
1

A decade ago, Ralph Kimball described aggregate tables as “the single most
dramatic way to improve performance in a large data warehouse.” Writing in
DBMS Magazine (“Aggregate Navigation with (Almost) No Metadata,”
August 1996), Kimball continued:

Aggregates can have a very significant effect on performance, in some cases
speeding queries by a factor of one hundred or even one thousand. No other
means exist to harvest such spectacular gains.

This statement rings as true today as it did ten years ago. Since then,
advances in hardware and software have dramatically improved the capacity
and performance of the data warehouse. Aggregates compound the effect of
these improvements, providing performance gains that fully harness capabili-
ties of the underlying technologies.

And the pressure to improve data warehouse performance is as strong as
ever. As the baseline performance of underlying technologies has improved,
warehouse developers have responded by storing and analyzing larger and
more granular volumes of data. At the same time, warehouse systems have
been opened to larger numbers of users, internal and external, who have come
to expect instantaneous access to information.

Fundamentals of Aggregates

C H A P T E R

1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

This book empowers you to address these pressures. Using aggregate tables,
you can achieve an extraordinary improvement in the speed of your data ware-
house. And you can do it today, without making expensive upgrades to hard-
ware, converting to a new database platform, or investing in exotic and
proprietary technologies.

Although aggregates can have a powerful impact on data warehouse per-
formance, they can also be misused. If not managed carefully, they can cause
confusion, impose inordinate maintenance requirements, consume massive
amounts of storage, and even provide inaccurate results. By following the best
practices developed in this book, you can avoid these outcomes and maximize
the positive impact of aggregates.

The introduction of aggregate tables to the data warehouse will touch every
aspect of the data warehouse lifecycle. A set of best practices governs their
selection, design, construction, and usage. They will influence data warehouse
planning, project scope, maintenance requirements, and even the archive
process. Before exploring each of these topics, it is necessary to establish some
fundamental principles and vocabulary.

This chapter establishes the foundation on which the rest of the book builds.
It introduces the star schema, aggregate tables, and the aggregate navigator. Guiding
principles are established for the development of invisible aggregates, which have
zero impact on production applications—other than performance, of course.
Last, this chapter explores several other forms of summarization that are not
invisible to applications, but may also provide useful performance benefits.

Star Schema Basics

A star schema is a set of tables in a relational database that has been designed
according to the principles of dimensional modeling. Ralph Kimball popularized
this approach to data warehouse design in the 1990s. Through his work and
writings, Kimball established standard terminology and best practices that are
now used around the world to design and build data warehouse systems. With
coauthor Margy Ross, he provides a detailed treatment of these principles in
The Data Warehouse Toolkit, Second Edition (Wiley, 2002).

To follow the examples throughout this book, you must understand the fun-
damental principles of dimensional modeling. In particular, the reader must
have a basic grasp of the following concepts:

■■ The differences between data warehouse systems and operational
systems

■■ How facts and dimensions support the measurement of a business
process

■■ The tables of a star schema (fact tables and dimension tables) and their
purposes

2 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 2

■■ The purpose of surrogate keys in dimension tables

■■ The grain of a fact table

■■ The additivity of facts

■■ How a star schema is queried

■■ Drilling across multiple fact tables

■■ Conformed dimensions and the warehouse bus

■■ The basic architecture of a data warehouse, including ETL software and
BI software

If you are familiar with these topics, you may wish to skip to the section
“Invisible Aggregates,” later in this chapter.

For everyone else, this section will bring you up-to-speed. Although not a
substitute for Kimball and Ross’s book, this overview provides the back-
ground needed to understand the examples throughout this book. I encourage
all readers to read The Toolkit for more immersion in the principles of dimen-
sional modeling, particularly anyone involved in the design of the dimen-
sional data warehouse.

Data warehouse designers will also benefit from reading Data Warehouse
Design Solutions, by Chris Adamson and Mike Venerable (Wiley, 1998). This
book explores the application of these principles in the service of specific busi-
ness objectives and covers standard business processes in a wide variety of
industries.

Operational Systems and the Data Warehouse
Data warehouse systems and operational systems have fundamentally differ-
ent purposes. An operational system supports the execution of business
process, while the data warehouse supports the evaluation of the process. Their
distinct purposes are reflected in contrasting usage profiles, which in turn sug-
gest that different principles will guide their design. The principles of dimen-
sional modeling are specifically adapted to the unique requirements of the
warehouse system.

Operational Systems

An operational system directly supports the execution of business processes.
By capturing detail about significant events or transactions, it constructs a
record of the activity. A sales system, for example, captures information about
orders, shipments, and returns; a human resources system captures informa-
tion about the hiring and promotion of employees; an accounting system cap-
tures information about the management of the financial assets and liabilities
of the business. Capturing the detail surrounding these activities is often so
important that the operational system becomes a part of the process.

Fundamentals of Aggregates 3

04_777099 ch01.qxp 6/2/06 3:44 PM Page 3

To facilitate execution of the business process, an operational system must
enable several types of database interaction, including inserts, updates, and
deletes. Operational systems are often referred to as transaction systems. The
focus of these interactions is almost always atomic—a specific order, a ship-
ment, a refund. These interactions will be highly predictable in nature. For
example, an order entry system must provide for the management of lists of
products, customers, and salespeople; the entering of orders; the printing of
order summaries, invoices, and packing lists; and the tracking of order status.

Implemented in a relational database, the optimal design for an operational
schema is widely accepted to be one that is in third normal form. This design
supports the high performance insertion, update, and deletion of atomic data
in a consistent and predictable manner. This form of schema design is dis-
cussed in more detail in Chapter 8.

Because it is focused on process execution, the operational system is likely
to update data as things change, and purge or archive data once its operational
usefulness has ended. Once a customer has established a new address, for
example, the old one is unnecessary. A year after a sales order has been ful-
filled and reflected in financial reports, it is no longer necessary to maintain
information about it in the order entry system.

Data Warehouse Systems

While the focus of the operational system is the execution of a business process,
a data warehouse system supports the evaluation of the process. How are
orders trending this month versus last? Where does this put us in comparison
to our sales goals for the quarter? Is a particular marketing promotion having
an impact on sales? Who are our best customers? These questions deal with
the measurement of the overall orders process, rather than asking about indi-
vidual orders.

Interaction with the data warehouse takes place exclusively through queries
that retrieve data; information is not created or modified. These interactions
will involve large numbers of transactions, rather than focusing on individual
transactions. Specific questions asked are less predictable, and more likely to
change over time. And historic data will remain important in the data ware-
house system long after its operational use has passed. The differences
between operational systems and data warehouse systems are highlighted in
Figure 1.1.

The principles of dimensional modeling address the unique requirements of
data warehouse systems. A star schema design is optimized for queries that
access large volumes of data, rather than individual transactions. It supports
the maintenance of historic data, even as the operational systems change or
delete information. As a model of process measurements, the dimensional
schema is able to address a wide variety of questions, even those that are not
posed in advance of its implementation.

4 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 4

Figure 1.1 Operational systems versus data warehouse systems.

Facts and Dimensions
A dimensional model divides the information associated with a business
process into two major categories, called facts and dimensions. Facts are the
measurements by which a process is evaluated. For example, the business
process of taking customer orders is measured in at least three ways: quanti-
ties ordered, the dollar amount of orders, and the internal cost of the products
ordered. These process measurements are listed as facts in Table 1.1.

Operational System

Also Known as Transaction System

On Line Transaction
Processing (OLTP)
System

Source system

Analytic system

Data mart

Purpose Execution of a business
process

Measurement of a
business process

Primary Interaction
Style

Insert, Update, Query,
Delete

Query

Scope of Interaction Individual transaction Aggregated
transactions

Query Patterns Predictable and stable Unpredictable and
changing

Temporal Focus Current Current and historic

Design Principle Third normal form
(3NF)

Dimensional design
(star schema)

Data Warehouse

Fundamentals of Aggregates 5

04_777099 ch01.qxp 6/2/06 3:44 PM Page 5

On its own, a fact offers little value. If someone were to tell you, “Order dol-
lars were $200,000,” you would not have enough information to evaluate the
process of booking orders. Over what time period was the $200,000 in orders
taken? Who were the customers? Which products were sold? Without some
context, the measurement is useless.

