
Computer Science Reconsidered: The Invocation Model of Process Expression, by Karl M. Fant
Copyright © 2007 John Wiley & Sons, Inc.

1
A CRITICAL REVIEW

OF THE NOTION
OF THE ALGORITHM IN

COMPUTER SCIENCE

Computer science inherited its present conceptual foundations from a branch
of pure mathematics that, historically, had been exploring the fundamental
nature of mathematical computation since before the turn of the century. It
is argued that the conceptual concerns of computer science are different from
the conceptual concerns of mathematics, and that this mathematical legacy,
in particular the notion of the algorithm, has been largely ineffective as a
paradigm for computer science. It is fi rst necessary to understand the role of
the algorithm in mathematics.

1.1 THE NOTION OF THE ALGORITHM IN MATHEMATICS

The notion of the algorithm is fundamental to mathematics. To understand
the signifi cance of the algorithm to mathematics, it is necessary to under-
stand the history of its development. The term derives from the name of an
important ninth-century Persian mathematician, Mohammed ibn Musa al-
Khowarizmi, who in about ad 825 wrote a small book describing how to cal-
culate with a new ten-symbol, positional value number system developed in
India. It described simple procedures for carrying out addition, subtraction,

© ACM, 1993. This chapter is a minor revision of my work: K. Fant, “A Critical review of the
notion of the algorithm in computer science,” Proceedings of the 21st Annual Computer Science
Conference, February 1993, pp. 1–6.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 A CRITICAL REVIEW OF THE NOTION OF THE ALGORITHM IN COMPUTER SCIENCE

multiplication, and division in the new system. Around 1120 this small book
was translated into Latin under the title Liber Algorismi de numero Indorum
(The Book of al-Khowarizmi on the Hindu number system). This translation
was widely distributed and introduced the Hindu-Arabic number system to
Europe. By the mid-thirteenth century al-Khowarizmi was largely forgotten,
and the term algorism (Latin for al-Kowarizmi’s book) came generally to refer
to computation in the new number system. At this time an algorism was any
book related to the subject. The algorisms were the four arithmetic operations.
An algorist was one who calculated in the new number system as opposed
to an abacist who used an abacus. By 1500 the algorists had prevailed and
the abacists had largely disappeared from Europe.

These algorisms were strictly mechanical procedures to manipulate symbols.
They could be carried out by an ignorant person mechanically following
simple rules, with no understanding of the theory of operation, requiring no
cleverness and resulting in a correct answer. The same procedures are taught
to grade school children today. Computing with Roman numerals, on the
other hand, required considerable skill and ingenuity. There also existed at
this time other examples of mechanical formulation such as Euclid’s method
to fi nd the greatest common denominator of two numbers. The fact that dumb
mechanical manipulations could produce signifi cant and subtle computational
results fascinated the medieval mathematicians. They wondered if it was pos-
sible that the whole of mathematics or even all of human knowledge could
be mechanically formulated and calculated with simple rules of symbol
manipulation.

Gottfried Leibniz attempted just such a formulation in the 1660s with his
calculus ratiocinator or characteristica universalis. The object was to “enable
the truths of any science, when formulated in the universal language, to be
computed by arithmetical operations” [1]. Arithmetical here refers to the
algorisms. Insight, ingenuity, and imagination would no longer be required in
mathematics or science. Leibniz did not succeed, and the idea lay fallow for
two hundred years.

During this period Euclidian geometry, with its axioms and rules of reason-
ing from the simple to the complex, continued to reign as the fundamental
paradigm of mathematics. In the 1680s, after the invention of analytical geom-
etry, and after he had made new discoveries with his own invention of his
fl uxional calculus, Sir Issac Newton was careful to cast all the mathematical
demonstrations in his presentation of these new discoveries in Philosophiae
naturalis principia mathematica in classical Euclidian geometry. A symbolic
analytical presentation would neither have been understood nor accepted by
his contemporaries. Geometry, which deals with relationships among points,
lines, and surfaces, was intuitive, obvious, and real. Algebra, which deals with
arbitrary symbols related by arbitrary rules, did not relate to any specifi c
reality. While algebra was practical and useful, it was not considered fi t terri-
tory for fundamental theoretical consideration. Late into the nineteenth-
century symbolic computation was distrusted and discounted. This attitude is

exemplifi ed by a nineteenth-century astronomer who remarked that he had
not the “smallest confi dence in any result which is essentially obtained by the
use of imaginary symbols” [2].

