
CHAPTER 1
Stochastic Volatility
and Local Volatility

I n this chapter, we begin our exploration of the volatility surface by intro-
ducing stochastic volatility—the notion that volatility varies in a random

fashion. Local variance is then shown to be a conditional expectation of
the instantaneous variance so that various quantities of interest (such as
option prices) may sometimes be computed as though future volatility were
deterministic rather than stochastic.

STOCHASTIC VOLATILITY

That it might make sense to model volatility as a random variable should
be clear to the most casual observer of equity markets. To be convinced,
one need only recall the stock market crash of October 1987. Nevertheless,
given the success of the Black-Scholes model in parsimoniously describing
market options prices, it’s not immediately obvious what the benefits of
making such a modeling choice might be.

Stochastic volatility (SV) models are useful because they explain in a
self-consistent way why options with different strikes and expirations have
different Black-Scholes implied volatilities—that is, the ‘‘volatility smile.’’
Moreover, unlike alternative models that can fit the smile (such as local
volatility models, for example), SV models assume realistic dynamics for
the underlying. Although SV price processes are sometimes accused of being
ad hoc, on the contrary, they can be viewed as arising from Brownian
motion subordinated to a random clock. This clock time, often referred to
as trading time, may be identified with the volume of trades or the frequency
of trading (Clark 1973); the idea is that as trading activity fluctuates, so
does volatility.
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FIGURE 1.1 SPX daily log returns from December 31, 1984, to December 31,
2004. Note the −22.9% return on October 19, 1987!

From a hedging perspective, traders who use the Black-Scholes model
must continuously change the volatility assumption in order to match
market prices. Their hedge ratios change accordingly in an uncontrolled
way: SV models bring some order into this chaos.

A practical point that is more pertinent to a recurring theme of this
book is that the prices of exotic options given by models based on Black-
Scholes assumptions can be wildly wrong and dealers in such options are
motivated to find models that can take the volatility smile into account
when pricing these.

In Figure 1.1, we plot the log returns of SPX over a 15-year period;
we see that large moves follow large moves and small moves follow small
moves (so-called ‘‘volatility clustering’’). In Figure 1.2, we plot the frequency
distribution of SPX log returns over the 77-year period from 1928 to 2005.
We see that this distribution is highly peaked and fat-tailed relative to the
normal distribution. The Q-Q plot in Figure 1.3 shows just how extreme
the tails of the empirical distribution of returns are relative to the normal
distribution. (This plot would be a straight line if the empirical distribution
were normal.)

Fat tails and the high central peak are characteristics of mixtures of
distributions with different variances. This motivates us to model variance
as a random variable. The volatility clustering feature implies that volatility
(or variance) is auto-correlated. In the model, this is a consequence of the
mean reversion of volatility.∗

∗Note that simple jump-diffusion models do not have this property. After a jump,
the stock price volatility does not change.
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FIGURE 1.2 Frequency distribution of (77 years of) SPX daily log returns compared
with the normal distribution. Although the −22.9% return on October 19, 1987, is
not directly visible, the x-axis has been extended to the left to accommodate it!

FIGURE 1.3 Q-Q plot of SPX daily log returns compared with the normal
distribution. Note the extreme tails.
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There is a simple economic argument that justifies the mean reversion
of volatility. (The same argument is used to justify the mean reversion of
interest rates.) Consider the distribution of the volatility of IBM in 100 years
time. If volatility were not mean reverting (i.e., if the distribution of volatility
were not stable), the probability of the volatility of IBM being between 1%
and 100% would be rather low. Since we believe that it is overwhelmingly
likely that the volatility of IBM would in fact lie in that range, we deduce
that volatility must be mean reverting.

Having motivated the description of variance as a mean reverting
random variable, we are now ready to derive the valuation equation.

Derivation of the Valuation Equation

In this section, we follow Wilmott (2000) closely. Suppose that the stock
price S and its variance v satisfy the following SDEs:

dSt = µt St dt + √
vt St dZ1 (1.1)

dvt = α(St, vt, t) dt + η β(St, vt, t)
√

vtdZ2 (1.2)

with

〈
dZ1 dZ2

〉 = ρ dt

where µt is the (deterministic) instantaneous drift of stock price returns, η

is the volatility of volatility and ρ is the correlation between random stock
price returns and changes in vt. dZ1 and dZ2 are Wiener processes.