Dimensions give facts their context. They specify the parameters by which a
measurement is stated. Consider the statement “January 2006 orders for pack-
ing materials from customers in the nortßheast totaled $200,000.” This time,
the order dollars fact is given context that makes it useful. The $200,000 repre-
sents orders taken in a specific month and year (January 2006) for all products
in a category (packing materials) by customers in a region (the northeast). These
dimensions give context to the order dollars fact. Additional dimensions for
the orders process are listed in Table 1.1.

Table 1.1 Facts and Dimensions Associated with the Orders Process

FACTS DIMENSIONS

Quantity Sold Date of Order Sales Region
Order Dollars Month of Order Region Code
Cost Dollars Year of Order Region Vice President

Product Customer
Product Description Customer Headquarters State
Product SKU Customer’s Billing Address
Unit of Measure Customer’s Billing City
Product Brand Customer’s Billing State
Brand Code Customer’s Billing Zip Code
Brand Manager Customer Industry SIC Code
Product Category Customer Industry Name
Category Code Order Number
Salesperson Credit Flag
Salesperson ID Carryover Flag
Sales Territory Solicited Order Flag
Territory Code Reorder Flag
Territory Manager

TI P A dimensional model describes a process in terms of facts and
dimensions. Facts are metrics that describe the process; dimensions give facts
their context.

The dimensions associated with a process usually fall into groups that are
readily understood within the business. The dimensions in Table 1.1 can be
sorted into groups for the product (including name, SKU, category, and

6 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 6

brand), the salesperson (including name, sales territory, and sales region), the
customer (including billing information and industry classification data), and
the date of the order. This leaves a group of miscellaneous dimensions, includ-
ing the order number and several flags that describe various characteristics.

The Star Schema
In a dimensional model, each group of dimensions is placed in a dimension
table; the facts are placed in a fact table. The result is a star schema, so called
because it resembles a star when diagrammed with the fact table in the center.
A star schema for the orders process is shown in Figure 1.2.

The dimension tables in a star schema are wide. They contain a large number
of attributes providing rich contextual data to support a wide variety of reports
and analyses. Each dimension table has a primary key, specifically assigned for
the data warehouse, called a surrogate key. This will allow the data warehouse to
track the history of changes to data elements, even if source systems do not.

Fact tables are deep. They contain a large number of rows, each of which is
relatively compact. Foreign key columns associate each fact table row with the
dimension tables. The level of detail represented by each row in a fact table
must be consistent; this level of detail is referred to as grain.

Dimension Tables and Surrogate Keys

A dimension table contains a set of dimensional attributes and a key column.
The star schema for the orders process contains dimension tables for groups of
attributes describing the Product, Customer, Salesperson, Date, and Order
Type. Each dimensional attribute appears as a column in one of these tables,
with the exception of order_id, which is examined shortly. Each key column is
a new data element, assigned during the load process and used exclusively by
the warehouse.

TI P In popular usage, the word dimension has two meanings. It is used to
describe a dimension table within a star schema, as well as the individual
attributes it contains. This book distinguishes between the table and its
attributes by using the terms dimension table for the table, and dimension for
the attribute.

Fundamentals of Aggregates 7

04_777099 ch01.qxp 6/2/06 3:44 PM Page 7

Figure 1.2 A star schema for the orders process.

Dimensions provide all context for facts. They are used to filter data for
reports, drive master detail relationships, determine how facts will be aggre-
gated, and appear with facts on reports. A rich set of descriptive dimensional
attributes provides for powerful and informative reporting. Schema designers
therefore focus a significant amount of time and energy identifying useful
dimensional attributes. Columns whose instance values are codes, such as

product_key
product
product_description
sku
unit_of_measure
brand
brand_code
brand_manager
category
category_code

PRODUCT

day_key
full_date
day_of_week_number
day_of_week_name
day_of_week_abbr
day_of_month
holiday_flag
weekday_flag
weekend_flag
month_number
month_name
month_abbr
quarter
quarter_month
year
year_month
year_quarter
fiscal_period
fiscal_year
fiscal_year_period

DAY

salesperson_key
salesperson
salesperson_id
territory
territory_code
territory_manager
region
region_code
region_vp

SALESPERSON

customer_key
customer
headquarters_state
billing_address
billing_city
billing_state
billing_zip
sic_code
industry_name

CUSTOMER

order_type_key
credit_flag
carryover_flag
solicited_flag
reorder_flag

ORDER_TYPE

product_key
salesperson_key
day_key
customer_key
order_type_key
quantity_sold
order_dollars
cost_dollars
order_id
order_line_id

ORDER FACTS

8 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 8

brand_id, may be supplemented with additional columns that decode these
values into descriptive text, such as brand_name. The contents of Boolean
columns or flags, such as credit_flag, are recorded in descriptive manners,
such as Credit Order and Non-Credit Order. Multi-part fields or codes, such as
an account code, may exist in a dimension table, along with additional
columns that represent the different parts. When multiple dimensional attrib-
utes are commonly combined, such as title, first_name, and last_name, the
concatenations are added to the dimension table as well.

All these efforts serve to provide a set of dimensions that will drive a rich set
of reports. Dimension tables are often referred to as wide because they contain
a large number of attributes, most of which are textual. Although this may con-
sume some additional space, it makes the schema more usable. And in com-
parison to the fact table, the number of rows in most dimension tables is small.

TI P Dimension tables should be wide. A rich set of dimensional attributes
enables useful and powerful reports.

Each dimension table has a primary key. Rather than reuse a key that exists
in a transaction system, a surrogate key is assigned specifically for the data
warehouse. Surrogate keys in this book are identifiable by the usage of the suf-
fix _key, as in product_key, customer_key, and so forth. A surrogate key allows
the data warehouse to track the history of changes to dimensions, even if the
source systems do not. The ways in which a surrogate key supports the track-
ing of history will be studied in Chapter 5.

Any key that carries over from the transaction system, such as sku or
salesperson_id, is referred to as a natural key. These columns may have analytic
value, and are placed in the dimension tables as dimensional attributes. Their
presence will also enable the process that loads fact tables to identify dimen-
sion records to which new fact table records will be associated. You learn more
about the relationship between natural and surrogate keys, and the lookup
process, in Chapter 5.

TI P A surrogate key is assigned to each dimension table and managed by the
data warehouse load process. Key columns or unique identifiers from source
systems will not participate in the primary key of the dimension table, but are
included as dimensional attributes. These natural keys may have analytic value,
and will also support the assignment of warehouse keys to new records being
added to fact tables.

Fundamentals of Aggregates 9

04_777099 ch01.qxp 6/2/06 3:44 PM Page 9

Dimension tables commonly store repeating values. For example, the Prod-
uct table in Figure 1.2 contains several dimensional attributes related to a
brand. Assuming there are several products within a given brand, the attribute
values for these columns will be stored repeatedly, once for each product. An
alternative schema design, known as the snowflake schema, seeks to eliminate
this redundancy by further normalizing the dimensions. Figure 1.3 shows a
snowflaked version of the Orders schema.

The snowflake approach saves some storage space but introduces new con-
siderations. When the size of the dimension tables is compared to that of fact
tables, the space saved by a snowflake design is negligible. In exchange for this
small savings, the schema itself has become more complex. More tables must
be loaded by the ETL process. Queries against the snowflake will require addi-
tional joins, potentially affecting performance. However, some data ware-
house tools are optimized for a snowflake design. If such a tool is part of the
data warehouse architecture, a snowflake design may be the best choice.

TI P Avoid the snowflake design unless a component of the architecture
requires it. The space saved is minimal, and complexity is added to the query
and reporting processes.