The dream of formalizing thought in terms of mechanical manipulation of
symbols reemerged with the symbolic logic of George Boole presented in his
book Laws of Thought in 1854. Boole argued persuasively that logic should
be a part of mathematics as opposed to its traditional role as a part of philoso-
phy. Gottlob Frege went several steps further and suggested that not only
should logic be a part of mathematics but that mathematics should be founded
on logic, and he began a program to derive all of mathematics in terms of
logic.

Meanwhile the paradigmatic edifi ce of Euclidian geometry was beginning
to show cracks with the discovery of non-Euclidian geometries that were
internally consistent and therefore were just as valid mathematical systems as
Euclidian geometry. Symbolic computation achieved paradigmatic preemi-
nence with the publication in 1899 of David Hilbert’s characterization of
Euclidian geometry in terms of algebra, Grundlagen der Geometrie (Founda-
tions of Geometry), which emphasized the undefi ned nature of the axioms.
“One must be able to say at all times—instead of points, straight lines and
planes—tables, chairs and beer mugs” [3]. Euclidian geometry was after all
just one of many possible axiomatic symbolic computation systems.

As the twentieth century dawned, symbolic computation had been estab-
lished as the arena of mathematical theorizing, and logical axiomatic systems
provided the rules of the game. The mathematicians were hot on the trail of
settling the game once and for all. They seemed to be on the verge of fulfi lling
Leibniz’s dream of the universal symbolic language that would proffer abso-
lute certainty and truth. The quest was led by Hilbert who outlined a program
to settle once and for all the foundational issues of mathematics. The program
focused on the resolution of three questions:

1. Was mathematics complete in the sense that every statement could be
proved or disproved?

2. Was mathematics consistent in the sense that no statement could be
proved both true and false?

3. Was mathematics decidable in the sense that there existed a defi nite
method to determine the truth or falsity of any mathematical statement?
[4]

The defi nite method of decidability in question 3 was the modern incarnation
of Leibniz’s arithmetical operations on his universal symbolic language.
Mechanical symbol manipulation reemerges at the very foundations of theo-
retical mathematics.

Hilbert fi rmly believed that the answer to all three questions was yes, and
the program was simply one of tidying up loose ends. Hilbert was convinced
that an unsolvable mathematical problem did not exist, “every mathematical

THE NOTION OF THE ALGORITHM IN MATHEMATICS 3

4 A CRITICAL REVIEW OF THE NOTION OF THE ALGORITHM IN COMPUTER SCIENCE

problem must necessarily be susceptible to an exact statement, either in the
form of an actual answer to the question asked, or by the proof of the impos-
sibility of its solution” [5].

In 1931 Kurt Godel demonstrated that any axiom system expressive enough
to contain arithmetic could not be both complete and consistent in the terms
of the axiom system. This result was the death knell for Hilbert’s program.
The answers to the fi rst two questions were no. There remained the question
of decidability, the Entscheidungsproblem, as Hilbert named it: the defi nite
method of solving a mathematical problem. After Godel proved that unsolv-
able problems (unprovable theorems) could exist in an axiom system, the
decidability problem became a search for a defi nite method to determine if a
given problem was solvable or unsolvable in a given axiom system.

The decidability problem appealed directly to the notion of a defi nite
method, which was also referred to as an effective procedure or a mechanical
procedure. An iterative step-by-step procedure had always been fundamental
to mathematics but had been intuitively accepted and had not been a subject
of investigation itself. One knows an effective procedure when one sees one.
But to demonstrate something about the nature of effective procedures there
must be a precise characterization of what constitutes an effective procedure.

