
P A R T I

Clinical Trials

CO
PYRIG

HTED
 M

ATERIA
L





C H A P T E R 1

Phase I Clinical Trials
Anastasia Ivanova
Department of Biostatistics, University of North Carolina, Chapel Hill,
North Carolina

Nancy Flournoy
Department of Statistics, University of Missouri, Columbia, Missouri

1.1 INTRODUCTION

Phase I trials are conducted to find a dose to use in subsequent trials. They provide data on the
rate of adverse events at different dose levels and provide data for studying the pharmaco-
kinetics and pharmacology of the drug. Dose-finding studies that involve therapies with little
or no toxicity often enroll healthy volunteers and usually have a control group. Trials in onco-
logy and other life-threatening diseases such as HIV enroll patients because treatments are
usually highly toxic and to enroll healthy volunteers would not be ethical. The primary
outcome for phase I trials in oncology and HIV is typically dose-limiting toxicity. Such
studies require different design strategies.

In Section 1.2, we review dose-finding procedures used in healthy volunteers. In Section 1.3
we describe dose-finding procedures for trials with toxic outcomes enrolling patients. In
Section 1.4, we list some other design problems in dose finding.

1.2 PHASE I TRIALS IN HEALTHY VOLUNTEERS

Buoen et al. [7] reviewed designs that are used for studying first-time-in-human drugs by
looking at 105 studies published in five major pharmacology journals since 1995. In this
section we briefly summarize their findings. Bouen et al. found that first-time-in-human
studies usually enroll healthy volunteers; most are placebo-controlled and more than half are
double-blind. The placebo group is included to reduce observer bias and sometimes to
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enable comparison of the active drug with placebo. Usually three to eight dose levels are inves-
tigated. Doses are selected using linear, logarithmic, Fibonacci, modified Fibonacci dose esca-
lation patterns, or some combinations of these. The popular modified Fibonacci procedure
escalates doses in relative increments of 100%, 65%, 50%, 40%, and 30% thereafter.

The simplest pattern of dose administration being used in first-time-in-human studies is the
parallel single-dose design in which a single dose is administered once. Multiple adminis-
trations of the same dose are referred to as parallel multiple-dose design. Parallel dose admin-
istration was found to be the most frequently used procedure in first-time-in-human studies. In a
typical trial with parallel dose administration, subjects are assigned in cohorts consisting of
eight subjects, with six assigned to the active treatment and two assigned to a control. All
treated subjects in a cohort receive the same dose. Doses are increased by one level for each
subsequent cohort. The trial is stopped when an unacceptable number of adverse events is
observed, the highest dose level is reached, or for other reasons. The “target dose,” the dose
recommended for future trials, is usually determined on the basis of the rates of adverse
events at dose levels studied and/or on pharmacokinetic parameters.

More complex dose administration patterns were found to involve the administration of
several different dose levels to each patient. In such trials, the healthy subjects are given
some rest time between administrations to minimize the carryover effect. One such pattern is
referred to as an alternating crossover design. An example of an alternating crossover
design for a study with six doses is as follows:

Cohort 1: Dose 1 REST Dose 4

Cohort 2: Dose 2 REST Dose 5

Cohort 3: Dose 3 REST Dose 6

Another dose administration pattern is the grouped crossover escalation. An example of this
pattern for a trial with four dose levels is as follows:

Cohort 1

Subject 1 Placebo Dose 1 Dose 2

Subject 2 Dose 1 Placebo Dose 2

Subject 3 Dose 1 Dose 2 Placebo

Cohort 2

Subject 1 Placebo Dose 3 Dose 4

Subject 2 Dose 3 Placebo Dose 4

Subject 3 Dose 3 Dose 4 Placebo

Sheiner et al. [41] reviewed parallel and crossover designs and methods for analyzing the
data obtained in such studies. They point out ethical problems and a lack of representativeness
in these designs. Sheiner et al. [41] advocated using a dose administration pattern that they call
the dose escalation design:

According to the dose-escalation design all subjects are given a placebo dose first. If after
some predefined time period the response fails to satisfy a certain clinical endpoint and no
unacceptable toxicity is seen, the dose is increased by one level. This process is repeated at
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each dose level until either the clinical endpoint is reached or the highest dose is attained.
If the response is adequate at any dose, the dose is maintained at that level for the duration of
the study.

