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CONTINUOUS IMAGE 
MATHEMATICAL CHARACTERIZATION

In the design and analysis of image processing systems, it is convenient and often
necessary mathematically to characterize the image to be processed. There are two
basic mathematical characterizations of interest: deterministic and statistical. In
deterministic image representation, a mathematical image function is defined and
point properties of the image are considered. For a statistical image representation,
the image is specified by average properties. The following sections develop the
deterministic and statistical characterization of continuous images. Although the
analysis is presented in the context of visual images, many of the results can be
extended to general two-dimensional time-varying signals and fields.

1.1. IMAGE REPRESENTATION

Let  represent the spatial energy distribution of an image source of radi-
ant energy at spatial coordinates (x, y), at time t and wavelength . Because light
intensity is a real positive quantity, that is, because intensity is proportional to the
modulus squared of the electric field, the image light function is real and nonnega-
tive. Furthermore, in all practical imaging systems, a small amount of background
light is always present. The physical imaging system also imposes some restriction
on the maximum intensity of an image, for example, film saturation and cathode ray
tube (CRT) phosphor heating. Hence it is assumed that

(1.1-1)

C x y t λ, , ,( )
λ

0 C x y t λ, , ,( ) A≤<
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4 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

where A is the maximum image intensity. A physical image is necessarily limited in
extent by the imaging system and image recording media. For mathematical sim-
plicity, all images are assumed to be nonzero only over a rectangular region
for which

(1.1-2a)

(1.1-2b)

The physical image is, of course, observable only over some finite time interval.
Thus, let

(1.1-2c)

The image light function  is, therefore, a bounded four-dimensional
function with bounded independent variables. As a final restriction, it is assumed
that the image function is continuous over its domain of definition.

The intensity response of a standard human observer to an image light function is
commonly measured in terms of the instantaneous luminance of the light field as
defined by

(1.1-3)

where  represents the relative luminous efficiency function, that is, the spectral
response of human vision. Similarly, the color response of a standard observer is
commonly measured in terms of a set of tristimulus values that are linearly propor-
tional to the amounts of red, green and blue light needed to match a colored light.
For an arbitrary red–green–blue coordinate system, the instantaneous tristimulus
values are

(1.1-4a)

(1.1-4b)

(1.1-4c)

where , ,  are spectral tristimulus values for the set of red, green
and blue primaries. The spectral tristimulus values are, in effect, the tristimulus
values required to match a unit amount of narrowband light at wavelength . In a
multispectral imaging system, the image field observed is modeled as a spectrally

Lx– x Lx≤ ≤

Ly– y Ly≤ ≤

T– t T≤ ≤

C x y t λ, , ,( )

Y x y t, ,( ) C x y t λ, , ,( )V λ( ) λd
0

∞
∫=

V λ( )

R x y t, ,( ) C x y t λ, , ,( )RS λ( ) λd
0

∞
∫=

G x y t, ,( ) C x y t λ, , ,( )GS λ( ) λd
0

∞
∫=

B x y t, ,( ) C x y t λ, , ,( )BS λ( ) λd
0

∞
∫=

RS λ( ) GS λ( ) BS λ( )

λ
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TWO-DIMENSIONAL SYSTEMS 5

weighted integral of the image light function. The ith spectral image field is then
given as

(1.1-5)

where  is the spectral response of the ith sensor.
For notational simplicity, a single image function  is selected to repre-

sent an image field in a physical imaging system. For a monochrome imaging sys-
tem, the image function  nominally denotes the image luminance, or some
converted or corrupted physical representation of the luminance, whereas in a color
imaging system,  signifies one of the tristimulus values, or some function
of the tristimulus value. The image function  is also used to denote general
three-dimensional fields, such as the time-varying noise of an image scanner.

