
Chapter 1

Going Beyond Beginning Algebra
In This Chapter
� Abiding by (and using) the rules of algebra

� Adding the multiplication property of zero to your repertoire

� Raising your exponential power

� Looking at special products and factoring

Algebra is a branch of mathematics that people study before they move
on to other areas or branches in mathematics and science. For example,

you use the processes and mechanics of algebra in calculus to complete the
study of change; you use algebra in probability and statistics to study aver-
ages and expectations; and you use algebra in chemistry to work out the bal-
ance between chemicals. Algebra all by itself is esthetically pleasing, but it
springs to life when used in other applications.

Any study of science or mathematics involves rules and patterns. You
approach the subject with the rules and patterns you already know, and you
build on those rules with further study. The reward is all the new horizons
that open up to you.

Any discussion of algebra presumes that you’re using the correct notation
and terminology. Algebra I (check out Algebra For Dummies [Wiley]) begins
with combining terms correctly, performing operations on signed numbers,
and dealing with exponents in an orderly fashion. You also solve the basic
types of linear and quadratic equations. Algebra II gets into other types of
functions, such as exponential and logarithmic functions, and topics that
serve as launching spots for other math courses.

You can characterize any discussion of algebra — at any level — as follows:
simplify, solve, and communicate.

Going into a bit more detail, the basics of algebra include rules for dealing
with equations, rules for using and combining terms with exponents, patterns
to use when factoring expressions, and a general order for combining all the
above. In this chapter, I present these basics so you can further your study of
algebra and feel confident in your algebraic ability. Refer to these rules when-
ever needed as you investigate the many advanced topics in algebra.
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Outlining Algebra Properties
Mathematicians developed the rules and properties you use in algebra so that
every student, researcher, curious scholar, and bored geek working on the
same problem would get the same answer — no matter the time or place. You
don’t want the rules changing on you every day (and I don’t want to have to
write a new book every year!); you want consistency and security, which you
get from the strong algebra rules and properties that I present in this section.

Keeping order with the 
commutative property
The commutative property applies to the operations of addition and multipli-
cation. It states that you can change the order of the values in an operation
without changing the final result:

a + b = b + a Commutative property of addition

a ⋅ b = b ⋅ a Commutative property of multiplication

If you add 2 and 3, you get 5. If you add 3 and 2, you still get 5. If you multiply
2 times 3, you get 6. If you multiply 3 times 2, you still get 6.

Algebraic expressions usually appear in a particular order, which comes in
handy when you have to deal with variables and coefficients (multipliers of
variables). The number part comes first, followed by the letters, in alphabeti-
cal order. But the beauty of the commutative property is that 2xyz is the same
as x2zy. You have no good reason to write the expression in that second, jum-
bled order, but it’s helpful to know that you can change the order around
when you need to.

Maintaining group harmony 
with the associative property
Like the commutative property (see the previous section), the associative
property applies only to the operations of addition and multiplication. The
associative property states that you can change the grouping of operations
without changing the result:

a + (b + c) = (a + b) + c Associative property of addition

a(b ⋅ c) = (a ⋅ b)c Associative property of multiplication

10 Part I: Homing in on Basic Solutions 
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You can use the associative property of addition or multiplication to your
advantage when simplifying expressions. And if you throw in the commuta-
tive property when necessary, you have a powerful combination. For instance,
when simplifying (x + 14) + (3x + 6), you can start by dropping the parenthe-
ses (thanks to the associative property). You then switch the middle two
terms around, using the commutative property of addition. You finish by
reassociating the terms with parentheses and combining the like terms:

x x

x x

x x

x x

x

14 3 6

14 3 6

3 14 6

3 14 6

4 20

+ + +

= + + +

= + + +

= + + +

= +

^ ^

^ ^

h h

h h

The steps in the previous process involve a lot more detail than you really
need. You probably did the problem, as I first stated it, in your head. I pro-
vide the steps to illustrate how the commutative and associative properties
work together; now you can apply them to more complex situations.

