Chapter 1

Perl’s Place in the
Programming World

In This Chapter

Understanding programming languages

Comparing Perl to other languages

Using Perl with emerging technologies

\\3

M any people want to know exactly what makes their computer programs
tick. They have a nagging itch to find out what’s “under the hood” of

their computers, beyond the chips and wires. They want to find out how they
can create new and better programs and how it is that programmers can make
so much money yet look like they dress in the dark.

Don’t assume that everyone who programs or writes books about program-
ming is a young whippersnapper. Without getting too specific, let’s just say
that my college days are way, way behind me. When [worked with computers
back then, I often used punched cards and paper tape — ah, those wonderful
pre-PC days.

In pre-PC days, BASIC was the easy language to learn, and serious program-
mers learned FORTRAN or COBOL to do “real work.” But many people discov-
ered that you could accomplish a lot with plain old BASIC. Today, many
people have discovered that Perl is a great beginning programming language
because it’s simple to use and yet you can create powerful programs with
little effort. Sure, you can immerse yourself in more difficult languages, such
as C++ or Java, but you can probably learn Perl faster and find yourself doing
what you want to do just as well, if not better.

8 Part I: Getting Started with Perl

Understanding the Purpose of
Programming

If you're new to the concept of programming, you may be asking yourself,
“Why am [learning how to program?” Sure, programs control computers, but
that doesn’t mean that everyone should become a programmer.

When personal computers appeared on the scene about 25 years ago, almost
no commercial software existed, and the software that did exist was pretty
primitive. If you wanted to do anything special, you had to learn to program
so that you could create programs to meet your specific needs. By 1981, when
the IBM PC came out, plenty of commercial programs were available and users
no longer needed to program their computers — the software did it for them.

Today, very few computer users have any real need to write programs. Tens
of thousands of programs are available, many for free, and you can find one
for just about anything that you want to do with your computer.

Some people think that once they learn to program, they can write any kind of
program for their computers. In some cases, people may have some big plans:

v “I have this great idea for a word processor that’s different from the ones
I've seen.”

v “I'll create an Internet program that makes Netscape look like a kid’s toy!”

v “There are no good programs that convert English into ancient Greek.
I'll create one and make a fortune.”

Although such programs are possible, each one would take months or years to
create. When you learn to program, you begin by creating simple applications.
To create complex programs, you have to practice, practice, and practice, usu-
ally full time. In this book, I show you how to cook up lots of simple programs
using Perl (but nothing on the order of a word processor, Internet browser, or
English-to-ancient-Greek translator, although the latter is certainly possible
with Perl).

You may not have to program, but learning the art of programming can open
doors for you:

v Learning to program is a good way to understand how computer pro-
grams work. Because everything that happens on your computer is con-
trolled by one program or another, learning what it takes to create
programs is a good way to find out what makes your computer tick.

Chapter 1: Perl's Place in the Programming World

v Programming is fun, at least to people like us. If you enjoy computers
and being creative, writing programs can provide great amusement.
Programming also appeals to tinkerers, because after you create a pro-
gram, you can change it a bit here, add a few features there, and just
keep on going with it.

1 Professional programmers can get paid big bucks, and jobs exist for
them all over the world. Note, however, that most of the programmer
jobs you see advertised in the Sunday want ads are for experienced pro-
grammers, and the number of entry-level jobs in the field is almost zilch.
Still, with a shred of patience and a bit of luck, you can teach yourself
programming and turn it into a profession within a few years.

Making Computers Compute

Take a step back to examine what it is that a computer does and what it takes
to control a computer. Don’t worry, I'll limit the talk about chips and wires
and circuit boards to a minimum here. However, you do need a bit of that
sort of information because, even though programming is about software,
software controls hardware.