The stochastic process (1.1) followed by the stock price is equivalent
to the one assumed in the derivation of Black and Scholes (1973). This
ensures that the standard time-dependent volatility version of the Black-
Scholes formula (as derived in Section 8.6 of Wilmott (2000) for example)
may be retrieved in the limit η → 0. In practical applications, this is a key
requirement of a stochastic volatility option pricing model as practitioners’
intuition for the behavior of option prices is invariably expressed within the
framework of the Black-Scholes formula.

In contrast, the stochastic process (1.2) followed by the variance is very
general. We don’t assume anything about the functional forms of α(·) and
β(·). In particular, we don’t assume a square root process for variance.

In the Black-Scholes case, there is only one source of randomness, the
stock price, which can be hedged with stock. In the present case, random
changes in volatility also need to be hedged in order to form a riskless
portfolio. So we set up a portfolio � containing the option being priced,
whose value we denote by V(S, v, t), a quantity −� of the stock and
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a quantity −�1 of another asset whose value V1 depends on volatility.
We have

� = V − � S − �1 V1

The change in this portfolio in a time dt is given by

d� =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2vβ2 ∂2V
∂v2

}
dt

− �1

{
∂V1

∂t
+ 1

2
v S2 ∂2V1

∂S2 + ρ η v β S
∂2V1

∂v ∂S
+ 1

2
η2 v β2 ∂2V1

∂v2

}
dt

+
{

∂V
∂S

− �1
∂V1

∂S
− �

}
dS

+
{

∂V
∂v

− �1
∂V1

∂v

}
dv

where, for clarity, we have eliminated the explicit dependence on t of the
state variables St and vt and the dependence of α and β on the state variables.
To make the portfolio instantaneously risk-free, we must choose

∂V
∂S

− �1
∂V1

∂S
− � = 0

to eliminate dS terms, and

∂V
∂v

− �1
∂V1

∂v
= 0

to eliminate dv terms. This leaves us with

d� =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v∂S

+ 1
2

η2 vβ2 ∂2V
∂v2

}
dt

− �1

{
∂V1

∂t
+ 1

2
v S2 ∂2V1

∂S2 + ρηv β S
∂2V1

∂v∂S
+ 1

2
η2 v β2 ∂2V1

∂v2

}
dt

= r � dt

= r(V − �S − �1V1) dt

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r, which we will assume to be deterministic for our
purposes. Collecting all V terms on the left-hand side and all V1 terms on
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the right-hand side, we get

∂V
∂t + 1

2 v S2 ∂2V
∂S2 + ρη v β S ∂2V

∂v∂S + 1
2η2vβ2 ∂2V

∂v2 + rS ∂V
∂S − rV

∂V
∂v

=
∂V1
∂t + 1

2 v S2 ∂2V1
∂S2 + ρη vβ S ∂2V1

∂v∂S + 1
2η2vβ2 ∂2V1

∂v2 + rS ∂V1
∂S − rV1

∂V1
∂v

The left-hand side is a function of V only and the right-hand side is a
function of V1 only. The only way that this can be is for both sides to
be equal to some function f of the independent variables S, v and t. We
deduce that

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2 v β2 ∂2V
∂v2 + r S

∂V
∂S

− r V

= − (
α − φ β

√
v
) ∂V

∂v
(1.3)

where, without loss of generality, we have written the arbitrary function f
of S, v and t as

(
α − φ β

√
v
)
, where α and β are the drift and volatility

functions from the SDE (1.2) for instantaneous variance.

The Market Price of Volatility Risk φ(S, v, t) is called the market price of
volatility risk. To see why, we again follow Wilmott’s argument.

Consider the portfolio �1 consisting of a delta-hedged (but not vega-
hedged) option V. Then

�1 = V − ∂V
∂S

S

and again applying Itô’s lemma,

d�1 =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2 v β2 ∂2V
∂v2

}
dt

+
{

∂V
∂S

− �

}
dS +

{
∂V
∂v

}
dv
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Because the option is delta-hedged, the coefficient of dS is zero and we are
left with

d�1 − r �1 dt

=
{

∂V
∂t

+ 1
2

vS2 ∂2V
∂S2 + ρηvβS

∂2V
∂v∂S

+ 1
2

η2vβ2 ∂2V
∂v2 + rS

∂V
∂S

− r V
}

dt

+ ∂V
∂v

dv

= β
√

v
∂V
∂v

{
φ(S, v, t) dt + ηdZ2

}

where we have used both the valuation equation (1.3) and the SDE (1.2)
for v. We see that the extra return per unit of volatility risk dZ2 is given
by φ(S, v, t) dt and so in analogy with the Capital Asset Pricing Model, φ is
known as the market price of volatility risk.

