
Migrating from ADO
to ADO.NET

This chapter is an introduction to ADO.NET 2.0 for Visual Basic 6 developers who’ve decided to
bite the bullet and move to Microsoft .NET Framework 2.0, Visual Studio 2005 (VS 2005) or Visual
Basic Express (VBX), and Visual Basic 2005 (VB 2005) as their programming language. The
ADO.NET 2.0 code examples and sample projects described in the chapter have the following
prerequisites:

❑ Experience with VB6 database programming, using the Data Environment Designer, and
writing code to create and manipulate ADODB Connection, Command, and Recordset
objects, including disconnected Recordsets and databound controls.

❑ A basic understanding of the organization and use of .NET Framework namespaces and
classes.

❑ Sufficient familiarity with using the VS 2005 IDE and writing VB 2005 code to create
simple Windows Form projects.

❑ Microsoft SQL Server 2000 or 2005 Developer edition or higher, MSDE 2000, or SQL
Server Express (SQLX) installed on your development computer or accessible from a
network location. Access 2000 or later for Jet 4.0 examples is optional.

❑ The Northwind sample database installed on an accessible SQL Server instance.

❑ A working knowledge of XML document standards, including some familiarity with XML
schemas.

If you have experience with ADO.NET 1.x, consider scanning this chapter for new
ADO.NET 2.0 features and then continue with Chapter 2, “Introducing New
ADO.NET 2.0 Features,” for more detailed coverage.

05_57678x ch01.qxd 11/10/05 11:32 PM Page 3

CO
PYRIG

HTED
 M

ATERIA
L

One of Microsoft’s objectives for VS 2005 is to minimize the trauma that developers experience when
moving from VB6 and VBA to the .NET Framework 2.0 and VB 2005. Whether VS .NET 2005’s VB-specific
My namespace and its accouterments will increase the rate of VB6 developer migration to VB 2005 remains
to be seen. What’s needed to bring professional VB6 database developers to the third iteration of the .NET
Framework and Visual Studio’s .NET implementation is increased programming productivity, application
or component scalability and performance, and code reusability.

This chapter begins by demonstrating the similarities of VB6 and VBA code to create ADODB objects and
VB 2005 code to generate basic ADO.NET 2.0 objects — database connections, commands, and read-only
resultsets for Windows form projects. Native ADO.NET data provider classes — especially SqlClient
for SQL Server — provide substantially better data access performance than ADODB and its OLE DB
data providers. The remaining sections show you multiple approaches for creating ADO.NET DataSets
by using new VS 2005 features and wizards to generate the underlying read-write data objects for you
automatically. DataSets demonstrate VS 2005’s improved data access programming productivity and
ADO.NET 2.0’s contribution to application scalability.

A New Approach to Data Access
Microsoft designed ADO.NET to maximize the scalability of data-intensive Windows and Web form
applications and .NET components. Scalability isn’t a critical factor when your project involves a few
Windows form clients retrieving and updating tables in a single database. High-traffic Web sites,
however, require the ability to scale up by adding more processors and RAM to a single server or to scale
out by adding more application servers to handle the data processing load. Managed ADO.NET code
that minimizes the duration and number of concurrent database server connections and uses optimistic
concurrency tests for updating tables is the key to achieving a scalable data-intensive .NET project.

The sections that follow explain the role of ADO.NET 2.0 namespaces and managed data providers,
which form the foundation of .NET 2.0 data access operations.

The System.Data Namespace
The .NET Framework 2.0 System.Data namespace contains all ADO.NET 2.0 namespaces, classes,
interfaces, enumerations, and delegates. Figure 1-1 shows Object Browser displaying the System.Data
namespaces.

Figure 1-1

4

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 4

VS 2005 doesn’t add a reference to the System.Data.dll assembly automatically when you start a new
Windows form project. Creating a new data source with the Data Source Configuration Wizard adds
references to the System.Data and System.Xml namespaces. The section “Add a Typed DataSet
from an SQL Server Data Source,” later in this chapter, describes how to use the Data Source
Configuration Wizard.