A computer is a hardware system that can, well, compute. The main chip in
each computer, often called the central processing unit (CPU), takes instruc-
tions and data and acts on them, usually to create more data. For example, a
CPU can take the data 3 and the data 5 and the instruction add and respond
with 8. If, instead, you give it data like 4 and 6 but still give it the instruction
add, you get the response 10. Or, if you still used 3 and 5, but said multiply
rather than add, you see it come back with 15. This process of taking input,
performing some operation, and providing output is really the basis for all
computers. Things get fancy when you start talking about the kinds of
instructions and data the CPU can handle.

All data given to a computer’s CPU is in number form. You may find that fact
hard to believe because you’'ve seen your computer produce letters, pictures,
and maybe even sounds and movies, but everything you see on-screen is
composed in the computer’s mind as numbers. When you use a programming
language such as Perl, the language lets you think in terms of letters, but the
program actually converts letters to numbers for the CPU.

CPUs can do much more than add and multiply. One common CPU operation
is the comparison of two numbers. For example, a CPU instruction may say,
“If this number is bigger than 0, do this; otherwise, do that instead.” By com-
paring two numbers and choosing what to do next based on the comparison,
the CPU can make decisions about how to work when the numbers aren’t
known ahead of time.

10

Part I: Getting Started with Perl

That’s the short-and-sweet introduction to the brain of any computer, includ-
ing a bit about how it “thinks.” Of course, a computer doesn’t really think: It
reacts. And the way that it reacts is based on the instructions and data given
to it. The list of instructions that you give to a CPU is a program, and you put
together a program with a programming language. A programming language,
such as Perl, is the means by which you, the programmer, can create a set of
CPU instructions.

Translating Vour Language into
Computer Language

In order to make CPUs run efficiently, the instructions and data that you feed
them must be compact and concise. As I mentioned in the section “Making
Computers Compute,” all data given to a computer’s CPU is in number form.
However, it would be nearly impossible for you to learn a programming lan-
guage that only used numbers. Instead, programmers use more human-friendly
languages like Perl (or C, or COBOL, or Java, and so on). These languages are
called high-level languages, and when they run, they’re converted into instruc-
tions and data to let the CPU know what’s happening. These instructions and
data are called machine language, and even though machine language is a kind

of programming language, very few people know how to use it.

Interpreters and compilers

Two main types of programming languages
exist— compiled and interpreted, each of which
has its advantages and disadvantages. Probably
the best-known compiled language is C. Perl, on
the other hand, is an interpreted language.

The main difference between the two is that
compiled languages generally run faster.
Interpreted languages read a program and turn it
into machine language before executing it.
Compiled languages already have the machine
instructions, so they can start executing from the
get-go. Many people, particularly C program-
mers, contend that compiled programs are better

because they run faster. In our faster-is-better
society, this may be a compelling argument.

The speed difference between a compiler and an
interpreter is sometimes infinitesimal, and unno-
ticeable by mere mortals. For instance, even for
large and complex Perl programs, an equivalent
C program may take one-half of a second less to
run. Another difference is that interpreted lan-
guages are a bit easier to debug (that is, to find
and fix errors), because they are executed step
by step, so you can find exactly where a problem
occurred and stop right there to fix it.

Chapter 1: Perl's Place in the Programming World

An important feature of a programming language is how quickly people can
learn to create useful programs with it. Other considerations, such as how
fast programs run after you write them and how much energy you have to
expend to get particular tasks done, are important; however, of first and fore-
most importance is a language’s ease of use. A difficult language may be okay
for the top 10 or 20 percent of the programming population, but for the rest
of us, a difficult language simply isn’t worth all the struggle in the learning
department and, therefore, isn’t likely to be popular.

Designing Computer Languages

People sometimes think of human languages as appearing out of nowhere
and never changing, but that’s clearly not the case. Human languages evolve
in a number of ways, and so do computer languages. Computer languages are
quite different from human languages:

v The main purpose of human language is person-to-person communica-
tion; the main purpose of computer languages is human-to-computer
communication.

v~ All computer languages have been created within the past 50 years.
Because they haven’t developed over a long period of time like most
human languages, they don’t present some of the challenges that many
human languages do, such as having too many exceptions to the rules.

v Computer languages are usually invented by a single person or a small
group of people (although larger groups of people may get together later
to decide how to modify a language). Because human languages are devel-
oped by entire cultures, they’re apt to have more quirks and oddities than
computer languages.