Fact Tables and Grain

A fact table contains the facts associated with a process, and foreign keys that
provide dimensional context. The fact table for the order entry process appears
in the center of Figure 1.2. It contains the three facts for the orders process:
quantity_sold, order_dollars, and cost_dollars. In addition to the facts, it con-
tains foreign keys that reference each of the relevant dimension tables: Cus-
tomer, Product, Salesperson, Day, and order_type.

TI P Although a fact table is not always placed in the center of a diagram, it is
easily identifiable as a dependent table, carrying a set of foreign keys.

The fact table in Figure 1.2 contains two additional attributes, order_id and
order_line_id, which are neither facts nor foreign keys. These columns refer-
ence a specific order and the line number within an order respectively. They
are dimensional attributes that have been placed in the fact table rather than a
dimension table. Although they could have been placed in the order_type
table, doing so would have dramatically increased the number of rows in the
table. When a dimensional attribute is located in the fact table, it is known as a
degenerate dimension.

10 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 10

ca
te

go
ry

_k
ey

 (
p

k)
ca

te
go

ry
ca

te
go

ry
_c

od
e

C
A

TE
G

O
RY

br
an

d_
ke

y
(p

k)
ca

te
go

ry
_k

ey
 (

fk
)

br
an

d
br

an
d_

co
de

br
an

d_
m

an
ag

er

B
R

A
N

D

p
ro

du
ct

_k
ey

 (
p

k)
br

an
d_

ke
y

(f
k)

p
ro

du
ct

p
ro

du
ct

_d
es

cr
ip

tio
n

sk
u

un
it_

of
_m

ea
su

re

PR
O

D
U

C
T

m
on

th
_k

ey
 (

p
k)

q
ua

rt
er

_k
ey

 (
fk

)
m

on
th

_n
um

be
r

m
on

th
_n

am
e

m
on

th
_a

bb
r

q
ua

rt
er

_m
on

th
ye

ar
_m

on
th

M
O

N
TH

q
ua

rt
er

_k
ey

 (
p

k)
ye

ar
_k

ey
 (

fk
)

q
ua

rt
er

ye
ar

_q
ua

rt
er

Q
U

A
R

TE
R

sa
le

sp
er

so
n_

ke
y

(p
k)

te
rr

ito
ry

_k
ey

 (
fk

)
sa

le
sp

er
so

n
sa

le
sp

er
so

n_
id

SA
LE

SP
ER

SO
N

te
rr

ito
ry

_k
ey

 (
p

k)
re

gi
on

_k
ey

 (
fk

)
te

rr
ito

ry
te

rr
ito

ry
_m

an
ag

er

TE
R

R
IT

O
RY

re
gi

on
_k

ey
 (

p
k)

re
gi

on
re

gi
on

_c
od

e
re

gi
on

_v
p

R
EG

IO
N

ye
ar

_k
ey

 (
p

k)
ye

ar

Y
EA

R

or
de

r_
ty

p
e_

ke
y

cr
ed

it_
fla

g
ca

rr
yo

ve
r_

fla
g

so
lic

ite
d_

fla
g

re
or

de
r_

fla
g

O
R

D
ER

_T
Y

PE

in
du

st
ry

_k
ey

 (
p

k)
si

c_
co

de
in

du
st

ry
_n

am
e

IN
D

U
ST

RY

cu
st

om
er

_k
ey

 (
p

k)
in

du
st

ry
_k

ey
 (

fk
)

cu
st

om
er

he
ad

q
ua

rt
er

s_
st

at
e

bi
lli

ng
_a

dd
re

ss
bi

lli
ng

_c
ity

bi
lli

ng
_s

ta
te

bi
lli

ng
_z

ip

C
U

ST
O

M
ER

p
ro

du
ct

_k
ey

or
de

r_
ty

p
e_

ke
y

da
y_

ke
y

cu
st

om
er

_k
ey

sa
le

sp
er

so
n_

ke
y

q
ua

nt
ity

_s
ol

d
or

de
r_

do
lla

rs
co

st
_d

ol
la

rs
or

de
r_

id
or

de
r_

lin
e_

id

O
R

D
ER

_F
A

C
TS

da
y_

ke
y

(p
k)

m
on

th
_k

ey
 (

fk
)

fu
ll_

da
te

da
y_

of
_w

ee
k_

nu
m

be
r

da
y_

of
_w

ee
k_

na
m

e
da

y_
of

_w
ee

k_
ab

br
da

y_
of

_m
on

th
ho

lid
ay

_f
la

g
w

ee
kd

ay
_f

la
g

w
ee

ke
nd

_f
la

g
fis

ca
l_

p
er

io
d

fis
ca

l_
ye

ar
fis

ca
l_

ye
ar

_p
er

io
d

D
A

Y

Fi
gu

re
 1

.3
A

sn
ow

fla
ke

 s
ch

em
a

fo
r

th
e

or
de

rs
 p

ro
ce

ss
.

04_777099 ch01.qxp 6/2/06 3:44 PM Page 11

TI P Fact tables contain facts, foreign keys that reference dimension tables,
and degenerate dimensions.

In each row of a fact table, all facts are recorded at the same level of detail.
This level of detail is determined by the dimensional attributes present in the
schema design. In the case of order_facts, the design requires each fact to have
an associated order date, customer, salesperson, product, order_type,
order_id, and order_line_id. If certain dimensional attributes do not apply to
certain facts, these facts must be placed in a separate fact table. I examine
designs involving multiple fact tables shortly.

The level of detail represented by a fact table row is referred to as its grain.
Declaring the grain of a fact table is an important part of the schema design
process. It ensures that there is no confusion about the meaning of a fact table
row, and guarantees that all facts will be recorded at the same level of detail. A
clear understanding of grain is also necessary when designing aggregate
tables, as you will see in Chapter 2.

Grain may be declared in dimensional terms, or through reference to an arti-
fact of the business process. The grain of order_facts, declared dimensionally,
is “order facts by order Date, Customer, Salesperson, Product, order_id, and
order_line.” Because an individual line on a specific order contains all this
information, the grain of order_facts can also be declared as “order facts at the
order line level of detail.”

The grain of a fact table row is always set at the lowest possible level of
detail, based on what is available in the transaction systems where data is col-
lected. The schema can always be used to produce less detailed summaries of
the facts, as you will see in a moment. Detail not captured by the schema can
never be reported on. Schema designers therefore look to capture data at an
atomic level.

TI P The level of detail represented by a fact table row is referred to as its
grain. Grain may be declared dimensionally or through reference to an artifact
of the business process. The grain of a dimensional schema should capture
data at the lowest possible level of detail.

The rate of growth of a fact table is greater than that of a dimension table.
Although a fact table may start out small, it will quickly surpass dimensions in
terms of number of rows, and become the largest table in the schema design.
For example, consider the star schema for order facts. There may be several
hundred products in the Product dimension table, a few hundred salespeople
in the Salesperson table, one hundred thousand customers in the Customer
table, sixteen possible combinations of flags in the Order_Type table, and five

12 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 12

years worth of dates, or 1826 rows, in the Day table. Of these tables, the Prod-
uct dimension table is the largest, and it may be expected to grow by about
10 percent per year. Fact table size can be estimated based on an average vol-
ume of orders. If the number of order lines per day averages 10,000, the fact
table will contain 3,650,000 rows by the end of one year.

Although fact tables contain far more rows than dimension tables, each row
is far more compact. Because its primary contents are facts and foreign keys,
each fact table row is a very efficient consumer of storage space. Contrast this
to dimension tables, which contain a large number of attributes, many of
which are textual. Although the typical dimension row will require far more
bytes of storage, these tables will contain far fewer rows. Over time, most fact
tables become several orders of magnitude larger than the largest dimension
table.

TI P Because they will accumulate a large number of rows, fact tables are
often referred to as deep. Fact table rows are naturally compact because they
contain primarily numeric data. This makes the most efficient use of physical
storage.

Last, note that the fact table does not contain a row for every combination of
dimension values. Rows are added only when there is a transaction. If a spe-
cific customer does not buy a specific product on a specific date, there is no fact
table row for the associated set of keys. In most applications, the number of
key combinations that actually appear in the fact table is actually relatively
small. This property of the fact table is referred to as sparsity.