ADO.NET SqlConnection and SqlCommand objects correspond to ADODB.Connection and
ADODB.Command objects, but are restricted to use with SQL Server databases. Following are the
ADO.NET namespace hierarchies for SqlConnection- and SqlCommand-managed data provider
objects; namespaces new in ADO.NET 2.0 are emphasized:

System.Object
System.MarshalByRefObject

System.ComponentModel.Component
System.Data.Common.DbConnection

System.Data.SqlClient.SqlConnection

System.Object
System.MarshalByRefObject

System.ComponentModel.Component
System.Data.Common.DbCommand
System.Data.SqlClient.SqlCommand

The following table provides brief descriptions of the System.Data namespaces shown in Figure 1-1
with the namespaces in the preceding hierarchy listed in order.

Namespace Description

System.Object The root of the .NET Framework 2.0 type hierarchy
(member of System).

System.MarshalByRefObject Enables remoting of data objects across application
domain boundaries (member of System).

System.ComponentModel Supports object sharing between components and
enables runtime and design-time implementations
of components.

System.Data Provides the base classes, interfaces, enumerations,
and event handlers for all supported data
sources — primarily relational data and XML files
or streams.

System.Data.Common Provides classes that all managed data providers
share, such as DbConnection and DbCommand in
the preceding hierarchy list.

System.Data.Common.DbConnection Provides inheritable classes for technology-specific
and vendor-specific data providers (new in
ADO.NET 2.0).

Table continued on following page

5

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 5

Namespace Description

System.Data.Odbc, System.Data Namespaces for the five managed data providers
.OleDb, System.Data.OracleClient, included in ADO.NET 2.0; the next section
System.Data.SqlClient, describes these namespaces.
and System.Data.SqlCeClient

System.Data.SqlTypes Provides a class for each SQL Server data type,
including SQL Server 2005’s new xml data type;
these classes substitute for the generic DbType
enumeration that supports all data providers.

System.XML Adds the System.Xml.XmlDataDocument class,
which supports processing of structured XML
documents by DataSet objects.

After you add a project reference to System.Data.dll, you can eliminate typing System.Data namespace
qualifiers and ensure strict type checking by adding the following lines to the top of your class code:

Option Explicit On
Option Strict On
Imports System.Data
Imports System.Data.SqlClient

Specifying Option Explicit On and Option Strict On in the Options dialog’s Projects and Solutions,
VB Defaults page doesn’t ensure that other developers who work with your code have these defaults set.
Substitute Imports System.Data.OleDb for Imports System.Data.SqlClient if you’re
using the OleDb data provider.

ADO.NET Data Providers
ADO.NET-managed data providers and their underlying data objects form the backbone of .NET data
access. The data providers are an abstraction layer for data services and are similar in concept to ActiveX
Data Objects’ ADODB class, which supports only OLE DB data providers. ADO.NET supports multiple
data provider types by the following data provider namespaces:

❑ SqlClient members provide high performance connectivity to SQL Server 7.0, 2000, and 2005.
The performance gain comes from bypassing the OLE DB layer and communicating with SQL
Server’s native Tabular Data Stream (TDS) protocol. Most of this book’s examples use classes in
the SqlClient namespace.

❑ SqlClientCe provides features similar to SqlClient for SQL Server CE 3.0 and SQL Server
2005 Mobile Edition. This book doesn’t cover SQL Server CE or Mobile versions.

❑ OracleClient members deliver functionality similar to SqlClient for Oracle 8i and 9i
databases. Oracle offers Oracle Data Provider for .NET (ODP .NET) as a substitute for
OracleClient; ODP .NET also supports Oracle 10g and later. You can learn more about ODP
.NET at http://otn.oracle.com/tech/windows/odpnet/.

6

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 6

❑ OleDb members provide a direct connection to COM-based OLE DB data providers for
databases and data sources other than SQL Server, SQL Server CE, and Oracle. You can select
from 19 built-in OLE DB data providers when creating a new OleDbConnection object. A few
of this book’s examples use the Microsoft Jet 4.0 OLE DB Data Provider with the Access 2000 or
later Northwind.mdb file. ADO.NET 2.0 doesn’t provide access to the Microsoft OLE DB
Provider for ODBC Drivers.

❑ Odbc members provide connectivity to legacy data sources that don’t have OLE DB data
providers. The Odbc namespace is present in .NET Framework 2.0 for backward compatibility
with .NET Framework 1.x applications.

