p  - value adjustment to the 
Passive Plus DX clinical trial data is covered in Section  8.5 . Consult Miller 
( 1981b ), Hsu ( 1996 ), and/or Westfall and Young ( 1993 ) for more details on 
multiple testing,  p  - value adjustment, and multiple comparisons. 

 In concluding this section, we wish to emphasize that the bootstrap is not 
a panacea. There are certainly practical problems where classical parametric 
methods are reasonable and provide either more effi cient estimates or more 
powerful hypothesis tests. Even for some parametric problems, the parametric 
bootstrap, as discussed by Davison and Hinkley ( 1997 , p. 3) and illustrated by 
them on pages 148 and 149, can be useful. 

 What the bootstrap does do is free the scientist from restrictive modeling 
and distributional assumptions by using the power of the computer to replace 
diffi cult analysis. In an age when computers are becoming more and more 
powerful, inexpensive, fast, and easy to use, the future looks bright for addi-
tional use of these so - called computer - intensive statistical methods, as we have 
seen over the past decade.  

  1.4.   HISTORICAL NOTES 

 It should be pointed out that bootstrap research began in the late 1970s, 
although many key related developments can be traced back to earlier times. 
Most of the important theoretical development; took place in the1980s after 
Efron ( 1979a ). The fi rst proofs of the consistency of the bootstrap estimate of 
the sample mean came in 1981 with the papers of Singh ( 1981 ) and Bickel and 
Freedman ( 1981 ). 

 Regarding this seminal paper by   Efron ( 1979a ), Davison and Hinkley 
(1997) write  “ The publication in 1979 of Bradley Efron ’ s fi rst article on boot-
strap methods was a major event in Statistics, at once synthesizing some of 
the earlier resampling ideas and establishing a new framework for simulation -
 based statistical analysis. The idea of replacing complicated and often inaccu-
rate approximations to biases, variances, and other measures of uncertainty 
by computer simulations caught the imagination of both theoretical research-
ers and users of statistical methods. ”  
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 As mentioned earlier in this chapter, a number of related techniques are 
often referred to as resampling techniques. These other resampling techniques 
predate Efron ’ s bootstrap. Among these are the jackknife, cross - validation, 
random subsampling, and the permutation test procedures described in Good 
( 1994 ), Edgington ( 1980, 1987, 1995 ), and Manly ( 1991, 1997 ). 

 Makinodan, Albright, Peter, Good, and Heidrick ( 1976 ) apply permutation 
tests to study the effect of age in mice on the mediation of immune response. 
Due to the fact that an entire factor was missing, the model and the permuta-
tion test provides a clever way to deal with imbalance in the data. A detailed 
description is given in Good ( 1994 , pp. 58 – 59). 

 Efron himself points to some of the early work of R. A. Fisher (in the 1920s) 
on maximum likelihood estimation as the inspiration for many of the basic 
ideas. The jackknife was introduced by Quenouille ( 1949 ) and popularized by 
Tukey ( 1958 ), and Miller ( 1974 ) provides an excellent review of the jackknife 
methods. Extensive coverage of the jackknife can be found in the book by 
Gray and Schucany ( 1972 ). 

 Bickel and Freedman ( 1981 ) and Singh ( 1981 ) presented the fi rst results 
demonstrating the consistency of the bootstrap undercertain mathematical 
conditions. Bickel and Freedman ( 1981 ) also provide a counterexample for 
consistency of the nonparametric bootstrap, and this is also illustrated by 
Schervish ( 1995 , p. 330, Example 5.80). Gine and Zinn ( 1989 ) provide neces-
sary conditions for the consistency of the bootstrap for the mean. 

 Athreya ( 1987a,b ), Knight ( 1989 ), and Angus ( 1993 ) all provide 
examples where the bootstrap failed to be consistent due to its inability to 
meet certain necessary mathematical conditions. Hall, Hardle, and Simar 
( 1993 ) showed that estimators for bootstrap distributions can also be 
inconsistent. 

 The general subject of empirical processes is related to the bootstrap 
and can be used as a tool to demonstrate consistency (see Csorgo,  1983 ; 
Shorack and Wellner,  1986 ; van der Vaart and Wellner,  1996 ). Fernholtz 
( 1983 ) provides the mathematical theory of statistical functionals and func-
tional derivatives (such as infl uence functions) that relate to bootstrap 
theory. 

