
 1

LEARNING OBJECTIVES

to identify the basic mindset of a tester, regardless of what is being tested

to determine the correct motivations for testing in business

to explain some of the reasons why testing is undervalued as a business practice

to explain what differentiates software testers from software developers

1.1 INTRODUCTION

There were numerous spectacular magazine cover stories about computer software
failures during the last decade. Even with these visible lessons in the consequences
of poor software, software failures continue to occur on and off the front page. These
failures cost the US economy an estimated $59.5 billion per year. [1] An estimated
$22.2 billion of the annual losses could be eliminated by software testing appropri-
ately conducted during all the phases of software development. [2]

“Software Testing: Testing Across the Entire Software Development Life Cycle”
presents the fi rst comprehensive treatment of all 21st Century testing activities from
test planning through test completion for every phase of software under development or
software under revision. The authors believe that the cover story business catastrophes can
best be prevented by such a comprehensive approach to software testing. Furthermore,
the authors believe the regular and consistent practice of such a comprehensive testing
approach can raise the industry level of quality that software developers deliver and
customers expect. By using a comprehensive testing approach, software testers can turn
the negative risk of major business loss into a positive competitive edge.

Many excellent textbooks on the market deeply explore software testing for
narrow segments of software development. [3–5] One of the intermediate-level
testing textbooks that the authors recommend as a follow-on to this textbook is Dr.
James A. Whittaker’s Practical Guide to Testing. [6] None of these textbooks deal
with software testing from the perspective of the entire development life cycle, which

•
•
•
•

Chapter 1

Overview of Testing

Software Testing: Testing Across the Entire Software Development Life Cycle, by G. D. Everett and R. McLeod, Jr.
Copyright © 2007 John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 Overview of Testing

includes planning tests, completing tests, and understanding test results during every
phase of software development.

Readers who will benefi t the most from this textbook include software profes-
sionals, business systems analysts, more advanced Computer Science students, and
more advanced Management Information Systems students. The common experi-
ence shared by this diverse group of readers is an appreciation of the technology
challenges in software development. It is this common experience in software devel-
opment that will enable the readers to quickly gain a realistic expectation of testing
benefi ts and acknowledge the boundaries of good software testing.

Although this textbook focuses specifi cally on software testing, fundamental
testing concepts presented in the fi rst section apply to all kinds of testing from auto-
mobiles to wine. This is possible because, to a large extent, testing is a mindset that
anyone can practice on any professional task or pastime.

Computer hardware testers will fi nd about 85% of this textbook directly
applicable to their assignments. They should seek additional reference materials for
information about the remaining 15% of the techniques they need.

Note: The easiest way to determine whether you are doing software or hardware
testing is to examine the recommendation from the test outcome “this system runs
too slowly.” If the recommendation is to “tweak” the software or buy more/faster
hardware, then you are doing software testing. If the recommendation is to reach for
the soldering gun, then you are doing hardware testing.

Typically, a person interested in software testing as a profession will begin to
specialize in certain kinds of testing like functional testing. Whittaker’s textbook
mentioned in the beginning of this section can serve as the logical next step for ob-
taining a deeper understanding of functional testing. The breadth of topics discussed
in this textbook should serve as a reminder to the specialists that there are other
aspects of testing that often impinge upon the success of their specialty.

1.2 OBJECTIVES AND LIMITS OF TESTING

There are many opportunities for testing in both professional and personal life. We
will fi rst explore some examples of non-computer-related testing that show patterns
of thinking and behavior useful for software testing. Then we will examine some of
the boundaries imposed upon testing by fi nancial considerations, time constraints,
and other business limitations.

1.2.1 The Mind of a Tester

Kaner, Bach, and Pettichord describe four different kinds of thinking exhibited by
a good tester: [7]

Technical thinking: the ability to model technology and understand causes
and effects

Creative thinking: the ability to generate ideas and see possibilities

1.

2.

Critical thinking: the ability to evaluate ideas and make inferences

Practical thinking: the ability to put ideas into practice

An example of these kinds of thinking is found in a fable called “The King’s Challenge.”

The King’s Challenge (a fable)

Once upon a time, a mighty king wanted to determine which of his three court wizards
was the most powerful.

So he put the three court wizards in the castle dungeon and declared whoever escaped
from his respective dungeon cell first was the most powerful wizard in all the kingdom.

(Before reading on, decide what you would do.)

The first wizard immediately started chanting mystical poems to open his cell door.
The second wizard immediately started casting small polished stones and bits of

bone on the floor to learn how he might open his cell door.
The third wizard sat down across from his cell door and thought about the situation

for a minute. Then he got up, walked over to the cell door and pulled on the door
handle. The cell door swung open because it was closed but not locked.

Thus, the third wizard escaped his cell first and became known as the most
powerful wizard in all the kingdom.

What kinds of “tester” thinking did the third wizard exercise in solving the king’s puzzle?

Creative thinking: the ability to see the possibility that the door was not locked
in the fi rst place

Practical thinking: the ability to decide to try the simplest solution fi rst

1.2.2 Non-Software Testing at the User Level—Buying
a Car

Next, we will use the automobile industry to fi nd non-computer testing examples
that can easily be related to software testing. Have you ever shopped for a car or
helped someone else shop for a car? What shopping step did you perform fi rst ?

One of the most obvious motivations for testing a car is to determine its quality
or functionality before buying one. When you shop for a car, you typically have some
pretty specifi c objectives in mind that relate either to your transportation needs for
work or to your transportation needs for recreation. Either way, you are the person
who will drive the car, you will be the car “user.”

As a user, you are not interested in performing all possible kinds of tests on the
car because you assume (correctly or incorrectly) that the manufacturer has done
some of those tests for you. The important thing to realize is that you do limit your
testing in some way. We will refer to this limited test as a “test drive,” although some
of the testing does not require driving the car per se. To better understand the testing
limits, we will fi rst examine what you do not test. Then, we will examine what you
do test before you buy a car.

The following examples of test drive objectives are typically not those used for
a personal test drive:

3.

4.

•

•

1.2 Objectives and Limits of Testing 3

4 Chapter 1 Overview of Testing

Objectives of a Test Drive are NOT

 • to break the car
 • to improve the car’s design
You do not try to break the car or any of its components. Rather, you seek guaran-
tees and warranties that imply the car manufacturer has already tried to break it
and proven the car is “unbreakable” under normal driving conditions for x thousand
miles or y years, whichever occurs fi rst. In other words, you expect the car’s reliabil-
ity to have been already tested by others.

You do not typically try to improve the design of the car because you expect the
car manufacturer to have employed a design goal that was reached by the particular
model for which you are shopping. If you identify design changes you would like to
make in the car, the normal reaction is to simply shop for a different model or for
a different manufacturer to fi nd a car with the desired alternative design already
implemented.

A software analogy is to shop for a personal accounting package. For example,
consider shopping for a home fi nancial tool and fi nding Quicken by Intuit and
Money by MicroSoft. As a user, you are not interested in a “test drive” to break the
 software. You expect (correctly or incorrectly) that the software is unbreakable. As
a user, you are not interested in changing the software design. If you do not like the
way Quicken selects accounts using drop-down menus, you consider the way Money
selects accounts.