In correspondence with the standard definition for one-dimensional time signals,
the time average of an image function at a given point (x, y) is defined as

(1.1-6)

where L(t) is a time-weighting function. Similarly, the average image brightness at a
given time is given by the spatial average,

(1.1-7)

In many imaging systems, such as image projection devices, the image does not
change with time, and the time variable may be dropped from the image function.
For other types of systems, such as movie pictures, the image function is time sam-
pled. It is also possible to convert the spatial variation into time variation, as in tele-
vision, by an image scanning process. In the subsequent discussion, the time
variable is dropped from the image field notation unless specifically required.

1.2. TWO-DIMENSIONAL SYSTEMS

A two-dimensional system, in its most general form, is simply a mapping of some
input set of two-dimensional functions F1(x, y), F2(x, y),..., FN(x, y) to a set of output
two-dimensional functions G1(x, y), G2(x, y),..., GM(x, y), where 
denotes the independent, continuous spatial variables of the functions. This mapping
may be represented by the operators  for m = 1, 2,..., M, which relate the
input to output set of functions by the set of equations

Fi x y t, ,( ) C x y t λ, , ,( )Si λ( ) λd
0

∞
∫=

Si λ( )
F x y t, ,( )

F x y t, ,( )

F x y t, ,( )
F x y t, ,( )

F x y t, ,( )〈 〉 T
1

2T
------ F x y t, ,( )L t( ) td

T–

T

∫T ∞→
lim=

F x y t, ,( )〈 〉S
1

4LxLy
-------------- F x y t, ,( ) xd yd

Ly–

Ly∫Lx–

Lx∫Lx ∞→
Ly ∞→

lim=

∞ x y, ∞< <–( )

Om ·{ }
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6 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

   (1.2-1)

In specific cases, the mapping may be many-to-few, few-to-many, or one-to-one.
The one-to-one mapping is defined as

 (1.2-2)

To proceed further with a discussion of the properties of two-dimensional systems, it
is necessary to direct the discourse toward specific types of operators.

1.2.1. Singularity Operators

Singularity operators are widely employed in the analysis of two-dimensional
systems, especially systems that involve sampling of continuous functions. The two-
dimensional Dirac delta function is a singularity operator that possesses the follow-
ing properties:

for  (1.2-3a)

(1.2-3b)

In Eq. 1.2-3a,  is an infinitesimally small limit of integration; Eq. 1.2-3b is called
the sifting property of the Dirac delta function.

The two-dimensional delta function can be decomposed into the product of two
one-dimensional delta functions defined along orthonormal coordinates. Thus

(1.2-4)

where the one-dimensional delta function satisfies one-dimensional versions of Eq.
1.2-3. The delta function also can be defined as a limit on a family of functions.
General examples are given in References 1 and 2.

1.2.2. Additive Linear Operators

A two-dimensional system is said to be an additive linear system if the system obeys
the law of additive superposition. In the special case of one-to-one mappings, the
additive superposition property requires that

(1.2-5)

G1 x y,( ) O1 F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

Gm x y,( ) Om F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

GM x y,( ) OM F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

…
…

G x y,( ) O F x y,( ){ }=

δ x y,( ) xd yd
ε–

ε
∫ε–

ε
∫ 1= ε 0>

F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫ F x y,( )=

ε

δ x y,( ) δ x( )δ y( )=

O a1F1 x y,( ) a2F2 x y,( )+{ } a1O F1 x y,( ){ } a2O F2 x y,( ){ }+=
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TWO-DIMENSIONAL SYSTEMS 7

where a1 and a2 are constants that are possibly complex numbers. This additive
superposition property can easily be extended to the general mapping of Eq. 1.2-1.

A system input function F(x, y) can be represented as a sum of amplitude-
weighted Dirac delta functions by the sifting integral, 

(1.2-6)

where  is the weighting factor of the impulse located at coordinates  in
the x–y plane, as shown in Figure 1.2-1. If the output of a general linear one-to-one
system is defined to be

 (1.2-7)

then

 (1.2-8a)

or

(1.2-8b)

In moving from Eq. 1.2-8a to Eq. 1.2-8b, the application order of the general lin-
ear operator  and the integral operator have been reversed. Also, the linear
operator has been applied only to the term in the integrand that is dependent on the

FIGURE1.2-1. Decomposition of image function.