 Quantile estimation via bootstrapping appears in Helmers, Janssen, and 
Veraverbeke ( 1992 ) and in   Falk and Kaufmann (1991). Csorgo and Mason 
( 1989 ) bootstrap the empirical distribution and Tu ( 1992 ) uses jackknife pseu-
dovalues to approximate the distribution of a general standardized functional 
statistic. 

 Subsampling methods began with Hartigan ( 1969, 1971, 1975 ) and 
McCarthy ( 1969 ). These papers are discussed briefl y in the development of 
bootstrap confi dence intervals in Chapter  3 . A more recent account is given 
by Babu ( 1992 ). 

 Young and Daniels ( 1990 ) discuss the bias that is introduced in Efron ’ s 
nonparametric bootstrap by the use of the empirical distribution as a substi-
tute for the true unknown distribution. 
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 Diaconis and Holmes ( 1994 ) show how to avoid the Monte Carlo approxi-
mation to the bootstrap by cleverly enumerating all possible bootstrap samples 
using what are called Gray codes. 

 The term bootstrap has been used in other similar contexts which predate 
Efron ’ s work, but these methods are not the same and some confusion occurs. 
When I gave a presentation on the bootstrap at the Aerospace Corporation 
in 1983 a colleague, Dr. Ira Weiss, mentioned that he used the bootstrap in 
1970 long before Efron coined the term. After looking at Ira ’ s paper, I realized 
that it was a different procedure with a similar idea. 

 Apparently, control theorists came up with a procedure for applying Kalman 
fi ltering with an unknown noise covariance which they also named the boot-
strap. Like Efron, they were probably thinking of the old adage  “ picking 
yourself up by your own bootstraps ”  (as was attributed to the fi ctional Baron 
von Munchausen as a trick for climbing out from the bottom of a lake) when 
they chose the term to apply to an estimation procedure that avoids a priori 
assumptions and uses only the data at hand. A survey and comparison of 
procedures for dealing with the problem of unknown noise covariance includ-
ing this other bootstrap technique is given in Weiss ( 1970 ). The term bootstrap 
has also been used in totally different contexts by computer scientists. 

 An entry on bootstrapping in the  Encyclopedia of Statistical Science  (1981, 
Volume 1, p. 301) is provided by the editors and is very brief. In 1981 when 
that volume was published, the true value of bootstrapping was not fully 
appreciated. The editors subsequently remedied this with an article in the 
supplemental volume. 

 The point, however, is that the original entry cited only three references. 
The fi rst, Efron ’ s  SIAM Review  article (Efron,  1979b ), was one of the fi rst 
published works describing Efron ’ s bootstrap. The second article from  Tech-
nometrics  by Fuchs ( 1978 ) does not appear to deal with the bootstrap at all! 
The third article by LaMotte ( 1978 ) and also in  Technometrics  does refer to 
a bootstrap but does not mention any of Efron ’ s ideas and appears to be dis-
cussing a different bootstrap. 

 Because of these other bootstraps, we have tried to refer to the bootstrap 
as Efron ’ s bootstrap; a few others have done the same, but it has not caught 
on. In the statistical literature, reference to the bootstrap will almost always 
mean Efron ’ s bootstrap or some derivative of it. In the engineering literature 
an ambiguity may exist and we really need to look at the description of the 
procedure in detail to determine precisely what the author means. 

 The term bootstrap has also commonly appeared in the computer science 
literature, and I understand that mathematicians use the term to describe 
certain types of numerical solutions to partial differential equations. Still it is 
my experience that if I search for articles in mathematical or statistical indices 
using the keyword  “ bootstrap, ”  I would fi nd that the majority of the articles 
referred to Efron ’ s bootstrap or a variant of it. I wrote the preceding statement 
back in 1999 when the fi rst edition was published. Now in 2007, I formed the 
basis for the second bibliography of the text by searching the Current Index 
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to Statistics (CIS) for the years 1999 to 2007 with only the keyword  “ boot-
strap ”  required to appear in the title or the list of key words. Of the large 
number of articles and books that I found from this search, all of the refer-
ences were referring to Efron ’ s bootstrap or a method derived from the origi-
nal idea of Efron. The term  “ boofstrap ”  is used these days as a noun or a 
verb. 