So what do you test during a car test drive? Typically, it is determined by
your transportation needs (goals). The needs become test drive objectives. Test
objectives are the measurable milestones in testing, which clearly indicate that the
testing activities have defi nitely achieved the desired goals. You translate test drive
objectives into testing approaches that validate whether the car on the dealer’s lot
meets your transportation objectives. Different objectives call for different test drive
 approaches. Next, we will look at examples of test drive objectives.

Objectives of a Test Drive ARE

 • to validate affordability
 • to validate attractiveness
 • to validate comfort
 • to validate usefulness
 • to validate performance
Each of these testing objectives can be validated against the car without trying to
break it or redesign it. Some of these testing objectives can be validated even before
you get in the car and start the engine.

All of these objectives are personal. You are the only one who can prioritize
these objectives. You are the only one who can evaluate the car against these objec-
tives by a test drive, and decide whether to buy the car.

Affordability: down payment, monthly payments, interest rate, and trade-in

Attractiveness: body style, color scheme, body trim, and interior

•
•

Comfort: driver or passenger height, weight, body shape, leg room, ingress or
egress through a front door or back door, and loading or unloading through a
hatchback or rear door.

Usefulness: the number of seats versus the number of passengers, trunk space,
convertible hauling space, on-road versus off-road, or trailer hitch weight
capacity

Performance: gas mileage, minimum grade of gas required, acceleration for
freeway merging, acceleration to beat your neighbor, cornering at low speeds,
cornering at high speeds, and the time or mileage between maintenance service

When you have your testing objectives clear in mind, you choose the testing ap-
proaches that best validate the car against those objectives. The following examples
show some testing approaches and the kinds of testing objectives they can validate.

Testing Approaches Include

 • examining the sticker price and sale contract
 • trying out the radio, the air conditioner, and the lights
 • trying acceleration, stopping, and cornering
These testing approaches are referred to by fairly common terminology in the testing
industry.

Examine � Static testing
(observe, read, review without actually driving the car)

Try out � Functional and structural testing
(work different features of the car without actually driving the car)

Try � Performance testing
(work different features of the car by actually driving the car)

1.2.3 Non-Software Testing at the Developer Level—
Building a Car

Now, we will switch from the user’s, buyer’s, or driver’s perspective to the auto
 manufacturer’s perspective. As with a shopper, it is important for a car builder to
have specifi c testing objectives in mind and discard other testing objectives that are
inappropriate for new car development.

Testing Objectives of a New Car to be Built

 • validate design via scale models.
 • validate operation of prototypes.
 • validate mass assembly plans from prototypes.
The basis for this example is the normal progression of new car development that
starts with written requirements for a new car such as

•

•

•

•

•

•

1.2 Objectives and Limits of Testing 5

6 Chapter 1 Overview of Testing

seats six

carries fi ve suitcases

runs on regular gas

consumes gas at a rate of 25 miles per gallon at highway speeds

has a top speed of 80 miles per hour

These requirements are the nonnegotiable design and manufacturing boundaries
set by groups other than the designers such as marketing teams, Federal regulatory
agencies, or competitors. It is the auto manufacturer’s job to build a new car that does
all these things to the letter of the requirements.

With the new car requirements in hand, the test objectives become more
understandable. It is the job of the auto design tester to validate the current state of
the new car against the car’s requirements. If the new car does not initially meet the
requirements (as few newly designed cars do), then it is the designer not the tester
who must improve the design to meet the requirements.

After design changes are made, it is the tester’s job to revalidate the modifi ed
design against the requirements. This design, test, correct, and retest cycle continues
until the new car design meets the requirements and is completed before the car is
manufactured.

Hopefully, this discussion points out the advantage of requirements for testing
validation at every stage of creating the new car. One of the most pervasive software
testing dilemmas today is the decision of companies to build Internet core-business
applications for the fi rst time without documenting any requirements. Note:
Additional requirements testing approaches can be found in the Chapter 6 of this
textbook.

As with the user test drive, the manufacture tester has many approaches
that can be employed to validate the aspects of a new car against the car’s
requirements.

Testing Approaches Used While Constructing New Cars

 • plan the tests based on requirements and design specifications.
 • examine blueprints and clay models.
 • perform and analyze wind tunnel tests.
 • perform and analyze safety tests.
 • perform and validate prototype features.
 • drive prototype and validate operations.

This example implies an additional layer of documentation necessary for successful
testing. As previously noted, requirements tell the designers what needs to be
 designed. Specifi cations (blueprints or models) are the designers’ interpretation of
requirements as to how the design can be manufactured.

When the specifi cations are validated against the requirements, all the subse-
quent physical car assembly validation can be performed against the specifi cations.

•
•
•
•
•

As with the test drive, the car builder testing approaches can be described by common
testing terminology.

Examine � Static testing
(observe, read, or review without actually building the car)

Perform � Functional and structural testing
(work different features of the car models, mock-ups, and manufactured
subassemblies)

Drive � Performance testing
(work different features of the car in the prototypes)

Because you have probably not built a car, it might be helpful to fi nd examples from
a book that details the car-building steps and the manner in which those steps are
tested during real car development. [8]

Example of static testing

Read the description of wind tunnel testing that showed changing shapes on the
wheel wells would allow the car to achieve 180 mph which became the target
speed for road tests later.

Example of test planning

Read the estimate of the number of prototypes to be built for testing the C5,
around one hundred, compared with the 300 or more expected to be built for
normal car pre-production testing. These prototypes were expected to be used
for all static and dynamic (road) testing prior to the start of assembly line
production. In fact, some of the prototypes were used to plan and calibrate
assembly line production steps.

Read the description of fi nal prototype endurance tests that include driving the
test car on a closed track at full throttle for a full 24 hours, stopping only for gas
and driver changes.

Examples of functional and structural testing

Read the description of heater and air conditioner testing in which drivers
would see how soon the heater made things comfortable in freezing weather.
In summer, one internal environment test would let a Corvette sit under the
desert sun for 3 hours, then the test driver would get in, close the doors, start
the car and air-conditioning to monitor the system until the driver stopped
sweating.

Read the description of body surface durability testing which involved driving
into a car-wash solution of corrosive salt and chemicals that caused the car to
experience the equivalent of a decade of corrosion exposure.

•

•

•

1.2 Objectives and Limits of Testing 7

8 Chapter 1 Overview of Testing

Example of performance testing

Read the description of travel weather testing extremes. Some cars were taken
to frigid climates and forced to operate in sub-zero temperatures. Some cars
were taken to extremely hot climates and forced to operate in 120+ degree
Fahrenheit temperatures.

Read the description of road grade conditions testing that required a driver to
pull up a short on a steep slope, set the parking brake, turn off the engine, wait
a few moments, then restart the engine and back down the slope.

Read the description of road surface conditions testing where drivers raced over
loose gravel to torture the underside of the car and wheel wells.

Read the description of road surface conditions testing that employed long
sequences of speed bumps to shake the car and its parts to an extreme.