Each data provider namespace has its own set of data object classes. The provider you choose determines
the prefix of data object names — such as SqlConnection, SqlCeConnection, OracleConnection, or
OleDbConnection.

Basic ADO.NET Data Objects
This chapter defines basic data objects as runtime data-access types that have ADODB counterparts.
ADO.NET 2.0 provides the following basic data objects for data retrieval, updates, or both:

❑ Connection objects define the data provider, database manager instance, database, security
credentials, and other connection-related properties. The VB 2005 code to create a .NET
Connection is quite similar to the VB6 code to create an ADODB.Connection object. You also
can create a new, persistent (design-time) Connection object by right-clicking Server Explorer’s
Data Connections node and choosing Add Connection to open the Connection Properties
dialog. Alternatively, choose Tools ➪ Connect to Database to open the dialog.

❑ Command objects execute SQL batch statements or stored procedures over an open Connection.
Command objects can return one or more resultsets, subsets of a resultset, a single row, a single
scalar value, an XmlDataReader object, or the RowsAffected value for table updates. Unlike
opening ADODB.Recordset objects from an ADODB.Connection, the ADO.NET Command object
isn’t optional. Command objects support an optional collection of Parameter objects to execute
parameterized queries or stored procedures. The relationship of ADODB and ADO.NET
parameters to commands is identical.

❑ DataReader objects retrieve one or more forward-only, read-only resultsets by executing SQL
batch statements or stored procedures. VB .NET code for creating and executing a DataReader
from a Command object on a Connection object is similar to that for creating the default,
cursorless ADODB Recordset object from an ADODB.Command object. Unlike the default
forward-only ADODB.Recordset, you can’t save a DataReader’s resultset to a local file and
reopen it with a client-side cursor by Save and Open methods.

❑ XmlReader objects consume streams that contain well-formed XML documents, such as those
produced by SQL Server FOR XML AUTO queries or stored procedures, or native xml columns of
SQL Server 2005. XmlReaders are the equivalent of a read-only, forward-only cursor over the
XML document. An XmlReader object corresponds to the ADODB.Stream object returned by the
SQLXML 3.0 and later SQLXMLOLEDB provider.

7

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 7

SqlClient doesn’t support bidirectional (navigable) cursors. Microsoft added an SqlResultset object,
which emulated an updatable server-side cursor, to an early VS 2005 beta version. The VS 2005 team
quickly removed the SqlResultset object after concluding that it encouraged “bad programming habits,”
such as holding a connection open during data editing operations. An ExecutePageReader method,
which relied on the SqlResultset object, was removed at the same time and for the same reason.

Figure 1-2 illustrates the relationships between ADO.NET Connection, Command, Parameter,
DataReader, and XmlReader objects. Parameters are optional for ADODB and basic ADO.NET
commands. The SqlClient types can be replaced by OleDb or Odbc types. Using the OleDb provider to
return an XmlDataReader object from SQL Server 2000 requires installing SQLXML 3.0 SP-2 or later; the
Odbc provider doesn’t support XMLReaders. SQL Server 2005’s setup program installs SQLXML 4.0.

Figure 1-2

Creating Basic ADO.NET Data Objects with SqlClient
The following sections illustrate typical VB 2005 code for defining and opening an SqlConnection object,
specifying an SqlCommand object, and invoking the command’s ExecuteReader and ExecuteXmlReader
methods. The procedures include code to display SqlDataReader column and XmlReader element
values. All examples use a local SQL Server 2000 or 2005 Northwind sample database as their data source.

OLE CB
Provider SQL Server

7.0+

SqlClient
Provider

SqlConnection

SqlCommand
Parameters
Collection

XmlReaderSqlDataReader

ADODB
Connection

ADODB
Command

ADODB
Recordset

Parameters
Collection

ADODBADODB ADO.NET 1.x and 2.0ADO.NET 1.x and 2.0

8

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 8

If you’re using the default named instance of SQLX on your test machine, change localhost to
.\SQLEXPRESS in the strConn connection string. If you’re using Access’s MSDE 2000 instance as
the local server, change Northwind to NorthwindCS. If you’re using a remote SQL Server instance,
replace localhost with the remote server’s network name.