Now, defining the risk-neutral drift as

α′ = α − β
√

v φ

we see that, as far as pricing of options is concerned, we could have started
with the risk-neutral SDE for v,

dv = α′ dt + β
√

v dZ2

and got identical results with no explicit price of risk term because we are
in the risk-neutral world.

In what follows, we always assume that the SDEs for S and v are in risk-
neutral terms because we are invariably interested in fitting models to option
prices. Effectively, we assume that we are imputing the risk-neutral measure
directly by fitting the parameters of the process that we are imposing.

Were we interested in the connection between the pricing of options
and the behavior of the time series of historical returns of the underlying, we
would need to understand the connection between the statistical measure
under which the drift of the variance process v is α and the risk-neutral
process under which the drift of the variance process is α′. From now on,
we act as if we are risk-neutral and drop the prime.

LOCAL VOLATILITY

History
Given the computational complexity of stochastic volatility models and
the difficulty of fitting parameters to the current prices of vanilla options,
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practitioners sought a simpler way of pricing exotic options consistently
with the volatility skew. Since before Breeden and Litzenberger (1978), it
was understood (at least by floor traders) that the risk-neutral density could
be derived from the market prices of European options. The breakthrough
came when Dupire (1994) and Derman and Kani (1994)∗ noted that
under risk neutrality, there was a unique diffusion process consistent with
these distributions. The corresponding unique state-dependent diffusion
coefficient σL(S, t), consistent with current European option prices, is known
as the local volatility function.

It is unlikely that Dupire, Derman, and Kani ever thought of local
volatility as representing a model of how volatilities actually evolve. Rather,
it is likely that they thought of local volatilities as representing some kind of
average over all possible instantaneous volatilities in a stochastic volatility
world (an ‘‘effective theory’’). Local volatility models do not therefore really
represent a separate class of models; the idea is more to make a simplifying
assumption that allows practitioners to price exotic options consistently
with the known prices of vanilla options.

As if any proof were needed, Dumas, Fleming, and Whaley (1998) per-
formed an empirical analysis that confirmed that the dynamics of the implied
volatility surface were not consistent with the assumption of constant local
volatilities.

Later on, we show that local volatility is indeed an average over instan-
taneous volatilities, formalizing the intuition of those practitioners who first
introduced the concept.

A Brief Review of Dupire’s Work

For a given expiration T and current stock price S0, the collection
{C (S0, K, T)} of undiscounted option prices of different strikes yields the
risk-neutral density function ϕ of the final spot ST through the relationship

C (S0, K, T) =
∫ ∞

K
dST ϕ (ST , T; S0) (ST − K)

Differentiate this twice with respect to K to obtain

ϕ (K, T; S0) = ∂2C
∂K2

∗Dupire published the continuous time theory and Derman and Kani, a discrete time
binomial tree version.
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so the Arrow-Debreu prices for each expiration may be recovered by twice
differentiating the undiscounted option price with respect to K. This process
is familiar to any option trader as the construction of an (infinite size)
infinitesimally tight butterfly around the strike whose maximum payoff
is one.

Given the distribution of final spot prices ST for each time T conditional
on some starting spot price S0, Dupire shows that there is a unique risk
neutral diffusion process which generates these distributions. That is, given
the set of all European option prices, we may determine the functional
form of the diffusion parameter (local volatility) of the unique risk neutral
diffusion process which generates these prices. Noting that the local volatility
will in general be a function of the current stock price S0, we write this
process as

dS
S

= µt dt + σ (St, t; S0) dZ

Application of Itô’s lemma together with risk neutrality, gives rise to a partial
differential equation for functions of the stock price, which is a straightfor-
ward generalization of Black-Scholes. In particular, the pseudo-probability
densities ϕ (K, T; S0) = ∂2C

∂K2 must satisfy the Fokker-Planck equation. This
leads to the following equation for the undiscounted option price C in terms
of the strike price K:

∂C
∂T

= σ 2 K2

2
∂2C
∂K2 + (rt − Dt)

(
C − K

∂C
∂K

)
(1.4)

where rt is the risk-free rate, Dt is the dividend yield and C is short for
C (S0, K, T).