The book traces all the steps that the General Motors Corvette development team
took to create the 1997 model C5 Corvette. It is interesting from the manufacturing
standpoint as well as the organizational intrigue standpoint because 1996 was
 supposed to be the last year the Corvette was made and sold. The C5 became the
next-generation Corvette and was brought to market in 1997. The C5 design was
manufactured until 2004. Perhaps you have seen the C5 fl ash by on the highway. It
looks like Figure 1.1.

Figure 1.1 1997 Corvette C5 Coupe

1.2.4 The Four Primary Objectives of Testing

Testing can be applied to a wide range of development projects in a large number
of industries. In contrast to the diversity of testing opportunities, there is a common
 underpinning of objectives. The primary motivation for testing all business
 development projects is the same: to reduce the risk of unplanned development expense
or, worse, the risk of project failure. This development risk can be quantifi ed as some
kind of tangible loss such as that of revenue or customers. Some development risks
are so large that the company is betting the entire business that the development will
be successful. In order to know the size of the risk and the probability of it occurring,
a risk assessment is performed. This risk assessment is a series of structured “what
if” questions that probe the most likely causes of development failure depending on
the type of development and the type of business the development must support. This
risk motivation is divided into four interrelated testing objectives.

Primary objectives of testing

Testing objective 1: Identify the magnitude and sources of development risk
 reducible by testing.

When a company contemplates a new development project, it prepares a business
case that clearly identifi es the expected benefi ts, costs, and risks. If the cost of the
project is not recovered within a reasonable time by the benefi ts or is determined to be
a bad return on investment, the project is deemed unprofi table and is not authorized
to start. No testing is required, unless the business case is tested. If the benefi ts
outweigh the costs and the project is considered a good return on investment, the
benefi ts are then compared to the risks. It is quite likely that the risks are many times
greater than the benefi ts. An additional consideration is the likelihood that the risk
will become a real loss. If the risk is high but the likelihood of the risk occurring is
very small, then the company typically determines that the risk is worth the potential
benefi t of authorizing the project. Again, no testing is required.

If the risk is high and the likelihood of its occurrence is high, the questions “Can this
risk be reduced by testing?” and “If the risk can be reduced, how much can testing reduce
it?” are asked. If the risk factors are well known, quantifi able, and under the control of
the project, it is likely that testing can reduce the probability of the risk occurring. Fully
controlled tests can be planned and completed. If, on the other hand, the risk factors are
not under control of the project or the risk factors are fuzzy (not well known or merely
qualitative), then testing does not have a fair chance to reduce the risk.

Testing objective 2: Perform testing to reduce identifi ed risks.
As we will see in subsequent chapters, test planning includes positive testing

(looking for things that work as required) and negative testing (looking for things that
break). The test planning effort emphasizes the risk areas so that the largest possible
percentage of the test schedule and effort (both positive testing and negative testing)
are dedicated to reducing that risk. Very seldom does testing completely eliminate a
risk because there are always more situations to test than time or resources to complete
the tests. One hundred percent testing is currently an unrealistic business expectation.

1.2 Objectives and Limits of Testing 9

10 Chapter 1 Overview of Testing

Testing objective 3: Know when testing is completed.
Knowing that 100% testing of the development is unachievable, the tester must

apply some kind of prioritization to determine when to stop testing. That determination
should start with the positive test items in the test plan. The tester must complete the
positive testing that validates all the development requirements. Anything less, and
the tester is actually introducing business risk into the development process.

The tester must then complete as much of the risk-targeted testing as possible
relative to a cost and benefi t break-even point. For example, if there is a $10,000
business risk in some aspect of the development, spending $50,000 to reduce that
risk is not a good investment. A rule of thumb is a 10–20% cost to benefi t break-even
point for testing. If the same $10,000 business risk can be thoroughly tested for
$1000–2000, then cost to benefi t is very favorable as a testing investment.

Finally, the tester must complete as many of the negative test items in the plan
as the testing budget allows after the positive testing and risk testing are completed.
Negative testing presents two situations to the test planner:

The fi rst situation is the complement of the positive test items. For example, if
a data fi eld on a screen must accept numeric values from 1 to 999, the values 1,
10, 100, 123, 456, 789, and 999 can be used for positive test completion while
the values �1, 0, and 1000 can be used for negative test completion.

The second situation is the attempt to anticipate novice user actions that are not
specifi ed in the requirements or expected during routine business activities.
Planning these kinds of tests usually takes deep insight into the business and
into the typical ways inexperienced business staff perform routine business
activities. The time and expense necessary to test these “outlier” situations
often are signifi cantly out of proportion to the likelihood of occurrence or to
the magnitude of loss if the problems do occur.

Testing objective 4: Manage testing as a standard project within the development
project.

All too often, testing is treated as a simple skill that anyone can perform without
planning, scheduling, or resources. Because business risk represents real dollar loss,
real dollar testing is required to reduce the risk. Real dollar testing means that per-
sonnel with testing expertise should be formed into a testing team with access to the
management, resources, and schedules necessary to plan and complete the testing.
The testing team, as any other business team, can deliver the testing results on time
and within budget if the team follows good standard project management practices.

The benefi t of this observation is the reassurance that testing does not have to
be hit or miss. It can be planned and completed with the confi dence of any other
professional project to achieve its objectives. The liability of this observation is the
realization that testers are a limited resource. When all available testers are scheduled
for an imminent testing project, further testing projects cannot be scheduled until
you fi nd additional qualifi ed testers.

When you run out of time to test
As with all project schedules, it is possible to run out of testing time. If that situation
arises, what can be done to make the most of the testing that you can complete? When

•

•

approaching the end of the testing schedule, consider doing a quick prioritization of
the outstanding defects. Place most of the testing and correction emphasis on the
most severe defects, the ones that present the highest possible business risk. Then
review the testing plans that you will not have time to complete and assess the risk
that the incomplete testing represents.

Present the development manager with an assessment of the risks that are ex-
pected due to the premature halting of testing. The development manager must then
decide whether to halt the testing to meet project schedules or to seek additional time
and resources to complete the testing as planned.

When you know you can not test it all—positive testing objectives
When you know you can not test it all, review all the completed testing results and
compare them with the application or system functionality that the customer has
deemed most important. The object of this review is to determine the features to test
with your remaining schedule and resources that would make the largest positive
impact on the customer’s function and feature expectations.

When you know you can not test it all—hidden defect testing objectives
When you know you can not test it all, review the completed testing results and
determine if there are trends or clusters of defects that indicate more defects are
likely to be found in the same area. Then request a review of that area of code by
the development team to determine if additional, hidden defects can be corrected
by minor development rework. With minimal additional effort on the part of the
developer and tester, likely trouble spots can be addressed before the last remaining
testing resources are expended.

1.2.5 Development Axiom—Quality Must Be Built In
Because Quality Cannot Be Tested In

Testing can only verify the product or system and its operation against predetermined
criteria (requirements). Testing neither adds nor takes away anything. Quality
is an issue that is determined during the requirements and design phases by the
development project stakeholders or requesting customers. It is not decided at testing
time.

1.3 THE VALUE VERSUS COST OF TESTING

Most business decisions are based on a comparison of the value of doing something
versus the cost of doing something, typically called the return on investment (ROI).
ROI is the calculation of how quickly and how large the “payoff” will be if a project
is fi nanced. If the project will not quickly provide a payoff or the payoff is too small,
then the ROI is considered bad. The business motivation for doing something is to
receive more benefi t than the investment necessary to realize that benefi t.