Hilbert made it clear what constituted an acceptable mathematical solution
in his 1900 paper posing 23 problems that he considered important to the
future of mathematics:

. . . that it shall be possible to establish the correctness of a solution by means of
a fi nite number of steps based upon a fi nite number of hypotheses which are
implied in the statement of the problem and which must always be exactly
formulated. [5]

Satisfactorily characterizing this notion of effective or mechanical proce-
dure became an important foundational issue in mathematics and several
mathematicians applied themselves to the problem. Among them were Jacques
Herbrand and Godel, Emil Post, Alan Turing, Alonzo Church, and A. A.
Markov. Each had a different characterization of effective computability, but
all were shown later to be logically equivalent. In 1936 both Church with his
lambda calculus and Turing with his machine proved that no effective proce-
dure existed to determine the provability or unprovability of a given mathe-
matical problem. The answer to Hilberts third question was also no. Leibniz’s
calculus ratiocinator with its arithmetical resolution of all questions proved to
be not possible. Ingenuity, insight, and imagination could not be done away
with in mathematics after all.

Despite the failure of Hilbert’s program, questions of effective comput-
ability have continued to be a fundamental concern of mathematicians.
Through the 1940s and 1950s Markov tried to consolidate all the work of the
others on effective computability and introduced the term algorithm with its
modern meaning as a name for his own theory of effectively computable func-

tions. In the translated fi rst sentence of his 1954 book Teoriya Algorifmov
(Theory of Algorithms) he states:

In mathematics, “algorithm” is commonly understood to be an exact prescrip-
tion, defi ning a computational process, leading from various initial data to the
desired result. [6]

The term algorithm was not, apparently, a commonly used mathematical
term in America or Europe before Markov, a Russian, introduced it. None
of the other investigators, Herbrand and Godel, Post, Turing, or Church
used the term. The term, however, caught on very quickly in the computing
community. In 1958 a new programming language was named ALGOL
(ALGOrithmic Language). In 1960 a new department of the Communications
of the ACM was introduced called “Algorithms” [7].

Historically, the algorithm was developed to investigate the foundations of
mathematics, and it has evolved in relation to the needs of mathematicians.
The notion of the algorithm in mathematics is a limiting defi nition of what
constitutes an acceptable solution to a mathematical problem. It establishes
the ground rules of mathematics.

1.2 THE ADVENT OF COMPUTERS

The electronic digital computer emerged in 1945. It computed one step at a
time, was by practical necessity limited to a fi nite number of steps, and was
limited to a fi nite number of exactly formulated hypotheses (instructions). The
electronic digital computer was an incarnation of the mathematician’s effec-
tive solution procedure. The mathematicians, being intimately involved with
the creation of the computer, having studied mechanical computation for half
a century, and having in hand an explicitly mechanical model of computation
in the Turing machine, quite reasonably became the de facto theorists for this
new phenomenon. One of these mathematicians, John Von Neumann, was a
student of Hilbert’s and a signifi cant contributor to his program to resolve the
foundations of mathematics. Another was of course Turing himself. The
related mathematical concepts along with the notion of the algorithm were
transplanted into the fl edgling science of computers.

The notion of the algorithm has become accepted as a fundamental para-
digm of computer science.

The notion of the algorithm is basic to all computer programming. . . . [8]

One of the concepts most central to computer science is that of an algorithm.
[9]

To appreciate the role of the algorithm in computer science, it is necessary
fi rst to characterize computer science.