SqlDataReaders with Multiple Resultsets
One of the most common uses of SqlDataReader objects is filling dropdown lists or list boxes with lookup
data. You can use multiple resultsets from a single SQL batch query or stored procedure to fill multiple
lists in the FormName_Load event handler. The following OpenDataReader procedure opens a connec-
tion to the Northwind sample database, specifies an SqlCommand object that returns two resultsets, and
invokes its ExecuteReader method to generate the SqlDataReader instance. The CommandBehavior
.CloseConnection argument closes the connection when you close the DataReader. All basic ADO.NET
data objects follow this pattern; only the ExecuteObject method and DataReader iteration methods differ.
The SqlDataReader.Read method, which replaces the often-forgotten RecordSet.MoveNext instruction,
returns True while rows remain to be read. Similarly, the SqlDataReader.NextResult method is True if
unprocessed resultsets remain after the initial iteration.

Only one resultset is open as you iterate multiple resultsets, which differs from SQL Server 2005’s
Multiple Active Resultsets (MARS) feature. Chapter 10, “Upgrading from SQL Server 2000 to 2005,”
describes how to enable the MARS feature.

Private Sub OpenDataReader()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _

“Integrated Security=SSPI”
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
cnnNwind.Open()

‘Define the SqlCommand to return two resultsets
Dim strSQL As String = “SELECT * FROM Shippers”
strSQL += “;SELECT EmployeeID, FirstName, LastName FROM Employees”
Dim cmdReader As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the SqlDataReader
‘Close the connection when closing the SqlDataReader
Dim sdrReader As SqlDataReader = _

cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
sdrReader = cmdReader.ExecuteReader
With sdrReader

If .HasRows Then
While .Read

‘Fill a Shippers list box

The \VB2005DB\Chapter01\BasicDataObjects folder, which you create by expanding
the Chapter01.zip file from the Wrox Web site for the book, contains complete source
code for the following procedures. However, you must install the Northwind sample
database before running the sample projects. See the Introduction’s “Source Code and
Sample Databases” section for details.

9

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 9

lstShippers.Items.Add(.Item(0).ToString + “ - “ + .Item(1).ToString)
End While
While .NextResult

‘Process additional resultset(s)
While .Read

‘Fill an Employees list box
lstEmployees.Items.Add(.Item(0).ToString + “ - “ + _

.Item(1).ToString + “ “ + .Item(2).ToString)
End While

End While
End If
‘Close the SqlDataReader and SqlConnection
.Close()

End With
End Sub

Use of the HasRows property is optional because initial invocation of the Read method returns False
if the query returns no rows. The SqlDataReader.Item(ColumnIndex) property returns an
Object variable that you must convert to a string for concatenation. Structured error handling code is
removed for improved readability.

XmlReaders with FOR XML AUTO Queries
Adding a FOR XML AUTO clause to an SQL Server SELECT query or stored procedure returns the resultset
as an XML stream. The default XML document format is attribute-centric; add the Elements modifier to
return an element-syntax document. Here’s the XML document returned by a SELECT * FROM Shippers
FOR XML AUTO, Elements query:

<?xml version=”1.0” encoding=”utf-8” ?>
<root>

<Shippers>
<ShipperID>1</ShipperID>
<CompanyName>Speedy Express</CompanyName>
<Phone>(503) 555-9831</Phone>

</Shippers>
<Shippers>

<ShipperID>2</ShipperID>
<CompanyName>United Package</CompanyName>
<Phone>(503) 555-3199</Phone>

</Shippers>
<Shippers>

<ShipperID>3</ShipperID>
<CompanyName>Federal Shipping</CompanyName>
<Phone>(503) 555-9931</Phone>

</Shippers>
</root>

ADO.NET 2.0’s new SqlCommand.ExecuteXmlReader method loads a System.Xml.XmlReader object
with the stream, as shown in the following OpenXmlReader procedure listing. XmlReader is an abstract
class with concrete XmlTextReader, XmlNodeReader, and XmlValidatingReader implementations.
ADO.NET 2.0’s ExecuteXmlReader method returns a concrete implementation.