Testing requires the same ROI decision as any other business project. The im-
plication is that testing should be done only when the test results can show benefi t

1.3 The Value Versus Cost of Testing 11

12 Chapter 1 Overview of Testing

beyond the cost of performing the tests. The following examples demonstrate how
businesses have placed value on testing results.

1.3.1 Non-Software Testing at the Marketing Level—
Auto Safety versus Sales

Auto manufacturers determined a long time ago that thoroughly testing their new car
designs was a safety risk management value that far outweighed the cost of the tests.
As a result, the descriptions of new car development safety testing such as those in
the Corvette story are found in the literature of all major car manufacturers.

There are two possible outcomes of safety testing and the management of the risk
that the tests reveal. The fi rst outcome is the decision whether or not to correct a safety
problem before the fi rst newly built car is manufactured and sold in large numbers. The
input for this decision is the cost of the safety repair versus the perceived risk of the
safety to the public in terms of lawsuits and penalties for the violation of regulations.

The second outcome is the decision whether or not to recall a car already
manufactured and sold to many customers in order to fi x the safety problem. The
inputs for this decision are the presales cost fi gures and risks and the added cost of
retrofi tting safety solutions to cars that are already manufactured and sold.

The Ford Pinto is one example of safety risk versus cost to mitigate the risk
decision. [9] Ford started selling Pintos in 1971. Later that same year, one of the
engineers’ testing scenarios discovered that when the Pinto is rear-ended in a
collision, the gas tank is punctured which causes an explosion and subsequent fi re
that can trap occupants in the fl aming vehicle. Ford assigned a risk probability to
such a rear-end collision and to the subsequent fatalities along with a cost of the risk
that would be incurred if families of the fatalities sued Ford.

From the risk assessment, Ford assigned a $25,000 value to a human life lost in a
car fi re. Then, they estimated the number of car fi res that could be expected from the
Pintos based on a vast number of car sales statistics. From these two numbers, Ford
calculated the break-even settlement cost resulting from faulty gas tank litigation at
approximately $2.20 per car. From the manufacturing assessment, Ford calculated
the cost of retrofi tting every Pinto with a gas tank bracket to be $8.59–11.59 per
car. At the end of 1971, Ford decided that the best ROI decision was to refrain from
retrofi tting the gas tank brackets and pay all faulty gas tank lawsuits.

In nonlife-threatening industries, this risk management strategy might have worked
well. In this situation, the families of the fatalities caused by the exploding gas tanks
foiled Ford’s risk mitigation strategy. Instead of suing Ford individually, the grieving
families fi led a class action suit after the third such fatality. That forced Ford to reveal
its testing discoveries and risk mitigation plan. Instead of the expected $5M–10M in
wrongful death lawsuit settlements, an incensed jury hit Ford with a $128M settlement.

1.3.2 Estimating the Cost of Failure

As we saw in the failure example for the Ford Pinto, there are different kinds of
business risks and different kinds of business losses that can occur from these risks.

It is important for the tester to understand the different kinds of business losses in
order to identify the most appropriate kinds of testing that can mitigate the losses.

Different Kinds of Business Losses

 • revenue or profit
 • testing resources (skills, tools, and equipment)
 • customers
 • litigation
One of the fi rst measures used by a business to put boundaries around testing is the
cost of testing. Regardless of the size of the risk to be reduced by testing, there is a
cost associated with performing the tests. Testing does not contribute directly to the
bottom-line of a business. Spending $5M on more car testing does not result in an
offsetting $5M in increased car sales; therefore, regardless of how well planned and
executed the tests are, testing reduces the total profi t of the fi nal product.

Unfortunately for project budgets, the cost of testing goes beyond the immedi-
ate testing efforts. As the authors of this textbook advocate, good testers need good
training, good tools, and good testing environments. These resources are not one-
time expenses. Most of these costs are ongoing.

The fi nal two kinds of business losses (customer and litigation) typically represent
the highest risk because the cost to the company cannot be forecast as accurately as
tester salaries, tools, and facilities. The loss of customers due to perceived issues of
poor quality or unsafe products can directly affect the bottom-line of the company,
but how many customers will be lost as a result? Part of the answer lies in how
the customer developed the negative perception, that is, by trade journal, magazine,
newspaper, or TV news commentator, to mention a few ways. To complete the loss
cycle, if enough customers develop a negative perception, then large numbers of
individual lawsuits or class action suits might result. The loss from litigation might
be beyond anyone’s ability to imagine, much less to forecast. Finally, at some level
the tester must realize that, for test planning purposes, an unhappy customer can do
a company as much fi nancial damage as an injured customer.

1.3.3 Basili and Boehm’s Rule of Exponentially
Increasing Costs to Correct New Software

Managers and executives of companies that develop computer software have per-
petuated the myth that quality can be tested into a software product at the end of the
development cycle. Quality in this context usually means software that exhibits zero
defects when used by a customer. It is an expedient myth from a business planning
perspective, but it ignores two truths: (1) Testing must be started as early as possible
in the software development process to have the greatest positive impact on the qual-
ity of the product and (2) You can not test in quality … period!

The reluctance of many managers to include testing early in the development
cycle comes from the perception of testing as a “watchdog” or “policeman” ready
to pounce on the tiniest product fl aw and cause expensive delays in making the

1.3 The Value Versus Cost of Testing 13

14 Chapter 1 Overview of Testing

product deadline. Ironically, just the opposite is true. The longer the delay in
discovering defects in the software under development, the more expensive it is to
correct the defect just prior to software release.

After spending a professional career measuring and analyzing the industry-wide
practices of software development, Drs. Basili and Boehm computed some industry
average costs of correcting defects in software under development. Figure 1.2 is an
irrefutable proof of the axiom “test early and test often.” [10A] The numbers fi rst
published in 1996 were revalidated in 2001.

At the beginning of a software development project, there is no code, just design
documentation. If the design documentation is properly tested (called static testing,
see Chapter 6), then the cost of correction is the cost of revising the documentation.
This is typically done by a technical writer at relatively small personnel cost after the
application-knowledgeable development management provides the correction. Basili
fi nds the average cost to revise a document defect is $25.

As software code (considered fair game for static testing) is written and code
execution begins, the cost of a correction rises to $139, primarily due to the expense
of programmer effort. Several kinds of testing can be done; however, the code defect
resolution at this development phase is correcting the code.

As pieces of program code are completed and tested, they are knitted together,
or integrated into larger program modules that begin to perform meaningful business
tasks. The cost of correcting these larger units of code more than doubles to $455
due to the additional time it takes to diagnose the problem in more complex code and
the additional time needed to disassemble the code module into correctable pieces,
correct the code, and then reassemble the code module for retesting.

As the software development team draws closer to the application or product
completion, more program modules are brought together into the fi nal delivery
 package. Capers estimates the cost of defect correction at this stage doubles to $7,136

Figure 1.2 Defect correction cost profile for the software industry

per defect, primarily due to the increased diffi culty in defect diagnosis and correction
for this larger aggregation of code that has been packaged for delivery.