THE ADVENT OF COMPUTERS 5

6 A CRITICAL REVIEW OF THE NOTION OF THE ALGORITHM IN COMPUTER SCIENCE

1.3 COMPUTER SCIENCE

Many attempts have been made to defi ne computer science [10–14]. All
these defi nitions view computer science as a heterogeneous group of
disciplines related to the creation, use, and study of computers. A typical
defi nition simply offers a list of included topics: computability, complexity,
algorithm theory, automata theory, programming, high-level languages,
machine languages, architecture, circuit design, switching theory, system
organization, numerical mathematics, artifi ial intelligence, other applications,
and so forth. The most recent and comprehensive survey of the attempts to
defi ne computer science is an article in the Annals of the History of Computing
[15].

Computer science appears to consist of a quite disparate collection of dis-
ciplines, but there is a common thread of conceptual focus running through
the various disciplines of computer science. All of the disciplines that are
included under the heading of computer science in any list are concerned in
one way or another with the creation of or actualization of process expres-
sions. A logic circuit is an expression of a logical process. An architecture
is an expression of a continuously acting process to interpret symbolically
expressed processes. A program is a symbolic expression of a process. A
programming language is an environment within which to create symbolic
process expressions. A compiler is an expression of a process that translates
between symbolic process expressions in different languages. An operating
system is an expression of a process that manages the interpretation of
other process expressions. Any application is an expression of the application
process.

Computer science can be viewed as primarily concerned with questions
about the expression of processes and the actualization of those expressions.
What are all the possible ways a process can be expressed? Are some expres-
sions superior in any sense to other expressions? What are all the possible
ways of actualizing an expression. Are there common conceptual elements
underlying all expressions? What is the best programming language? How can
the best program be formulated? How can the best architecture be built?
What is the best implementation environment? These are the questions that
occupy computer scientists, and they all revolve around the nature of process
expression.

Mathematicians, on the other hand, are primarily interested in exploring
the behavior of specifi c processes or classes of process. They bypass general
problems of expression by appealing to a very formal and minimalized model
of expression, the algorithm as characterized by the Turing machine. They are
only interested in whether an expression is possible and whether it conforms
to certain specifi c properties. The mathematicians consider the process as
independent of its expression. A process may be expressed in any convenient
language and executed on any convenient machine including a human with a
pencil.

Mathematics is primarily concerned with the nature of the behavior of
process independent of how that process is expressed:

 the nature of a process is considered independent of its expression.
Computer science is primarily concerned with the nature of the expression

of processes regardless of what particular process might be expressed:
 the nature of expression is considered independent of its process.

There is much overlap between the interests of computer science and math-
ematics, but the core concern with the nature of process expression itself is
the unique conceptual focus that distinguishes computer science from the
other sciences and from mathematics. Computer science is the science of
process expression.

1.4 THE ALGORITHM IN COMPUTER SCIENCE

Introductory texts on computer science often begin with a chapter on the
notion of the algorithm declaring it the fundamental paradigm of computer
science. Conspicuously absent from these introductory chapters is discussion
of how the notion contributes to the resolution of signifi cant problems of
computer science. In the remaining chapters of these texts there is typically
no further appeal to the notion of the algorithm and rarely even a usage of
the word itself. The notion is never or very rarely appealed to in texts on logic
design, computer architecture, operating systems, programming, software
engineering, programming languages, compilers, data structures, and data
base systems.

The notion of the algorithm is typically defi ned by simply presenting a list
of properties that an expression must posses to qualify as an algorithm. The
following defi nition of an algorithm is typical:

1. An algorithm must be a step-by-step sequence of operations.
2. Each operation must be precisely defi ned.
3. An algorithm must terminate in a fi nite number of steps.
4. An algorithm must effectively yield a correct solution.
5. An algorithm must be deterministic in that, given the same input, it will

always yield the same solution.

This is pretty much what Hilbert proposed in 1900, and it is easy to see how
this list of restrictive characteristics serves to defi ne what is acceptable as a
mathematical solution. But what conceptual service does the notion of the
algorithm perform for computer science?

