Planning a Team
System Deployment

It can’t be stated enough that planning is an essential part of any process. Without planning, you
may unnecessarily complicate the deployment process or, worse yet, miscalculate what your needs
are and have to reinstall the product. (As a consultant who has deployed Team System hundreds
of times, I speak from experience.)

Deployment does not necessarily mean just the installation of the product. Once Team System has
been installed, you must configure it correctly. (For example, you must set up the proper permis-
sions, change the process template to match the target environment, and handle other details
including source code migration and extension or customization of tools to make them interact
with Team Foundation Server). If you are a consultant, you'll often get client requests to install
Team System in, say, two days. Team Foundation Server takes at the very least a day to correctly
install and configure in an enterprise environment. Working on a two-day engagement to deploy
Team System is the equivalent of asking a home builder to build a house from scratch in two
weeks! It’s best to set the proper expectations with your clients, work out a deployment plan, and
work out realistic timeframes.

In this chapter, you learn the major components of Team System and how to plan your deploy-
ment based on your capacity and needs. The final part of the chapter discusses strategies to help
you migrate your existing tools and data to Team System.

Team Foundation Server Overview

One of the big challenges of working on a software development team is getting all the members of
the team to collaborate seamlessly. There are always so-called silos that are created for each role on a
team. For example, developers like to live in Visual Studio and can easily relate to development talk
and issues, whereas most project managers have no Visual Studio experience whatsoever; they are
used to working with Excel spreadsheets working up use cases, scenarios, and project milestones.

Chapter 1

Architects map out application designs in Visio, testers use testing tools. The groups and roles are
quite different. Trying to integrate it all is difficult and requires a lot of coordination —and frequently
intercession — on the part of the project manager, who must set up status meetings and track deliveries
from a number of sources.

To successfully deploy Team System, you'll need cooperation from the entire development team, and
especially the operations team. Installing Team System involves setting up accounts in Active Directory,
changing firewall port settings, prepping hardware, making sure the licensed software is available on
DVD or on a network share, and so forth. Get the operations team involved early in the process and get
them to read the Team Foundation Server installation guide (and quiz them on it). Both of these steps
will make the deployment process a lot easier.

Team System (and specifically Team Foundation Server) provides tooling and a framework to simplify
collaboration between team members. The server allows you to communicate with anyone on your team
using a number of tools including the Visual Studio editions, Microsoft Excel, Microsoft Project, and
Team Explorer. All team members get access to a common set of services including a Team Portal, ver-
sion control, build engine, and reporting. Everything is integrated in one location. All of this means that
you need fewer status meetings, and you get more transparency and clarity with regards to the work
being done within a project.

Team System can be viewed as three logical tiers: the client tier, which includes the Team Editions of
Visual Studio 2005; the application tier, in other words, Team Foundation Server; and the data tier (SQL
Server 2005), which provides the data management and storage support behind the scenes. This very
basic architecture can be seen in Figure 1-1.

Client Tier

Microsoft Excel
Mircrosoft Project
MSSCCI Provider
3rd Party Tools
Custom Tools

Team
Explorer

Application Tier

1o

Team Team
Foundation %=~ =" Foundation
Server Build

)\

Data Tier

SQL Server 2005

4 Figure 1-1

Planning a Team System Deployment

When you are planning a deployment, it is important to consider what deployment scenario will work
best for your needs and what client/server configuration will give you the best bang for your buck in
terms of management and configurability. Let’s start by looking at the essential parts that make up the
client and server components of Team System.

Team System Overview

Team Foundation Server plays a very important part in Team System. It is the collaborative suite that sup-
ports the entire software development life cycle (SDLC). Prior versions of Visual Studio supported devel-
opers only and everyone else had to rely on third-party products to achieve any kind of integration. The
different tiers of Team System can be further broken down into its client and server components.

Brian Harry has posted on his blog a Visio diagram outlining how Team System was
deployed within Microsoft. Specifically, it maps out the overall topology of both
server and components. You can download the Visio file at the following link:
http://blogs.msdn.com/bharry/archive/2006/08/22/712746 .aspx.

Client Components

Here is a listing of Team System’s core client components. You can’t really talk about a server without
discussing how the clients interact with the server (of course). Along with these clients, the Team
Foundation Server API (also known as the Team Foundation Core Services) contains methods that allow
you to programmatically connect to Team Foundation Server (and create your own custom clients).

Q Visual Studio 2005 Team Editions —Even though this is a book on Team Foundation Server, we
would be remiss not to cover client features and how they integrate with Team Foundation
Server. Refer to the individual editions below for details on the coverage level.

Q For software architects — Unfortunately, this book has little to no coverage of the archi-
tecture tools. If you are interested in Team Edition for Software Architects, we would
like to refer you to Professional Visual Studio 2005 Team System (Wrox Press, ISBN:
0764584367).

Q For software developers — For developers, the book covers version control manage-
ment (Chapter 12) and extensibility (Chapters 9 through 11).

Q For software testers — For testers, refer to Chapter 15 for information about the Team
Test Load Agent. We also cover test case management to a limited degree in Chapter 13.

Q For database professionals — Chapter 8 is devoted to Team Edition for Database
Professionals and how the data development lifecycle ties into the software develop-
ment lifecycle.

Q Visual Studio 2005 Team Suite — Visual Studio 2005 Team Suite integrates the features
of Team Edition for Software Architects, Team Edition for Software Developers, and
Team Edition for Software Testers. Starting late 2006, Team Suite will also include Team
Edition for Database Professionals.

Chapter 1

a

Team Explorer —Team Explorer ships on the Team Foundation Server media and provides con-
nectivity between Visual Studio 2005 and Team Foundation Server. You can learn more details
about Team Explorer in Chapter 2.

Third Party Tools — There are a number of third-party companies developing tools for Team
Foundation Server. When appropriate, we have provided you with links to these complemen-
tary tools.

MSSCCI Provider (for Visual Studio 6.0 and 2003) —Many companies have made investments
in NET 1.0 and .NET 1.1, and need to support Visual Basic 6.0. The Microsoft Source Code
Control Interface provider allows these IDEs to connect to Team Foundation Server.

Microsoft Office Excel 2003 —Microsoft Excel is used as a project management tool within
Team System. (A developer or any other team member can also use it to manage their work
items.) You can learn how to make the most out of Excel in Chapter 13.

Microsoft Project 2003 — Microsoft Project has special capabilities and limitations that are docu-
mented in Chapter 13.

Server Components

These server components provide the infrastructure backbone for Team System. In this book, we exam-
ine each one of these in detail:

a

Team Foundation Server — Team Foundation Server is comprised of a number of components
and services. The installation of the product is covered in Chapter 2, you learn about backup
and recovery strategies in Chapter 5, right up to retirement in Chapter 17.