Distributing a wealth of values
The distributive property states that you can multiply each term in an expres-
sion within a parenthesis by the coefficient outside the parenthesis and not
change the value of the expression. It takes one operation, multiplication, and
spreads it out over terms that you add to and subtract from one another:

a(b + c) = a ⋅ b + a ⋅ c Distributing multiplication over addition

a(b – c) = a ⋅ b – a ⋅ c Distributing multiplication over subtraction

For instance, you can use the distributive property on the problem 

12 2
1

3
2

4
3+ -c m to make your life easier. You distribute the 12 over the frac-

tions by multiplying each fraction by 12 and then combining the results:

12 2
1

3
2

4
3

12 2
1 12 3

2 12 4
3

12
2
1 12

3
2 12

4
3

6 8 9

5

6

1

4

1

3

1

+ -

= + -

= + +

= + -

=

$ $ $

$ $ $

c m
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Finding the answer with the distributive property is much easier than chang-
ing all the fractions to equivalent fractions with common denominators of 12,
combining them, and then multiplying by 12.

You can use the distributive property to simplify equations — in other words,
you can prepare them to be solved. You also do the opposite of the distribu-
tive property when you factor expressions; see the section “Implementing
Factoring Techniques” later in this chapter.

Checking out an algebraic ID
The numbers zero and one have special roles in algebra — as identities. You
use identities in algebra when solving equations and simplifying expressions.
You need to keep an expression equal to the same value, but you want to
change its format, so you use an identity in one way or another:

a + 0 = 0 + a = a The additive identity is zero. Adding zero to a number
doesn’t change that number; it keeps its identity.

a ⋅ 1 = 1 ⋅ a = a The multiplicative identity is one. Multiplying a
number by one doesn’t change that number; it
keeps its identity.

Applying the additive identity
One situation that calls for the use of the additive identity is when you want to
change the format of an expression so you can factor it. For instance, take the
expression x2 + 6x and add 0 to it. You get x2 + 6x + 0, which doesn’t do much
for you (or me, for that matter). But how about replacing that 0 with both 9 and
–9? You now have x2 + 6x + 9 – 9, which you can write as (x2 + 6x + 9) – 9 and
factor into (x + 3)2 – 9. Why in the world do you want to do this? Go to Chapter
11 and read up on conic sections to see why. By both adding and subtracting 9,
you add 0 — the additive identity.

Making multiple identity decisions
You use the multiplicative identity extensively when you work with fractions.
Whenever you rewrite fractions with a common denominator, you actually 

multiply by one. If you want the fraction x2
7 to have a denominator of 6x, for 

example, you multiply both the numerator and denominator by 3:

x x2
7

3
3

6
21=$

Now you’re ready to rock and roll with a fraction to your liking.

12 Part I: Homing in on Basic Solutions 
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Singing along in-verses
You face two types of inverses in algebra: additive inverses and multiplicative
inverses. The additive inverse matches up with the additive identity and the
multiplicative inverse matches up with the multiplicative identity. The addi-
tive inverse is connected to zero, and the multiplicative inverse is connected
to one.

A number and its additive inverse add up to zero. A number and its multiplica-
tive inverse have a product of one. For example, –3 and 3 are additive inverses; 

the multiplicative inverse of –3 is 3
1- . Inverses come into play big-time when 

you’re solving equations and want to isolate the variable. You use inverses by
adding them to get zero next to the variable or by multiplying them to get one
as a multiplier (or coefficient) of the variable.

Ordering Your Operations
When mathematicians switched from words to symbols to describe mathe-
matical processes, their goal was to make dealing with problems as simple as
possible; however, at the same time, they wanted everyone to know what was
meant by an expression and for everyone to get the same answer to a prob-
lem. Along with the special notation came a special set of rules on how to
handle more than one operation in an expression. For instance, if you do the 

problem 4 3 5 6 23 7 2
142+ - + - +$ , you have to decide when to add, sub-

tract, multiply, divide, take the root, and deal with the exponent.