The main obstacle to using this design is the lack of formal statistical methods for
data analysis.

Girard et al. [17] studied the effects of several confounding factors on trials that use parallel
dose, crossover and dose escalation designs by simulations. They concluded that the presence
of nonresponders biases the estimate of the dose producing 50% of the maximum effect, in all
three designs. However, other confounders such as carryover effects only bias the results of
trials in which the dose escalation design is used.

Buoen et al. [7] conclude that, although “the development of study designs and evaluation
methods for cancer trials is extensive, . . . formal statistically based methods . . . are unusual in
phase I dose-escalation trials in healthy volunteers.” This lack and the recognition of need
present both challenges and opportunities to the statistical research community.

1.3 PHASE I TRIALS WITH TOXIC OUTCOMES
ENROLLING PATIENTS

In many phase I trials in which the subjects are patients, rather than healthy volunteers, the goal
is to find the dose that has a prespecified toxicity rate. This is particularly true in oncology. In
these trials, the primary outcome is typically binary: dose-limiting toxicity? Yes or no. For
example, the dose-limiting toxicity (DLT) in radiotherapy and chemotherapy studies is
usually defined as treatment-related nonhematological toxicity of grade 3 or higher or
treatment-related hematological toxicity of grade 4 or higher. The maximally tolerated dose
(MTD) is statistically defined as the dose at which the probability of DLT is equal to the
some prespecified rate G. The typical underlying model assumption is that the probability of
toxicity is a nondecreasing function of dose, even though decreasing toxicity rates at high
doses have been observed [43].

Preclinical studies in animals often attempt to determine the dose with approximately 10%
mortality (e.g., the murine LD10). In first-in-human toxicity studies, one-tenth or two-tenths of
the dose considered to be equivalent to the murine equivalent, expressed in milligrams per
meter squared (mg/m2), is generally used as a starting dose in escalation procedures. The start-
ing dose is anticipated to be 5–10-fold below the dose that would demonstrate activity in
humans. In trials with oral drugs, only certain doses can be used; therefore, the set of possible
doses is fixed in advance. The set of possible doses is often chosen according to the modified
Fibonacci sequence.

In dose-finding trials in oncology, patients may receive a single dose of a drug or multiple
administrations of the same dose. To address ethical concerns similar to those of Sheiner et al.
[41] and to shorten trial duration, Simon et al. [42] introduced acceleration titration designs.
Such designs allow intrapatient dose escalation if no toxicity is observed in a patient at the
current dose. A patient goes off study or the patient’s dose is reduced if toxicity is observed.
Although appealing from an ethical perspective, this approach is not widely used for the
same reason as in the hesitation to use Sheiner’s dose escalation design. In the rest of this
chapter, we review methods with parallel dose administration.

One cannot begin to detail all designs that have been used with parallel administration for
dose finding in patients with dose-limiting toxicity. Some popular procedures are ad hoc, as are
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the designs used in healthy volunteers. Others were developed with various desirable charac-
teristics. We discuss the most popular procedures, but our choice is admittedly biased by our
own interests.

1.3.1 Parametric versus Nonparametric Designs

Designs for dose finding can be classified as parametric or nonparametric. Non-parametric
designs are attractive because they are easy to understand and implement; the decision rules
are intuitive and their implementation does not involve complicated calculations. By nonpara-
metric, we mean that no parametric representation of the dose–response relationship is used in
the design’s treatment allocation rule. In this chapter, we discuss several Markovian and
Markovian-motivated non-parametric up-and-down designs and the A þ B designs of Lin
and Shih [31]. We also discuss non-parametric designs in which the treatment allocation rule
is based on isotonic estimates of the dose–response function. These are called isotonic designs.

Then we describe some parametric designs that assume one- or two-parameter models for
the dose–toxicity relationship. Popular parametric designs include the continual reassessment
method [33] and escalation with overdose control [2].