Team Foundation Build —Team Foundation Build provides an automated, integrated build
experience. You can learn a great deal more about Team Foundation Build in Chapter 3.

Team Test Load Agent— The Team Test Load Agent is composed of an Agent and Controller,
which allows you to test Web applications against a profile of a thousand users or more. There is
coverage of these tools in Chapter 15.

Team Foundation Server Proxy — Team Foundation Server Proxy is a tool that helps improve
the performance of Team Foundation Version Control over HTTP. We cover the proxy in
Chapter 15.

Team Foundation Core Services (TFCS) — Team Foundation Core Services is a set of services
and APIs that allow you to extend Team Foundation Server. You can learn more about extensi-
bility in Chapter 9.

Active Directory domain controller —If you are working within a big enterprise, Active
Directory (AD) is essential for the management of your user’s roles and credentials. You'll find
deep coverage of AD in Chapters 2 and 4.

Mail server — Team Foundation Server has the ability to leverage a mail server to send out
alerts to your team members. The alert and eventing infrastructure is covered in several chap-
ters, most notably in Chapter 14.

Planning a Team System Deployment

Compiling Your Project Data

There is key data you should compile to plan a deployment. Otherwise, you may be unprepared for the
installation and it may be unnecessarily complicated. Here are some of the data points you should collect:

Q

Hardware infrastructure — This includes a full audit of all the target systems that will be used
alongside Team System. This audit should be undertaken in consultation with your operations
team. Equipment usually takes time to order, therefore you may want to consider dates—a
nontrivial requirement because they will affect the dates in which you can start the deployment.
Part of the hardware infrastructure review includes writing a maintenance plan, which includes
backup/recovery, a maintenance task list for administrators to perform regularly, and so forth.
Your operations team should be deeply involved in this process.

Software infrastructure — List all the software required for the deployment, and the software
currently in place in your environment. The software check may reveal systems with incompati-
ble software, in which case the operations team must upgrade the target systems before starting
the deployment process. A close consultation with your operations team is key to obtaining a
solid understanding of the target environment. Another element that can’t be understated is
licensing. Do you have all the necessary licenses for Team System? A good place to start is look
at the 1:1 correspondence between the software you need and licenses you need. After that, you
will need to look at client access licenses (CALs) for those who will be accessing Team
Foundation Server without a Team Edition.

Network infrastructure — Your network infrastructure may appear deceptively simple, but
there are many things to consider including security settings, user account settings, topology
challenges, and so forth. For example, if you have governance rules in place, your user accounts
may have special restrictions such as password policies that will complicate a deployment.
Another scenario is that ports may need to be opened on your network to allow Team
Foundation Server communication to flow through. In order for the ports to be opened, a secu-
rity audit might be required. It’s important to note not only the components that are required,
but also the process behind those components.

Project documentation —Find all documents relating to your software development process
and the documents supporting that process, including templates, lists, and so on. If some of
these seem ad hoc, not to worry. Team System provides a solid mechanism for aggregating and
publishing software project assets.

Build requirements — The complexity of your build may depend on many factors, including
what type of software you are developing, if you are building a multiplatform or distributed
solution, and so forth. The key information you will want to record includes what needs to be
built, what you are expecting as a release at the end of the build process, and if any special tasks
are required along the way (for example, automatically copying files via FTP to another server).

Source code —How much source code do you have? Where is it stored? What policies and pro-
cedures have you put in place to track versions and integrate source code? You must document
all of this to decide how you will migrate the code and what approach to take to configure Team
Foundation Version Control.

Another thing you can do that can’t be understated is creating a checklist before deployment. Figure 1-2
shows the installation checklist available in the Visual Studio Team Foundation Installation Guide. It
breaks down the installation steps for both single-server and dual-server deployments.

Chapter 1

You can create a personal checklist in Excel that reflects the software, hardware, and tasks you need to
accomplish to successfully deploy Team System. Figure 1-3 shows an inventory of software, which you
can check off as you obtain it. Once all the software has been checked off the list, for example, you know
that you are ready for the deployment.

g visual Studio Team Foundation Installation -8 x|
<=

Hide Back Frint Options

LContents I Index I ﬁearchl Favorjtesl

Team Foundation Inztallation
@ Overview of Team Foundation Server Security for Setup
@ Team Foundation Installation W alkthroughs
= Qﬂ] Qwerview of Teamn Foundation Server Single-5 erver Deployment
Team Founda
@ Inataling Team Foundation Server
= lﬂ] Overview of Tearn Foundation Server Dual-Server Deployment
@ Checklist: Team Foundation Server Dual-Server Deplopment
@ Inztaliing Team Foundation 5erver [databagzes)
@ Instaliing Teamn Foundation 5erver [services)
@ Providing Continuous Server Availability
@ Overview of Instaling Team Foundation Build
@ Overview of Instaling Team Foundation Server Prosy
@ Owerview of Instaling Team Explorer
@ Overview of Repairing and Uninstaling Team Foundation Server
Team Foundation Installation Guide Legal Motices

Figure 1-2
A
1
2 Description
3 Software Requirements (on DVD or accessible network share)
a4 - Windows Server 2003
5 - Windows Server 2003 R2
6 - Team Foundation Server RTM
7 - Visual Studio 2005 Team Editions (for each team member)
8 - Team Edition for Software Developers
9 - Team Edition for Software Testers
10 - Team Edition for Software Architects
11 - Team Edition for Database Professionals
12 - Team Suite (for Team Foundation Build server)
13 - Windows SharePoint Services Service Pack 2
14 - Microsoft SOL Server 2005
15 - Developer Edition
16 - Standard Edition
17 - Professional Edition
18 - Enterprise Edition
19 - Microsoft Office 2003 Professional
20 - Microsoft Office 2007 Professional
Figure 1-3

Planning a Team System Deployment

Planning a Deployment

Installing and deploying a product such as Visual Studio 2005 Team System involves a lot of preplan-
ning and forethought. You must consider variables such as capacity, scale, disaster recovery planning,
backups, and the underlying infrastructure. There are several important sources you can refer to that
will help in your deployment efforts:

Q Existing infrastructure documentation —If your company had to write up a disaster recovery
plan (which may have stemmed from the Year 2000 fiasco), then you are in a great position as all
your software and assets have been catalogued.

Q Visual Studio Team Foundation Planning Guide — Along with the Installation Guide
(TFSInstall.chm)and Administration Guide (TFSAdmin. chm), the Planning Guide will pro-
vide you with hints on what to look at in the planning process. Unlike the other guides (which
are also great tools to help you plan your deployment), the Planning Guide
(TFSPlanning.chm) is not available on the Team Foundation Server CD or DVD.