The order of operations dictates that you follow this sequence:

1. Raise to powers or find roots.

2. Multiply or divide.

3. Add or subtract.

If you have to perform more than one operation from the same level, work
those operations moving from left to right. If any grouping symbols appear,
perform the operation inside the grouping symbols first.

So, to do the previous example problem, follow the order of operations:

1. The radical acts like a grouping symbol, so you subtract what’s in the 

radical first: 4 3 5 6 16 2
142+ - + +$ .

2. Raise the power and find the root: 4 9 5 6 4 2
14+ - + +$ .

13Chapter 1: Going Beyond Beginning Algebra
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3. Do the multiplication and division: 4 + 9 – 30 + 4 + 7.

4. Add and subtract, moving from left to right: 4 + 9 – 30 + 4 + 7 = –6.

Equipping Yourself with the
Multiplication Property of Zero

You may be thinking that multiplying by zero is no big deal. After all, zero times
anything is zero, right? Yes, and that’s the big deal. You can use the multiplica-
tion property of zero when solving equations. If you can factor an equation —
in other words, write it as the product of two or more multipliers — you can
apply the multiplication property of zero to solve the equation. The multiplica-
tion property of zero states that

If the product of a ⋅ b ⋅ c ⋅ d ⋅ e ⋅ f = 0, at least one of the factors has to rep-
resent the number 0.

The only way the product of two or more values can be zero is for at least
one of the values to actually be zero. If you multiply (16)(467)(11)(9)(0), the
result is 0. It doesn’t really matter what the other numbers are — the zero
always wins.

The reason this property is so useful when solving equations is that if you want
to solve the equation x7 – 16x5 + 5x4 – 80x2 = 0, for instance, you need the num-
bers that replace the x’s to make the equation a true statement. This particu-
lar equation factors into x2(x3 + 5)(x – 4)(x + 4) = 0. The product of the four
factors shown here is zero. The only way the product can be zero is if one or
more of the factors is zero. For instance, if x = 4, the third factor is zero, and
the whole product is zero. Also, if x is zero, the whole product is zero. (Head
to Chapters 3 and 8 for more info on factoring and using the multiplication
property of zero to solve equations.)

14 Part I: Homing in on Basic Solutions 

The birth of negative numbers
In the early days of algebra, negative numbers
weren’t an accepted entity. Mathematicians had
a hard time explaining exactly what the numbers
illustrated; it was too tough to come up with con-
crete examples. One of the first mathematicians
to accept negative numbers was Fibonacci, an

Italian mathematician. When he was working on
a financial problem, he saw that he needed what
amounted to a negative number to finish the
problem. He described it as a loss and pro-
claimed, “I have shown this to be insoluble
unless it is conceded that the man had a debt.”
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Expounding on Exponential Rules
Several hundred years ago, mathematicians introduced powers of variables
and numbers called exponents. The use of exponents wasn’t immediately
popular, however. Scholars around the world had to be convinced; eventu-
ally, the quick, slick notation of exponents won over, and we benefit from the
use today. Instead of writing xxxxxxxx, you use the exponent 8 by writing x8.
This form is easier to read and much quicker.

The expression an is an exponential expression with a base of a and an expo-
nent of n. The n tells you how many times you multiply the a times itself.

You use radicals to show roots. When you see 16, you know that you’re look-
ing for the number that multiplies itself to give you 16. The answer? Four, of
course. If you put a small superscript in front of the radical, you denote a cube 
root, a fourth root, and so on. For instance, 814 = 3, because the number 3 
multiplied by itself four times is 81. You can also replace radicals with frac-
tional exponents — terms that make them easier to combine. This system of
exponents is very systematic and workable — thanks to the mathematicians
that came before us.

Multiplying and dividing exponents
When two numbers or variables have the same base, you can multiply or
divide those numbers or variables by adding or subtracting their exponents:

� an ⋅ am = am + n: When multiplying numbers with the same base, you add
the exponents.

� a
a an

m
m n= - : When dividing numbers with the same base, you subtract the 

exponents (numerator – denominator).