Using the Star Schema
The queries against a star schema follow a consistent pattern. One or more
facts are typically requested, along with the dimensional attributes that pro-
vide the desired context. The facts are summarized as appropriate, based on
the dimensions. Dimension attributes are also used to limit the scope of the
query and serve as the basis for filters or constraints on the data to be fetched
and aggregated.

A properly configured relational database is well equipped to respond to
such a query, which is issued using Structured Query Language (SQL). Sup-
pose that the vice president of sales has asked to see a report showing
order_dollars by Category and Product during the month of January 2006. The
Orders star schema from Figure 1.2 can provide this information. The SQL
query in Figure 1.4 produces the required results, summarizing tens of thou-
sands of fact table rows.

Fundamentals of Aggregates 13

04_777099 ch01.qxp 6/2/06 3:44 PM Page 13

Figure 1.4 Querying the star schema.

SELECT

CATEGORY

Query Results (Partial)

SQL Query

ORDER DOLLARSPRODUCT

product.category,

product.product,

sum (order_facts.order_dollars) AS
"Order Dollars"

FROM

product,

day,

order_facts

WHERE

day.month_name = "January" AND

day.year = 2006 AND

GROUP BY

product.category,

Packing Matter 5x7 bubble mailer 23,520.00

Packing Matter 8X10 bubble mailer 33,120.00

Packing Matter 9X12 bubble mailer 31,920.00

Packing Matter Packing tape 8,544.00

Packing Matter Box Type A 49,920.00

Packing Matter Box Type B 29,088.00

Packing Matter Box Type C 64,416.00

Snacks Crackers 14,997.84

Snacks Packaged peanuts 2,880.00

Snacks Pretzels 3,120.00

•

•

•

•

•

•

• ••

product.product

product.product_key = order_facts.product_key AND

day.day_key = order_facts.day_key

Dimension attributes that
will appear in the report

A fact, which will be
aggregated from detail

Dimension tables
involved in the query

The fact table

Constraints on
dimensional attributes

Specifies scope of
aggregation

Dimension attribute values
serve as row headers

The fact is aggregated
according to

dimensional context

Join tables in the
query using surrogate

key columns

Each line of query
results summarizes

numerous fact
table rows

14 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 14

The SELECT clause of the query indicates the dimensions that should
appear in the query results (category and product), the fact that is requested
(order dollars), and the manner in which it will be aggregated (through the
SQL sum() operation). The relational database is well equipped to perform
this aggregation operation. The FROM clause specifies the star schema tables
that are involved in the query.

The WHERE clause constrains the query based on the values of specific
dimensional attributes (month and year) and specifies the join relationships
between tables in the query. Joins are among the most expensive operations
the database must perform; notice that in the case of a star schema, dimension
attributes are always a maximum of one join away from facts. Finally, the
GROUP BY clause specifies the context to which the fact will be aggregated.

Most queries against a star schema follow the structure of this basic tem-
plate. Any combination of facts and dimensions can be retrieved, subject to
any filters, simply by adding and removing attributes from the various clauses
of the query. More complex reports build on this same basic query structure by
adding subqueries, performing set operations with the results of more than
one query, or, as you will see in a moment, by merging query result sets from
different fact tables.

TI P The star schema maximizes query performance by limiting the number of
joins that must be performed and leveraging native RDBMS aggregation
capabilities. Fact and dimension attributes can be mixed and matched as
required, which enables the schema to answer a wide variety of questions—
many of which were not anticipated at design time.

The example query takes advantage of the fact that order_dollars is fully
additive. That is, individual order_dollars amounts can be added together over
any of the dimensions in the schema. Order_dollar amounts can be summed
over time, across products, across customers, and so forth. While most facts
are fully additive, many are not. Facts that are semi-additive can be summed
across some dimensions but not others. Other facts, such as ratios, percent-
ages, or averages, are not additive at all. Examples of semi-additive and non-
additive facts appear in Chapter 8. Also note that facts can be summarized in
other ways; examples include counts, minimum values, maximum values,
averages, and running totals.

Multiple Stars and Conformance
An enterprise data warehouse contains numerous star schemas. The data
warehouse for a manufacturing business may include fact tables for orders,
shipments, returns, inventory management, purchasing, manufacturing, sales
goals, receivables, payables, and so forth. Each star schema permits detailed
analysis of a specific business process.

Fundamentals of Aggregates 15

04_777099 ch01.qxp 6/2/06 3:44 PM Page 15

Some business questions deal not with a single process, but with multiple
processes. Answering these questions will require consulting multiple fact
tables. This process is referred to as drilling across. Construction of drill-across
reports requires each fact table be queried separately. Failure to do so can
result in incorrect results.

Suppose that senior management wishes to compare the performance of
salespeople to sales goals on a monthly basis. The order_facts fact table, which
you have already seen, tracks the actual performance of salespeople. A sepa-
rate star schema records sales goals. The grain of the fact table,
sales_goal_facts, is salesperson, month, and plan version. Comparison of
salesperson performance to goal requires that you consult both fact tables,
which appear in the top of Figure 1.5.

You cannot access both fact tables using a single query. For a given month
and salesperson, there may be a single goal value in sales_goals_facts, but
there may be numerous rows in order_facts. Combining both fact tables in a
single query would cause the goal value for a salesperson to be repeated once
for each corresponding row in order_facts. In addition, you do not want to lose
track of salespeople with goals but no orders, or those with orders but no
goals. Further, the month associated with an order is in the Day table, while
the month associated with a sales goal is stored in the Month table. You don’t
want two different month values in the report.

These problems are overcome in a multiple-step process. First, each fact
table is queried separately. Each query retrieves any needed facts specific to
that fact table, plus dimensions that will appear in the report. The dimensions,
therefore, will appear in both result sets. Next, these interim result sets are
merged together. You accomplish this by performing a full outer join, based on
the common dimension values. Comparisons of facts from the different fact
tables can be performed once the result sets have been merged.

This process is depicted in the bottom portion of Figure 1.5. To compare
order_dollars and goal_dollars by Salesperson and Month, two queries are
constructed. Each is similar in form to the one described earlier in this chapter.
The first query fetches Year, Month, Salesperson, and the sum of sales_dollars
from the order_facts schema. The second query fetches Year, Month, Salesper-
son, and the sum of goal_dollars from the sales_goal_facts schema.

Because each query aggregates a fact to the same set of dimensions, the
intermediate result sets now have the same grain. Each will have a maximum
of one row for each combination of year, month, and salesperson. The results
can now be safely joined together, without concern for double counting. This
is achieved by performing a full outer join on their common dimensional
attributes, which are month, year, and salesperson. The full outer join ensures
that you do not lose rows from one result set that do not have a corresponding
row in the other. This might occur if there is a salesperson with a goal but no
orders, or vice versa. As part of this merge process, a percent of goal figure can
be calculated by computing the ratio of the two facts. The result of the drill-
across operation is shown in the bottom of the figure.

16 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 16

Figure 1.5 Constructing a drill-across report.

DAY

ORDER_FACTS

1. Query the Orders Star

SELECT
 month,
 year,
 salesperson,
 sum (order_dollars)
FROM
 . . .

2. Query the Sales Goals Star

SELECT
 month,
 year,
 salesperson,
 sum (goal_dollars)
FROM
 . . .