Derivation of the Dupire Equation

Suppose the stock price diffuses with risk-neutral drift µt (= rt − Dt) and
local volatility σ (S, t) according to the equation:

dS
S

= µt dt + σ (St, t) dZ

The undiscounted risk-neutral value C (S0, K, T) of a European option with
strike K and expiration T is given by

C (S0, K, T) =
∫ ∞

K
dST ϕ (ST , T; S0) (ST − K) (1.5)
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Here ϕ (ST, T; S0) is the pseudo-probability density of the final spot at time
T. It evolves according to the Fokker-Planck equation:

1
2

∂2

∂S2
T

(
σ 2S2

T ϕ
)

− ∂

∂ST
(µ ST ϕ) = ∂ϕ

∂T

Differentiating with respect to K gives

∂C
∂K

= −
∫ ∞

K
dST ϕ (ST , T; S0)

∂2C
∂K2 = ϕ (K, T; S0)

Now, differentiating (1.5) with respect to time gives

∂C
∂T

=
∫ ∞

K
dST

{
∂

∂T
ϕ (ST , T; S0)

}
(ST − K)

=
∫ ∞

K
dST

{
1
2

∂2

∂S2
T

(
σ 2S2

Tϕ
)

− ∂

∂ST
(µ ST ϕ)

}
(ST − K)

Integrating by parts twice gives:

∂C
∂T

= σ 2 K2

2
ϕ +

∫ ∞

K
dST µ ST ϕ

= σ 2 K2

2
∂2C
∂K2 + µ (T)

(
C−K

∂C
∂K

)

which is the Dupire equation when the underlying stock has risk-neutral
drift µ. That is, the forward price of the stock at time T is given by

FT = S0 exp

{∫ T

0
dt µt

}

Were we to express the option price as a function of the forward price

FT = S0 exp
{∫ T

0 µ(t)dt
}∗

, we would get the same expression minus the drift
term. That is,

∂C
∂T

= 1
2

σ 2 K2 ∂2C
∂K2

∗From now on, µ(T) represents the risk-neutral drift of the stock price process,
which is the risk-free rate r(T) minus the dividend yield D(T).
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where C now represents C (FT , K, T). Inverting this gives

σ 2(K, T, S0) =
∂C
∂T

1
2 K2 ∂2C

∂K2

(1.6)

The right-hand side of equation (1.6) can be computed from known Euro-
pean option prices. So, given a complete set of European option prices
for all strikes and expirations, local volatilities are given uniquely by
equation (1.6).

We can view equation (1.6) as a definition of the local volatility function
regardless of what kind of process (stochastic volatility for example) actually
governs the evolution of volatility.

Local Volatility in Terms of Implied Volatility

Market prices of options are quoted in terms of Black-Scholes implied
volatility σBS (K, T; S0). In other words, we may write

C (S0, K, T) = CBS (S0, K, σBS (S0, K, T) , T)

It will be more convenient for us to work in terms of two dimensionless
variables: the Black-Scholes implied total variance w defined by

w (S0, K, T) := σ 2
BS (S0, K, T) T

and the log-strike y defined by

y = log
(

K
FT

)

where FT = S0 exp
{∫ T

0 dt µ(t)
}

gives the forward price of the stock at time
0. In terms of these variables, the Black-Scholes formula for the future value
of the option price becomes

CBS (FT , y, w) = FT
{
N

(
d1

) − eyN
(
d2

)}
= FT

{
N

(
− y√

w
+

√
w

2

)
− eyN

(
− y√

w
−

√
w

2

)}
(1.7)

and the Dupire equation (1.4) becomes

∂C
∂T

= vL

2

{
∂2C
∂y2 − ∂C

∂y

}
+ µ (T) C (1.8)
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with vL = σ 2 (S0, K, T) representing the local variance. Now, by taking
derivatives of the Black-Scholes formula, we obtain

∂2CBS

∂w2 =
(

−1
8

− 1
2 w

+ y2

2 w2

)
∂CBS

∂w

∂2CBS

∂y∂w
=

(
1
2

− y
w

)
∂CBS

∂w

∂2CBS

∂y2 − ∂CBS

∂y
= 2

∂CBS

∂w
(1.9)