To multiply x4 ⋅ x5, for example, you add: x4 + 5 = x9. When dividing x8 by x5, you 

subtract: 
x
x x x5

8
8 5 3= =- .

You must be sure that the bases of the expressions are the same. You can
combine 32 and 34, but you can’t use the rules for exponents on 32 and 43.

Getting to the roots of exponents
Radical expressions — such as square roots, cube roots, fourth roots, and 
so on — appear with a radical to show the root. Another way you can write
these values is by using fractional exponents. You’ll have an easier time 

15Chapter 1: Going Beyond Beginning Algebra
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combining variables with the same base if they have fractional exponents in
place of radical forms:

� x x /n n1= : The root goes in the denominator of the fractional exponent.

� x x /mn m n= : The root goes in the denominator of the fractional exponent,
and the power goes in the numerator.

So, you can say , , ,x x x x x x/ / /1 2 3 1 3 4 1 4= = = and so on, along with x x /35 3 5= . 

To simplify a radical expression such as 
x

x x
32

4 116

, you change the radicals to 

exponents and apply the rules for multiplication and division of values with
the same base (see the previous section):

x
x x

x
x x

x
x

x
x

x
x x

x

/

/ /

/

/ /

/

/ /

/

/
/ /

/

32

4 116

3 2

1 4 11 6

3 2

1 4 11 6

18 12

3 12 22 12

18 12

25 12
25 12 18 12

7 12

=

= =

= =

=

+ +

-

$

Raising or lowering the 
roof with exponents
You can raise numbers or variables with exponents to higher powers or
reduce them to lower powers by taking roots. When raising a power to a
power, you multiply the exponents. When taking the root of a power, you
divide the exponents:

� (am)n = am ⋅ n: Raise a power to a power by multiplying the exponents.

� a a a
/ /nm n m n m1

= =_ i : Reduce the power when taking a root by dividing the
exponents.

The second rule may look familiar — it’s one of the rules that govern chang-
ing from radicals to fractional exponents (see Chapter 4 for more on dealing
with radicals and fractional exponents).

Here’s an example of how you apply the two rules when simplifying an
expression:

x x x x x x x/4 6 9
3

24 93 333 33 3 11= = = =$ $_ i

16 Part I: Homing in on Basic Solutions 
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Making nice with negative exponents
You use negative exponents to indicate that a number or variable belongs in
the denominator of the term:

a a
11 =-

a a
1n

n=-

Writing variables with negative exponents allows you to combine those vari-
ables with other factors that share the same base. For instance, if you have 

the expression 
x

x x
1 3

4
7$ $ , you can rewrite the fractions by using negative 

exponents and then simplify by using the rules for multiplying factors with
the same base (see “Multiplying and dividing exponents”):

x
x x x x x x x1 3 3 3 34

7 4 7 1 4 7 1 2= = =- - - + -$ $ $ $

Implementing Factoring Techniques
When you factor an algebraic expression, you rewrite the sums and differences
of the terms as a product. For instance, you write the three terms x2 – x – 42
in factored form as (x – 7)(x + 6). The expression changes from three terms 
to one big, multiplied-together term. You can factor two terms, three terms,
four terms, and so on for many different purposes. The factorization comes 
in handy when you set the factored forms equal to zero to solve an equation.
Factored numerators and denominators in fractions also make it possible to
reduce the fractions.

You can think of factoring as the opposite of distributing. You have good rea-
sons to distribute or multiply through by a value — the process allows you to
combine like terms and simplify expressions. Factoring out a common factor
also has its purposes for solving equations and combining fractions. The dif-
ferent formats are equivalent — they just have different uses.

Factoring two terms
When an algebraic expression has two terms, you have four different choices
for its factorization — if you can factor the expression at all. If you try the fol-
lowing four methods and none of them work, you can stop your attempt; you
just can’t factor the expression:

17Chapter 1: Going Beyond Beginning Algebra
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ax + ay = a(x + y) Greatest common factor

x2 – a2 = (x – a)(x + a) Difference of two perfect squares

x3 – a3 = (x – a)(x2 + ax + a2) Difference of two perfect cubes

x3 + a3 = (x + a)(x2 – ax + a2) Sum of two perfect cubes

In general, you check for a greatest common factor before attempting any of
the other methods. By taking out the common factor, you often make the
numbers smaller and more manageable, which helps you see clearly whether
any other factoring is necessary.