Q Microsoft Operations Framework (MOF) — The Microsoft Operations Framework provides
guidance on the proper implementation of technology based on Microsoft’s own internal experi-
ence and practices derived from the IT Infrastructure Library (ITIL). You can learn more about
MOF at microsoft.com/technet/itsolutions/cits/mo/mof/

Q Governance documents — Your company may need to follow strict or specific rules for legal rea-
sons. You need to consider these governance rules and practices when planning your deployment.

Some of the key questions you have to ask include whether you'll need one or two Team Foundation
Servers (depending on the scale of your team). Will you need a proxy server? (In other words, will you
support geographically distributed teams?) Do you need more than one build server? If so, where will
they be installed? Do you need to create load tests with more than a thousand simulated users? If so, a
test rig may be required. Here is a more in-depth look at these variables and how they may affect your
implementation of Team System.

Capacity Planning

The best way to look at capacity planning is by thinking about and looking at scenarios. First, we look at
the performance and scope of a deployment. Next, we look at deployment on a small and then a larger
scale.

Performance and Scope

Team System was designed to work with a single Team Foundation Server instance at the core. Microsoft

is currently investigating scenarios where multiple Team Foundation Servers instances are used to scale

up to larger sized teams. However, note that Team Foundation Server does not currently support clustering
and mirroring. (However, this is supported on the SQL Server 2005 data tier, which is really the key area
because all project assets are stored in the database.) Team Foundation Server supports a warm standby
scenario, if an issue should occur. For more information about availability within Team System, refer to
“Ensuring Team Foundation Server Availability” on MSDN at http://msdn2.microsoft.com/en-us/
library/ms253159.aspx. The Microsoft Operations Framework also has information about service
management functions, including availability management, at http: //www.microsoft.com/technet/
itsolutions/cits/mo/smf/smfavamg.mspx.

Chapter 1

The responsiveness of Team System depends greatly on the amount of memory you have in your Team
Foundation Server and, most important, your SQL Server 2005 instance. The more memory and proces-
sor power you can add in, the better your user experience will be.

In planning your deployment, you must consider whether you will use Team Foundation Server for one
or two configurations. Some of the questions you might be asking yourself include the following:

QO How many users will you support?

Are Proxy Servers required (for distributed version control support)?
Will you support clusters of remote users?

Where on your network is your build server?

Do you need test rig and how many test users will you simulate?

O 0 U0 oo

Will you integrate with Active Directory?

Small-to-Medium Deployments

There are two fundamental scenarios to consider for small-to-medium deployments: Let’s first define a
small-to-medium deployment as one to 2,000 users.

A one-user scenario may include a customer evaluating a demo version of the product, a consultant giv-
ing a presentation on Team System (perhaps through a single machine VirtualPC install), or even a small
learning environment to help a group of users experiment with the product. The one-user version of
Team System is usually installed on a single machine and may contain demo or evaluation versions of
the product (rather than the full retail version of the product). The single machine install contains all the
components of Team System including the client tier (CT), build engine, data tier (DT), and application
tier (AT).

The second scenario in small-to-medium deployments is for two to 2,000 users. In this scenario, Team
System is installed on a single server and deployed to a small team. Because there are multiple users, the
client tier (in other words, Visual Studio) is installed on machines separate from those with the applica-
tion tier and data tiers. This allows multiple users to access a single instance of the server. You can also
optionally install Team Foundation Build on a separate machine or even on the client’s desktop. This
deployment model is configured to support workgroups or Active Directory.

Enterprise Deployment

10

The final scenario to consider is the very large team of more than 2,000+ developers, testers, and archi-
tects (assuming a dual-server install). To go beyond 2,000 users, you need to bump up the processor
scale and performance along with memory on both the application and database tiers. A large infrastruc-
ture requires larger capacity, security, manageability, and support for geographically distributed soft-
ware teams. Team System supports a large team by dividing the tiers on different machines. (Note that a
single machine will not support anywhere near 2,000 users.) To support such a large number of users,
you must use Active Directory 2000 or 2003. (Otherwise, from an operational perspective the manage-
ment of the users and shifting needs will require more overhead than can be afforded.) Team Foundation
Proxy allows distributed teams to access the source control portion of the product. You can optionally set
up multiple build servers, multiple proxies, and, in some cases, multiple Team Foundation Server!

Planning a Team System Deployment

At the time of writing, Microsoft is internally evaluating Team System as a tool to
manage ambitious development projects such as Windows or Office. In fact, the
Team Foundation Proxy was designed to effectively tackle latency challenges with
remote teams. The Prescriptive Architectural Guidance Group, as well as a number
of other small organizations, is currently deploying Team Foundation Server.

For updates about how Team System can scale for larger teams, we highly recommend you look at Brian
Harry’s blog at http: //blogs.msdn.com/bharry/.

Network Topologies

Depending on your target environment, the network topology may present a special set of challenges.
Here are common deployment models that you may encounter:

Single-Server Deployment (Workgroup Configuration)

A single-server deployment is the simplest configuration option you can pick. It is advised if you want
to deploy Team System for testing purposes or for very small teams. Typically, the single-server deploy-
ment is set up using a workgroup configuration (although it is possible to set it up on a domain).

We define a single server as a 2.2 GHz Pentium IV or Athlon, with 1 gigabyte (GB)
of memory that will support a team of 50 or less. If you double the memory, support
goes to 250. If you use dual-processor support on both machines with 4GB memory,
support for 500 users is obtained. You may also wish to consider your build require-
ments, which may further determine the machine sizing.

The MSDN Subscriber Download site provides virtual machine images of a single-server deployment,
which makes it very handy for you to test and evaluate Team System in a lab-like environment. You can
deploy these virtual machines using either Microsoft VirtualPC (VPC) or Microsoft Virtual Server. VPC
requires at least 1.5 gigabytes of memory for even modest usability. Two gigabytes is highly suggested.

The workgroup version of the Team System installation process has a couple of notable limitations. One
of the limitations is that the domain users can’t login to the server. (See multiserver deployment for
details.) Second, your passwords and user accounts must be synchronized with Team Foundation Server.
Otherwise, users will not be able to log in to the server.

Dual-Server Deployment

If you are planning to divide the tiers on separate machines, note that you should set up your servers on a
domain. In order for your components to access the domain, it is extremely important for you to set up your
TFSSETUP, TFSREPORTS, and TFSERVICE accounts using domain accounts. Otherwise, TFSSERVICE will
be unable to effectively interoperate and authenticate with the domain controller.

11

Chapter 1

Architecting Your Active Directory (AD) Structure

To set up and configure Team Foundation Server in dual-server deployment, you must use computers
that are joined to an Active Directory domain. With the Workgroup edition, you have the choice whether
you want to join it (or not). If you are working within a large infrastructure, Active Directory will be a
given for managing your users on Team Foundation Server.