F x y,( ) F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

F ξ η,( ) ξ η,( )

G x y,( ) O F x y,( ){ }=

G x y,( ) O F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫ 

 
 

=

G x y,( ) F ξ η,( )O δ x ξ– y η–,( ){ } ξd ηd
∞–

∞
∫∞–

∞
∫=

O ⋅{ }
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8 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

spatial variables (x, y). The second term in the integrand of Eq. 1.2-8b, which is
redefined as

 (1.2-9)

is called the impulse response of the two-dimensional system. In optical systems, the
impulse response is often called the point spread function of the system. Substitu-
tion of the impulse response function into Eq. 1.2-8b yields the additive superposi-
tion integral

 (1.2-10)

An additive linear two-dimensional system is called space invariant (isoplanatic) if
its impulse response depends only on the factors  and . In an optical sys-
tem, as shown in Figure 1.2-2, this implies that the image of a point source in the
focal plane will change only in location, not in functional form, as the placement of
the point source moves in the object plane. For a space-invariant system

(1.2-11)

and the superposition integral reduces to the special case called the convolution inte-
gral, given by

(1.2-12a)

Symbolically,

(1.2-12b)

FIGURE 1.2-2. Point-source imaging system.

H x y ξ η,;,( ) O δ x ξ– y η–,( ){ }≡

G x y,( ) F ξ η,( )H x y ξ η,;,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

x ξ– y η–

H x y ξ η,;,( ) H x ξ– y η–,( )=

G x y,( ) F ξ η,( )H x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

G x y,( ) F x y,( ) H x y,( ) ��=
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TWO-DIMENSIONAL SYSTEMS 9

denotes the convolution operation. The convolution integral is symmetric in the
sense that

(1.2-13)

Figure 1.2-3 provides a visualization of the convolution process. In Figure 1.2-3a
and b, the input function F(x, y) and impulse response are plotted in the dummy
coordinate system . Next, in Figures 1.2-3c and d, the coordinates of the
impulse response are reversed, and the impulse response is offset by the spatial val-
ues (x, y). In Figure 1.2-3e, the integrand product of the convolution integral of
Eq. 1.2-12 is shown as a crosshatched region. The integral over this region is the
value of G(x, y) at the offset coordinate (x, y). The complete function F(x, y) could,
in effect, be computed by sequentially scanning the reversed, offset impulse
response across the input function and simultaneously integrating the overlapped
region.

1.2.3. Differential Operators

Edge detection in images is commonly accomplished by performing a spatial dif-
ferentiation of the image field followed by a thresholding operation to determine

FIGURE 1.2-3. Graphical example of two-dimensional convolution.

G x y,( ) F x ξ– y η–,( )H ξ η,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

ξ η,( )
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10 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

points of steep amplitude change. Horizontal and vertical spatial derivatives are
defined as

(l.2-14a)

(l.2-14b)

The directional derivative of the image field along a vector direction z subtending an
angle  with respect to the horizontal axis is given by (3, p. 106)

(l.2-15)

The gradient magnitude is then

(l.2-16)

Spatial second derivatives in the horizontal and vertical directions are defined as

(l.2-17a)

(l.2-17b)

The sum of these two spatial derivatives is called the Laplacian operator:

(l.2-18)

1.3. TWO-DIMENSIONAL FOURIER TRANSFORM

The two-dimensional Fourier transform of the image function F(x, y) is defined as
(1,2)

(1.3-1)

where  and  are spatial frequencies and . Notationally, the Fourier
transform is written as