With the Markovian and Markovian-motivated designs, treatment assignments typically
cluster unimodally around a specific dose, and the key to their effectiveness is to select
design parameters so as to center the treatment distribution judiciously [11]. For example,
for toxicity studies with increasing dose–response functions, these designs can be constructed
to cluster treatments around the unknown dose with prespecified “target” toxicity rate G.

In other designs that allow multiple escalations and deescalations of dose, treatment assign-
ments first fluctuate around the MTD and then converge assignments to the MTD. Such designs
include, for example, the continual reassessment method [33] and isotonic designs [29].

1.3.2 Markovian-Motivated Up-and-Down Designs

In up-and-down designs, the next dose assigned is never more than one level distant from the
dose given to the current cohort of patients. Such designs are appealing in dose-limiting
toxicity studies because of the potentially devastating consequences of abruptly making
major changes in dosing. Many ad hoc up-and-down procedures exist, including the most
widely cited design in oncology, that is, the 3 þ 3 design [44,28]. The 3 þ 3 design is a
special case of the A þ B designs [31]. It is important in trials with patients who are critically
ill not to assign too many patients to low, ineffective doses. The A þ B designs address this
concern by assigning A patients to the lower doses and assigning A þ B patients to doses
closer to the target.

Before describing the A þ B designs, we review a fundamental theorem that is useful for
characterizing the Markovian up-and-down design. Let pk, qk, and rk denote the probability
of increasing, decreasing, and repeating dose dk, respectively. Assume that these probabilities
depend only on dk, k ¼ 1, . . . , K. Furthermore, assume that pk decreases with dose, whereas qk

increases with dose. Let dk denote the largest dose such that pk21 � qk. The stationary distri-
bution for Markov chain designs with transition probabilities pk, qk, rk exists uniquely if the
Markov chain is recurrent, irreducible, and aperiodic. Under these conditions, Durham and
Flournoy [11] proved that the stationary distribution of the dose assignments is unimodal
and the mode occurs at dk. Additionally, if pk21 ¼ qk, then the mode spans dk21 as well as dk.

Convergence of the dose assignments to their stationary distribution is reached exponen-
tially rapidly, so asymptotic results apply well with a relatively small number of treatment
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assignments, regardless of the initial dose. Because of the discreteness of the dose space, as a
practical approximation, we say that a Markovian up-and-down design “targets” dk if pk ¼ qk;
treatments will cluster unimodally around this dose. Alternatively, we say that the design
targets the toxicity rate G, for which Pftoxicity j dk g ¼ G. Markovian up-and-down designs
can be characterized using this and other asymptotic and finite sample theory for Markov
chains. Techniques are given in Durham and Flournoy [12], Durham et al. [13], Giovagnoli
and Pintacuda [16], and Bortot and Giovagnoli [5].

A corollary of the Durham–Flournoy theorem is that treatments from the traditional up-and-
down design of Dixon and Mood [10] are distributed unimodally around dk ¼ LD50, regardless
of the underlying (increasing) dose–response model. In this procedure, the dose is decreased if
a toxicity is observed and increased otherwise. So pk ¼ Pftoxicity j dkg and qk ¼ 1 2 pk ¼

Pftoxicity j dkg (except at k ¼ 1 or K ). Solving pk ¼ qk yields pk ¼ 0.50.
Durham and Flournoy [11,12] generalized the Dixon–Mood decision rule by using a biased

coin, together with the Durham–Flournoy theorem, to provide a procedure that targets any
given toxicity rate G. This procedure was not well received in oncology trials because clinicians
were averse to using randomization in phase I treatment allocation rules.