There are several reasons you would want to use Active Directory over the workgroup configuration.
First, from a convenience perspective, you can implement single sign-on. Active Directory has security
features that help prevent scenarios such as unwanted clients or servers running on your network.
Second, and most important of all, is manageability. In Workgroup mode, you have to manually add all
users and groups to the server; if you have hundreds of users, this can be a pain from an administrative
standpoint because all changes made to the external network will have to be replicated locally on Team
Foundation Server. For example, if a developer decides to leave a company running Team System, the
administrator will have to remove privileges from not only the network, but also the server.

Team Foundation Server supports Active Directory 2000 and Active Directory 2003. (Windows NT is not
supported.) Team Foundation Server will interact with Active Directory 2000 in native mode; mixed
mode is not supported. Specifically, Team Foundation doesn’t support NT4 and so does not support
AD2000 mixed mode. It does support AD2003 mixed mode. Team Foundation Server also supports one-
way trusts, full trusts, explicit trusts, and cross-forest trusts.

Team Foundation Server does not support a configuration of the application and data tiers on separate
domains (or subdomains). You can’t mix domains and workgroups either; they have to be on the same
domain. Finally, make sure that your network isn’t using Windows NT 4.0 Domain Controllers.

Test Deployment Using Virtualization

12

You can test your deployment using a variety of tools including Microsoft Virtual PC (VPC) and Microsoft
Virtual Server. Virtual PCs are not just for testing. There is a trend to deploy VSTS on the workstation as a
VPC. This makes it far easier for developers to get around IT-mandated machine configurations and is
simpler to install. They can also be used for evaluation and training. Also, some organizations have
adopted VPC on the Team Foundation Server side. Often this is used for evaluation, but also more and
more for pilot efforts. There are many advantages to doing so, especially in a test environment:

Q Virtual images created from one product are compatible with the other

Q There is no need to reinstall Team Foundation Server. The virtual image can be redeployed to a
production server quite easily.

0 You can create a base installation of Team Foundation Server that allows you to restore the
server to a pristine state rather than try to clean up the projects.

Almost all the features of Team System work within a virtual environment with the exception of profil-
ing. The profiler will not work with 100-percent precision in a virtualized environment, because of vir-
tual driver limitations. Think of it; the profiler uses the core system as a baseline to execute the tests. If
the core environment is virtualized, it is difficult if not impossible to get accurate performance readings.

Planning a Team System Deployment

After Visual Studio 2005 Beta 2, the profiler does work with VPC; however, the
profiler under VPC does not go down to the bare metal as originally planned. The
dev/test team removed the exception that detects whether you are on a virtual machine.
It is now left up to the user to know what the profiler meaning is. For most users,
this is quite fine, as they want only a relative view of their hot spots, not an absolute
view.

Andy Leonard documented a way to configure a virtual domain controller with
Team Foundation Server. You can read the details on his Web site:
vsteamsystemcentral .com/dnn/.

Client Planning

Before attempting to install any software within a large-scale environment, it is quite important to plan
your deployment. Microsoft itself is still learning how to effectively deploy Team Foundation Server.
Because there are so many variables, it is impossible for us (or Microsoft) to provide absolute guidance
in all deployment scenarios. However, we can provide best practices based on our personal experience
and expertise.

Team Editions

Microsoft has designed three versions of Visual Studio 2005 to support three roles in your typical soft-
ware development team: Team Edition for Software Developers, Team Edition for Software Testers, and
Team Edition for Software Architects. Before you deploy these products, you have to determine which
edition best fits your team members. If there is an overlap between responsibilities or tools, then you can
install Team Suite.

Team Suite

Team Suite encompasses the functionality of all the other Team Editions. It is useful to install on Team
Foundation Build to get the full range of testing capabilities. Project managers should definitely get a
copy of the suite product to be able to view architecture, development, and test solutions across the
entire project.

Team Explorer

In most development roles, you are required to connect to Team Foundation Server, be it to generate a
work item, upload source code, or run a build. Each instance of Visual Studio that will be performing
these tasks needs Team Explorer and an accompanying client access license (CAL).

A project manager who has never used Visual Studio can use Microsoft Excel or Project integration to
connect to Team Foundation Server. Keep in mind that Team Explorer will have to be installed regard-
less on their systems — the Office plug-in gets installed as part of the Team Explorer install process —
and the project manager’s system will also require a CAL.

The only roles that don’t require Team Explorer are the client and upper management. They can examine

the project portals and reporting features; the only requirement is a browser. No client CALs are
required to view content on the Reporting site or the Project Portal.

13

Chapter 1

There are other Team Explorer-like client tools developed by third-party vendors for the Team
Foundation Server; these include Teamplain (a Web interface to interact with the work item database)
and Teamprise (a Team Explorer-like plug-in for Eclipse developers).

Security Planning

To correctly configure your security within Team Foundation Server, you have to put some thought into
what users and roles you will define within your development environment. You must consider several
layers of security:

QO Network security (enforced by Active Directory)

O Operating System security on the machine hosting Team Foundation Server
Q Security within Team Foundation Server
a

Security on a project level

Roles (as defined by the Microsoft Solutions Framework) play a main part in determining security set-
tings. Would you want any developer on your team to create or delete projects on the fly? Probably not.
Applying proper least-privileged user account (LUA) principles to your access controls is the best
approach. In a nutshell, LUA advocates providing users with just enough privileges to do their job —no
more, no less.

Where should you start? The first thing you can do is look at your current Active Directory user and
group configuration. If possible, map and define groups within Active Directory that correspond to the
roles defined by Team System. For example, architect, developer, tester, and project manager.

To save administrative headaches, you can map these groups to the groups within Team Foundation
Server by adding the domain groups as part of the server groups. This will simplify the task of adding
users in Active Directory and will provide a single point of contact for all user administration.

Here is a practical example: let’s say a tester is promoted to be a test lead (which entails project manage-
ment tasks). You can simply change the user in Active Directory from the tester group to the project
management group. As a result, the permissions will trickle down to Team Foundation Server and the
new test lead will gain more control over server functionality.

In a workgroup install, you must manually make changes on both the target operating system and
within Team Foundation Server. As this is more administrative overhead, consider using the workgroup
installation only if you manage a small number of users.

Refer to Chapter 4 for detailed information about configuring and administering security within Team
Foundation Server.

Creating a Test Plan

14

Before you install Team System, you must consider who will be implementing tests, and how tests will
be implemented. If you are running a large project, you may require additional build and test rigs to
support the extra load. Testing can be done manually or as part of a build. You should think about what
best practices you want to put into place to create an environment that fosters test driven development
(TDD).

Planning a Team System Deployment

All tests will run seamlessly as part of a build with the exception of manual tests. As a best practice, you
should create dedicated test runs of manual tests. The two reasons are that it will make the tests easier to
administer and will not impede the run of automated tests.