3. Merge Result Sets,
Compute Ratio

Full outer join on common
dimension attributes:

 month,
 year,
 salesperson

Compute ratio:
 sales dollars / goal dollars

SALESPERSON

CUSTOMER

ORDER TYPE

PRODUCT

MONTH

SALES_GOAL_
FACTSSALESPERSON

PLAN_VERSION

Year Month Salesperson
Goal

Dollars
Sales

Dollars
Pct
Goal

2006 $75,000January $73,577Bachman, Dee 98%

2006 -January $17,247Chen, Ming -

2006 $110,000January $131,301Davids, Richard 119%

2006 $75,000January $77,204Lopez, Arturo 103%

2006 $75,000January -McGinty, Riley 0%

2006 $120,000January $120,012Mitra, James 100%

2006 $90,000January $88,845Parker, Stephen 99%

2006 $75,000January $98,407Rodriguez, Alicia 131%

2006 $110,000January $102,081Smith, Susan 93%

2006 $99,000January $84,412Thompson, Tad 94%

2006 $110,000January $122,222Tolbert, Joseph 111%

2006 $90,000January $91,684Wilson, Rhonda 102%

Fundamentals of Aggregates 17

04_777099 ch01.qxp 6/2/06 3:44 PM Page 17

TI P Drill-across reports combine data from multiple fact tables by querying
each star separately and then merging the result sets by performing a full outer
join on the common dimension values.

The way the drill-across operation is carried out varies based on the tools
available in the data warehouse environment and the preferences of the report
developer. One option is to fetch multiple result sets from the database and
then join them on a client machine or application server. Another technique
stores interim result sets in temporary tables and then issues a new query that
joins them. Extended SQL syntax can also be leveraged, permitting construc-
tion of a single statement that performs a full outer join on the results of mul-
tiple SELECT statements. Some query and reporting software products are star
schema aware, and will automatically perform drill-across operations when
required, using one or more of these techniques.

Successful drill-across reports cannot be constructed without consistent rep-
resentation of dimensional attributes and values. The comparison of goal dollars
to order dollars would not have been possible if each schema represented sales-
person differently. To drill across the two fact tables, the salesperson dimension
attributes and values must be identical. This is guaranteed if each star uses the
same physical Salesperson table. This may not be possible if the two stars reside
in different databases, perhaps even running RDBMS products from different
vendors. But if the Salesperson table is the same in both databases, it is still pos-
sible to drill across. The warehouse team must ensure that both tables have the
same columns, the attribute values are identical, and the same combinations of
attribute values exist in both tables. When these conditions are met, the tables
are identical in form and content, and are said to conform.

Dimensions are also said to conform if one is a perfect subset of the other.
The Month table, for example, contains a subset of the attributes of the Day
table. This is illustrated in Figure 1.6. The values of the common attributes
must be recorded identically, and each table must have exactly the same set of
distinct values for the common attributes. When these conditions are met,
Month is referred to as a conformed rollup of the Day dimension.

Without dimensional conformance, it is not possible to pose business ques-
tions that involve multiple fact tables. You would not be able to compare per-
formance to goals, orders to shipments, sales to inventory, contracts to
payments, and so forth. Instead, individual stars become known as stovepipes.
Each works on its own but cannot integrate with the others. And incompatible
representations of the same business concept, such as product or customer,
may foster distrust in the individual stars as well.

18 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 18

Figure 1.6 Month is a conformed rollup of Day.

To maximize the value and success of a dimensional data warehouse, it is
therefore critical to ensure dimensional conformance. A common set of dimen-
sions is planned and cross-referenced with the various business processes that
will be represented by fact tables. This common dimensional framework is
referred to as the data warehouse bus. As you will see in Chapter 7, planning
dimensional conformance in advance allows the data warehouse to be imple-
mented one subject area at a time, while avoiding the potential of stovepipes.
These subject areas are called data marts. Each data mart provides direct value
when implemented, and will integrate with others as they are brought on-line.

DAY

day_key

full_date
day_of_week_number
day_of_week_name
day_of_week_abbr
day_of_month
holiday_flag
weekday_flag
weekend_flag

month_number
month_name
month_abbr
quarter
quarter_month
year
year_month
year_quarter
fiscal_period
fiscal_year
fiscal_year_period

Conformed Dimensions:

• Attributes of one table are a subset of the other’s.

 The only exception is the key column.

• Attribute values are recorded identically.

 "January" does not conform with "JANUARY" or "Jan"

• Each table contains the same distinct combinations of values for the
common attributes.

 There is no month/year combination present in one table
 but not in the other.

MONTH

month_key

month_number
month_name
month_abbr
quarter
quarter_month
year
year_month
year_quarter
fiscal_period
fiscal_year
fiscal_year_period

Fundamentals of Aggregates 19

04_777099 ch01.qxp 6/2/06 3:44 PM Page 19

TI P Conformed dimensions are required to compare data from multiple fact
tables. The set of conformed dimensions for an enterprise data warehouse is
referred to as the warehouse bus. Planned in advance, the warehouse bus
avoids incompatibilities between subject areas.

Data Warehouse Architecture
Before exploring the use of aggregate tables to augment star schema perfor-
mance, it is necessary to introduce the basic technical architecture of a data
warehouse. Two major components of the data warehouse have already been
discussed: the operational systems and the data warehouse. In addition to
these databases, every data warehouse requires two additional components:
software programs that move data from the operational systems to the data
warehouse, and software that is used to develop queries and reports. These
major components are illustrated in Figure 1.7.

The architecture of every data warehouse includes each of these fundamen-
tal components. Each component may comprise one or more products or
physical servers. Whether custom-built or implemented using commercial
off-the-shelf products, each of these components is a necessary piece of
infrastructure.

■■ Operational systems: An operational system is an application that sup-
ports the execution of a business process, recording business activity
and serving as the system of record. Operational systems may be pack-
aged or custom-built applications. Their databases may reside on a
variety of platforms, including relational database systems, mainframe-
based systems, or proprietary data stores. For some data, such as bud-
geting information, the system of record may be as simple as a user
spreadsheet.

■■ Dimensional data warehouse: The dimensional data warehouse is a
database that supports the measurement of enterprise business
processes. It stores a copy of operational data that has been organized
for analytic purposes, according to the principles of dimensional mod-
eling. Information is organized around a set of conformed dimensions,
supporting enterprise-wide cross-process analysis. A subject area
within the data warehouse is referred to as a data mart. The dimensional
data warehouse is usually implemented on a relational database man-
agement system (RDBMS.)

20 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 20

Fi
gu

re
 1

.7
D

at
a

w
ar

eh
ou

se
 a

rc
hi

te
ct

ur
e.

O
p

er
at

io
n

al
Sy

st
em

s
ET

L
Pr

o
ce

ss

Pu
rp

os
e

•
Bu

si
ne

ss
 p

ro
ce

ss
ex

ec
ut

io
n

•
A

ut
ho

rit
at

iv
e

sy
st

em
of

 r
ec

or
d

Pr
of

ile

•
Pa

ck
ag

ed
 o

r
cu

st
om

-
bu

ilt
 a

pp
lic

at
io

ns

A
rc

hi
te

ct
ur

e

•
Se

rv
er

 o
r

m
ai

nf
ra

m
e

ba
se

d

•
D

BM
S

Sy
st

em
s:

-
Re

la
tio

na
l

-
H

ie
ra

rc
hi

ca
l

-
N

et
w

or
k

-
Pr

op
rie

ta
ry

•
Sp

re
ad

sh
ee

ts
 o

r
de

sk
to

p
da

ta
ba

se
s

Pu
rp

os
e

•
Ex

tr
ac

t
so

ur
ce

 d
at

a

Pr
of

ile

•
Pa

ck
ag

ed
 t

oo
ls

 a
nd

/
or

 c
us

to
m

 c
od

ed
ro

ut
in

es

•
Tr

an
sf

or
m

 fo
r

st
ar

sc
he

m
a

•
A

dd
iti

on
al

 u
til

iti
es

 a
s

ne
ed

ed

•
Lo

ad
 in

to
 w

ar
eh

ou
se

•
Pr

oc
es

s
au

to
m

at
io

n

A
rc

hi
te

ct
ur

e

•
Se

rv
er

 b
as

ed
 o

r
ho

st
re

si
de

nt

•
M

ay
 b

e
m

et
ad

at
a

dr
iv

en
, s

up
po

rt
ed

 b
y

an
RD

BM
S

D
at

a
W

ar
eh

o
us

e

Pu
rp

os
e

•
Bu

si
ne

ss
 p

ro
ce

ss
m

ea
su

re
m

en
t

Pr
of

ile

•
Re

la
tio

na
l D

at
ab

as
e

M
an

ag
em

en
t

Sy
st

em

•
St

ar
 S

ch
em

a
D

es
ig

n

A
rc

hi
te

ct
ur

e

•
Se

rv
er

 b
as

ed

•
C

en
tr

al
iz

ed
 o

r
di

st
rib

ut
ed

Fr
o

n
t

En
d

So
ft

w
ar

e

Pu
rp

os
e

•
Q

ue
ry

 d
at

a
w

ar
eh

ou
se

•
Pr

es
en

t
in

fo
rm

at
io

n
to

 u
se

rs

Pr
of

ile

•
Pa

ck
ag

ed
 s

of
tw

ar
e,

 c
us

to
m

fr
on

t
en

ds
, o

r
co

m
bi

na
tio

n

•
Pr

od
uc

ts
 m

ay
 in

cl
ud

e:
-

Bu
si

ne
ss

 In
te

lli
ge

nc
e

-
En

te
rp

ris
e

Re
po

rt
in

g
-

A
d

H
oc

 Q
ue

ry
 T

oo
ls

-
D

at
a

M
in

in
g

To
ol

s

A
rc

hi
te

ct
ur

e

•
Se

rv
er

 b
as

ed
, d

es
kt

op
ba

se
d,

 o
r

co
m

bi
na

tio
n

•
A

dd
iti

on
al

 s
er

vi
ce

s
m

ay
in

cl
ud

e
au

th
or

iz
at

io
n

an
d

au
th

en
tic

at
io

n,
 a

ut
om

at
io

n
an

d
di

st
rib

ut
io

n,
 p

or
ta

l-
ba

se
d

ac
ce

ss

W
ar

eh
o

us
e

U
se

rs

Pr
of

ile

•
C

on
su

m
er

s
of

w
ar

eh
ou

se
 d

at
a

•
In

te
rn

al
 a

nd
 e

xt
er

na
l

•
O

pe
ra

tio
na

l a
nd

st
ra

te
gi

c
fo

cu
s

04_777099 ch01.qxp 6/2/06 3:44 PM Page 21

■■ Extract Transform Load (ETL) software: ETL software is used to move
data into data warehouse tables. This process involves fetching data
from source systems (extract), reorganizing it as required by the star
schema design (transform), and inserting it into warehouse tables (load).
ETL may be accomplished using specialized, packaged software, or by
writing custom code. The ETL process may rely on a number of addi-
tional utilities and databases for staging data, cleansing it, automating
the process, and so forth. A detailed overview of the ETL process is pro-
vided in Chapter 5.

■■ Front-end software: Any tool that consumes information from the data
warehouse, typically by issuing a SQL query to the data warehouse and
presenting results in a number of different formats. Most architectures
incorporate more than one front-end product. Common front-end tools
include business intelligence (BI) software, enterprise reporting soft-
ware, ad hoc query tools, data mining tools, and basic SQL execution
tools. These services may be provided by commercial off-the-shelf soft-
ware packages or custom developed. Front-end software often provides
additional services, such as user- and group-based security administra-
tion, automation of report execution and distribution, and portal-based
access to available information products.

Having developed a basic understanding of the dimensional model and the
data warehouse architecture, you are now ready to begin studying aggregate
tables.

Invisible Aggregates

Aggregate tables improve data warehouse performance by reducing the num-
ber of rows the RDBMS must access when responding to a query. At the sim-
plest level, this is accomplished by partially summarizing the data in a base
fact table and storing the result in a new fact table. Some new terminology will
be necessary to differentiate aggregate tables from those in the original
schema.

If the design of an aggregate schema is carefully managed, a query can be
rewritten to leverage it through simple substitution of aggregate table names
for base table names. Rather than expecting users or application developers to
perform this substitution, an aggregate navigator is deployed. This compo-
nent of the data warehouse architecture intercepts all queries and rewrites
them to leverage aggregates, allowing users and applications to issue SQL
written for the original schema.

For all of this to come off smoothly, it is important that the aggregates be
designed and built according to some basic principles. These principles will
shape the best practices detailed throughout this book.

22 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 22

Improving Performance
As you have seen, the best practices of dimensional design dictate that fact
table grain is set at the lowest possible level of detail. This ensures that it will
be possible to present the facts in any dimensional context desired. But most
queries do not call for presentation of these individual atomic measurements.
Instead, some group of these measurements will be aggregated. Although the
atomic measurements do not appear in the final query results, the RDBMS
must access them in order to compute their aggregates.

Consider again the query from Figure 1.4, which requests order_dollars by
category and product for the month of January 2006. Each row of the final
result set summarizes a large number of fact table rows. That’s because the
grain of the order_facts table, shown in Figure 1.2, is an individual order line.
With over 10,000 order lines generated per day, the sample query requires the
RDBMS to access over 300,000 rows of fact table data.

Most of the time the RDBMS spends executing the query will be spent read-
ing these 300,000 rows of data. More specifically, the time will be spent waiting
for the storage hardware to provide the data, as described in Chapter 2. Of
course, the RDBMS has other tasks to perform. For example, it must first iden-
tify which rows of data it needs. And after the data has been returned, it needs
to perform the necessary joins and aggregation. But in comparison to the time
spent reading data, these tasks will be completed relatively quickly.

Aggregate tables seek to improve query performance by reducing the
amount of data that must be accessed. By pre-aggregating the data in the fact
table, they reduce the amount of work the RDBMS must perform to respond to
a query. Put simply, query performance is increased when the number of rows
that must be accessed is decreased.

Suppose a summarization of the order facts across all customers and orders
is precomputed and stored in a new table called order_facts_aggregate. Shown
in Figure 1.8, this table contains the same facts as the original fact table, but
at a coarser grain. Gone are the relationships to the customer and order_type
tables. Also omitted are the degenerate dimensions order_id and
order_line_id.

All the data necessary to answer the query is present in this summary
schema—it contains order_dollars, category, product, month, and year. But in
this summarized version of order_facts, there are approximately 1,000 rows
per day, compared to 10,000 order lines per day in the original fact table. Using
this table, the RDBMS would have to access one-tenth the number of rows.
Reading data from disk is one of the most time-consuming tasks the RDBMS
performs while executing a query, as described in Chapter 2. By reducing the
amount of data read by a factor of ten, response time is improved dramatically.

TI P An aggregate table improves response time by reducing the number of
rows that must be accessed in responding to a query.

Fundamentals of Aggregates 23

04_777099 ch01.qxp 6/2/06 3:44 PM Page 23

Figure 1.8 An aggregate schema.

Notice that the design of the aggregate schema in Figure 1.8 does not
attempt to reuse base schema tables to store the aggregated data. Instead, a
new table was created to store aggregated facts. The use of separate tables as a
best practice for the storage of aggregated data is established in Chapter 3,
after fully exploring the alternatives.

product_key
product
product_description
sku
unit_of_measure
brand
brand_code
brand_manager
category
category_code

PRODUCT

day_key
full_date
day_of_week_number
day_of_week_name
day_of_week_abbr
day_of_month
holiday_flag
weekday_flag
weekend_flag
month_number
month_name
month_abbr
quarter
quarter_month
year
year_month
year_quarter
fiscal_period
fiscal_year
fiscal_year_period

DAY

salesperson_key
salesperson
salesperson_id
territory
territory_code
territory_manager
region
region_code
region_vp

SALESPERSON

product_key
salesperson_key
day_key
quantity_sold
order_dollars
cost_dollars

ORDER_FACTS_
AGGREGATE

24 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 24

The Base Schema and the Aggregate Schema
The star schema in Figure 1.8 has already been referred to as an aggregate
schema. It provides a partially aggregated summarization of data that is
already stored in the data warehouse. The original schema containing the
granular transactions is referred to as the base schema. Together, the base and
aggregate stars form a schema family.