Using cohorts at each dose, the Durham–Flournoy theorem was employed by Gezmu and
Flournoy [15] to devise treatment allocation rules without randomization that still target a given
toxicity rate G. However, the set of possible targets is limited by the group size. Some examples
they give of G that are possible with groups of size 2 are 0.29, 0.50, and 0.71; with groups of
size 3, they are 0.21, 0.35, 0.50, 0.65, and 0.79; and with groups of size 4, they are 0.16, 0.27,
0.38, 0.39, 0.50, 0.61, 0.62, 0.73, and 0.84. Procedures for values of G greater than 0.5 are
useful for efficacy studies, but not toxicity studies. Gezmu and Flournoy [15] show that
each of these target values can be found as a direct application of the Durham–Flournoy
theorem; details justifying this application are given by Ivanova et al. [25]. Antognini et al.
[1] generalize the Gezmu–Flournoy group procedure to target any G [ (0,1) by introducing
a randomization procedure. This is clever, but will probably not be any more attractive to
oncologists than was the biased coin design of Durham and Flournoy [11].

Ivanova et al. [25] take a different approach to adapting the group up-and-down design so
that it will target any given G [ (0,1). They call their procedure the cumulative cohort design,
which is as follows.

Cumulative Cohort Design Suppose that the most recent assignment was to dose dj. Let q̂ j

be the cumulative proportion of toxicities at dj, and let D . 0 denote a design parameter. Then

1. If q̂ j � G2D, the next group of subjects is assigned to dose djþ1.

2. If q̂ j � G þ D, the next group of subjects is assigned to dose dj21.

3. If G 2 D , q̂ j , G þ D, the next group of subjects is assigned to dose dj.

Appropriate adjustments are made at the lowest and highest doses.
An intuitive choice of the parameter D . 0 in the cumulative cohort design is close to 0. For

example, with D ¼ 0.01 and moderate sample sizes, the dose will be repeated if the estimated
toxicity rate is exactly equal to G, and changed otherwise. Ivanova et al. [25] suggested choos-
ing D to maximize the total number of subjects assigned to the MTD over a set of dose–toxicity
scenarios. For example, for moderate sample sizes they recommended using D ¼ 0.09 if
G ¼ 0.10, 0.15, 0.20, or 0.25; D ¼ 0.10 if G ¼ 0.30 or 0.35; D ¼ 0.12 if G ¼ 0.40;
and D ¼ 0.13 if G ¼ 0.45 or 0.50. Ivanova et al. [25] demonstrated via simulations that
D ¼ 0.01 and choosing their recommended values of D yield similar frequency of correctly
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selecting the MTD. However, the cumulative cohort design with their recommended D values
assigns significantly more patients to the MTD.

The A þ B designs as given by Lin and Shih [31] begin like the first run of a Markovian group
up-and-down design, but the design is switched when the dose would otherwise be repeated and
stopped (for designs without deescalation) when the dose would otherwise be decreased.

A þ B Design : Let A and B be positive integers. Let cL, cU, and CU be integers such that
0 � cL , cU � A, cU 2 cL � 2, and cL � CU , A þ B. Let XA(dj) be the number of toxicities
in a cohort of size A assigned to dose dj, and let XAþB (dj) be the number of toxicities in a cohort
of size A þ B. Subjects are treated in cohorts of size A starting with the lowest dose. Suppose that
the most recent cohort was a cohort of A subjects that has been treated at dose dj, j ¼ 1, . . . , K 2

1. Then

1. If XA(dj) � cL, the next cohort of A subjects is assigned to dose djþ1.

2. If cL , XA(dj ) , cU, the cohort of B subjects is assigned to dose dj; then, if in the com-
bined cohort assigned to dj, XAþB (dj) � CU, the next cohort of size A receives dose
djþ1; otherwise the trial is stopped.

3. If XA(dj) � cU, the trial is stopped.

The dose that is one level below the dose where unacceptable numbers of toxicities are
observed (�cU toxicities in a cohort of size A or .CU toxicities in a cohort of size A þ B)
is the estimated MTD.

In an A þ B design, the frequency of stopping dose escalation at a certain level depends on
toxicity rate at this dose as well as on toxicity rate at all lower dose levels. Ivanova [21] used the
Durham–Flournoy theorem to derive recommendations for constructing escalation designs and
explains how to compute the toxicity rate G that will be targeted by any given A þ B design.
The algorithm for selecting parameters A, B, cL, cU, and CU for a given target quantile G is as
follows (where Bin ¼ binomial distribution):

1. Find A, cL, and cU, 0 � cL , cU � A, cU 2 cL � 2, so thatGA, the solution to the equation
PrfBin (A, GA) � cLg ¼ PrfBin (A, GA) � cUg, is equal to or slightly exceeds G.