10

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 10

Private Sub OpenXmlReader()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _

“Integrated Security=SSPI”
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim xrShippers As System.Xml.XmlReader
Try

cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT * FROM Shippers FOR XML AUTO, Elements”
Dim cmdXml As SqlCommand = New SqlCommand(strSQL, cnnNwind)
xrShippers = cmdXml.ExecuteXmlReader
With xrShippers

.Read()
Do While .ReadState <> Xml.ReadState.EndOfFile

txtXML.Text += .ReadOuterXml
Loop
‘Format the result
txtXML.Text = Replace(txtXML.Text, “><”, “>” + vbCrLf + “<”)

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally

xrShippers.Close
cnnNwind.Close()

End Try
End Sub

Substituting xrShippers.MoveToContent followed by xrShippers.ReadOuterXML (without
the loop) returns only the first <Shippers> element group.

You must execute the XmlReader.Read method to move to the first element group, followed by a
ReadOuterXml invocation for each element group, which represents a row of the resultset. The
ExecuteXmlReader method doesn’t support the CommandBehavior enumeration, so you must close the
SqlConnection object explicitly. OleDbCommand doesn’t support the ExecuteXmlReader method;
Microsoft wants you to use SqlClient classes for all SQL Server data access applications, including
SQLCLR code running in the SQL Server 2005 process.

Figure 1-3 shows the BasicDataObjects project’s form after executing from the frmMain_Load event han-
dler, which executes the preceding OpenDataReader and OpenXmlReader procedures, and the follow-
ing LoadDataGridView procedure.

11

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 11

Figure 1-3

Fill a DataGridView with a DataReader
If your application needs to display only tabular data , a read-only grid control that’s populated by code
consumes the fewest resources. The DataGridView control replaces VS 2002 and VS 2003’s DataGrid
control, and is easy to fill programmatically. A read-only DataGridView populated by a DataReader
behaves similarly to VB6’s standard (unbound) Grid control, except that DataGridViews have sortable
columns by default.

The following code defines the dgvCusts DataGridView control’s columns and then populates each row
with an instance of an objCells() Object array that contains cell values:

Private Sub LoadDataGridView()
‘Populate a read-only DataGridView control with an SqlDataReader
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Try

Dim strSql As String = “SELECT * FROM Customers”
Dim cmdGrid As New SqlCommand(strSql, cnnNwind)
cmdGrid.CommandType = CommandType.Text
cnnNwind.Open()
Dim sdrGrid As SqlDataReader = cmdGrid.ExecuteReader
Dim intCol As Integer

FOR XML AUTO queries or stored procedures in production applications cause a
substantial performance hit compared with traditional data-access methods. The
server must generate the XML stream, many more data bytes travel over the network,
and the client or component must transform the XML stream to a usable format.

12

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 12

With sdrGrid
If .HasRows Then

dgvCusts.Rows.Clear()
‘Add column definition: FieldName, and ColumnName
For intCol = 0 To .FieldCount - 1

dgvCusts.Columns.Add(.GetName(intCol), .GetName(intCol))
Next
‘Base column width on header text width
dgvCusts.AutoSizeColumnsMode = _

DataGridViewAutoSizeColumnsMode.ColumnHeader
While .Read

‘Get row data as an Object array
Dim objCells(intCol) As Object
.GetValues(objCells)
‘Add an entire row at a time
dgvCusts.Rows.Add(objCells)

End While
.Close()

End If
End With

Catch exc As Exception
MsgBox(exc.Message)

Finally
cnnNwind.Close()

End Try
End Sub

To sort the DataGridView control on column values, click the column header. Alternate clicks perform
ascending and descending sorts.

Return a Single Data Row
Adding a CommandBehavior.SingleRow flag to the SqlDataReader object returns the first row of a
resultset specified by an SQL query or stored procedure. The following code returns the first row of
Northwind’s Customers table, if you don’t specify a WHERE clause. Otherwise the code returns the first
row specified by WHERE criteria. Adding a CommandBehavior.CloseConnection flag closes the connec-
tion automatically when you close the SqlDataReader object.