Similar terminology describes the individual tables in each schema. The fact
table in the aggregate schema is referred to as an aggregate fact table. It summa-
rizes information from the base fact table.

Notice that the dimension tables in the aggregate schema from Figure 1.8 are
identical to those in the base schema. This aggregate schema has summarized
order_facts by completely omitting the salesperson and order_type dimension
tables.

For some aggregate schemas, partial summarization across a dimension
may be useful. Instead of completely omitting a dimension table, it is partially
summarized. For example, a monthly summary of order_facts by customer
and salesperson would further reduce the number of rows in the aggregate
fact table, and still be able to respond to the sample query.

In order to construct this aggregate schema, a Month dimension table is
needed. The base schema includes only a Day dimension, so a new Month
table must be built. This aggregate dimension table will be based on the Day
dimension table in the base schema. As you will see in Chapter 2, its design is
subject to the same rules of dimensional conformance discussed earlier in this
chapter. In fact, a conformed Month table was already built for the sales goals
schema, as shown in Figures 1.5 and 1.6. This same Month table can be used in
an aggregate of the orders schema, as shown in Figure 1.9.

Although the aggregate schema from Figure 1.9 will go still further in
improving the performance of our sample query, its overall usefulness is more
limited than the daily aggregate from Figure 1.8. For example, it cannot
respond to a query that requests order_dollars by day and product. Because
this query requires specific days, it can be answered only by the aggregate
schema in Figure 1.8, or by the base schema.

This characteristic can be generalized as follows: The more highly summarized
an aggregate table is, the fewer queries it will be able to accelerate. This means
that choosing aggregates involves making careful tradeoffs between the per-
formance gain offered and the number of queries that will benefit. Chapter 2
explores how these factors are balanced when choosing aggregate tables.

With a large number of users issuing a diverse set of queries, it is to be
expected that no single aggregate schema will improve the performance of
every query. Notice, however, that improving the response time of a few
resource-intensive queries can improve the overall throughput of the DBMS
dramatically. Still, it is reasonable to expect that a set of aggregate tables will be
deployed in support of a given star, rather than just one.

Fundamentals of Aggregates 25

04_777099 ch01.qxp 6/2/06 3:44 PM Page 25

Figure 1.9 Month as an aggregate dimension table.

The Aggregate Navigator
To receive the performance benefit offered by an aggregate schema, a query
must be written to use the aggregate. Rewriting the sample query was a sim-
ple matter of substituting the name of the aggregate fact table for that of the
base fact table. This may be easy for technical personnel, but can prove con-
fusing for an end user. The complexity grows as additional aggregate tables
are added. Technical and business users alike may err in assessing which table
will provide the best performance. And, if more aggregate tables are added or
old ones removed, existing queries must be rewritten.

product_key
product
product_description
sku
unit_of_measure
brand
brand_code
brand_manager
category
category_code

Conformed Rollup of the
base dimension table DAY.

PRODUCT

month_key
month_number
month_name
month_abbr
quarter
quarter_month
year
year_month
year_quarter
fiscal_period
fiscal_year
fiscal_year_period

MONTH

salesperson_key
salesperson
salesperson_id
territory
territory_code
territory_manager
region
region_code
region_vp

SALESPERSON

product_key
salesperson_key
month_key
quantity_sold
order_dollars
cost_dollars

ORDER_FACTS_
AGGREGATE

26 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 26

The key to avoiding these pitfalls lies in implementation of an aggregate nav-
igator. A component of the data warehouse infrastructure, the aggregate navi-
gator assumes the task of rewriting user queries to utilize aggregate tables.
Users and developers need only be concerned with the base schema. At run-
time, the aggregate navigator redirects the query to the most efficient aggre-
gate schema. This process is depicted in Figure 1.10.

A number of commercial products offer aggregate navigation capabilities.
Ideally, the aggregate navigator provides this service to all queries, regardless
of the front-end application being used, and all back-end databases, regardless
of physical location or technology. It maintains all information needed to
rewrite queries, and keeps track of the status of each aggregate. This allows its
services to be adjusted as aggregates are added and removed from the data-
base, and permits aggregates to be taken off-line when being rebuilt. Detailed
requirements for the aggregate navigator are presented in Chapter 4, which
also describes how the aggregation strategy is altered if there is no aggregate
navigator.

Principles of Aggregation
This chapter has proposed using a set of invisible aggregate tables to improve
data warehouse performance. A family of aggregate star schemas will partially
summarize information in a base star schema. These dimensional aggregates
will be invisible to end-user applications, which will continue to issue SQL tar-
geted at the base schema. An aggregate navigator will intercept these queries
and rewrite them to leverage the aggregate tables.

For all this to come off smoothly, two key principles must be followed in the
design and construction of the aggregate schemas. Subsequent chapters of this
book enumerate best practices surrounding the selection, design, usage, and
implementation of aggregates.

Providing the Same Results

The data warehouse must always provide accurate and consistent results. If it
does not, business users will lose faith in its capability to provide accurate
measurement of business processes. Use of the data warehouse will drop.
Worse, those who do use it may base business decisions on inaccurate data.

Figure 1.10 The aggregate navigator.

Users and
Applications

Aggregate
Navigator

Data
Warehouse

Aggregate-
Aware SQL

Base Schema
SQL

Fundamentals of Aggregates 27

04_777099 ch01.qxp 6/2/06 3:44 PM Page 27

The importance of accuracy leads to the first guiding principle for aggregate
tables. Assuming the base schema has been designed to publish operational
data accurately and consistently, any aggregates must do the same. More
specifically, the following can be stated:

An aggregate schema must always provide exactly the same results as the base
schema.

If a rewritten query returns different results, it is returning wrong results.
The data warehouse will bear the consequences. Every aggregate table must
be an accurate and comprehensive summarization of its corresponding base
table. This may seem obvious, but it is important to state it explicitly.

The effects of this principle are encountered throughout this book. Design
options that violate this principle will be ruled out in Chapters 3 and 8. If the
base schema and aggregate schema are not to be loaded simultaneously, this
principle will require aggregates to be taken off-line during the load process,
as discussed in Chapter 5. Design options for summaries that handle the
absence of data differently than the base schema can produce results that are
accurate, but different. In Chapter 9 these derived schemas are not awarded
the status of invisibility and serve as base schema tables instead.

The Same Facts and Dimension Attributes as the Base Schema

The successful deployment of aggregate tables depends largely on their invis-
ibility, particularly when more than one set of aggregates is available. The
aggregate navigator will be relied upon to quickly and accurately rewrite
queries through the substitution of table names and join columns in SQL
queries. This suggests a second guiding principle:

The attributes of each aggregate table must be a subset of those from a base
schema table. The only exception to this rule is the surrogate key for an aggregate
dimension table.

The introduction of a new attribute to an aggregate table will either destroy
its invisibility by requiring the aggregate be addressed by application SQL
directly, or complicate the query rewrite process by requiring complex trans-
formations of SQL syntax. Examples of potential new attributes, and their
impact on schema usage, are explored in Chapter 3.

The capabilities of specific technologies may permit this principle to be
relaxed slightly. For example, database features such as materialized views or
materialized query tables can safely perform certain calculations on base
schema attributes, or combine attributes from multiple tables into a single
summary table. These possibilities are explored in Chapter 4.

28 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 28

Other Types of Summarization

The aggregate tables discussed thus far provide the same results as the base
schema, and are leveraged by substituting the names of aggregate tables in
SQL queries. Throughout this book, the term aggregate will be reserved for
tables that exhibit these characteristics, even if an aggregate navigator is not
deployed.

However, there are other ways to summarize the information in a star
schema. Although not meeting the requirements for invisibility, these sum-
mary tables may provide value to the data warehouse in other ways.

Pre-Joined Aggregates
Like the dimensional aggregates you have seen so far, a pre-joined aggregate
summarizes a fact across a set of dimension values. But unlike the aggregate
star schemas from Figures 1.8 and 1.9, the pre-joined aggregate places the
results in a single table. By doing so, the pre-joined aggregate eliminates the
need for the RDBMS to perform a join operation at query time.