When people create a new computer language, they have to think long and
hard about what they want to do with it, and why their language will be
better than the ones already out there. Convincing people to stop using their
favorite computer language and switch to a new one can be difficult, so a
designer must craft a language to make it as attractive as possible (in other
words, they have to make the language powerful, or easy to use, or both).

Sometimes, a language is created to do just one little thing better than any
other language does it, and that one thing is really important to a select
group of people. For example, engineers who design robots may want their
own computer language to be able to describe how to move an arm or a leg
and what direction to move it in, but they don’t need the ability to perform
calculus. Other languages are designed to do all things fairly well, which
makes program writing simpler because the programmer can do everything
with just a single tool.

11

12

Part I: Getting Started with Perl

Picky languages versus free-form languages

When you first learn a programming language,
you're allowed to make minor mistakes along
the way. When it comes to actually creating a
workable program, however, some languages
are very particular about how you write it and
will block your progress unless the program is
perfect.

Some programming languages, such as C,
demand that you’re extremely careful about the
types of data you're using; if you make a mis-
take, the program can cause errors without you
noticing them. Other languages, such as Perl,
are much more lenient; they let you be less spe-
cific about the kind of data you’re using.

Professional programmers can argue on and on
about whether a language should be picky or

not. Some say being picky is good because it
forces the programmer to dictate exactly what
he or she wants, leaving no guesswork for the
language. Others say languages should be
lenient so that a programmer can write code
quickly without having to dot all the /s and cross
all the ts.

A programming language can be stringent or
lenient in other ways, as well. Some languages
require that every line of a program line up with
each other in a certain way, and others are
much more free-form. By the way, you'll dis-
cover that Perl is overall a pretty lenient lan-
guage. However, if you want Perl to get picky,
you can tell it to check your programs for prob-
able errors in order to find the things that you
may have done wrong.

You may think that every language should be simple to learn so that more
people can use it. However, that’s not really necessary because a fair number
of simple languages already exist — Perl being one of them. Instead of creat-

ing new, easily mastered languages, language designers are targeting specific

groups of programmers who will spend the time to work with special features

or interesting language forms.

When creating a new computer language, designers must keep a number of

considerations in mind:

v How fast will the language run?

1 How easy is it to extend the language to handle tasks unanticipated by

the language’s authors?

v What sort of background do programmers of that language need?

v What type of computers will run the language?

Because of these design challenges, relatively few computer languages are
widely used. Although at least 100 languages have been disseminated over
the past 30 years, fewer than a dozen are used by more than a few thousand

people.

Chapter 1: Perl's Place in the Programming World

Appreciating the Benefits of Perl

Computer users can argue ad nauseum about which programming language is
the best or easiest to use. The fact is, no single language is perfect for every
task, and the top three or four languages for most tasks get the job done equally
well. For the novice or intermediate programmer, then, the question is not really
what is the best program to use, but which is the easiest one to master.

Perl scores high on both the learning-curve and ease-of-use scales. You can
write a small Perl program designed to do a simple task after reading just the
first few chapters of this book. In fact, if you read through the first part of this
book, you’ll understand enough about Perl that you can begin to modify pro-
grams to your heart’s content. One of the common phrases in the world of
Perl programmers is “there’s more than one way to do it.”