The notion of the algorithm demarcates all expressions into algorithm and
nonalgorithm, but what purpose does it serve to know that one program is an
acceptable mathematical solution and another is not? Is the expression of one

THE ALGORITHM IN COMPUTER SCIENCE 7

8 A CRITICAL REVIEW OF THE NOTION OF THE ALGORITHM IN COMPUTER SCIENCE

fundamentally different from the expression of the other? Is one interpreted
differently from the other? Are algorithms fi rst-class citizens in some sense
and nonalgorithms second-class citizens? Does determining whether or not a
given expression is an acceptable mathematical solution aid in building better
computer systems or in writing better programs?

Important process expressions do not qualify as algorithms. A logic circuit
is not a sequence of operations. An operating system is not supposed to ter-
minate, nor does it yield a singular solution. An operating system cannot be
deterministic because it must relate to uncoordinated inputs from the outside
world. Any program utilizing random input to carry out its process, such as a
Monte Carlo simulation or fuzzy logic simulation, is not an algorithm. No
program with a bug can be an algorithm, and it is generally accepted that no
signifi cant program can be demonstrated to be bug free. Programs and com-
puters that utilize concurrency where many operations are carried out simul-
taneously cannot be considered algorithms. What does it mean when a
sequential program qualifying as an algorithm is parallelized by a vectorizing
compiler, and no longer qualifi es as an algorithm.

While a digital computer appears to be an algorithmic machine, It is
constructed of nonalgorithmic parts (logic circuits) and a great deal of what
it actually does is nonalgorithmic. These diffi culties with the notion of the
algorithm have not gone unnoticed, and a variety of piecemeal amendments,
revisions, and redefi nitions have been proposed:

. . . there is an extension of the notion of algorithm (called nondeterministic
algorithm). [11]

Any computer program is at least a semi-algorithm and any program that always
halts is an algorithm. [16]

There is another word for algorithm which obeys all of the above properties
except termination and that is computational procedure. [17]

An algorithm A is a probabilistically good algorithm if the algorithm “almost
always” generates either an exact solution or a solution with a value that is
“exceedingly close” to the value of the optimal solution. [18]

The procedure becomes an algorithm if the Turing machine always halts. [19]

By admitting probabilistic procedures in algorithms. . . . [20]

. . . if, after executing some step, the control logic shifts to another step of the
algorithm as dictated by a random device (for example, coin tossing), we call the
algorithm random algorithm. [21]

An algorithm which is based on such convergence tests is called an infi nite
algorithm. [21]

Algorithms that are not direct are called indirect. [22]

We drop the requirement that the algorithm stop and consider infi nite
algorithms. [22]

These authors have sensed an inappropriate conceptual discrimination or
simply an incompleteness and proposed a remedy. Programs that do not ter-
minate, are not deterministic, and do not give specifi c solutions can now be
“included.” They are no longer simply nonalgorithmic, they now have positive
labels, but simply assigning labels to nonalgorithms misses the point. The point
is that algorithm–nonalgorithm is not a conceptual distinction that contributes
to an understanding of process expression.

As a paradigm of process expression, the notion of the algorithm is decid-
edly defi cient. It offers no suggestion as to how an operation might be precisely
defi ned. Nor does it suggest how a sequence should be determined. Data are
not even mentioned. The defi nition simply states that an algorithm must
consist of a sequence of precisely defi ned operations. This unsupported imper-
ative is at once an admission of expressional incompleteness and a refusal to
be complete. The other algorithmic properties of termination, correctness, and
determination, while important to issues of computation, are quite irrelevant
to issues of process expression.

The notion of the algorithm simply does not provide conceptual enlighten-
ment for the questions that most computer scientists are concerned with.

1.5 CONCLUSION

What is essentially a discipline of pure mathematics has come to be called “the
theory of computer science,” and the notion of the algorithm has been decreed
to be a fundamental paradigm of computer science. The mathematical per-
spective, however, is the wrong point of view. It is asking the wrong questions.
Mathematicians and computer scientists are pursuing fundamentally different
aims, and the mathematician’s tools are not as appropriate as was once sup-
posed to the questions of the computer scientist. The primary questions of
computer science are not of computational possibilities but of expressional
possibilities. Computer science does not need a theory of computation; it
needs a comprehensive theory of process expression.