Does it really save money to wait and test the software application or product just
before it goes out the door? Thirty years of industry statistics say a resounding “NO!”

The story gets worse. If the development manager decides to scrimp on testing
or skip testing completely to save a few thousand dollars and “let the customers help
test it,” the manager will experience the largest project defect correction cost. Capers
concludes that it costs on average $14,102 to correct each defect that got past the
development team entirely, and that is detected by the customer who receives the
application or product. Now the cost of defect correction must also include diagnosis
at a distance, package level correction, and the delivery of the correction fi xes to
all customers of the product, not only to the customer who found the defect. If the
customer has already installed the application or product and is using it in mission
critical situations, then the developer’s challenge to fi x the customer’s code is somewhat
like trying to fi x a fl at tire on a car… while the car is going 50 miles per hour.

1.3.4 The Pot of Gold at the End of the Internet Rainbow

Software that provides businesses with a presence on the Internet can represent
billions of dollars in new revenue to a company. This truly staggering business
sales increase is possible because the Internet immediately expands the businesses’
customer base from a local or regional base to a worldwide base. This phenomenal
business sales increase is further possible because the Internet immediately expands
the store hours from an 8-hour business day in a single time zone to 24 hours, 7 days
per week.

1.3.5 The Achilles Heel of e-Business

The lure of a staggering business sales increase causes business executives to drive a
company into its fi rst Internet ventures with a haste born of a king’s ransom promise.
Everything done by the software development team is scrutinized to fi nd ways to cut
corners and save time-to-market, to cash in on the king’s ransom before the competi-
tion does. One of the fi rst software development steps to succumb to the “gold rush”
is the proper documentation of requirements. The mandate is, “Just do something
… now !!!” Testing takes on the appearance of a speed bump as the executives race
toward going live on the Internet.

These business executives either forget or disregard the other side of the equation,
that is, the amount of risk in completing such a venture with a new, untried (from the
company’s perspective) technology. If the company stands to gain billions by the successful
completion of the fi rst Internet venture, the company also stands to lose billions if the fi rst
Internet venture fails. And failed they did, in droves, during 2000 through 2002.

So, two lessons can be learned from what is known as the “dot.bomb” crash.
These lessons can be related surprisingly easily to other instances of companies
rushing into new technology markets. First, you can take too many shortcuts when

1.3 The Value Versus Cost of Testing 15

16 Chapter 1 Overview of Testing

 developing software. Second, you will pay for testing now or later, but the cost of
testing is unavoidable. Testing now is always less expensive than testing later.

1.4 RELATIONSHIP OF TESTING TO THE
SOFTWARE DEVELOPMENT LIFE CYCLE

Software testing and software development are not totally unrelated activities. The
success of both processes is highly interdependent. The purpose of this section is to
examine the interdependency of testing and development. Additionally, both testing
and development processes are dependent on other support management processes
such as requirements management, defect management, change management, and
release management. Some of the ancillary management processes that directly
impact the effectiveness of testing will be discussed further in Chapter 10.

1.4.1 The Evolution of Software Testing as a
Technology Profession

Back in the 1950s and 1960s, software quality was a hit-or-miss proposition. There
were no formal development processes and no formal testing processes. In fact, the
only recorded testing activity during that time was reactive debugging, that is, when
a program halted (frequently), the cause was sought out and corrected on the spot.

One of the more famous industry legends of that era was Captain Grace Murray
Hopper, the fi rst programmer in the Naval computing center. At that time, comput-
ers were composed of vacuum tubes and mechanical switches. One day, Captain
Hopper’s computer program halted abruptly. After several hours of testing the vac-
uum tubes and checking the mechanical switches, she found a large moth smashed
between two contacts of a relay switch, thereby causing the switch fault that stopped
the computer program. She “debugged” the program by removing the moth from the
switch. The moth is still on display in the Naval Museum in Washington, DC.

Captain Hopper rose in military rank and professional stature in the software
community as she led efforts to standardize software languages and development
processes. She was still professionally active and a dynamic speaker in the 1990s.

As more and more software applications were built in the 1960s and 1970s,
their longevity enabled many corrections and refi nements that yielded very stable,
very reliable software. At this juncture, two events occurred that are of interest to
testers. First, customers began to expect software to be highly reliable and stable
over extended periods of time. Software developers, sensing this growing customer
expectation for extremely high-quality software, began to examine the development
processes in place and refi ne them to shorten the incubation time of new software
to attain the same stability and reliability as that found in the older, more mature
systems.

Software developers of the 1970s and 1980s were, for the most part, successful
in capturing their best development practices. These captured practices did provide

a repeatable level of software reliability and stability. Unfortunately for customers,
the level of software reliability and stability provided by these captured corporate
processes was far below the level of software reliability and stability of the earlier
systems. It is informed conjecture that the missing ingredient was a comparable
software testing process. For unexplained reasons, this new, lower quality software
became acceptable as the industry norm for a large number of computer users. [11]

Testing did not become a recognized formal software process until the 1990s
when the Y2K Sword of Damocles threatened all industries that relied on computer
power for their livelihood. Testing was thrust to the forefront of frantic software ac-
tivities as the savior of the 21st century. Billions of dollars were spent mitigating the
possible business disasters caused by the shortcuts programmers had taken for years
when coding dates. These shortcuts would not allow programs to correctly process
dates back and forth across the January 1, 2000 century mark or year 2000 or “Y2K”
in the vernacular. The authors think that it is to the credit of the professional testing
community that January 1, 2000 came and went with a collective computer whimper
of problems compared to what could have happened without intervention. Thousands
of businesses remained whole as the calendar century changed. Although some ex-
ecutives mumbled about the cost of all the Y2K testing, wiser executives recognized
how close to disaster they really came, and how much of the ability to do business in
the 21st century they owed to testers and testing processes.

1.4.2 The Ten Principles of Good Software Testing

Y2K testing did not start in a vacuum. Several groups of computer professionals
realized the need to develop a full repertoire of software testing techniques by the
mid-1980s. By the 1990s, software testing whitepapers, seminars, and journal ar-
ticles began to appear. This implies that the groups of the 1980s were able to gain
practical experience with their testing techniques.

Although Y2K testing did represent a very specifi c kind of defect detection and
correction, a surprising number of more general testing techniques were appropri-
ate for retesting the remediated (Y2K-corrected) programs. Thus, the Y2K testing
frenzy directed a spotlight on the larger issues, processes, and strategies for full
development life cycle software testing. These principles are an amalgam of the
professional testing experience from the 1980s and 1990s and the Y2K experience to
yield the following underlying software testing principles.

Principles of good testing

Testing principle 1: Business risk can be reduced by fi nding defects.
If a good business case has been built for a new software application or product,

the majority of the uncontrolled risks can be limited. Indeed, a large part of a good
business case is the willingness to chance the risk of failure in a certain market
space based on the perceived demand, the competition for the same market, and the
timing of the market relative to current fi nancial indicators. With those limits well
established, the focus is on the best way and most timely way to capture the target

1.4 Relationship of Testing to the Software Development Life Cycle 17

18 Chapter 1 Overview of Testing

market. The cost of the needed software development is forecast, usually with some
precision, if the effort is similar to prior software development efforts. The question
typically missed at this juncture is, “What will it cost if the software does not work as
it is advertised?” The unspoken assumption is that the software will work fl awlessly
this time, even though no prior software development has been fl awless. Therefore,
a strong connection should be made early in the process between looking for defects
and avoiding risk.