(1.3-2)

dx
F x y,( )∂

x∂
--------------------=

dy
F x y,( )∂

y∂
--------------------=

φ

F x y,( ){ }∇ F x y,( )∂
z∂

-------------------- dx φcos dy φsin+= =

F x y,( ){ }∇ dx
2

dy
2

+=

dxx

2
F x y,( )∂

x
2∂

----------------------=

dyy

2
F x y,( )∂

y
2∂

----------------------=

F x y,( ){ }∇2
2F x y,( )∂

x
2∂

----------------------
2F x y,( )∂

y
2∂

----------------------+=

F ωx ωy,( ) F x y,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞
∫∞–

∞
∫=

ωx ωy i 1–=

F ωx ωy,( ) OF F x y,( ){ }=
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TWO-DIMENSIONAL FOURIER TRANSFORM 11

In general, the Fourier coefficient  is a complex number that may be repre-
sented in real and imaginary form, 

(1.3-3a)

or in magnitude and phase-angle form,

(1.3-3b)

where

(1.3-4a)

(1.3-4b)

A sufficient condition for the existence of the Fourier transform of F(x, y) is that the
function be absolutely integrable. That is,

(1.3-5)

The input function F(x, y) can be recovered from its Fourier transform by the inver-
sion formula

(1.3-6a)

or in operator form

(1.3-6b)

The functions F(x, y) and  are called Fourier transform pairs.
The two-dimensional Fourier transform can be computed in two steps as a result

of the separability of the kernel. Thus, let

(1.3-7)

F ωx ωy,( )

F ωx ωy,( ) R ωx ωy,( ) iI ωx ωy,( )+=

F ωx ωy,( ) M ωx ωy,( ) iφ ωx ωy,( ){ }exp=

M ωx ωy,( ) R
2 ωx ωy,( ) I

2 ωx ωy,( )+[ ]
1 2⁄

=

φ ωx ωy,( ) arc
I ωx ωy,( )
R ωx ωy,( )
------------------------

 
 
 

tan=

F x y,( ) xd y ∞<d
∞–

∞
∫∞–

∞
∫

F x y,( ) 1

4π2
--------- F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞
∫∞–

∞
∫=

F x y,( ) OF
1–

F ωx ωy,( ){ }=

F ωx ωy,( )

Fy ωx y,( ) F x y,( ) i ωxx( )–{ }exp xd
∞–

∞
∫=
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12 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

then 

(1.3-8)

Several useful properties of the two-dimensional Fourier transform are stated
below. Proofs are given in References 1 and 2.

Separability. If the image function is spatially separable such that

(1.3-9)

then

(1.3-10)

where  and  are one-dimensional Fourier transforms of  and ,
respectively. Also, if  and  are two-dimensional Fourier transform
pairs, the Fourier transform of  is . An asterisk∗ used as a
superscript denotes complex conjugation of a variable (i.e. if , then

. Finally, if  is symmetric such that , then
.

Linearity. The Fourier transform is a linear operator. Thus

(1.3-11)

where a and b are constants.

Scaling. A linear scaling of the spatial variables results in an inverse scaling of the
spatial frequencies as given by

(1.3-12)

Hence, stretching of an axis in one domain results in a contraction of the corre-
sponding axis in the other domain plus an amplitude change.

Shift. A positional shift in the input plane results in a phase shift in the output
plane:

(1.3-13a)

F ωx ωy,( ) Fy ωx y,( ) i ωyy( )–{ }exp yd
∞–

∞
∫=

F x y,( ) fx x( )fy y( )=

Fy ωx ωy,( ) fx ωx( )fy ωy( )=

fx ωx( ) fy ωy( ) fx x( ) fy y( )
F x y,( ) F ωx ωy,( )

F ∗ x y,( ) F ∗ ω– x ω– y,( )
F A iB+=

F ∗ A iB )–= F x y,( ) F x y,( ) F x– y–,( )=
F ωx ωy,( ) F ω– x ωy–,( )=

OF aF1 x y,( ) bF2 x y,( )+{ } aF1 ωx ωy,( ) bF2 ωx ωy,( )+=

OF F ax by,( ){ } 1
ab

---------F
ωx

a
------

ωy

b
------, 

 =

OF F x a– y b–,( ){ } F ωx ωy,( ) i ωxa ωyb+( )–{ }exp=
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TWO-DIMENSIONAL FOURIER TRANSFORM 13