To factor the expression 6x4 – 6x, for example, you first factor out the common
factor, 6x, and then you use the pattern for the difference of two perfect cubes:

6x4 – 6x = 6x(x3 – 1)

= 6x(x – 1)(x2 + x + 1)

A quadratic trinomial is a three-term polynomial with a term raised to the
second power. When you see something like x2 + x + 1 (as in this case), you
immediately run through the possibilities of factoring it into the product of
two binomials. You can just stop. These trinomials that crop up with factor-
ing cubes just don’t cooperate.

Keeping in mind my tip to start a problem off by looking for the greatest
common factor, look at the example expression 48x3y2 – 300x3. When you
factor the expression, you first divide out the common factor, 12x3, to get
12x3(4y2 – 25). You then factor the difference of perfect squares in the paren-
thesis: 48x3y2 – 300x3 = 12x3(2y – 5)(2y + 5).

Here’s one more: The expression z4 – 81 is the difference of two perfect
squares. When you factor it, you get z4 – 81 = (z2 – 9)(z2 + 9). Notice that
the first factor is also the difference of two squares — you can factor again.
The second term, however, is the sum of squares — you can’t factor it.
With perfect cubes, you can factor both differences and sums, but not with
the squares. So, the factorization of z4 – 81 is (z – 3)(z + 3)(z2 + 9).

Taking on three terms
When a quadratic expression has three terms, making it a trinomial, you have
two different ways to factor it. One method is factoring out a greatest common
factor, and the other is finding two binomials whose product is identical to
those three terms:

ax + ay + az = a(x + y + z) Greatest common factor

x2n + (a+b)xn + ab = (xn + a)(xn + b) Two binomials

18 Part I: Homing in on Basic Solutions 
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You can often spot the greatest common factor with ease; you see a multiple
of some number or variable in each term. With the product of two binomials,
you just have to try until you find the product or become satisfied that it
doesn’t exist.

For example, you can perform the factorization of 6x3 – 15x2y + 24xy2 by divid-
ing each term by the common factor, 3x: 6x3 – 15x2y + 24xy2 = 3x(2x2 – 5xy + 8y2).

You want to look for the common factor first; it’s usually easier to factor
expressions when the numbers are smaller. In the previous example, all you
can do is pull out that common factor — the trinomial is prime (you can’t
factor it any more).

Trinomials that factor into the product of two binomials have related powers
on the variables in two of the terms. The relationship between the powers is
that one is twice the other. When factoring a trinomial into the product of two
binomials, you first look to see if you have a special product: a perfect square
trinomial. If you don’t, you can proceed to unFOIL. The acronym FOIL helps
you multiply two binomials (First, Outer, Inner, Last); unFOIL helps you factor
the product of those binomials.

Finding perfect square trinomials
A perfect square trinomial is an expression of three terms that results from the
squaring of a binomial — multiplying it times itself. Perfect square trinomials
are fairly easy to spot — their first and last terms are perfect squares, and
the middle term is twice the product of the roots of the first and last terms:

a2 + 2ab + b2 = (a + b)2

a2 – 2ab + b2 = (a – b)2

To factor x2 – 20x + 100, for example, you should first recognize that 20x is
twice the product of the root of x2 and the root of 100; therefore, the factor-
ization is (x – 10)2. An expression that isn’t quite as obvious is 25y2 + 30y + 9.
You can see that the first and last terms are perfect squares. The root of 25y2

is 5y, and the root of 9 is 3. The middle term, 30y, is twice the product of 5y
and 3, so you have a perfect square trinomial that factors into (5y + 3)2.