Testing principle 2: Positive and negative testing contribute to risk reduction.
Positive testing is simply the verifi cation that the new software works as advertised.

This seems like common sense, but based on the authors’ experience with software
during the past 20 years, new off-the-shelf software continues to have defects right out
of the package that scream, “Nobody tested me!” There is no reason to expect that
new corporate software systems have a better track record. Similarly, negative testing
is simply the verifi cation that customers can not break the software under normal
business situations. This kind of testing is most often omitted from the software
development because it is more time consuming than positive testing; it requires more
tester creativity to perform than positive testing, and it is not overtly risk-driven.

Testing principle 3: Static and execution testing contribute to risk reduction.
The preponderance of software testing conducted today involves executing the pro-

gram code under development. Functional, structural (nonfunctional), and performance
testing must execute program code to complete the tests. A small but growing number
of testing teams and organizations have awakened to the fact that there are a large num-
ber of documents produced during software development that, if reviewed for defects
(static testing), could signifi cantly reduce the number of execution defects before the
code is written. The corollary statement is that the best programmers in the organization
cannot overcome bad requirements or bad specifi cations by writing good code.

Testing principle 4: Automated test tools can contribute to risk reduction.
As software has become orders of magnitude more complex than the COBOL,

PL/1, or FORTRAN systems of yesterday, new types of business risks have arisen.
These new risks are most often found in the performance area where system response
times and high volumes of throughput are critical to business success. This makes
them impossible to test manually. It is true that performance testing tools are quite
expensive. It is also true that the potential risk due to poor performance can exceed the
cost of the performance test tools by several orders of magnitude. As of 2004, some
companies still consider a performance test that involves calling in 200 employees
on a Saturday, feeding them pizza, and asking them to pound on a new application
all at the same time for several hours. As we will discuss in Chapter 9, this kind of
manual testing has severe limitations, including typically an inadequate number of
employees that volunteer to test (What happens if you need to test 3000 users and
have only 200 employees?) and the nonrepeatability of test results because no one
performs a manual test exactly the same way twice. The last 5 years of automated
performance test tool maturity has prompted the strong consideration of testing tools
to replace other kinds of manual testing when conditions are favorable.

Testing principle 5: Make the highest risks the fi rst testing priority.
When faced with limited testing staff, limited testing tools, and limited time to

complete the testing (as most testing projects are), it is important to ensure that there
are suffi cient testing resources to address at least the top business risks. When test-
ing resources cannot cover the top business risks, proceeding with testing anyway
will give the system stakeholders the false expectation that the company will not be
torpedoed and sunk by software defects.

Testing principle 6: Make the most frequent business activities (the 80/20 rule) the
second testing priority.

Once you have the real business killers well within your testing sights, consider
the second priority to be the most frequent business activities. It is common industry
knowledge that 80% of any daily business activity is provided by 20% of the busi-
ness system functions, transactions, or workfl ow. This is known as the 80/20 rule.
So concentrate the testing on the 20% that really drives the business. Because the
scarcity of testing resources continues to be a concern, this approach provides the
most testing “bang for the buck.” The other 80% of the business system typically
represents the exception transactions that are invoked only when the most active
20% cannot solve a problem. An exception to this approach is a business activity
that occurs very seldom, but its testing importance is way beyond its indication by
frequency of use. The classic example of a sleeper business activity is a year-end
closing for a fi nancial system.

Testing principle 7: Statistical analyses of defect arrival patterns and other defect
characteristics are a very effective way to forecast testing completion.

To date, no one has reported the exhaustive testing of every aspect of any rea-
sonably complex business software system. So how does a tester know when the test-
ing is complete? A group of noted statisticians observed a striking parallel between
the defect arrival, or discovery patterns in software under development, and a family
of statistical models called the Weibull distribution. The good news is that the intel-
ligent use of these statistical models enables the tester to predict within 10%–20%
the total number of defects that should be discovered in a software implementation.
These models and their ability to predict human behavior (software development)
have been around for at least 20 years. The bad news is that we have not found any
signifi cantly better ways to develop software during the same 20 years, even though
programming languages have gone through multiple new and powerful paradigms.
Chapter 12 takes a closer look at these models and how they can assist the tester.

Testing principle 8: Test the system the way customers will use it.
This principle seems so intuitive; however, the authors see examples of software

every year that simply were not tested from the customer’s perspective. The fol-
lowing is a case in point. A major retail chain of toy stores implemented a Web site
on the public Internet. Dr. Everett attempted to buy four toys for his grandchildren
on this toy store Internet Web site with catalog numbers in hand. Finding the toys
to purchase was very diffi cult and took over 45 min to achieve. When he fi nally
found all four toys and placed them in his shopping cart, Dr. Everett was unable to

1.4 Relationship of Testing to the Software Development Life Cycle 19

20 Chapter 1 Overview of Testing

complete the purchase. The web page that asked for his delivery address continually
responded with the nastygram, “City required, please provide your city name,” even
though he entered his city name in the appropriate fi eld several different ways, in-
cluding lowercase, uppercase, and abbreviated formats. In frustration, he abandoned
the incomplete purchase. Thinking that he would at least alert the toy store to their
Internet problem, Dr. Everett clicked the Help button. In the fi eld entitled, “Give us
your comments,” he described his roadblock to completing the purchase. When he
clicked the Submit button, a name and address page appeared. Upon completion of
the name and address page, he clicked the next Submit button, only to receive the
“City required, please provide your city name” nastygram again. The application
programmers earned an “A” for city fi eld code reuse and an “F” for not testing the
city fi eld code in the fi rst place.

An address is a pretty basic piece of customer-supplied business information.
The company had a software defect in the customer address code that resulted in the
direct loss of business. The defect was such that the company also could not easily
learn why they were losing business from their customers. It took this company less
than a year to close their Web site because it was unprofi table … perhaps all because
nobody tested a city fi eld code routine.

Testing principle 9: Assume the defects are the result of process and not
 personality.

This principle presents an organizational behavior challenge for the tester. Good
software developers naturally feel a sense of ownership regarding the programming
they produce. Many aspects of the ownership can be positive and can motivate
developers to do their best possible work. At least one aspect of the ownership can
be negative, causing the developer to deny less-than-perfect results. The tester must
fi nd a way to focus on the software defect without seeking to place blame.

Many organizations have started tracking the source of software defects to
verify proper matching of programming task with programmer skills. If a mismatch
exists, the management process responsible for assigning development teams is truly
at fault, not the programmer who is working beyond his or her skill level. If the skills
are well matched to the tasks, the question becomes one of providing processes
that assist the developer in writing error-free code, that is, programming standards,
design walkthroughs, code walkthroughs, and logic-checking software tools. If the
execution phase is the fi rst time anyone else on the development team sees the code,
the development process provided no safety net for the developer before the code
has been executed. In this case, the tester can wear the white hat and, by identifying
defects, ultimately assist the improvement of the development process that helps the
developers write better code.