You should also look at all the tests available in Team System to see which ones you can leverage.
Frequent testing improves the quality of your code and, as a result, improves productivity. Chapter 13
has some coverage on how to implement test case management.

Test Rig Considerations

If you try to run a load test with more than a few users within Visual Studio 2005, Visual Studio may
become unresponsive or you may experience performance problems at the outset. If you want to run
capacity and performance tests, it is best to use a remote test rig (consisting of a test load agent and con-
troller) to run the tests without affecting the overall operating environment.

Using the test runs that you can configure using Team Edition for Software Testers, you can use a test
controller to manage several load agents situated on several machines. By distributing the load, you can
most effectively test your applications without loss of productivity. It goes without saying that the larger
the project, the more test rigs will be required. Let’s now look at the individual components. The Team
Test Load Agent is discussed in detail in Chapter 15.

Hardware Requirements

The best source of information for system requirements is the installation documentation. One reason we
are discussing the hardware requirements in this chapter is because a lot of practical information is not
covered in the documentation.

One of the hardware components you can never have enough of is memory. The
more memory you have installed on your target machines, the more satisfactory your
experience with Team System will be in terms of responsiveness and capacity. If you
are to choose which machine to add the memory, choose the database server, as it
will deliver the optimal results.

Team Foundation Server

According to the documentation, Team Foundation Server requires a minimum of 1 gigabyte of RAM.
(This includes the application tier and the data tier.) Based on private testing, you are better off assigning
at least 2 gigabytes of RAM for the server (one gigabyte for the server component, one gigabyte for SQL
Server 2005).

Team Foundation Server has preset capacity limits. Read the capacity document at http://blogs

.msdn.com/bharry/archive/2005/11/28/497666.aspx to learn more about the number of work
items the software can handle in heavier load situations.

15

Chapter 1

Team Foundation Build

The hardware requirements for Team Foundation Build requirements are the same as the Visual Studio
2005 system requirements for the most part, except that support is limited to Windows XP Professional
with SP2 and Windows Server 2003 with SP1 Standard or Enterprise Edition. If you have a small project
with 5 to 20 users, Team Foundation Build requires at minimum a single processor running 766 MHz, an
8-gig hard drive and 256MB of memory. At the most, in a large project (spanning 250 users or more),
Team Foundation Build requires a CPU with dual processors running at 2.8 GHz, 80GB of hard drive
space, and at least 2GB of RAM.

Build requirements also are based on the duration of the project build. If less than
30 minutes, 1.5 GHz with 512MB RAM is fine. For medium size team with projects
taking less than two hours to build, 2.6 GHz with 1GB RAM. For a large team, you
will want dual 2.8 GHz with 2GB RAM.

SQL Server 2005

In a dual-server scenario, the data tier of Team Foundation Server requires a CPU with a single (or dual)
processor(s) running at 2.2 GHz, 80GB of hard drive space, and 2GB of RAM. This should be ample to
support from 100 to 250 users.

If your team is much larger, you should spec out your target server-class machine to have at least a CPU
with quadruple processors running at 2.2 GHz, 150GB of free hard drive space, and at the minimum 4GB
of RAM.

Visual Studio 2005

At the bare minimum, Visual Studio 2005 requires a CPU with a 2.0 GHz processor, 512MB of RAM, and
8GB of free hard drive space. Even though Microsoft states that 512MB is enough, my practical experi-
ence has shown that 1GB is the minimum required for any acceptable level of performance. Microsoft’s
recommended hardware requirements include a 2.6 GHz processor, 1GB of RAM, and 20GB of free hard
drive space.

Other Tools

16

The minimum specification for a test agent (also known as a test rig) is a single processor running at 600
GHz, 1GB of hard drive space, and at the very least 256MB of RAM. The maximum requirement (assum-
ing you have over 250 users) is a CPU with dual processors running at 2.8 GHz, 8GB of free hard drive
space, and at least 2GB of memory.

The test controller has slightly different specifications. The minimum specification (roughly 5 to 20
users) is a CPU with a single processor running at 600 MHz, 1GB of hard drive space, and 256MB of
RAM. For larger projects (and a greater number of users) you should spec out a machine with a single
processor running at 2.6 GHz, 48GB of hard drive space, and, at the very minimum, 1GB of RAM.

Planning a Team System Deployment

64-Bit Support

Team Foundation Server (the application tier) will not run on 64-bit systems; you must install it on a 32-
bit machine. As a result, you obviously can’t set up a single-server install (application tier and data tier)
on a single 64-bit system. The data tier (SQL Server 2005) will run on a 64-bit machine, you just need to
install SQL Server 2005 64-Bit Edition. Team Foundation Build and Visual Studio 2005 will run on 64-bit
machines but only in WOW64 compatibility mode.

Software Requirements

To successfully deploy Team Foundation Server, you must take into account the software requirements
of each of the components. Here is a drill down of all the required software and additional practical con-
siderations.

Required Service Packs and Software Components

At the time of writing, Team Foundation Server itself does not require any service packs. However, we
have outlined the service packs for the components that Team Foundation Server depends on (for exam-
ple, the operating system).

Team Foundation Server

Team Foundation Server requires Microsoft Windows Server 2003 with Service Pack 1 (SP1). It will not
correctly function on any other current operating systems. To function correctly, the following software
components must be installed: Windows SharePoint Services Service Pack 2 (SP2), Internet Information
Server 6.0 (IIS, which is packaged with Windows Server 2003), and SQL Server 2005 Standard Edition
and above. The key for a successful deployment is installing the components in the right order and cor-
rectly configured. The most accurate and complete source of information is the Visual Studio Team
Foundation Installation Guide (TFSInstall.chm). The guide can be found on the CD or DVD installa-
tion media for Team Foundation Server.

SQL Server 2005

SQL Server 2005 has more flexibility than Team Foundation Server with regards to the operating system
(again, assuming that you install the data tier [DT] on a separate machine than the application tier [AT]).
SQL Server 2005 requires at least Windows 2000 Advanced or Datacenter Edition with Service Pack 4 or
higher. It is fully supported on Windows 2003 Enterprise or Datacenter Edition, or Windows Small
Business Server 2003 Service Pack 1 Standard or Premium Edition.

SQL Server 2005 has 64-bit support. If you try to run SQL Server 2005 32-bit edition on a server that has
an x64 bit processor, it will run in Windows On Windows (WOW64) compatibility mode. Otherwise,
SQL Server 2005 will effectively run Windows 2003 Service Pack 64-bit X64 Standard, Enterprise, or

Datacenter Edition.

Team Foundation Server requires at the very least SQL Server 2005 Standard Edition to run.