Alternatively, a frequency shift in the Fourier plane results in the equivalence

(1.3-13b)

Convolution. The two-dimensional Fourier transform of two convolved functions is
equal to the products of the transforms of the functions. Thus

(1.3-14)

The inverse theorem states that

(1.3-15)

Parseval’s Theorem. The energy in the spatial and Fourier transform domains is
related by

(1.3-16)

Autocorrelation Theorem. The Fourier transform of the spatial autocorrelation of a
function is equal to the magnitude squared of its Fourier transform. Hence

(1.3-17)

Spatial Differentials. The Fourier transform of the directional derivative of an
image function is related to the Fourier transform by

(1.3-18a)

(1.3-18b)

Consequently, the Fourier transform of the Laplacian of an image function is equal to

(1.3-19)

OF
1– F ωx a– ωy b–,( ){ } F x y,( ) i ax by+( ){ }exp=

OF F x y,( ) H x y,( ) ��{ } F ωx ωy,( )H ωx ωy,( )=

OF F x y,( )H x y,( ){ } 1

4π2
---------F ωx ωy,( ) H �� ωx ωy,( )=

F x y,( ) 2
xd yd

∞–

∞
∫∞–

∞
∫ 1

4π2
--------- F ωx ωy,( ) 2 ωxd ωyd

∞–

∞
∫∞–

∞
∫=

OF F α β,( )F∗ α x– β y–,( ) αd βd
∞–

∞
∫∞–

∞
∫ 

 
 

F ωx ωy,( ) 2
=

OF
F x y,( )∂

x∂
--------------------

 
 
 

i– ωxF ωx ωy,( )=

OF
F x y,( )∂

y∂
--------------------

 
 
 

i– ωyF ωx ωy,( )=

OF

2
F x y,( )∂

x
2∂

----------------------
2
F x y,( )∂

y
2∂

----------------------+
 
 
 

ωx
2 ωy

2
+( )– F ωx ωy,( )=
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14 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

The Fourier transform convolution theorem stated by Eq. 1.3-14 is an extremely use-
ful tool for the analysis of additive linear systems. Consider an image function

 that is the input to an additive linear system with an impulse response
. The output image function is given by the convolution integral

(1.3-20)

Taking the Fourier transform of both sides of Eq. 1.3-20 and reversing the order of
integration on the right-hand side results in

 (1.3-21)

By the Fourier transform shift theorem of Eq. 1.3-13, the inner integral is equal to
the Fourier transform of  multiplied by an exponential phase-shift factor.
Thus

 (1.3-22)

Performing the indicated Fourier transformation gives

 (1.3-23)

Then an inverse transformation of Eq. 1.3-23 provides the output image function

(1.3-24)

Equations 1.3-20 and 1.3-24 represent two alternative means of determining the out-
put image response of an additive, linear, space-invariant system. The analytic or
operational choice between the two approaches, convolution or Fourier processing,
is usually problem dependent.

1.4. IMAGE STOCHASTIC CHARACTERIZATION

The following presentation on the statistical characterization of images assumes gen-
eral familiarity with probability theory, random variables and stochastic processes.
References 2 and 4 to 7 can provide suitable background. The primary purpose of the
discussion here is to introduce notation and develop stochastic image models.