Certainly, other languages are easy to learn and use, but they don’t have the
features that make Perl a great all-around language, such as flexibility with
the kinds of data it can handle or its ability to deal with objects. Here’s the
lowdown on some other languages:

+* BASIC: Good old BASIC has features similar to the easy features of Perl,
but it’s not very good for modern programming because of its lack of
flexibility:.

v Visual Basic: Microsoft Visual Basic is not nearly as easy to learn as
BASIC, and although it’s very powerful, many novices find Visual Basic
pretty confusing.

v C: Some people think C is easy to learn, but difficult to use unless you're
very careful, because you can create C programs that look great on the
surface but do harmful things to your computer. C also loses points in
the text-handling area — one of the places in which Perl shines.

v Java: Boy, it’s hard to talk about Java without either the pro-Java or anti-
Java zealots attacking you. Speaking frankly, Java is an okay language
that suffers from being horribly over-promoted. It has some great fea-
tures, such as safe execution of programs in secure environments and
easy reuse of programs written by other people. Unfortunately, it fails
miserably at the feature for which it was most touted; namely, that you
can write a program for one type of computer and have the program
look and act the same on all other types of computers.

Perl also surpasses other programming languages on some common tasks.
With Per], the tasks of opening a file on your computer, reading it, and making
some changes based on what you find in the file is quite easy. Perl can handle
text files with aplomb, and has no problems with binary files. Perl is also
good at handling text in ways that humans do, such as looking at a sentence
and breaking it into words or sorting lines in alphabetical order.

13

14

Part I: Getting Started with Perl

A bit of Perl history

Programming languages have been around
for several decades. Perl (short for Practical
Extraction and Report Language) is one of the
youngest of the popular programming lan-
guages, debuting in the mid-1980s. The idea for
Perl pretty much sprang from the head of one
person, Larry Wall, who had a bunch of system-
administration tasks to do and no good lan-
guage to get them all done.

In short, Perl was born out of necessity. Larry
Wall needed a language that had the power to
open a bunch of text files in different formats,
read these different files in one way, and create
new files that reported on the original files. He
could have used C, a popular language at the
time, but C is ornery when dealing with text and
is prone to making difficult-to-locate errors if
you're not careful.

Perl has been extended to do much more than
extract text and then generate a report on it.

Thousands of useful system-administration and
Internet tools now rely on Perl to perform tasks
such as summarizing log files, taking input from
Web users, and displaying parts of databases
on the Web. In fact, a few Web server programs
are written completely in Perl.

Perl now comes bundled with almost every
copy of every flavor of UNIX. For a long time,
Perl was mostly a UNIX-only language. Until a
few years ago, virtually all work on Perl was
done on UNIX. The language has recently
become popular on PCs and Macintoshes, in
part because it is free and easy to get. Indeed,
Perl is the most popular free programming lan-
guage available for Windows systems and
Macs, and as these computers need more and
more system administration, Perl’s acceptance
and use is likely to grow even more.

The ten-second summary of Perl’s strongest points is this: Perl works great
for reading through text files, summarizing processed files or converting files
to a different format, and managing UNIX systems. Other languages strive to
be elegant or very small; Perl strives to be complete and easy to use.

Another great reason for using Perl is that it’s free. This no-cost policy has
prompted many people to help out with the Perl development effort and has
resulted in widespread usage of Perl over a relatively short period of time.
Perl is also open source software, meaning that anyone can look at the inter-
nal programming in Perl and correct errors or even extend the language
itself. Open source software is considered to be more secure and reliable
than software for which you can’t check the internals.

Many Versions, One Perl

Throughout this book, I talk about Perl as if it were just one programming lan-

guage. But, like all software, Perl has gone through many changes since the
time Larry Wall conceived it. Fortunately, you need to think about only two

Chapter 1: Perl's Place in the Programming World

major versions of Perl: Perl 5.6 and Perl 5.8. (An older version of Perl, Perl 4,
is rarely seen and is mentioned in a few places in this book for those of you
using very old copies of Perl.)

Each major version (currently, the major version is Perl 5) has many minor
versions; for example, for the last edition of this book, the current version of
Perl was 5.6; the current version is now 5.8. All minor versions of a major ver-
sion act pretty much the same, but higher numbered minor versions usually
have a few additions and bug fixes.