Private Sub OpenExecuteRow()
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Try

cnnNwind.Open()
‘Define the SqlCommand
Dim strSQL As String = “SELECT * FROM Customers”
‘Following is optional for the first record
‘strSQL += “ WHERE CustomerID = ‘ALFKI’”
Dim cmdRow As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdRow.CommandType = CommandType.Text
Dim sdrRow As SqlDataReader = _

cmdRow.ExecuteReader(CommandBehavior.SingleRow Or _
CommandBehavior.CloseConnection)

With sdrRow
If .HasRows Then

.Read()

13

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 13

Dim intFields As Integer = .FieldCount
Dim strCustID As String = .GetString(0)
Dim strCompany As String = .GetString(1)

End If
‘Closes the DataReader and Connection
.Close()

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally
‘Close the SqlConnection, if still open
cnnNwind.Close()

End Try
End Sub

Return a Scalar Value
The SqlCommand.ExecuteScalar method returns the value of the first column of the first row of a
resultset. The most common use of ExecuteScalar is to return a single SQL aggregate value, such as
COUNT, MIN, or MAX. The following OpenExecuteScalar procedure listing returns the number of
Customers table records:

Private Sub OpenExecuteScalar()
‘Return a single SQL aggregate value
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT COUNT(*) FROM Customers”
Dim cmdScalar As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdScalar.CommandType = CommandType.Text
Dim intCount As Integer = CInt(cmdScalar.ExecuteScalar)
‘Close the SqlConnection
cnnNwind.Close()

End Sub

Execute Queries That Don’t Return Data
You use the SqlCommand.ExecuteNonQuery method to execute SQL queries or stored proce-
dures that update base table data —INSERT, UPDATE, and DELETE operations. As the following
OpenExecuteNonQuery code demonstrates, ExecuteNonQuery rivals the simplicity of ExecuteScalar:

Private Sub RunExecuteNonQuery()
‘Add and delete a bogus Customers record
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim intRecordsAffected As Integer
Try

cnnNwind.Open()

‘Define and execute the INSERT SqlCommand

14

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 14

Dim strSQL As String = “INSERT Customers (CustomerID, CompanyName) “ + _
“VALUES (‘BOGUS’, ‘Bogus Company’)”

Dim cmdUpdates As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdUpdates.CommandType = CommandType.Text
intRecordsAffected = cmdUpdates.ExecuteNonQuery

‘Update and execute the UPDATE SqlCommand
strSQL = “UPDATE Customers SET CompanyName = ‘Wrong Company’ “ + _
“WHERE CustomerID = ‘BOGUS’”

cmdUpdates.CommandText = strSQL
intRecordsAffected += cmdUpdates.ExecuteNonQuery

‘Define and execute the DELETE SqlCommand
strSQL = “DELETE FROM Customers WHERE CustomerID = ‘BOGUS’”
cmdUpdates.CommandText = strSQL
intRecordsAffected += cmdUpdates.ExecuteNonQuery

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace)

Finally
‘Close the SqlConnection
cnnNwind.Close()
If intRecordsAffected <> 3 Then

MsgBox(“INSERT, UPDATE, DELETE, or all failed. “ + _
“Check your Customers table.”)

End If
End Try

End Sub

Executing SQL update queries against production databases isn’t a recommended practice and most
DBAs won’t permit direct updates to server base tables. The purpose of the preceding example is to
provide a simple illustration of how the ExecuteNonQuery method works. In the real world, parame-
terized stored procedures usually perform table updates.

Applying Transactions to Multi-Table Updates
All updates within a single procedure to more than one table should run under the control of a
transaction. The SqlTransaction object provides clients with the ability to commit or, in the event of
an exception, roll back updates to SQL Server base tables. Managing transactions in ADO.NET is similar
to that for ADODB.Connection objects, which have BeginTrans, CommitTrans, and RollbackTrans
methods. SqlTransaction objects have corresponding BeginTransaction, CommitTransaction, and
RollbackTransaction methods. Unlike ADODB connections, ADO.NET lets you selectively enlist
commands in an active transaction.

Following are the steps to execute ADO.NET transacted updates:

❑ Define a local transaction as an SqlTransaction, OleDbTransaction, or OdbcTransaction
object.

❑ Invoke the transaction’s BeginTransaction method with an optional IsolationLevel
enumeration argument. The default IsolationLevel property value is ReadCommitted.

❑ Enlist commands in the transaction by their Transaction property.

15

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 15

❑ Invoke the ExecuteNonQuery method for each command.

❑ Invoke the transaction’s Commit method.

❑ If an exception occurs, invoke the transaction’s Rollback method.

ADO.NET’s IsolationLevel and ADODB’s IsolationLevelEnum enumerations share many
common members, as shown in the following table.