 However, I have no similar experience with the computer science literature 
or the engineering literature. But Efron ’ s bootstrap now has a presence in 
these two fi elds as well. In computer science there have been many meetings 
on the interface between computer science and statistics, and much of the 
common ground involves computer - intensive methods such as the bootstrap. 
Because of the rapid growth of bootstrap application in a variety of industries, 
the  “ statistical ”  bootstrap now appears in some of the physics and engineering 
journals including the IEEE journals. In fact the article I include in Chapter 
 4 , an application of nonlinear regression to a quasi - optical experiment, I coau-
thored with three engineers and the article appeared in the  IEEE Transactions 
on Microwave Theory and Techniques . 

 Efron ( 1983 ) compared several variations to the bootstrap estimate. He 
considered simulation of Gaussian distributions for the two - class problem 
(with equal covariances for the classes) and small sample sizes (e.g., a total of, 
say, 14 – 20 training samples split equally among the two populations). For 
linear discriminant functions, he showed that the bootstrap and in particular 
the .632 estimator are superior to the commonly used leave - one - out estimate 
(also called cross - validation by Efron). Subsequent simulation studies will be 
summarized in Section 2.1.2 along with guidelines for the use of some of the 
bootstrap estimates. 

 There have since been a number of interesting simulation studies that show 
the value of certain bootstrap variants when the training sample size is small 
(particularly the estimator referred to as the .632 estimate). In a series of 
simulations studies, Chernick, Murthy, and Nealy ( 1985, 1986, 1988a,b ) con-
fi rmed the results in Efron ( 1983 ). They also showed that the .632 estimator 
was superior when the populations were not Gaussian but had fi nite fi rst 
moments. In the case of Cauchy distributions and other heavy - tailed distribu-
tions from the Pearson VII family of distributions which do not have fi nite 
fi rst moments, they showed that other bootstrap approaches were better than 
the .632 estimator. 

 Other related simulation studies include Chatterjee and Chatterjee ( 1983 ), 
McLachlan ( 1980 ), Snapinn and Knoke ( 1984, 1985a,b, 1988 ), Jain, Dubes, 
and Chen ( 1987 ) and Efron and Tibshirani ( 1997a ). We summarize the results 
of these studies and provide guidelines to the use of the bootstrap procedures 
for linear and quadratic discriminant functions in Section 2.1.2. McLachlan 
( 1992 ) also gives a good summary treatment to some of this literature. Addi-
tional theoretical results can be found in Davison and Hall ( 1992 ). Hand 
( 1986 ) is another good survey article on error rate estimation. The 632+ esti-
mator proposed by Efron and Tibshirani ( 1997a ) was applied to an ecological 
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problem by   Furlanello, Merler, Chemini, and Rizzoli (1998). Ueda and Nakano 
( 1995 ) apply the bootstrap and cross - validation to error rate estimation for 
neural network - type classifi ers. Hand ( 1981 , p. 189; 1982, pp. 178 – 179) dis-
cusses the bootstrap approach to estimating the error rates in discriminant 
analysis. 

 In the late 1980s and the 1990s, a number of books appeared that covered 
some aspect of bootstrapping at least partially. Noreen ’ s book (Noreen,  1989 ) 
deals with the bootstrap in very elementary ways for hypothesis testing only. 

 There are now several survey articles on bootstrapping in general, including 
Babu and Rao ( 1993 ), Young ( 1994 ), Stine ( 1992 ), Efron ( 1982b ), Efron and 
LePage ( 1992 ), Efron and Tibshirani ( 1985, 1986, 1996a, 1997b ), Hall ( 1994 ), 
Manly ( 1993 ),   Gonzalez - Manteiga, Prada - Sanchez, and Romo (1993), Politis 
( 1998 ), and Hinkley ( 1984, 1988 ). Overviews on the bootstrap or special 
aspects of bootstrapping include Beran ( 1984b ), Leger, Politis, and Romano 
( 1992 ), Pollack, Simon, Bruce, Borenstein, and Lieberman ( 1994 ), and Fiellin 
and Feinstein ( 1998 ) on the bootstrap in general; Babu and Bose ( 1989 ), 
DiCiccio and Efron ( 1996 ), and DiCiccio and Romano ( 1988, 1990 ) on confi -
dence intervals; Efron ( 1988b ) on regression; Falk ( 1992a ) on quantile estima-
tion; and DeAngelis and Young ( 1992 ) on smoothing. Lanyon ( 1987 ) reviews 
the jackknife and bootstrap for applications to ornithology. Efron ( 1988c ) 
gives a general discussion of the value of bootstrap confi dence intervals aimed 
at an audience of psychologists. 