Resorting to unFOIL
When you factor a trinomial that results from multiplying two binomials, you
have to play detective and piece together the parts of the puzzle. Look at the
following generalized product of binomials and the pattern that appears:

(ax + b)(cx + d) = acx2 + adx + bcx + bd = acx2 + (ad + bc)x + bd

So, where does FOIL come in? You need to FOIL before you can unFOIL, don’t
ya think?

19Chapter 1: Going Beyond Beginning Algebra

05_775819 ch01.qxd  5/16/06  7:46 PM  Page 19



The F in FOIL stands for “First.” In the previous problem, the First terms are
the ax and cx. You multiply these terms together to get acx2. The Outer terms
are ax and d. Yes, you already used the ax, but each of the terms will have two
different names. The Inner terms are b and cx; the Outer and Inner products
are, respectively, adx and bcx. You add these two values. (Don’t worry; when
you’re working with numbers, they combine nicely.) The Last terms, b and d,
have a product of bd. Here’s an actual example that uses FOIL to multiply —
working with numbers for the coefficients rather than letters:

(4x + 3)(5x – 2) = 20x2 – 8x + 15x – 6 = 20x2 + 7x – 6

Now, think of every quadratic trinomial as being of the form acx2 + (ad + bc)x +
bd. The coefficient of the x2 term, ac, is the product of the coefficients of the
two x terms in the parenthesis; the last term, bd, is the product of the two
second terms in the parenthesis; and the coefficient of the middle term is the
sum of the outer and inner products. To factor these trinomials into the prod-
uct of two binomials, you have to use the opposite of the FOIL.

Here are the basic steps you take to unFOIL a trinomial:

1. Determine all the ways you can multiply two numbers to get ac, the 
coefficient of the squared term.

2. Determine all the ways you can multiply two numbers to get bd, the con-
stant term.

3. If the last term is positive, find the combination of factors from Steps 1
and 2 whose sum is that middle term; if the last term is negative, you
want the combination of factors to be a difference.

4. Arrange your choices as binomials so that the factors line up correctly.

5. Insert the + and – signs to finish off the factoring and make the sign of
the middle term come out right.

Arranging the factors in the binomials provides no provisions for positive or
negative signs in the unFOIL pattern — you account for the sign part differ-
ently. The possible arrangements of signs are shown in the sections that follow.
(For a more thorough explanation of FOILing and unFOILing, check out Algebra
For Dummies [Wiley].)

UnFOILing + +
One of the arrangements of signs you see when factoring trinomials has all
the terms separated by positive (+) signs.

Because the last term in the example trinomial, bd, is positive, the two bino-
mials will contain the same operation — the product of two positives is posi-
tive, and the product of two negatives is positive.

20 Part I: Homing in on Basic Solutions 
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To factor x2 + 9x + 20, for example, you need to find two terms whose product 
is 20 and whose sum is 9. The coefficient of the squared term is 1, so you
don’t have to take any other factors into consideration. You can produce the
number 20 with 1 ⋅ 20, 2 ⋅ 10, or 4 ⋅ 5. The last pair is your choice, because 
4 + 5 = 9. Arranging the factors and x’s into two binomials, you get x2 + 9x + 
20 = (x + 4)(x + 5).

UnFOILing – +
A second arrangement in a trinomial has a subtraction operation or negative
sign in front of the middle term and a positive last term. The two binomials in
the factorization of such a trinomial each have subtraction as their operation.

The key you’re looking for is the sum of the Outer and Inner products,
because the signs need to be the same.

Say that you want to factor the trinomial 3x2 – 25x + 8, for example. You start
by looking at the factors of 3; you find only one, 1 ⋅ 3. You also look at the fac-
tors of 8, which are 1 ⋅ 8 or 2 ⋅ 4. Your only choice for the first terms in the
binomials is (1x )(3x ). Now you pick either the 1 and 8 or the 2 and 4 
so that, when you place the numbers in the second positions in the binomials,
the Outer and Inner products have a sum of 25. Using the 1 and 8, you let 3x
multiply the 8 and 1x multiply the 1 — giving you your sum of 25. So, 3x2 – 
25x + 8 = (x – 8)(3x – 1). You don’t need to write the coefficient 1 on the first 
x — the 1 is understood.