ADO.NET Member ADODB Member ADO.NET IsolationLevel Description

Chaos adXactChaos Prevents pending changes from more highly
isolated transactions from being overwritten

ReadCommitted AdXactReadCommitted Avoids dirty reads but permits non-repeatable
adXactCursorStability reads and phantom data (default)

ReadUncommitted AdXactReadUncommitted Allows dirty reads, non-repeatable rows,
adXactBrowse and phantom rows

RepeatableRead adXactRepeatableRead Prevents non-repeatable reads but allows
phantom rows

Serializable AdXactSerializable Prevents dirty reads, non-repeatable reads,
adXactIsolated and phantom rows by placing a range lock

on the data being updated

Snapshot None Stores a version of SQL Server 2005 data
that clients can read while another client
modifies the same data

Unspecified adXactUnspecified Indicates that the provider is using a
different and unknown isolation level

Snapshot is a new ADO.NET 2.0 isolation level for SQL Server 2005 only. Snapshot isolation eliminates
read locks by providing other clients a copy (snapshot) of the unmodified data until the transaction
commits. You must enable Snapshot isolation in SQL Server Management Studio (SSMS) or by issuing
a T-SQL ALTER DATABASE DatabaseName SET ALLOW_SNAPSHOT_ISOLATION ON command to take
advantage of the transaction scalability improvement that this new isolation level offers.

The following RunInsertTransaction listing illustrates reuse of a single SqlTransaction and
SqlCommand object for sets of update transactions on the Northwind Customers and Orders tables.
Running this transaction makes non-reversible changes to the OrderID column of the Orders table, so
it’s a good idea to back up the Northwind database before running this type of code. Notice that you
must re-enlist the SqlCommand object in the SqlTransaction after a previous transaction commits.

Public Sub RunInsertTransaction()
‘Add and delete new Customers and Orders records
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)

‘Specify a local transaction object
Dim trnCustOrder As SqlTransaction

16

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 16

Dim intRecordsAffected As Integer
Dim strTitle As String
Try

cnnNwind.Open()
Try

trnCustOrder = cnnNwind.BeginTransaction(IsolationLevel.RepeatableRead)
‘Define and execute the INSERT SqlCommand for a new customer
strTitle = “INSERT “
Dim strSQL As String = “INSERT Customers (CustomerID, CompanyName) “ + _
“VALUES (‘BOGUS’, ‘Bogus Company’)”

Dim cmdTrans As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdTrans.CommandType = CommandType.Text

‘Enlist the command in the transaction
cmdTrans.Transaction = trnCustOrder
intRecordsAffected = cmdTrans.ExecuteNonQuery

‘INSERT an Order record for the new customer
strSQL = “INSERT Orders (CustomerID, EmployeeID, OrderDate, ShipVia) “ + _
“VALUES (‘BOGUS’, 1, ‘“ + Today.ToShortDateString + “‘, 1)”

cmdTrans.CommandText = strSQL
intRecordsAffected += cmdTrans.ExecuteNonQuery
‘Commit the INSERT transaction
trnCustOrder.Commit()

‘Delete the Orders and Customers records
strTitle = “DELETE “
trnCustOrder = cnnNwind.BeginTransaction(IsolationLevel.RepeatableRead)
strSQL = “DELETE FROM Orders WHERE CustomerID = ‘BOGUS’”
cmdTrans.CommandText = strSQL

‘The previous transaction has terminated, so re-enlist
cmdTrans.Transaction = trnCustOrder
intRecordsAffected += cmdTrans.ExecuteNonQuery

strSQL = “DELETE FROM Customers WHERE CustomerID = ‘BOGUS’”
cmdTrans.CommandText = strSQL
intRecordsAffected += cmdTrans.ExecuteNonQuery

‘Commit the DELETE transaction
trnCustOrder.Commit()

Catch excTrans As SqlException
MsgBox(excTrans.Message + excTrans.StackTrace, , _
strTitle + “Transaction Failed”)

Try
trnCustOrder.Rollback()

Catch excRollback As SqlException
MsgBox(excTrans.Message + excTrans.StackTrace, , _
strTitle + “Rollback Failed”)

End Try
End Try

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace)

Finally
‘Close the SqlConnection

17

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 17

cnnNwind.Close()
Dim strMsg As String
If intRecordsAffected = 4 Then

strMsg = “INSERT and DELETE transactions succeeded.”
Else

strMsg = “INSERT, DELETE, or both transactions failed. “ + _
“Check your Customers and Orders tables.”