 The latest edition of  Kendall ’ s Advanced Theory of Statistics , Volume I, 
deals with the bootstrap as a tool for estimating standard errors in Chapter  10  
[see Stuart and Ord ( 1993 , pp. 365 – 368)]. 

 The use of the bootstrap to compute standard errors for estimates and to 
obtain confi dence intervals for multilevel linear models is given in Goldstein 
( 1995 , pp. 60 – 63). Waclawiw and Liang ( 1994 ) give an example of parametric 
bootstrapping using generalized estimating equations. Other works involving 
the bootstrap and jackknife in estimating equation models include Lele 
( 1991a,b ). 

 Lehmann and Casella ( 1998 ) mention the bootstrap as a tool in reducing 
the bias of an estimator (p. 144) and in the attainment of higher order effi -
ciency (p. 519). Lehmann ( 1999 , Section  6.5 , pp. 420 – 435) presents some 
details on the asymptotic properties of the bootstrap. 

 In the context of generalized least - squares estimation of regression param-
eters Carroll and Ruppert ( 1988 , pp. 26 – 28) describe the use of the bootstrap 
to get confi dence intervals. In a brief discussion, Nelson ( 1990 ) mentions the 
bootstrap as a potential tool in regression models with right censoring of data 
for application to accelerated lifetime testing. Srivastava and Singh ( 1989 ) deal 
with the application of bootstrap in multiplicative models. Bickel and Ren 
( 1996 ) employ an  m  - out - of -  n  bootstrap for goodness of fi t tests with doubly 
censored data. 

 McLachlan and Basford ( 1988 ) discuss the bootstrap in a number of places 
as an approach for determining the number of distributions or modes in a 
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mixture model. Another excellent text on mixture models is Titterington, 
Smith, and Makov ( 1985 ). Efron and Tibshirani ( 1996b ) take a novel approach 
to bootstrapping that can be applied to the determination of the number of 
modes in a density function and the number of variables in a model. In addi-
tion to determining the number of modes, Romano ( 1988c ) uses the bootstrap 
to determine the location of a mode. 

 Linhart and Zucchini ( 1986 , pp. 22 – 23) describe how the bootstrap can be 
used for model selection. Thompson ( 1989 , pp. 42 – 43) mentions the use of 
bootstrap techniques for estimating parameters in growth models (i.e., a non-
linear regression problem). McDonald ( 1982 ) shows how smoothed or ordi-
nary bootstrap samples can be drawn to obtain regression estimates. 

 Rubin ( 1987 , pp. 44 – 46) discusses his  “ Bayesian ”  bootstrap for problems 
of imputation. The original paper on the Bayesian bootstrap is Rubin ( 1981 ). 
Banks ( 1988 ) provides a modifi cation to the Bayesian bootstrap. Other papers 
involving the Bayesian bootstrap are Lo ( 1987, 1988, 1993a ) and Weng ( 1989 ). 
Geisser ( 1993 ) discusses the bootstrap with respect to predictive distributions 
(another Bayesian concept). Ghosh and Meeden ( 1997 , pp. 140 – 149) discuss 
applications of the Bayesian bootstrap to fi nite population sampling. The 
Bayesian bootstrap is often applied to imputation problems. Rubin ( 1996 ) is 
a survey article detailing the history of multiple imputation. At the time of the 
article the method of multiple imputation had been studied for more than 18 
years. 

 Rey ( 1983 ) devotes Chapter  5  of his monograph to the bootstrap. He is 
using it in the context of robust estimation. His discussion is particularly inter-
esting because he mentions both the pros and the cons and is critical of some 
of the early claims made for the bootstrap [particularly in Diaconis and Efron 
( 1983 )]. 

 Staudte and Sheather ( 1990 ) deal with the bootstrap as an approach to 
estimating standard errors of estimates. They are particularly interested in the 
standard errors of robust estimators. Although they do deal with hypothesis 
testing, they do not use the bootstrap for any hypothesis testing problems. 
Their book includes a computer disk that has Minitab macros for bootstrap-
ping in it. Minitab computer code for these macros is presented in Appendix 
D of their book. 