Testing principle 10: Testing for defects is an investment as well as a cost.
Most executives, directors, and managers tend to view testing only as an expense,

and to ask questions such as “How many people? How many weeks delay? How much
equipment? and How many tools?” Although these cost factors represent a legitimate
part of the overall business picture, so do the tangible benefi ts that can offset the
testing costs, business risk reduction notwithstanding. Some of the benefi ts can be

realized during the current testing projects by the intelligent use of automated testing
tools. In the right situations, automated testing tools can reduce the overall cost of
testing when compared with the same testing done manually. Other benefi ts can be
realized on the next testing projects by the reuse of testing scripts and the reuse of
defect discovery patterns. When testing scripts are written, validated, and executed,
they constitute reusable intelligence for the system being scripted. This “canned”
knowledge can be applied to the next version of the same system or to new systems
with similar functionality. The technique of reusing test scripts on a subsequent version
is called regression testing. Defect discovery patterns, when collected over a number
of development projects, can be used to more accurately forecast the completion of
testing. These same testing histories can also be used to verify that improvements
in development processes really do improve the system being developed. Historical
defect patterns and their usefulness are explored in Chapter 12.

1.4.3 The Game of “Gossip”

Capers Jones, has some revealing information about the source of software defects.
Figure 1.3 shows a plot of his fi ndings on the same software development axis as the
defect correction cost plot. [10B]

The fi ndings tell us that 85% of all software defects are introduced at the earli-
est phase of development before any code has been executed ! If there is no code
execution, then what is the source of this mountain of defects? The answer is the
documentation, that is, the requirements, the specifi cations, the data design, the pro-
cess design, the interface design, the database structure design, the platform design,

Figure 1.3 Percentage of defects. Applied Software Measurement, Capers Jones, 1996

1.4 Relationship of Testing to the Software Development Life Cycle 21

22 Chapter 1 Overview of Testing

and the connectivity design. Intuitively, this seems reasonable. If the system design
documentation is incorrect or incomplete, then no programmer can overcome a bad
design with good code. A dearth of requirements, the most fundamental develop-
ment documentation, is endemic to software development. The typical developer’s
attitude is, “Just tell me what you want and I’ll build it.”

To demonstrate the fallacy of bypassing requirements documentation, recall the
children’s game called “Gossip” in which everyone stands around in a circle, and
the game leader whispers something to the person on his or her right. That person
then whispers the same thing to the person on his or her right, and so on around the
ring. When the whispered message makes it around the ring to the last person, the
person says the message aloud, and the leader compares it to the original message.
Usually, the whole circle of children burst out laughing because the original message
was twisted and turned as it went around the circle. Now replace the children in the
circle with a business manager who wants a new software system or another product,
a director of software development, a software development manager, and say four
senior software developers. The director starts the game by whispering his/her new
software application requirements to the nearest manager in the circle. Would you
bet your company’s future on the outcome of the gossip circle? Many companies
still do.

1.5 TESTER VERSUS DEVELOPER ROLES IN SOFTWARE
TESTING

In the beginning, there was the software developer and he was mighty. He could
write specifi cations, could code programs, could test programs, and could deliver
perfect systems. Testers were nontechnical employees who volunteered to come into
the offi ce on a weekend and pound on a computer keyboard like a trained monkey
in exchange for pizza and beer. The emergence of a massive Y2K catastrophe
threat changed technical perceptions forever. The software developer’s shiny
armor of invincibility was considerably tarnished, whereas the tester’s technical
acumen rose and shone like the sun. It is now very clear that both the developer
and the tester have specifi c, complementary, highly technical roles to fulfi ll in the
development of good software. This section examines some of the issues around
these new roles.

1.5.1 A Brief History of Application Quality
Expectations, or “Paradise Lost”

The fi rst software development and operation environments were closed to the end-
user. These systems were predominantly batch processing, that is, end-users fed the
systems boxes and boxes of daily transactions on punch cards or paper tape and then
received the reports the next day or the next week. What happened in between the
submissions of batches and the production of reports was considered magic.

If problems occurred on either the input or output side during the batch runs, the
end-user never knew it. This closed environment enabled programmers to correct a
defect without the end-user’s knowledge of the nature of the defect, the nature of the
correction, or the amount of time necessary to perform the correction. Therefore,
the end-user perceived the system to be perfect. Continued system maintenance
over a number of years did, in fact, yield software that was incredibly stable and
 defect-free.

As the closed system was opened to the end-user via dumb terminals (data
display only, no process intelligence like personal computers), the end-user saw
how fl awlessly this mature software worked. When newer software systems were
developed, the systems’ immaturity was immediately evident by comparison with
the tried and true older systems. Initially, some developers lost their jobs over
the poor quality of the new software. End-user pressure to return to the quality
of the older systems prompted software development groups to seek and employ
development processes for delivering the same software quality. This software was
not necessarily better, just consistent in quality. Testing was considered “monkey-
work.” The authors of this textbook contend that, because testing was held in such
low esteem, developers with the best processes soon hit a quality brick wall. The
developers’ response to end-user complaints of software defects, instability, and
unreliability became, “We are using the best development processes in the industry.
This is the best we can do.”

After a couple of decades of hearing “This is the best we can do,” end-users
and software customers apparently began to believe it. Still, no professional testing
was done. Several books were published about the phenomenon of end-user quality
expectations converging downward to meet the software developers’ assurance of
best effort. Mark Minasi’s book, The Software Conspiracy, notes the resurging
consumer awareness of the relatively poor quality of the new century software. Mark
documented a growing consumer constituency that started sending the message, “You
can do much better” to the software industry through selective product boycotts. [11]
Smart software developers began to realize that if they were going to survive in the
marketplace, they must team with professional testers to get over the quality brick
wall.

To illustrate the point, ask yourself how many times you must reboot your busi-
ness computer each year. If you reboot more than once or twice a year and have not
complained bitterly to your business software retailer, welcome to the world of lower
software expectations.

1.5.2 The Role of Testing Professionals in Software
Development

Many software professions require very sophisticated technical skills. These pro-
fessions include software developers, database developers, network developers, and
systems administrators. The authors contend that the best software testers must have
advanced skills drawn from all of these software professions. No other software

1.5 Tester Versus Developer Roles in Software Testing 23

24 Chapter 1 Overview of Testing

professional except the software architect has a similar need for such a broad range
of technical skills at such a deep level of understanding. Without this breadth of
technical knowledge and advanced skills, a senior-level software tester could not
design, much less execute, the complex testing plans necessary at system completion
time for e-business applications.

What does the accomplished software tester do with this broad technical
knowledge base? The software tester’s singular role is that of a verifi er. The tes-
ter takes an objective look at the software in progress that is independent of the
authors of development documents and of program code and determines through
repeated testing whether the software matches its requirements and specifi ca-
tions. The tester is expected to tell the development team which requirements and
specifi cations are met and which requirements and specifi cations are not met. If
the test results are descriptive enough to provide clues to the sources of defects,
the tester then adds value to the developer’s effort to diagnose these defects; how-
ever, the full diagnosis and correction of defects remain solely the developer’s
responsibility.