An example of a pre-joined aggregate appears in Figure 1.11. This table col-
lects some dimensional attributes from Product, Day, and Salesperson, placing
them in a single table with the facts from order_facts.

Like the aggregate schemas from the previous section, this pre-joined aggre-
gate will improve the performance of our sample query by reducing the num-
ber of rows that must be consulted. While it also eliminates join processing
requirements, this effect is less dramatic. All the major relational databases in
use today have native support for star-join operations, optimizing the process
by which fact table data is accessed and combined with dimensional data.

Figure 1.11 A pre-joined aggregate.

product
sku
brand
category
month_name
year_month
salesperson
territory
region
quantity_sold
order_dollars
cost_dollars

ORDER_PREJOINED_
AGGREGATE

Fundamentals of Aggregates 29

04_777099 ch01.qxp 6/2/06 3:44 PM Page 29

The pre-joined aggregate also has one drawback: It requires dramatically
more storage space. Earlier, you saw that fact tables, although deep, consisted
of very compact rows. Dimension tables contained wider rows, but were rela-
tively small. The pre-joined aggregate is likely to be wide and deep. It is there-
fore likely to consume a very large amount of space, unless it is highly
summarized. The more highly summarized an aggregate, the fewer queries it
will accelerate.

TI P A pre-joined aggregate table combines aggregated facts and dimension
attributes in a single table. While it can improve query performance, the pre-
joined aggregate tends to consume excessive amounts of storage space.

Nonetheless, pre-joined aggregates are often implemented in support of
specific queries or reports. And if the second principle of aggregation is
relaxed slightly, the aggregate navigator may be leveraged to rewrite base-
level SQL to access pre-joined aggregates as well. The aggregate navigator will
have to replace all table names with the single pre-joined aggregate, and elim-
inate joins from the WHERE clause.

The processes of choosing and designing pre-joined aggregates are similar
to those for standard dimensional aggregates, as you learn in Chapters 2 and 3.
In Chapter 4, you see that database features such as materialized views work
nicely to maintain pre-joined aggregates and rewrite queries. And in Chapter 5,
you see that the pre-joined aggregate is also easy to build manually because it
does not require any surrogate keys.

Derived Tables

Another group of summarization techniques seeks to improve performance by
altering the structure of the tables summarized or changing the scope of their
content. These tables are not meant to be invisible. Instead, they are provided
as base schema objects. Users or report developers must explicitly choose to
use these tables; the aggregate navigator does not come into play. There are
three major types of derived tables: the merged fact table, the pivoted fact
table, and the sliced fact table.

The merged fact table combines facts from more than one fact table at a com-
mon grain. This technique is often used to construct powerful data marts that
draw data from multiple business areas. The merged fact table eliminates the
need to perform drill-across operations, but introduces subtle differences in
the way facts are recorded. Some facts will be stored with a value of zero,
where the base fact table recorded nothing.

30 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 30

The pivoted fact table transforms a set of metrics in a single row into multiple
rows with a single metric, or vice versa. Pivoted fact tables greatly simplify
reporting by configuring the storage of facts to match the desired presentation
format. Performing a similar transformation within SQL or a reporting tool
can be slow and cumbersome. Like the merged fact table, the pivoted fact table
may be forced to store facts with a value of zero, even when the base fact table
contains nothing.

The sliced fact table does nothing to transform the structure of the original
schema, but does change its content. A sliced fact table contains a subset of the
records of the base fact table, usually in coordination with a specific dimension
attribute. This technique can be used to relocate subsets of data closer to the
individuals that need it. Conversely, it can also be used to consolidate regional
data stores that are identical in structure. Because the slice can be derived from
the whole, or vice versa, which table is derived is a function of the business
environment.

In all three cases, the derived fact tables are not expected to serve as invisi-
ble stand-ins for the base schema. The merged and pivoted fact tables signifi-
cantly alter schema structure, while the sliced fact table alters its content.
These tables should be considered part of the base schema, and accessed by
users or report developers explicitly. Derived tables are explored in further
detail in Chapter 9.

Tables with New Facts
In a paradoxical twist, the final type of summary table actually contains attrib-
utes not present in the original schema. Such summaries occur when a fact in
the original schema does not exhibit the characteristic of additivity, as
described previously. While these facts can be summarized, the semantics and
usage of the result differ from those of the original table. Like the derived
schemas, these summarizations are not expected to remain invisible to end
users. Instead, they are called upon directly by application SQL.

In all the examples in this chapter, facts have been aggregated by summing
their values. For some facts, this is not appropriate. Semi-additive facts may
not be added together across a particular dimension; non-additive facts are
never added together. In these situations, you may choose to aggregate by
means other than summation.

An account balance, for example, is semi-additive. On a given day, you can
add together the balances of your various bank accounts to compute a total
balance. Unfortunately, you cannot add together a series of daily balances to
compute a monthly total. But it may be useful to compute a monthly average
of these values. The average daily balance can be used to determine the inter-
est allied at month’s end, for example. But an average daily balance means
something different than the balance dollars fact of the original schema.

Fundamentals of Aggregates 31

04_777099 ch01.qxp 6/2/06 3:44 PM Page 31

When you aggregate by means other than summation, you create new facts.
These facts have different meanings than the original fact, and their usage is
governed by different rules. Tables with new facts, therefore, are not expected
to remain invisible. Like the derived tables, they will be made available as part
of the base schema. Users and applications will access them explicitly. Tables
with new facts will be encountered in Chapter 8, which explores the impact of
advanced dimensional design techniques on aggregates.

Summary

This chapter has laid the foundation for the chapters to come, reviewing the
basics of star schema design, introducing the aggregate table and aggregate
navigator, defining some standard vocabulary, and establishing some guiding
principles for invisible aggregates.

■■ While operational systems focus on process execution, data warehouse
systems focus on process evaluation. These contrasting purposes lead to
distinct operational profiles, which in turn suggest different principles
to guide schema design.

■■ The principles of dimensional modeling govern the development of ware-
house systems. Process evaluation is enabled by identifying the facts
that measure a business process and the dimensions that give them con-
text. These attributes are grouped into tables that form a star schema
design.

■■ Dimension tables contain sets of dimensional attributes. They drive
access to the facts, constrain queries, and serve as row headers on
reports. The use of a surrogate key permits the dimension table to track
history, regardless of how changes are handled in operational systems.

■■ Facts are placed in fact tables, along with foreign key references to the
appropriate dimension tables. The grain of a fact table identifies the
level of detail represented by each row. It is set at the lowest level possi-
ble, as determined by available data.

■■ Although the specific questions asked by end users are unpredictable
and change over time, queries follow a standard pattern. Questions that
cross subject areas can be answered through a process called drilling
across, provided the warehouse had been designed around a set of con-
formed dimensions referred to as the warehouse bus.

■■ Aggregate tables improve the response time of a star schema query by
reducing the number of rows the database must read. Ideally, the aggre-
gate tables are invisible to end uses and applications, which issue
queries to the base schema. An aggregate navigator is deployed, rewrit-
ing these queries to leverage aggregates as appropriate.

32 Chapter 1

04_777099 ch01.qxp 6/2/06 3:44 PM Page 32

■■ To facilitate this invisibility, two basic principles guide aggregate
schema design. Aggregates must always provide the same results as the
base schema, and the attributes of each aggregate table must be a subset
of those of a base table.

■■ Not all forms of summarization meet the requirements of invisible
aggregates. Other forms of summarization include pre-joined aggregates,
derived tables, and tables with new facts. Although not serviced by the
aggregate navigator, these summaries can serve as useful additions to
the base schema of the data warehouse, accessed explicitly through
application SQL.

With these fundamentals out of the way, you are ready to turn to the first
and most perplexing task: choosing which aggregates to design and build.

Fundamentals of Aggregates 33

04_777099 ch01.qxp 6/2/06 3:44 PM Page 33

04_777099 ch01.qxp 6/2/06 3:44 PM Page 34