 Barnett and Lewis ( 1995 ) discuss the bootstrap as it relates to checking 
modeling assumptions in the face of outliers. Agresti ( 1990 ) discusses the 
bootstrap as it can be applied to categorical data. 

 McLachlan and Krishnan ( 1997 ) discuss the bootstrap in the context of 
robust estimation of a covariance matrix. Beran and Srivastava ( 1985 ) provide 
bootstrap tests for functions of a covariance matrix. Other papers covering the 
theory of the bootstrap as it relates to robust estimators are Babu and Singh 
( 1984b ) and Arcones and Gine ( 1992 ). Lahiri ( 1992a ) does bootstrapping of 
 M  - estimators (a type of robust location estimator). 

 The text by van der Vaart and Wellner ( 1996 ) is devoted to weak conver-
gence and empirical processes. Empirical process theory can be applied to 
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obtain important results in bootstrapping, and van der Vaart and Wellner 
illustrate this in Section 3.6 of their book (14 pages devoted to the subject of 
bootstrapping, pp. 345 – 359). 

 Hall ( 1992a ) considers functionals that admit Edgeworth expansions. Edge-
worth expansions provide insight into the accuracy of bootstrap confi dence 
intervals, the value of bootstrap hypothesis tests, and use of the bootstrap in 
parametric regression. It also provides guidance to the practitioner regarding 
the variants of the bootstrap and the Monte Carlo approximations. Some 
articles relating Edgeworth expansions to applications of the bootstrap include 
Abramovitch and Singh ( 1985 ), Bhattacharya and Qumsiyeh ( 1989 ), Babu and 
Singh ( 1989 ), and Bai and Rao ( 1991, 1992 ). 

 Chambers and Hastie ( 1991 ) discuss applications of statistical models 
through the use of the  S  language. They discuss the bootstrap in various 
places. 

 Gifi  ( 1990 ) applies the bootstrap to multivariate problems. Other uses of 
the bootstrap in branches of multivariate analysis are are documented 
Diaconis and Efron ( 1983 ), who apply the bootstrap to principal component 
analysis, and Greenacre ( 1984 ), who covers the use of bootstrapping in cor-
respondence analysis. 

 One of the classic texts on multivariate analysis is Anderson ( 1959 ), which 
was the fi rst to provide extensive coverage of the theory based on the multi-
variate normal model. In the second edition of the text, Anderson ( 1984 ), he 
introduces some bootstrap applications. Flury ( 1997 ) provides another recent 
account of multivariate analysis. Flury ( 1988 ) is a text devoted to the principal 
components technique and so is Jolliffe ( 1986 ). Seber ( 1984 ),   Gnandesikan 
(1977, 1997), Hawkins ( 1982 ), and Mardia, Kent, and Bibby ( 1979 ) all deal 
with the subject of multivariate analysis and multivariate data. 

 Scott ( 1992 , pp. 257 – 260) discusses the bootstrap as a tool in estimating 
standard errors and confi dence intervals in the context of multivariate density 
estimation. Other articles where the bootstrap appears as a density estimation 
tool are Faraway and Jhun ( 1990 ), Falk ( 1992b ), and Taylor and Thompson 
( 1992 ). 

 Applications in survival analysis include Burr ( 1994 ), Hsieh ( 1992 ), LeBlanc 
and Crowley ( 1993 ) and Gross and Lai ( 1996a ). 

 An application of the double bootstrap appears in McCullough and Vinod 
( 1998 ). Application to the estimation of correlation coeffi cients can be found 
in Lunneborg ( 1985 ) and Young ( 1988a ). 

 General discussion of bootstrapping related to nonparametric procedures 
include Romano ( 1988a ), Romano ( 1989b ), and Simonoff ( 1986 ), where good-
ness of fi t of distributions in sparse multinomial data problems is addressed 
using the bootstrap. Tu, Burdick, and Mitchell ( 1992 ) apply bootstrap resam-
pling to nonparametric rank estimation. 