F x y,( )
H x y,( )

G x y,( ) F α β,( )H x α– y β–,( ) αd βd
∞–

∞
∫∞–

∞
∫=

G ωx ωy,( ) F α β,( ) H x α– y β–,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞
∫∞–

∞
∫ αd βd

∞–

∞
∫∞–

∞
∫=

H x y,( )

G ωx ωy,( ) F α β,( )H ωx ωy,( ) i ωxα ωyβ+( )–{ }exp αd βd
∞–

∞
∫∞–

∞
∫=

G ωx ωy,( ) H ωx ωy,( )F ωx ωy,( )=

G x y,( ) 1

4π2
--------- H ωx ωy,( )F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞
∫∞–

∞
∫=
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IMAGE STOCHASTIC CHARACTERIZATION 15

It is often convenient to regard an image as a sample of a stochastic process. For
continuous images, the image function F(x, y, t) is assumed to be a member of a con-
tinuous three-dimensional stochastic process with space variables (x, y) and time
variable (t).

The stochastic process F(x, y, t) can be described completely by knowledge of its
joint probability density

      

for all sample points J, where (xj, yj, tj) represent space and time samples of image
function Fj(xj, yj, tj). In general, high-order joint probability densities of images are
usually not known, nor are they easily modeled. The first-order probability density
p(F; x, y, t) can sometimes be modeled successfully on the basis of the physics of the
process or histogram measurements. For example, the first-order probability density
of random noise from an electronic sensor is usually well modeled by a Gaussian
density of the form

 (1.4-1)

where the parameters  and  denote the mean and variance of the
process. The Gaussian density is also a reasonably accurate model for the probabil-
ity density of the amplitude of unitary transform coefficients of an image. The
probability density of the luminance function must be a one-sided density because
the luminance measure is positive. Models that have found application include the
Rayleigh density,

 (1.4-2a)

the log-normal density,

(1.4-2b)

and the exponential density,

 (1.4-2c)

p F1 F2… FJ x1 y1 t1 x2 y2 t2 … xJ yJ tJ, , , , , , , , ,;,,{ }

p F x y t, ,;{ } 2πσF
2

x y t, ,( )[ ]
1– 2⁄ F x y t, ,( ) ηF x y t, ,( )–[ ]2

2σF
2

x y t, ,( )
------------------------------------------------------------–

 
 
 

exp=

ηF x y t, ,( ) σF
2

x y t, ,( )

p F x y t, ,;{ } F x y t, ,( )
α2

--------------------- F x y t, ,( )[ ]2

2α2
-----------------------------–

 
 
 

exp=

p F x y t, ,;{ } 2πF
2

x y t, ,( )σF
2

x y t, ,( )[ ]
1– 2⁄ F x y t, ,( ){ }log ηF x y t, ,( )–[ ]2

2σF
2

x y t, ,( )
---------------------------------------------------------------------------–

 
 
 

exp=

p F x y t, ,;{ } α α F x y t, ,( )–{ }exp=
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16 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

all defined for where  is a constant. The two-sided, or Laplacian density,

 (1.4-3)

where  is a constant, is often selected as a model for the probability density of the
difference of image samples. Finally, the uniform density

 (1.4-4)

for  is a common model for phase fluctuations of a random process. Con-
ditional probability densities are also useful in characterizing a stochastic process.
The conditional density of an image function evaluated at  given knowl-
edge of the image function at  is defined as

 (1.4-5)

Higher-order conditional densities are defined in a similar manner. 
Another means of describing a stochastic process is through computation of its

ensemble averages. The first moment or mean of the image function is defined as

 (1.4-6)

where  is the expectation operator, as defined by the right-hand side of Eq.
1.4-6.

The second moment or autocorrelation function is given by

 (1.4-7a)

or in explicit form

 (1.4-7b)

F 0,≥ α

p F x y t, ,;{ } α
2
--- α F x y t, ,( )–{ }exp=

α

p F x y t, ,;{ } 1
2π
------=

π– F π≤ ≤

x1 y1 t1, ,( )
x2 y2 t2, ,( )

p F1 x1 y1 t1, ,; F2 x2 y2 t2, ,;{ }
p F1 F2 x1 y1 t1 x2 y2 t2, , , , ,;,{ }

p F2 x2 y2 t2, ,;{ }
------------------------------------------------------------------------=