2. Set B (the choice A � B yields more efficient designs), and given that GAþB is the sol-
ution to the equation PrfBin(A þ B, GAþB) � CUg ¼ 0.5, find CU such that CU/(A þ
B) , G , GAþB.

The 3 þ 3 design is a special case of the A þ B design with A ¼ B ¼ 3, cL ¼ 0, cU ¼ 2, and
CU ¼ 1 that target quantiles around G ¼ 0.2. Applying the algorithm above, we obtain

1. GA ¼ 0.35 is the solution of the equation PrfBin(3, GA) � 0g ¼ PrfBin(3,GA) � 2g;
GA ¼ 0.35 is slightly higher than G ¼ 0.2.

2. GAþB ¼ 0.26 is the solution of the equation PrfBin(3 þ 3, GAþB) � 2g ¼ 0.5, and
CU(A þ B) ¼ 0.17. Hence, approximate bounds for G targeted by the 3 þ 3 design
are 0.17 , G , 0.26.

Exact probability calculations and simulation studies for several dose–response scenarios
by Reiner et al. [39], Lin and Shih [31], Kang and Ahn [26,27] and He et al. [20] are consistent
with the theoretical calculation above establishing that the 3 þ 3 design selects a dose with
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toxicity rate near 0.2. He et al. [20] also showed that if dose levels are selected close to each
other, the mean toxicity rate at the dose selected by the 3 þ 3 design is slightly lower than the
dose selected by trials with a sparser set of possible dose levels.

1.3.3 Isotonic Designs

Isotonic designs assume that the dose–toxicity relationship is isotonic and use isotonic esti-
mates of the toxicity rates in the treatment allocation rule. We first review isotonic estimation
of the toxicity rates, which are maximum-likelihood estimates for the isotonic model of the
data. Let N (dj, n) be the number of patients assigned to dose dj, and let X(dj, n) be the
number of toxicities at dj after n patients have been treated. Define q̂ j ¼ X(dj, n)/Nj(n) for
all j [ f1, . . . , Kg such that N(dj, n) . 0, and let (q̂1, . . . , q̂k) be the vector of these proportions.
The vector of isotonic estimates (q̃1, . . . , q̃K) can be obtained from (q̂1, . . . , q̂K) by using the
pool adjacent violators algorithm (see, e.g., Ref. 3). At the end of the trial the dose with the
value q̄i closest to G is the estimated MTD. If there are two or more such doses, the highest
dose with the estimated value below G is chosen. If all the estimated values at these doses
are higher than G, the lowest of these doses is chosen. The cumulative cohort decision rule
[25] described in Section 1.3.1 when used with isotonic estimates of toxicity rates is an isotonic
design. A few other isotonic designs have been proposed, including the isotonic design of
Leung and Wang [29]. Ivanova and Flournoy [24] compared several isotonic designs with
the cumulative cohort design via simulations for a number of target quantiles and dose–toxicity
models and concluded that the cumulative cohort design performs better than others.

1.3.4 Bayesian Designs

Parametric methods require assumptions about the model for the dose–toxicity relationship. In
addition, Bayesian methods require priors on the model parameters. The continual reassess-
ment method (CRM) is a Bayesian design proposed in 1990 [36]. The CRM starts with a
working model for the dose–toxicity relationship. Let yi ¼ 1 if the ith patient experiences toxi-
city and let yi ¼ 0 otherwise, i ¼ 1, . . . , n. For example

F(d,u) :¼ Pfyi ¼ 1 j dg ¼ [(tanh d þ 1)=2]u: ð1:1Þ

The CRM uses Bayes’ theorem to update a prior distribution g(S) of S, for example, g(u) ¼
exp(2u). After each patient’s response is observed, the mean posterior density of the parameter
is computed. Let xi [ D be the dose received by the ith patient. So after the nth patient’s
response, Vn ¼ f(x1, y1), . . . , (xn, yn)g are the accumulated data and