 Hahn and Meeker ( 1991 ) briefl y discuss bootstrap confi dence intervals. 
Frangos and Schucany ( 1990 ) discuss the technical aspects of estimating the 
acceleration constant for Efron ’ s BC a  confi dence interval method. Bickel and 
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Krieger ( 1989 ) use the bootstrap to attain confi dence bands for a distribution 
function, and Wang and Wahba ( 1995 ) get bootstrap confi dence bands for 
smoothing splines and compare them to bands constructed using Bayesian 
methods. 

 Bailey ( 1992 ) provides a form of bootstrapping for order statistics and other 
random variables whose distributions can be represented as convolutions of 
other distributions. By substituting the empirical distributions for the distribu-
tions in the convolution, a  “ bootstrap ”  distribution for the random variable is 
derived. 

 Beran ( 1982 ) compares the bootstrap with various competitive methods in 
estimating sampling distributions. Bau ( 1984 ) does bootstrapping for statistics 
involving linear combinations. Parr ( 1983 ) is an early reference comparing the 
bootstrap, the jackknife, and the delta method in the context of bias and vari-
ance estimation. Hall ( 1988d ) deals with the rate of convergence for bootstrap 
approximations. 

 Applications to directional data include Fisher and Hall ( 1989 ) and   Ducha-
rme, Jhun, Romano, and Troung (1985). Applications to fi nite population 
sampling include Chao and Lo ( 1985 ), Booth, Butler, and Hall ( 1994 ), Kuk 
( 1987, 1989 ), and Sitter ( 1992b ). 

 Applications have appeared in a variety of disciplines. These include Choi, 
Nam, and Park ( 1996 ), quality assurance (for process capability indices); 
Jones, Wortberg, Kreissig, Hammock, and Rocke ( 1996 ), engineering; Bajgier 
( 1992 ), Seppala, Moskowitz, Plante, and Tang ( 1995 ) and Liu and Tang ( 1996 ), 
process control; Chao and Huwang ( 1987 ), reliability; Coakley ( 1996 ), image 
processing; Bar - Ness and Punt ( 1996 ), communications; and Zoubir and 
Iskander ( 1996 ) and Zoubir and Boashash ( 1998 ), signal processing. Ames 
and Muralidhar ( 1991 ) and Biddle, Bruton, and Siegel ( 1990 ) provide applica-
tions in auditing. Robeson ( 1995 ) applies the bootstrap in meteorology, 
Tambour and Zethraeus ( 1998 ) in economics, and Tran ( 1996 ) in sports medi-
cine. Roy ( 1994 ) and Schafer ( 1992 ) provide applications in chemistry, Rothery 
( 1985 ) and Lanyon ( 1987 ) in ornithology. Das Peddada and Chang ( 1992 ) give 
an application in physics. Mooney ( 1996 ) covers bootstrap applications in 
political science. Adams, Gurevitch, and Rosenberg ( 1997 ) and Shipley ( 1996 ) 
apply the bootstrap to problems in ecology; Andrieu, Caraux, and Gascuel 
( 1997 ) in evolution; and Aastveit ( 1990 ), Felsenstein ( 1985 ), Sanderson ( 1989, 
1995 ), Sitnikova, Rzhetsky, and Nei ( 1995 ), Leal and Ott ( 1993 ), Tivang, 
Nienhuis, and Smith ( 1994 ), Schork ( 1992 ), Zharkikh and Li ( 1992, 1995 ) in 
genetics. Lunneborg ( 1987 ) gives us applications in the behavioral sciences. 
  Abel and Berger ( 1986 ) and Brey ( 1990 ) give applications in biology. Aegerter, 
Muller, Nakache, and Boue ( 1994 ), Baker and Chu ( 1990 ), Barlow and Sun 
( 1989 ), Mapleson ( 1986 ),   Tsodikov, Hasenclever, and Loeffl er ( 1998 ), and 
Wahrendorf and Brown ( 1980 ) apply the bootstrap to a variety of medical 
problems. 