17

Chapter 1

Team Foundation Build

Team Foundation Build can only be installed on Windows XP Professional with Service Pack 2 (SP2) and
Windows Server 2003 with Service Pack 1 (SP1) Standard or Enterprise Edition.

Visual Studio 2005 and Team Explorer

Visual Studio 2005 will install on Windows 2000, Windows XP Home and Professional, and Windows
Server 2003. Note that Visual Studio 2005 is not supported on the Windows 2000 Datacenter Server.

If you need to install Visual Studio 2005 on a pre-Service Pack 2 system, Aaron
Stebner outlines the steps on his Web log at http: //blogs .msdn. com/astebner/.
This may be useful if your operations department hasn’t yet deployed Service Pack
2 to all desktops or in test installations.

All the editions of Visual Studio 2005 also require Internet Explorer 6.0 with Service Pack 1, Microsoft
Office 2003 (or greater) with Service Pack 1, Microsoft Data Access Components (MDAC) Version 9.0,
and the .NET Framework 2.0 (which is installed as part off the Visual Studio 2005 installation process).

Team Explorer has the same requirements as Visual Studio 2005. It can be used as a standalone tool (a
stripped down version of Visual Studio 2005 without any code building functionality). If you have any
of the Team Editions installed on your target machine, Team Explorer will install as a plug-in, providing
access to Team Foundation Server. Team Explorer is available on the Team Foundation Server CD or
DVD media. Figure 1-4 shows a screenshot of the standalone version of Team Explorer.

Team Explorer

2 E |

of - |

----- _"_I My Favorites

=N Lo TestProject
[[‘Waork Items
- [23 Documents
|4 Reports
[[Team Builds
[= Saurce Carntral

_li'__'ﬁ Tear Explorer]-:ngolution Explorer

Figure 1-4

18

Planning a Team System Deployment

Other Tools

The test controller and test rigs are used to run load tests with a large number of simulated users on
remote computers. The test controller requires Microsoft Windows Server 2003 with Service Pack 1 (any
version of Windows Server 2003 will do), Microsoft SQL Express Edition, and the .NET Framework 2.0.
The test rig must be installed on Microsoft Windows Server 2003 with Service Pack 1, Windows XP
Professional with Service Pack 2, or Windows 2000 with Service Pack 4. The test rig also requires
Microsoft SQL Express Edition and the .NET Framework 2.0.

Unsupported Software

If you want to integrate Microsoft Excel or Microsoft Project with Team Foundation Server, you must
install Office 2003 before installing Team Explorer. Earlier versions of Office aren’t supported.

If you are running any systems with Windows NT or Windows 98, you will have to upgrade them to
Windows XP to connect them to Team Foundation Server.

Migrating and Integrating Your Existing
Tools and Assets

When you look at how you can work within Team System, you have to consider whether it makes more
sense to migrate or integrate your existing tools into Team System. Migration makes a lot of sense if you
want to rid yourself of expensive third-party licensing agreements. For example, Team System provides
the ability to do large-scale load tests and obviates the necessity of paying thousands of dollars to sup-
port and license a third-party tool.

Integration is a smart option if you have invested a lot of money on existing tools and you wish to leverage
that investment. Integration is a little trickier because it often entails extra configuration and programming
steps to make both systems “talk” to and integrate with each other. Let’s take NUnit as an example of a tool
that is very popular and does not have a great integration story with Team Foundation Server. Sure, you
can migrate your NUnit code over to the Unit Test Framework within Team System using the migration
tool. But if you want true integration with NUnit, you would have to create tools using Team Foundation
Server’s extensibility hook, which would perform the translation back and forth and allow Team
Foundation Server to “understand” the code in build verification tests, during checkins, and so forth.

In this section, we will look at the core features of Team Foundation Server and discuss the challenges
and resources available to help you migrate and integrate your existing solutions to Team System.

When making a decision about integration or migration, it is important to discuss
the implications with a knowledgeable systems integrator or consultant. While a
decision may seem straightforward, it may have cost, technical, and architectural
implications. It is important that whoever you decide to work with has a solid back-
ground on Team System and your existing tools.

19

Chapter 1

Version Control

Most of the core components of Team Foundation Server are designed to work with the NET
Framework 2.0. This makes Team System a very appealing candidate if you are planning to develop an
application from scratch using Visual Studio 2005.

But what should you do if your application was built in VB6 or the .NET Framework 1.1? Here is a
matrix covering the common scenarios you may encounter:

Scenario

Action

You have VB 6.0 or VC++ 6.0 and
would like to import into Team
Foundation Version Control.

You would like to import and build

.NET 1.0 or 1.1 code in Team System.

You can choose to run Visual Studio 6.0 side-by-
side with Visual Studio 2005. You can then import
Visual Studio 6.0 projects into Team Foundation
Version Control using the command-line tool or the
MSSCCI client.

Another option is to convert your code from VB or
VC++ 6.0 to the NET Framework 2.0. For example, if
you attempt to open a VB 6.0 project in Visual Studio
2005, an upgrade wizard appears. There is also a lot
of migration documentation on the MSDN Web site
athttp://msdn2.microsoft.com/en-us/
library/.

In most cases, attempting to open and save a .NET
1.0 or 1.1 solution in Visual Studio 2005 will result in
solution that will no longer open in Visual Studio
2002 or 2003. The reason for this is that Visual Studio
2005 supports the .NET Framework 2.0 only.

So, what are your options? You can install Visual Stu-
dio 2002/2003 and Visual Studio 2005 side-by-side.
By opening your older solutions in the older versions
of Visual Studio, you will avoid any migration issues.
However, until a Team Foundation Source Control
plug-in is developed for Visual Studio 2003, the only
way you will be able to import your code in Team
Foundation Version Control is by using the version-
control command-line tool.

Another option is upgrading your application to the
.NET Framework 2.0. This is facilitated by the built-
in upgrade wizard. The downside is that you will
have to deal with migration issues; however, the
upside is that you will be able to import and export
your source code using Team Explorer.

20

Planning a Team System Deployment

Scenario Action

There are two tools available to build .NET 1.1 within
Team Foundation Build. The first tool is called MSBuild
Toolkit and is available at http: //downloads
.interscapeusa.com/MSBuildToolkit_v2_RC
.msi.

The second tool is called MSBee — MSBuild Everett
Environment. It is being developed by Microsoft.
More information is available at http://blogs
.msdn.com/clichten/.

For ASP.NET 1.0 or 1.1 code, there is a migration wizard to help you migrate your application to
ASP.NET 2.0. The easiest way to migrate 1.0 Web services is to recreate them in 2.0 and copy and paste
your source code.

Keep in mind that launching ASP.NET 2.0 Web sites will automatically launch the
local Cassini Web Developer server by default. You should configure the virtual
directory in your IIS server to host your application and set Visual Studio to launch
without Cassini to get a similar experience as earlier ASP.NET applications. ASP 3.0
applications are compatible but will not compile.