ηF x y t, ,( ) E F x y t, ,( ){ } F x y t, ,( )p F x y t, ,;{ } Fd
∞–

∞
∫= =

E ·{ }

R x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( )F∗ x2 y2 t2, ,( ){ }=

R x1 y1 t1 x2 y2 t2, ,;, ,( ) F x1 x1 y1, ,( )F∗ x2 y2 t2, ,( )
∞–

∞
∫∞–

∞
∫=

p F1 F2 x1 y1 t1 x2 y2 t2, , , , ,;,{ } F1d F2d×
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IMAGE STOCHASTIC CHARACTERIZATION 17

The autocovariance of the image process is the autocorrelation about the mean,
defined as

(1.4-8a)

or

(1.4-8b)

Finally, the variance of an image process is

 (1.4-9)

An image process is called stationary in the strict sense if its moments are unaf-
fected by shifts in the space and time origins. The image process is said to be sta-
tionary in the wide sense if its mean is constant and its autocorrelation is dependent
on the differences in the image coordinates, x1 – x2, y1 – y2, t1 – t2, and not on their
individual values. In other words, the image autocorrelation is not a function of posi-
tion or time. For stationary image processes,

 (1.4-10a)

 (1.4-10b)

The autocorrelation expression may then be written as

 (1.4-11)

Because

 (1.4-12)

then for an image function with F real, the autocorrelation is real and an even func-
tion of . The power spectral density, also called the power spectrum, of a

K x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( ) ηF x1 y1 t1, ,( )–[ ] F∗ x2 y2 t2, ,( ) η∗
F x2 y2 t2, ,( )–[ ]{ }=

K x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 y1 t1 x2 y2 t2, ,;, ,( ) ηF x1 y1 t1, ,( ) η∗
F x2 y2 t2, ,( )–=

σF
2

x y t, ,( ) K x y t x y t, ,;, ,( )=

E F x y t, ,( ){ } ηF=

R x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 x2– y1 y2– t1 t2–, ,( )=

R τx τy τt, ,( ) E F x τx+ y τy+ t τt+, ,( )F∗ x y t, ,( ){ }=

R τ– x τ– y τ– t, ,( ) R∗ τx τy τt, ,( )=

τx τy τt, ,
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18 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

stationary image process is defined as the three-dimensional Fourier transform of its
autocorrelation function as given by

(1.4-13)

In many imaging systems, the spatial and time image processes are separable so
that the stationary correlation function may be written as

 (1.4-14)

Furthermore, the spatial autocorrelation function is often considered as the product
of x and y axis autocorrelation functions, 

 (1.4-15)

for computational simplicity. For scenes of manufactured objects, there is often a
large amount of horizontal and vertical image structure, and the spatial separation
approximation may be quite good. In natural scenes, there usually is no preferential
direction of correlation; the spatial autocorrelation function tends to be rotationally
symmetric and not separable.

An image field is often modeled as a sample of a first-order Markov process for
which the correlation between points on the image field is proportional to their geo-
metric separation. The autocovariance function for the two-dimensional Markov
process is

 (1.4-16)

where C is an energy scaling constant and  and  are spatial scaling constants.
The corresponding power spectrum is

 (1.4-17)

As a simplifying assumption, the Markov process is often assumed to be of separa-
ble form with an autocovariance function

 (1.4-18)

W ωx ωy ωt, ,( ) R τx τy τt, ,( ) i ωxτx ωyτy ωtτt+ +( )–{ }exp τxd τyd τtd
∞–

∞
∫∞–

∞
∫∞–

∞
∫=

R τx τy τt, ,( ) Rxy τx τy,( )Rt τt( )=

Rxy τx τy,( ) Rx τx( )Ry τy( )=

Rxy τx τy,( ) C αx
2τx

2 αy
2τy

2
+–

 
 