 The fi rst monograph on the bootstrap was Efron ( 1982a ). In the 1990s there 
were a number of books introduced that are dedicated to bootstrapping and/or 
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related resampling methods. These include Beran and Ducharme ( 1991 ), 
Chernick ( 1999 ), Davison and Hinkley ( 1997 ), Efron and Tibshirani ( 1993 ), 
Hall ( 1992a ), Helmers ( 1991b ), Hjorth ( 1994 ), Janas ( 1993 ), Mammen ( 1992b ), 
Manly ( 1997 ), Mooney and Duval ( 1993 ), Shao and Tu ( 1995 ), and Westfall 
and Young ( 1993 ). Schervish ( 1995 ) devotes a section and Sprent ( 1998 ) has 
a whole chapter on the bootstrap. In addition to the bootstrap chapter, the 
bootstrap is discussed throughout Sprent ( 1998 ) because it is one of a few 
data - driven statistical methods that are the theme of the text.   Chernick and 
Friis ( 2002 ) introduce boofstrapping in a biostatistics text for health science 
students,   Hesterberg, Moore, Monaghan, Clipson and Epstein ( 2003 ) is a 
chapter for an introductory statistics text that covers bootstrap and permuta-
tion methods and it has been incorporated as Chapter 18 of Moore, McCabe, 
Duckworth and Sclove ( 2003 ) as well as Chapter 14 of the on-line 5th Edition 
of Moore and McCabe ( 2005 ) 

 Efron has demonstrated the value of the bootstrap in a number of applied 
and theoretical contexts. In Efron ( 1988a ), he provides three examples of the 
value of inference through computer - intensive methods. In Efron ( 1992b ) he 
shows how the bootstrap has impacted theoretical statistics by raising six basic 
theoretical questions. 

 Davison and Hinkley ( 1997 ) provide a computer diskette with a library of 
useful SPLUS functions that can be used to implement bootstrapping in a 
variety of problems. These routines can be used with the commercial Version 
3.3 of SPLUS, and they are described in Chapter  11  of the book. Barbe and 
Bertail ( 1995 ) deal with weighted bootstraps. 

 Two conferences were held in 1990, one in Michigan and the other in Trier, 
Germany. These conferences specialized in research developments in boot-
strap and related techniques. Proceedings from these conferences were pub-
lished in LePage and Billard ( 1992 ) for the Michigan conference, and in 
Jockel, Rothe, and Sendler ( 1992 ) for the conference in Trier. 

 In 2003, a portion of an issue of the journal  Statistical Science  was devoted 
to the bootstrap on its Silver Anniversary. It included articles by Efron, 
Casella, and others. The text by Lahiri ( 2003a ) covers the dependent cases in 
detail emphasizing block bootstrap methods for time series and spatial data. 
It also covers model - based methods and provides some coverage of the inde-
pendent case. Next to this text, Lahiri ( 2003a ) provides the most recent cover-
age on bootstrap methods. It provides detailed descriptions of the methodology 
along with rigorous proofs of important theorems. It also uses simulations for 
comparison of various methods.  

  1.5.   SUMMARY 

 In this chapter, I have given a basic explanation of Efron ’ s nonparametric 
bootstrap. I have followed this up with explanations as to why the procedure 
can be expected to work in a wide variety of applications and also have given 
a historical perspective to the development of the bootstrap and its early 



acceptance or lack thereof. I have also pointed out some of the sections in 
subsequent chapters and additional references that will provide more details 
than the brief discussions given in this chapter. 

 I have tried to make the discussion casual and friendly with each concept 
described as simply as possible and each defi nition stated as clearly as I can 
make them. However, it was necessary for me to mention some advanced 
concepts including statistical functionals, infl uence functions, Edgeworth and 
Cornish – Fisher expansions, and stationary stochastic processes. All these 
topics are well covered in the statistical literature on the bootstrap. 

 Since these concepts involve advanced probability and mathematics for a 
detailed description, I deliberately avoided such mathematical development 
to try to keep the text at a level for practitioners who do not have a strong 
mathematical background. Readers with an advanced mathematical back-
ground who might be curious about these concepts can refer to the references 
given throughout the chapter. In addition, Serfl ing ( 1980 ) is a good advanced 
text that provides much asymptotic statistical theory. 

 For the practitioner with less mathematical background, these details are 
not important. It is important to be aware that such theory exists to justify the 
use of the bootstrap in various contexts, but a deeper understanding is not 
necessary and for some it is not desirable. 

 This approach is really no different from the common practice, in elemen-
tary statistics texts, to mention the central limit theorem as justifi cation for 
the use of the normal distribution to approximate the sampling distribution 
of sums or averages of random variables without providing any proof of the 
theorem such as Glivenko – Cantelli or Berry – Esseen or of related concepts 
such as convergence in distribution, triangular arrays, and Lindeberg – Feller 
conditions.         
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