Perl version 4 was the stable version of Perl for many years. In fact, a few
people still use Perl 4 instead of Perl 5 because they just got so used to it —
even though Perl 5 added many advanced features. The final subversion of
Perl 4 is “patchlevel 36,” but most people just refer to it as version 4.036.
Whenever I talk about Perl 4 in this book, I'm referring to Perl version 4.036.

In early 1996, people started making the switch to Perl 5; in early 2000, people
started switching to Perl 5.6; now people are switching to Perl 5.8. Perl 5.6
and Perl 5.8 are pretty stable (although not completely bug-free, of course)
and can certainly be used for almost any application.

This book is almost exclusively about Perl 5.8, which is not to say that a
Perl 5.6 user can’t use the programs found here. (Perl 5.7 was only used by
the people developing Perl — not by folks like you and me.) In fact, about 95
percent of what’s in this book works exactly the same under Perl 5.6 as it
does with Perl 5.8, which is a testament to the folks who worked so carefully
on the Perl project to engineer a smooth transition from Perl 4 to Perl 5 to
Perl 5.6 to Perl 5.8.

However, a few things in Perl 5.8 just plain didn’t exist in Perl 4, and of course,

[cover them in this book. For example, Chapter 19 covers object-oriented Perl,

a feature that doesn’t exist in Perl 4. [sprinkle descriptions of a few smaller, but

nevertheless handy, new features in Perl 5 throughout the book. Similarly, a few

things now exist in Perl 5.8 that didn’t exist in Perl 5.6, and I cover those as well.
o [urge everyone using Perl 5 to upgrade to Perl 5.6 or, preferably, Perl 5.8.
Doing so will make your time with this book much easier, and will also give
you a much better (and more bug-free!) experience.

Differentiating Between Perl 5
and Perl 5.6

Perl 5.6 took almost four years to come out, so you may be expecting a zillion
new features to have been shoved in all over the place. For many program-
ming languages, that would be a reasonable expectation, but not for Perl. The

10

Part I: Getting Started with Perl

good folks who maintain Perl have stuck to their convictions and kept “creep-
ing featureitis syndrome” to a minimum.

The most visible change, and the one that has garnered the most interest
around the world, is Perl’s embracing of international characters in general
and the Unicode standard in particular. People using just the English lan-
guage have it easy: They have a small set of characters in their alphabet, and
none of those characters have diacritic marks such as acute accents (") and
umlauts (7). Almost every non-English language, however, uses at least a few
characters that are not found in the English alphabet.

Until version 5.6, Perl had no standard way of letting you enter these charac-
ters or showing you these characters in your output. With version 5.6, that is
fairly easy to do. Perl relies on the Unicode standard, which was created and
is maintained by the Unicode Consortium, a group of companies and individu-
als who have been working for over a decade to make all the world’s lan-
guages easy to handle for all computers. You can find out more about the
Unicode standard at www . unicode.org and more about how Perl 5.6 uses
Unicode in Chapter 5 of this book.

The other improvements in Perl 5.6 aren’t nearly as visible to most users. In
fact, the creators of Perl 5.6 made a successful effort to mostly add “back-
end” changes in the new version, and to rely on Perl modules (described in
Chapter 19) to add the more visible features. Most of these features are well
beyond the scope of this book, but a few that appear include binary numbers
and closer integration with Microsoft Windows operating systems.

Exploring the New Features of Perl 5.8

The difference between Perl 5.6 and Perl 5.8 is much smaller than the differ-
ence between Perl 5 and Perl 5.6. Whereas Perl 5.6 introduced many new and
significant concepts to Perl, Perl 5.8 is mostly an evolutionary revision.

That is not to say that Perl 5.8 isn’t important — because it is. For one thing,
Perl 5.8 is significantly faster for many programs. It is also more stable than
earlier versions of Perl. In addition, it has many new features, including:

v Improved support of internationalized text (covered in Chapter 5)

v Additional functions and modules (covered throughout the book)

1 Better accuracy for large numbers (covered in Chapter 6)

All of this adds up to a good reason for you to update to Perl 5.8 if you
haven’t already.