UnFOILing + – or – –
When the last term in a trinomial is negative, you need to look for a difference
between the products. When factoring x2 + 2x – 24 or 6x2 – x – 12, for example,
the operations in the two binomials have to be one positive and the other
negative. Having opposite signs is what creates a negative last term.

To factor x2 + 2x – 24, you need two numbers whose product is 24 and whose
difference is 2. The factors of 24 are 1 ⋅ 24, 2 ⋅ 12, 3 ⋅ 8, or 4 ⋅ 6. The first term has
a coefficient of 1, so you can concentrate only on the factors of 24. The pair
you want is 4 ⋅ 6. Write the binomials with the x’s and the 4 and 6; you can wait
until the end of the process to put the signs in. You decide that (x 4)(x 6) is
the arrangement. You want the difference between the Outer and Inner prod-
ucts to be positive, so let the 6 be positive and the 4 be negative. Writing out
the factorization, you have x2 + 2x – 24 = (x – 4)(x + 6).

The factorization of 6x2 – x – 12 is a little more challenging because you have to
consider both the factors of 6 and the factors of 12. The factors of 6 are 1 ⋅ 6 or
2 ⋅ 3, and the factors of 12 are 1 ⋅ 12, 2 ⋅ 6, or 3 ⋅ 4. As wizardlike as I may seem,
I can’t give you a magic way to choose the best combination. It takes practice
and luck. But, if you write down all the possible choices, you can scratch them
off as you determine which ones don’t work. You may start with the factor 2
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and 3 for the 6. The binomials are (2x )(3x ). Don’t insert any signs until the
end of the process. Now, using the factors of 12, you look for a pairing that
gives you a difference of 1 between the Outer and Inner products. Try the prod-
uct of 3 ⋅ 4, matching the 3 with the 3x and the 4 with the 2x. Bingo! You have it.
You want (2x 3)(3x 4). You will multiply the 3 and 3x because they’re in dif-
ferent parentheses — not the same one. The difference has to be negative, so
you can put the negative sign in front of the 3 in the first binomial: 6x2 – x – 12 = 
(2x – 3)(3x + 4).

Factoring four or more terms by grouping
When four or more terms come together to form an expression, you have
bigger challenges in the factoring. As with an expression with fewer terms,
you always look for a greatest common factor first. If you can’t find a factor
common to all the terms at the same time, your other option is grouping. To
group, you take the terms two at a time and look for common factors for each
of the pairs on an individual basis. After factoring, you see if the new group-
ings have a common factor. The best way to explain this is to demonstrate
the factoring by grouping on x3 – 4x2 + 3x – 12 and then on xy2 – 2y2 – 5xy + 
10y – 6x + 12.

The four terms x3 – 4x2 + 3x – 12 don’t have any common factor. However, the
first two terms have a common factor of x2, and the last two terms have a
common factor of 3:

x3 – 4x2 + 3x – 12 = x2(x – 4) + 3(x – 4)

Notice that you now have two terms, not four, and they both have the factor
(x – 4). Now, factoring (x – 4) out of each term, you have (x – 4)(x2 + 3).

Factoring by grouping only works if a new common factor appears — the
exact same one in each term.

The six terms xy2 – 2y2 – 5xy + 10y – 6x + 12 don’t have a common factor, but,
taking them two at a time, you can pull out the factors y2, –5y, and –6.
Factoring by grouping, you get the following:

xy2 – 2y2 – 5xy + 10y – 6x + 12 = y2(x – 2) – 5y(x – 2) – 6(x – 2)

The three new terms have a common factor of (x – 2), so the factorization
becomes (x – 2)(y2 – 5y – 6). The trinomial that you create lends itself to the
unFOIL factoring method (see the previous section):

(x – 2)(y2 – 5y – 6) = (x – 2)(y – 6)(y + 1)

Factored, and ready to go!
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