û(n) ¼ E(u jVn) ¼
ð1

0
u f (u jVn)du ð1:2Þ

is the posterior mean of u. Here f (u jVn) ¼ LVn(u)g(u)/
Ð1

0 LVn(u)g(u)du and LVn(u) is the like-
lihood function.

In the CRM, no prespecified set of doses is required and subjects are assigned one at a time.
However, doses can be restricted to a prespecified ordered set D ¼ fd1, . . . ,dKg [34]. In this
case, the model above can also be written as F(di,u) ¼ bi

u, where (b1, . . . ,bk) is a set of
constants, bi ¼ (tanh di þ 1)/2.
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The first patient receives the first dose level, x1 ¼ d1. Assume that n patients have been
assigned so far. The dose to be administered to the next patient is the dose xnþ1 such that
the absolute difference between Prfy ¼ 1 j xnþ1, û(n)g and G is minimized. If a prespecified
set D is chosen, this quantity is minimized over D. Dose xnþ1 can be used as an estimate of
the MTD after n patients have been assigned. Other estimators were explored by O’Quigley
[35]. Necessary conditions for the CRM to converge to the target dose were given in
Shen and O’Quigley [40], and more relaxed conditions were given by Cheung and
Chappell [9]. Also, subjects can be assigned in groups [14,28,18] to shorten the total duration
of the trial.

The CRM is a special case of a Bayesian decision procedure with the next dose xnþ1

selected to maximize the gain function [47]:

G(û(n), d) ¼ (F(d,û(n))� G)�2: ð1:3Þ

Another Bayesian design for dose-finding studies is the escalation with overdose control
[2]. This design is from a class of Bayesian feasible designs. It uses a loss function to minimize
the predicted amount by which any given patient is overdosed. Bayesian decision procedures
for dose-finding studies were described in McLeish and Tosh [32], Whitehead and Brunier
[47], and Whitehead and Williamson [48]. Leung and Wang [30] point out that the CRM is
a myopic strategy and might not be globally optimal. A globally optimal strategy requires
comparison of all possible sets of actions that could be taken, and this remains computationally
formidable for designs having more than three dose levels [19].

1.3.5 Time-to-Event Design Modifications

If a follow-up time is required for each patient as, for example, in many radiation therapy trials,
the dose-finding trial can be impractically long. Cheung and Chappell [8] suggested a modifi-
cation of the CRM that allows treatment assignments to be staggered so as to shorten the trial
duration.

In the original CRM [33], the calculation of the posterior mean of u at the time when the
(n þ 1)th patient enters the trial is based on the likelihood

Ln(u) ¼
Yn

i¼1

F(xi, u)yif1� F(xi, u)g1�yi , ð1:4Þ

where F(xi,u) is a working model as before. Cheung and Chappell [8] introduced the so-called
TITE-CRM for trials with long follow-up. They redefined the toxicity rate at dose di to be the
probability of observing toxicity at di during a time period of length T after initiation of therapy.
Data for the ith patient, i ¼ 1, . . . n, are fxi, yi,n, ui,ng when the (n þ 1)st patient enters the trial,
where xi is the dose, yi,n is the toxicity indicator, and ui,n is the time that has elapsed from the
moment when the ith patient entered the trial to the time (n þ 1)th patient enters the trial.

Cheung and Chappell [8] suggested using a weighted likelihood for TITE-CRM:

~Ln(u) ¼
Yn

i¼1

fwi,nF(xi,u)gyif1� wi,nF(xi,u)g1�yi , ð1:5Þ
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where wi,n is the weight assigned to the ith observation prior to entry of the (n þ 1)th patient.
For example, a weight of wi,n ¼ min(mi,n/T, 1) reflects an assumption that the density of time to
toxicity is flat in (0, T ). Other choices for weights can be considered [8].

Similar modifications can be applied to any treatment allocation rules that are based on the
likelihood function. In particular, the isotonic designs can be extended using this idea for trials
with long follow-up. Such extension of the cumulative cohort design is described in Ivanova
et al. [25].