REFERENCES

 1. C. Lejewski. History of logic. In Encyclopedia Britannica Macropaedia, Vol. 11.
Chicago: William Benton, 1974, pp. 56–72.

 2. M. M. Garland. Cambridge Before Darwin. Cambridge: Cambridge University,
1980, p. 36.

 3. H. G. Forder and F. A. Valentine. Euclidian geometry. In Encyclopaedia Britan-
nica Macropedia, Vol. 7. Chicago: William Benton, 1974, pp. 1099–1112.

 4. A. Hodges. Alan Turing the Enigma. New York: Simon and Schuster, 1983, p. 91.
 5. D. Hilbert. Mathematical problems. In Mathematics People, Problems, Results,

Vol. 1, ed. by D. M. Campbell and J. C. Higgins. Belmont, CA: Wadsworth Inter-
national, 1984, p. 275.

REFERENCES 9

10 A CRITICAL REVIEW OF THE NOTION OF THE ALGORITHM IN COMPUTER SCIENCE

 6. A. A. Markov. Theory of Algorithms, trans. by J. J. Schorr-Kon. Jerusalem: Keter
Press, 1971, p. 1.

 7. J. H. Wegstein. Algorithms. In Communications of the ACM 3 (February 1960),
p. 73.

 8. D. E. Knuth. Fundamental Algorithms. Reading, MA: Addison-Wesley, 1969,
p. 1.

 9. Z. W. Pylyshyn. Theoretical ideas: Algorithms automata and cybernetics. In Per-
spectives on the Computer Revolution, ed. by Zenon W. Pylyshyn. Englewood
Cliffs, NJ: Prentice-Hall, 1970. pp. 60–68.

10. S. Amarel. Computer science. In Encyclopedia of Computer Science (1st ed. 1976).
New York: Petrocelli/Carter, 1976, pp. 314–318.

11. M. S. Carberry, H. M. Khalil, J. F. Leathrum, and L. S. Levy. Foundations of
Computer Science, Potomac, MD: Computer Science Press, 1979, pp. 2–4, 16.

12. J. M. Brady. The Theory of Computer Science. London: Chapman and Hall, 1977,
pp. 8–9.

13. A. Ralston. Introduction to Programming and Computer Science. New York:
McGraw-Hill, 1971, pp. 1–5.

14. I. Pohl and A. Shaw. The Nature of Computation. Rockville, MD: Computer
Science Press, 1981, pp. 3–7.

15. P. Ceruzzi. Electronics technology and computer science, 1940–1975: A coevolu-
tion. Annals of the History of Computing 10 (4, 1989): 265–270.

16. R. R. Korfhage. Algorithm. In Encyclopedia of Computer Science (1st ed. 1976).
New York: Petrocelli/Carter, 1976, p. 49.

17. E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Potomac, MD:
Computer Science Press, 1979, pp. 1–2.

18. B. W. Wah and C. V. Ramamoorthy. Theory of algorithms and computation com-
plexity with applications to software design. In Handbook of Software Engineering,
ed. by C. R. Vick and C. V. Ramamoorthy. New York: Van Nostrand Reinhold,
1984, p. 88.

19. K. Maly and A. R. Hanson. Fundamentals of the Computing Sciences. Englewood
Cliffs, NJ: Prentice-Hall, 1978, p. 41.

20. F. S. Beckman. Mathematical Foundations of Programming. Reading, MA:
Addison-Wesley, 1980, p. 398.

21. E. V. Krishnamurthy. Introductory Theory of Computer Science. New York:
Springer-Verlag, 1983, p. 3.

22. J. K. Rice and J. R. Rice. Introduction to Computer Science. New York: Holt,
Rinehart and Winston, 1969, pp. 47, 49.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