What else does a tester do besides validating software? The professional answer
is plan, plan, and plan. Testing activities are always short of time, staff, equipment,
or all three; therefore, the expert tester must identify the critical areas of software to
be tested and the most effi cient ways to complete that testing. As with all technical
projects, these kinds of decisions must be made and cast into a plan and schedule
for testing. Then, the tester must manage the plan and schedule to complete the
testing.

1.5.3 The Role of Test Tool Experts in Software Development

Mature automated test tools began to arise in the marketplace around 1995. The good
news is that these tools enable software testers to do testing more effectively than
by using any manual procedure. In many cases, these tools have enabled software
testers to do testing that is impossible to perform manually. Although manual testing
still has a place in the software tester’s folio of approaches, the use of automated test
tools has become the primary strategy.

With over 300 automated test tools in the market, a new testing role emerged
that is responsible for identifying the right tool for the right testing, installing
the tool, and ensuring that the tool is operating correctly for the test team. The
fi rst testing professionals to fi ll this role tended to specialize in certain kinds of
tools from just one or two vendors. As the tool suites grew and matured, the test
tool experts found it necessary to broaden their specialty across more tool types
and tool vendors. The testing paradigms behind these test tools is examined in
Chapter 11.

The impetus behind test tool experts expanding their tool expertise is the
software testing community’s recognition that no single test tool can support all
the different kinds of tests that are necessary across the entire development life
cycle.

1.5.4 Who Is on the Test Team?

As with all other software professions, the software testing profession has entry-
level skills, intermediate-level skills, and advanced skills. A good test team has a
mix of skill levels represented by its members. This enables the more experienced
testers to be responsible for the test planning, scheduling, and analysis of test re-
sults. The intermediate-level testers can work within the test plan to create the
test scenarios, cases, and scripts that follow the plan. Then, with the advice and
mentoring of the senior testers, a mix of intermediate-level and entry-level testers
executes the tests.

1.6 PUTTING SOFTWARE TESTING
IN PERSPECTIVE

Billions of dollars in business are lost annually because companies and software
vendors fail to adequately test their software systems and products. These kinds of
business losses are expected to continue as long as testing is considered just another
checkmark on a “To-do” list or a task given to employees who are on the bench and
have nothing else to do.

Testing is, in fact, a professional role that requires technical skills and a mindset
that encourages the early discovery of the problems that represent real business
risks. Although this textbook covers software testing in detail, many of the testing
concepts and techniques it presents can be applied to other engineering disciplines
and professions, as well as many personal pursuits.

1.7 SUMMARY

There are many opportunities for testing in both professional and personal life. We
fi rst explored some examples of non-computer-related testing that show patterns of
thinking and behavior useful for software testing. Then, we examined some of the
boundaries imposed upon testing by fi nancial considerations, time considerations,
and other business limitations.

1.7.1 The Four Primary Objectives of Testing

Testing can be applied to a wide range of development projects in a large number
of industries. In contrast to the diversity of testing scenarios and uses is a common
underpinning of objectives. The primary motivation for testing all business devel-
opment projects is the same: to reduce the risk of unplanned expense or, worse,
the risk of failure. This primary motivation is divided into four interrelated testing
objectives.

1.7 Summary 25

26 Chapter 1 Overview of Testing

Identify the magnitude and sources of development risk reducible by
testing

Perform testing to reduce identifi ed risk

Know when testing is completed

Manage testing as a standard project within the development project

1.7.2 Development Axiom—Quality Must Be Built In
Because Quality Cannot Be Tested In

Testing is concerned with what is in the product or system and what is missing.
Testing can only verify the product or system and its operation against predetermined
criteria. Testing neither adds nor takes away anything. Quality is an issue that is
decided upon during the requirements and design phases by the development project
owners or requesting customers. Quality is not decided at testing time.

1.7.3 The Evolution of Software Testing as a
Technology Profession

Back in the 1950s and 1960s, software quality was a hit-or-miss proposition. There
were no formal development processes and no formal testing processes. Software
developers of the 1970s and 1980s were, for the most part, successful in capturing
their best development practices. This capture provided a repeatable level of soft-
ware reliability and stability. Unfortunately for customers, the level of software reli-
ability and stability provided by these repeatable corporate processes was far below
the level of software reliability and stability of the earlier systems. It is an informed
conjecture that the missing ingredient was a comparable software testing process.
For unexplained reasons, this new, lower quality software became acceptable as the
norm to a large number of computer users.

Testing did not become a recognized formal software process until the 1990s when
the Y2K Sword of Damocles threatened all industries that somehow relied on computer
power for their livelihood. Then, testing was thrust to the forefront of software activities
as the savior of the 21st century. Billions of dollars were spent mitigating the possible
business disasters caused by the shortcuts programmers had taken when coding dates.

1.7.4 The Ten Principles of Good Software Testing

Y2K testing did not start in a vacuum. Several groups of computer professionals
realized the need to develop a full repertoire of software testing techniques by the
mid-1980s. By the 1990s, software testing whitepapers, seminars, and journal ar-
ticles began to appear. This indicates that the groups of the 1980s were able to gain
practical experience with their testing techniques.

1.

2.

3.

4.

Although Y2K testing did represent a very specifi c kind of defect detection and
correction, a surprising number of more general testing techniques were appropri-
ate for retesting the remediated (Y2K-corrected) programs. Thus, the Y2K testing
frenzy directed a spotlight on the larger issues, processes, and strategies for full
development life cycle software testing. These principles are an amalgam of the
professional testing experience from the 1980s and 1990s and the Y2K experience to
yield the following underlying software testing principles.

Principles of good testing

Business risk can be reduced by fi nding defects.

Positive and negative testing contribute to risk reduction.

Static and execution testing contribute to risk reduction.

Automated test tools can substantially contribute to risk reduction.

Make the highest risks the fi rst testing priority.

Make the most frequent business activities (the 80/20 rule) the second
testing priority.

Statistical analyses of defect arrival patterns and other defect charac-
teristics are a very effective way to forecast testing completion.

Test the system the way customers will use it.

Assume that defects are the result of process and not personality.

Testing for defects is an investment as well as a cost.

KEY TERMS

KEY CONCEPTS

Testing is a technical profession with a signifi cantly different mindset, and
with signifi cantly different concepts and skills from those of the technical
developer profession.

All engineering projects introduce defects into the new system or product.
Making a business decision not to fi nd the defects, by not testing, will not
make them go away.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

•

•

Key Concepts 27

Test limits
Testing objectives
Multiple testing

approaches

Testing completion
Verifier
Requirements
Development risk

Risk assessment
Return on investment

(ROI)
80/20 rule

28 Chapter 1 Overview of Testing

Testing should start at the beginning of a development project because every-
thing produced by the project is an excellent test candidate.

To be most effective, testing plans and activities should focus on known busi-
ness risk.

No business testing project can ever exhaustively test for every possible de-
fect in a product or service because of fi nite limitations in funds, skills, and
resources.

The real challenge for experienced testers is to identify what can go untested
with the least impact to the business.

•

•

•

•