We may transform equation (1.8) into an equation in terms of implied
variance by making the substitutions

∂C
∂y

= ∂CBS

∂y
+ ∂CBS

∂w
∂w
∂y

∂2C
∂y2 = ∂2CBS

∂y2 + 2
∂2CBS

∂y∂w
∂w
∂y

+ ∂2CBS

∂w2

(
∂w
∂y

)2

+ ∂CBS

∂w
∂2w
∂y2

∂C
∂T

= ∂CBS

∂T
+ ∂CBS

∂w
∂w
∂T

= ∂CBS

∂w
∂w
∂T

+ µ (T) CBS

where the last equality follows from the fact that the only explicit dependence
of the option price on T in equation (1.7) is through the forward price
FT = S0 exp

{∫ T
0 dt µ (t)

}
. Equation (1.4) now becomes (cancelling µ (T) C

terms on each side)

∂CBS

∂w
∂w
∂T

= vL

2

{
−∂CBS

∂y
+ ∂2CBS

∂y2 − ∂CBS

∂w
∂w

∂y
+ 2

∂2CBS

∂y∂w
∂w

∂y

+ ∂2CBS

∂w2

(
∂w
∂y

)2

+ ∂CBS

∂w
∂2w
∂y2

}

= vL

2
∂CBS

∂w

{
2 − ∂w

∂y
+ 2

(
1
2

− y
w

)
∂w
∂y

+
(

−1
8

− 1
2w

+ y2

2w2

) (
∂w
∂y

)2

+ ∂2w
∂y2

}
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Then, taking out a factor of ∂CBS
∂w and simplifying, we get

∂w
∂T

= vL

{
1 − y

w
∂w
∂y

+ 1
4

(
−1

4
− 1

w
+ y2

w2

) (
∂w
∂y

)2

+ 1
2

∂2w
∂y2

}

Inverting this gives our final result:

vL =
∂w
∂T

1 − y
w

∂w
∂y + 1

4

(
− 1

4 − 1
w + y2

w2

) (
∂w
∂y

)2 + 1
2

∂2w
∂y2

(1.10)

Special Case: No Skew∗

If the skew ∂w
∂y is zero, we must have

vL = ∂w
∂T

So the local variance in this case reduces to the forward Black-Scholes
implied variance. The solution to this is, of course,

w (T) =
∫ T

0
vL (t) dt

Local Variance as a Conditional Expectation
of Instantaneous Variance

This result was originally independently derived by Dupire (1996) and
Derman and Kani (1998). Following now the elegant derivation by Derman
and Kani, assume the same stochastic process for the stock price as in equa-
tion (1.1) but write it in terms of the forward price Ft,T = St exp

{∫ T
t ds µs

}
:

dFt,T = √
vtFt,TdZ (1.11)

Note that dFT,T = dST . The undiscounted value of a European option with
strike K expiring at time T is given by

C (S0, K, T) = E
[
(ST − K)+

]
∗Note that this implies that ∂

∂KσBS (S0, K, T) is zero.
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Differentiating once with respect to K gives

∂C
∂K

= −E [θ (ST − K)]

where θ (·) is the Heaviside function. Differentiating again with respect to
K gives

∂2C
∂K2 = E [δ (ST − K)]

where δ(·) is the Dirac δ function.
Now a formal application of Itô’s lemma to the terminal payoff of the

option (and using dFT,T = dST) gives the identity

d (ST − K)+ = θ (ST − K) dST + 1
2

vT S2
T δ (ST − K) dT

Taking conditional expectations of each side, and using the fact that Ft,T is
a martingale, we get

dC = dE
[
(ST − K)+

] = 1
2

E

[
vT S2

T δ (ST − K)
]

dT

Also, we can write

E

[
vTS2

T δ (ST − K)
]

= E [vT |ST = K ]
1
2

K2
E [δ (ST − K)]

= E [vT |ST = K ]
1
2

K2 ∂2C
∂K2

Putting this together, we get

∂C
∂T

= E [vT |ST = K ]
1
2

K2 ∂2C
∂K2

Comparing this with the definition of local volatility (equation (1.6)), we
see that

σ 2(K, T, S0) = E [vT |ST = K ] (1.12)

That is, local variance is the risk-neutral expectation of the instantaneous
variance conditional on the final stock price ST being equal to the strike
price K.