 

exp=

αx αy

W ωx ωy,( ) 1

αxαy

---------------- 2C

1 ωx
2 αx

2⁄ ωy
2 αy

2⁄+[ ]+
------------------------------------------------------=

Kxy τx τy,( ) C αx τx– αy τy–{ }exp=
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IMAGE STOCHASTIC CHARACTERIZATION 19

The power spectrum of this process is

 (1.4-19)

In the discussion of the deterministic characteristics of an image, both time and
space averages of the image function have been defined. An ensemble average has
also been defined for the statistical image characterization. A question of interest is:
What is the relationship between the spatial-time averages and the ensemble aver-
ages? The answer is that for certain stochastic processes, which are called ergodic
processes, the spatial-time averages and the ensemble averages are equal. Proof of
the ergodicity of a process in the general case is often difficult; it usually suffices to
determine second-order ergodicity in which the first- and second-order space-time
averages are equal to the first- and second-order ensemble averages.

Often, the probability density or moments of a stochastic image field are known
at the input to a system, and it is desired to determine the corresponding information
at the system output. If the system transfer function is algebraic in nature, the output
probability density can be determined in terms of the input probability density by a
probability density transformation. For example, let the system output be related to
the system input by

 (1.4-20)

where  is a monotonic operator on F(x, y). The probability density of the out-
put field is then

 (1.4-21)

The extension to higher-order probability densities is straightforward, but often cum-
bersome.

The moments of the output of a system can be obtained directly from knowledge
of the output probability density, or in certain cases, indirectly in terms of the system
operator. For example, if the system operator is additive linear, the mean of the sys-
tem output is

 (1.4-22)

It can be shown that if a system operator is additive linear, and if the system input
image field is stationary in the strict sense, the system output is also stationary in the

W ωx ωy,( )
4αxαyC

αx
2 ωx

2
+( ) αy

2 ωy
2

+( )
------------------------------------------------=

G x y t, ,( ) OF F x y t, ,( ){ }=

OF ·{ }

p G x y t, ,;{ } p F x y t, ,;{ }
dOF F x y t, ,( ){ } dF⁄
-----------------------------------------------------=

E G x y t, ,( ){ } E OF F x y t, ,( ){ }{ } OF E F x y t, ,( ){ }{ }= =

c01.fm  Page 19  Friday, December 8, 2006  10:08 AM



20 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

strict sense. Furthermore, if the input is stationary in the wide sense, the output is
also wide-sense stationary. 

Consider an additive linear space-invariant system whose output is described by
the three-dimensional convolution integral

 (1.4-23)

where H(x, y, t) is the system impulse response. The mean of the output is then

 

(1.4-24)

If the input image field is stationary, its mean  is a constant that may be brought
outside the integral. As a result,

(1.4-25)

where  is the transfer function of the linear system evaluated at the origin
in the spatial-time frequency domain. Following the same techniques, it can easily
be shown that the autocorrelation functions of the system input and output are
related by

 (1.4-26)

Taking Fourier transforms on both sides of Eq. 1.4-26 and invoking the Fourier
transform convolution theorem, one obtains the relationship between the power
spectra of the input and output image,

(1.4-27a)

or

 (1.4-27b)

This result is found useful in analyzing the effect of noise in imaging systems.

G x y t, ,( ) F x α– y β t γ–,–,( )H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫=

E G x y t, ,( ){ } E F x α– y β t γ–,–,( ){ }H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫=

ηF

E G x y t, ,( ){ } ηF H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫ ηF H 0 0 0, ,( )= =

H 0 0 0, ,( )

RG τx τy τt, ,( ) RF τx τy τt, ,( ) H τx τy τt, ,( ) H∗ τ– x τ– y τ– t, ,( ) ��  ��=

WG ωx ωy ωt, ,( ) WF ωx ωy ωt, ,( )H ωx ωy ωt, ,( )H ∗ ωx ωy ωt, ,( )=

WG ωx ωy ωt, ,( ) WF ωx ωy ωt, ,( ) H ωx ωy ωt, ,( ) 2
=
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