What if you have code designed for a different platform, for example, Java code? Team Foundation
Version Control is versatile and can store different file types including Java projects. Obviously, code
from other platforms will not integrate as nicely with the testing tools and the build engine. However,
you could launch builds on other platforms using custom build tasks, and integrate external testing tools
using either build tasks or generic tests.

Teamprise (teamprise. com), one of Microsoft’s VSIP customers, has developed a plug-in to allow
Eclipse to integrate with Team Foundation Version Control and Team Foundation’s work item tracking.
Before you decide to integrate code from other platform, however, you must first configure the file types
by clicking on Team=>Team Foundation Server Settings=>Source Control File Types. The window shown
in Figure 1-5 displays.

Simply add the required file type and you are ready to go. Be sure to select Disabled file merging if your
files are binaries or nonsource code files.

You will have different levels of support for languages in Team System depending
on the language. For example, there is great support for Java in the IDE, whereas
other languages are “less” supported. Of course, you can integrate anything with
Team System. All that is required is ingenuity and effort.

21

Chapter 1

22

File Types - TFS EHE
File bypes:
- add...

Archive ; A
ASP.MET Files asay) ascx) ash Enabled Edit... |
Audiovideo Files aif; aifc; aiff; asf;... Disabled
Common Web Files asp; css; htm; kil Enabled Remaove |
Configuration Files config; setkings Enabled
Z++ Files asm; ¢ cpp; Cxx} ... Enabled
Crystal Report Files rpt Disabled
Cit Files s Enabled
Database Files mdb; mdf; sdf Disabled
Distributed System... ad; dd; Idd; sd; sdm Disabled
Executable Files comn; dll; exe; ocx Disabled
Image Files ani; bmp; dib; eps... Disabled
Intermediate Com... class; obj Disabled |
Miscellaneous Sour... cd; sql Enabled
Microsoft Office Files doc; dot; mpp; on... Disabled
Other Common Bin... pdf Disabled
Feport Files rdlc Disabled
Resource Files rc; rct; res; resou,.. Enabled LI

Ok I Cancel |

4
Figure 1-5

When looking at source control, the main question you have to ask yourself is if it makes more sense to
maintain the current version or source-control system, or migrate your source projects to Team
Foundation Version Control. If your company has invested tens and hundreds of thousands on a source-
control system, it may not be in your best interest from a business perspective to migrate all your code.
However, if you are planning new development using Visual Studio 2005 and the .NET Framework 2.0
(or .NET Framework 3.0), starting a project within Team System will be a good decision, as you will be
able to leverage the deep integration between Visual Studio and Team Foundation Version Control.

One of the most important considerations in deciding whether to move your source
code to Team System is your history. If the history isn’t crucial, then you can check
out all of your code and check it into Team Foundation Version Control. If it is
important, then you may choose to migrate your code (using the Visual SourceSafe
migration tool, a third-party tool like ComponentWare’s Converter, or your own cus-
tom migration tool using the Team Foundation Version Control API), maintain the
code in the existing repository, or even just keep an archive of your “old” code and
begin new development on the new platform.

Figure 1-6 contains a flowchart that will help you decide what approach to take in the migration (or
archiving) of your existing code.

One of the most popular migration paths is moving code from Visual SourceSafe to Team System. Visual
SourceSafe is a good tool for a small development projects with a small number of developers. However,
it does not scale well if your team grows beyond a dozen developers and testers. Team Foundation
Version Control is designed to manage large teams of developers and provides first time concurrent
check-ins and rollback capabilities.

Planning a Team System Deployment

“Other” Version Control
System (CVS, Subversion,
Visual SourceSafe)

Migrate?

No

Maintain
History?

Yes

Team Foundation Version

Checkout From
Existing System
Check into

Control

4 A,

Visual SourceSafe
Conversion Tool

3rd Party Cus_tom
Conversion Tools Conversion Tools
(using TFVC API)

Team Foundation
Server

Yes
Maintain?

MSSCCI, Integration with Team
Foundation Server via Custom
Builds, other Team Foundation

Version Control Extensibility

Maintain existing archive.

New development on Team
Foundation Version Control

Other options
Figure 1-6

One of the biggest misconceptions about Team System’s version control is that it is
the new version of Visual SourceSafe. This is incorrect; Team System Version
Control was written from scratch for Team System and uses SQL Server 2005 as a
means of scaling to larger environments and infrastructures.

23

Chapter 1

Microsoft has developed a migration tool called VSSConverter to allow you to migrate your Visual
SourceSafe code to Team System. You can find out more details in this MSDN article at
http://msdn2.microsoft.com/en-us/library/ms253060.aspx and in Chapter 12 in this book.

What if you are using other version control systems such as CVS or SourceGear? Team System does not
support these systems out of the box, but nothing prevents you from leveraging these systems directly. If
you choose another source control system, keep in mind you will not be able to use the build engine.
(Team Foundation Build pulls the sources out of source control before building them.)

What if you want to integrate an existing source-control system with Team System? Luckily, there are a
lot of projects in the works to help you. Team Foundation Server provides a wide variety of APIs to
allow you to connect and transmit information from Team Foundation Server to your source-control sys-
tem and vice-versa.

Anything that has to do with extensibility is covered in Chapter 9, and can also be
found within the Visual Studio 2005 Software Development Kit, which you can
download from http://affiliate.vsipmembers.com/.

Work Item Tracking

24

Work item tracking is an important feature of Team Foundation Server for two reasons: First, it provides
a way for your team members to track workflow and collaborate right from within Visual Studio.
Second, it provides the important link to implementing your process. For example, if the process you are
using has a predefined iterative flow, you can create a series of tasks or requirements that will support
and enact the iterations and establish your process.

Work item tracking is a baked-in and highly integrated way of managing your work within Team
System. But what if you have invested work or budget on other tools? As with any other feature of Team
System, you are not forced to use the feature. You can selectively pick what you prefer to use.

If you wish to move over your ClearQuest workflow to the Team System work item database, Microsoft
provides a ClearQuest migration tool called WIConverter to help you out. You can learn more about the
migration tool at http://msdn2.microsoft.com/en-us/library/ms253046 (en-US,VS.80) .aspx.

You may also be tracking workflow using Microsoft Office Project Server 2003. Fortunately, there are
efforts under way to integrate both Team System and Project Server using a special connector. You can
learn more about the connector at gotdotnet .com/workspaces/workspace.aspx?id=b9f69ea5-
acel-4a21-846£-6222a507cc9c.

The chart in Figure 1-7 shows the different decisions you can make in regards to migrating or integrating
your existing work items within Team Foundation Server.

Planning a Team System Deployment

Work Item Migration

Integration?

No

3rd Party
Work ltems?