1.4 OTHER DESIGN PROBLEMS IN DOSE FINDING

Below we list various other design problems that arise in the dose-finding context. We have not
included designs for bivariate outcomes, but note that dose-finding designs whose goals
combine toxicity with efficacy form a growing area of research. Otherwise, we apologize in
advance if we have overlooked one of your favorites.

Ordered Groups Sometimes patients are stratified into two subpopulations, for example,
heavily pretreated and not, where the first subpopulation is more likely to experience
toxicity. The goal is to find two MTDs, one for each subpopulation. One of the
subpopulations is often very small, rendering the running of two separate trials, one for each
subpopulation, unfeasible. O’Quigley and Paoletti [37] proposed a parametric design for this
problem. Their method is an extension of the CRM. Ivanova and Wang [22] proposed an
isotonic approach where bivariate isotonic regression is used to estimate toxicity rates in
both populations simultaneously.

Multitreatment Trials Multi-treatment trials are very common. The goal is usually to find
the maximum tolerated dose combination. Often only the dose of one agent is varied, with
doses of all the other agents held fixed. Thall et al. [45] propose a Bayesian design for trials
with two agents in which the doses of both agents are changed simultaneously.

Ivanova and Wang [22] and Wang and Ivanova [46] considered a two-agent trial where two
doses of one of the agents, say, the second agent, have already been selected. The problem is to
find two maximum tolerated doses of the first agent, one MTD for each dose of the second
agent. Ivanova and Wang [22] described an isotonic design, and Wang and Ivanova [46]
described a Bayesian design for the problem.

Ordinal Outcomes Toxicity in oncology, and many other settings, is measured as an
ordinal variable. Bekele and Thall [4] gave an example of a dose-finding trial where
different grades of toxicity are combined to obtain a toxicity score for each patient. The goal
was to find the dose with a certain weighted sum of probabilities of toxicity grades
corresponding to different toxicity types. They [4] suggested a Bayesian design for this
problem. Ivanova [21] described a trial where three grades of toxicity (none, mild, and
dose-limiting) are combined in a single score. A design in the spirit of the A þ B designs to
target the dose with the score of 0.5 was used in that trial [21].

Paul et al. [38] considered a different problem in which, target toxicity rates are specified
for each grade of toxicity. The goal is to find the vector of doses that have the prespecified
rates of toxicity. A multistage random-walk rule with a multidimensional isotonic estimator
is proposed.

1.4 OTHER DESIGN PROBLEMS IN DOSE FINDING 11



Finding a Maximum Tolerated Schedule In chemotherapy trials treatment is usually
administered in cycles. The goal is to find a maximum tolerated schedule for an agent
used in chemotherapy administration. Braun, et al. [6] presented a parametric design for
this problem.

1.5 CONCLUDING REMARKS

We have given an overview of dose-finding designs. There has been much progress in the area
of dose-finding designs; new dose-finding problem are being formulated and new methods
developed. Statistical methods for dose-finding designs are most advanced for trials in oncol-
ogy and other life-threatening diseases. Ad hoc designs, such as the 3 þ 3 or A þ B designs, are
often criticized for being inflexible with regard to their objectives. It is true that A þ B designs
do not converge to a certain quantile because they invoke the stopping rule and use small
sample size. Increasing the size of the second cohort or using an A þ B þ C design will
lead to better performance of these types of design. The major limitation of and A þ B
design is that no modifications of the design exist to use the design in trials with delayed toxi-
city outcome. The CRM had been shown to converge to the MTD under certain conditions. It
performs very well for small to moderate sample sizes. The CRM can be used for trials with
delayed outcomes [8]. However, attempts to design a stopping rule (for use with the CRM)
that performs very well have been unsuccessful. Therefore, one needs to specify the total
sample size in advance when the CRM is used. A number of publications on isotonic
designs or “model free” designs have appeared in the literature and are discussed by
Ivanova and Flournoy [24]. These designs do not use any assumption other then toxicity mono-
tonicity. As extension of nonparametric designs, isotonic designs allow using all the data avail-
able to obtain toxicity estimates. From the parametric design perspective, model-free designs
bring flexibility to modeling when needed.
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