No

Large Number
of Work Items?

Yes

Yes

Create Custom Listener
Application to

Orchestrate Wis
Between WI Tools

Yes
ClearQuest?

Map DB Schema
Customer Migration Tool
Using WI API

Migration via
Copy to Team Project

GotDotNet Bulk WI
Migration Tool or

Server

Custom Migration Tool
With WI API

Figure 1-7

Migration via

Copy to Team Project

Team Foundation

25

Chapter 1

Reporting

Team System does an amazing thing with reporting: It automatically aggregates project data such as
build quality stats, bug counts, work item completion statistics and much more. In the past, you had to
manually aggregate all your data by hand and import it into Excel to generate a report. Other tools like
Crystal Reports provide the ability to generate graphs and other reports from raw data. One of the dis-
advantages with third-party tools is that they can be expensive.

Team System leverages SQL Server Reporting Services. Visual Studio 2005 provides a Report Designer to
help you create new kinds of reports that can be viewed on the report site. The main idea here is that if
you can bring in external data into SQL Server 2005, you can then mine and view the data in an inte-
grated way within Team System.

You can create custom reports using the Report Designer or Excel. You can also create custom work
items that contain reportable fields that can be integrated within a custom report. To learn how to create
your own reports, refer to Chapter 16.

Build Server

One of the scenarios you may encounter is that you may want to transfer your NAnt scripts (or other
build scripts) to Team System. Unfortunately, there is no established tool to help you do this. However,
MSDN Channel 9 has a task equivalency chart that shows you the differences and similarities between
MSBuild and NAnt. You can view the chart at http://channel9.msdn.com/wiki/default.aspx/
MSBuild.EquivalentTasks.

In migrating or converting a script from one platform to another, the trick is sometimes just to find the
right custom task to do the job. GotDotNet has a great repository of prebuilt custom build tasks at
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=2cb20e79-
d706-4706-9ea0-26188257ee7d. The GotDotNet project is called “.NET SDC Solution Build &
Deployment Process & Tools.” You can also download a number of useful open-source build tasks from
Tigris. The download link is http: //msbuildtasks. tigris.org/.

Figure 1-8 shows the decision path to determine if you want to integrate your existing tools (such as
CruiseControl) with Team Foundation Server. If you want to migrate your tasks, then there are equiva-
lency charts and custom tasks that will facilitate the process.

Testing Tools

26

Team System incorporates many testing tools including dynamic analysis, code analysis, manual testing,
load testing, unit testing, ordered testing, Web testing, and performance testing.

NUnit Converter is a migration tool created by James Newkirk to port NUnit tests to Team System. Note
that unit testing is fully integrated into the toolset as the Unit Test Framework. Note that this framework
is available only in the Team Edition for Software Developers, Team Edition for Software Testers, and
Team Suite versions of Visual Studio 2005. The migration tool is available on the NUnit Add-ons
workspace on GotDotNet at http: //www.gotdotnet . com.

Planning a Team System Deployment

Build Script
Migration
Integration Yes Cruise Control Yes VSTSPlugins
Instead? CruiseControl.NET 1.0
No
Command-line or
Custom Integration via
Team Build API
4
E] Team Foundation
— Build
Yes Us_e Channel9 =
NANt? , Equlvalen_cy_Chart > =
Use Similar =
Predefined Tasks
No
N Use Similar
Predefined Tasks
Figure 1-8

The converter tool is integrated in Visual Studio 2005 and requires the installation of
the Guidance Automation Extensions to function.

In terms of load testing, Team System comes with an integrated tool. From a practical standpoint, one of
the core advantages of the load-testing tool is that it is available to the entire software development team
and is a great deal less expensive (from a licensing perspective) than other third-party tools. Another
advantage is that the Team System load tester can support a great number of concurrent users.

Unfortunately, at the time of writing there aren’t any migration tools to help you migrate Mercury
Loadrunner tests to Team System. However, it is possible to integrate the Loadrunner tool using a

generic test. The generic test allows you to run external executables (with parameters) and import results
into Team System’s testing framework.

27

Chapter 1

Licensing Models

Cost is always one of the key questions that keep coming up when considering Team System. In this sec-
tion, we provide guidance and a simplified view to help you understand the licensing model.

The best source of information for licensing is a whitepaper published on MSDN. To
access the whitepaper, refer to http://go.microsoft.com/fwlink/?LinkId=55933.

Here are some practical guidelines to consider:

a

If your team members perform specific roles without overlap, consider obtaining a specific
Team Edition version of Visual Studio for each team member. For example, developers would
obtain the Team Edition for Software Developers. If there is overlap between roles, you should
perhaps consider obtaining the Team Suite.

If you plan to use all the testing feature integration with Team Foundation Build,
you should obtain a license for Team Edition for Software Developers and Team
Edition for Software Testers (or Team Suite). The combination of these two products
provides the necessary framework to run any of the tests commonly found in Team
System. Note that both these products must be installed on the build server.

Team Foundation Server requires a license, and every computer accessing the server using Team
Explorer (or any other client) requires a client access license (CAL). In some instances involving
a remote “non-employee,” a connector can be purchased to allow them access to the server.

Each instance of Team Foundation Server Proxy requires a Team Foundation Server license. A
license is also required for “warm” failover instances of Team Foundation Server.

Where to Get Team System

There are four primary ways of obtaining Team System:

Qa

28

Retail —The components of Team System are available from retail outlets (such as
Amazon.com). If you are buying the product retail, keep in mind that (a) you are paying full
price, and (b) you are not going to benefit from Software Assurance (SA). Software Assurance
guarantees that if Microsoft releases any Team System products off band (such as Team Edition
for Database Professionals), you will get a license for it at no extra cost. It also applies if some-
thing like a “Team Foundation Server R2” gets released; you will be entitled to a copy.

Reseller — Resellers such as SoftChoice provide good value because they have licensing experts
that can find and tailor a licensing package to your situation and environment.

MSDN Subscriber Downloads —If you get a combination of Partner, Academic or GSI
Programs and own a MSDN subscription, you may also be able to benefit from substantial sav-
ings by upgrading to Team System. You can view more information about each option at the fol-
lowing link: http://msdn.microsoft.com/vstudio/howtobuy/.

Planning a Team System Deployment

Summary

This chapter introduced Team Foundation Server including its underlying architecture and the compo-
nents of the product. Next, you learned how to compile your project data, including assessing security,
client, and server requirements.

Later in the chapter, you learned how to plan a deployment and looked at the practical hardware consid-
erations for the smooth operation of the product. You then looked at migration and integration scenarios
for each one of the Team Foundation Server components. Finally, you learned about the Team System
licensing model and a little about the costs involved.

In the next chapter, you will learn in detail about advanced installation topics and drill down on scenar-
ios to put all of your planning into action.

29