End If
MsgBox(strMsg, , “RunInsertTransaction”)

End Try
End Sub

This is another example of client operations that most DBAs won’t permit. In production applications,
stored procedures with T-SQL BEGIN TRAN[SACTION], COMMIT TRAN[SACTION], and ROLLBACK
TRAN[SACTION] statements handle multi-table updates.

Using OleDb, SqlXml, and Odbc Member Classes
Most data-centric VB 2005 demonstration projects connect to an SQL Server instance with SqlClient
objects while developers gain familiarity with .NET’s panoply of System.Data classes. Thus, the
preceding examples use the SqlClient data provider. You should, however, give the other managed
providers —System.Data.OleDb, System.Data.Odbc, and Microsoft.Data.SqlXml— a test drive
with the OleDbDataProjects.sln project in your \VB2005DB\Chapter01\ OleDbDataProjects folder.
Figure 1-4 shows OleDbDataProject’s form with list boxes and a text box that display data generated by
each of the three providers. Marking the Use OdbcDataReader checkbox substitutes the Odbc for the
OleDb data provider to fill the Rowset 1 (Shippers) list box.

Figure 1-4

18

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 18

You can take advantage of ADO.NET 2.0’s new DbProviderFactories.GetFactory
(“System.Data.Provider”) method and the DbProviderFactory.CreateConnection and
CreateCommand methods to generate a connection to and commands for any available managed data
provider. Chapter 2’s “Use the DbProviderFactories to Create Database-Agnostic Projects” section shows
you how to write applications that accommodate multiple relational database management systems.

Each sample procedure has its own connection string. You must modify each connection string to point
to your Microsoft Access, SQL Server, or SQL Express instance.

The SQLXML Managed Classes (Microsoft.Data.SqlXml) native data provider for SQL Server 2000
isn’t a member of the .NET Framework 2.0. It’s a component of Microsoft SQLXML 4.0, which VS
2005 and VB Express install as Microsoft.Data.SqlXml.dll.

Substitute OleDb for SqlClient Objects
The OleDb data provider is your best bet for connecting to Access (Jet 4.0) database files or database
servers for which you don’t have a native .NET data provider. The OleDb provider also lets you create
applications that might work with the user’s choice of database servers. In most cases, you can replace
Imports System.Data.SqlServer with Imports System.Data.OleDb, substitute the appropriate
OLE DB connection string, and replace the prefix of data objects from Sql to OleDb. In some cases, you
might need to alter the SQL statement for a specific database back end’s SQL dialect. For example, the Jet
query engine recognizes the semicolon as an SQL statement terminator but won’t return additional
resultsets from another SQL statement that follows the semicolon. Thus, the code for Northwind.mdb in
the following OpenOleDbDataReader listing reuses the OleDbCommand with a second SQL statement:

Private Sub OpenOleDbDataReader()
‘Define and open the OleDbConnection object
Dim strConn As String = “Provider=Microsoft.Jet.OLEDB.4.0;” + _
“Data Source=C:\Program Files\Microsoft Office\OFFICE11” + _
“\SAMPLES\Northwind.mdb;Persist Security Info=False”

‘Substitute the following if you don’t have Northwind.mdb available
‘Dim strConn As String = “Provider=SQLOLEDB;” + _
‘ “Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI”

Dim cnnNwind As OleDbConnection = New OleDbConnection(strConn)
cnnNwind.Open()

‘Define the OleDbCommand
Dim strSQL As String = “SELECT * FROM Shippers”
‘strSQL += “;SELECT EmployeeID, FirstName, LastName FROM Employees”
Dim cmdReader As OleDbCommand = New OleDbCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the OleDbDataReader
‘Don’t close the connection when closing the OleDbDataReader
Dim odbReader As OleDbDataReader = _

cmdReader.ExecuteReader(CommandBehavior.Default)
lstShippers.Items.Clear()
With odbReader

If .HasRows Then
While .Read

‘Process the rows
lstShippers.Items.Add(.Item(0).ToString + _

“ - “ + .Item(1).ToString)

19

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 19

End While
.Close()

End If
End With
lstEmployees.Items.Clear()
cmdReader.CommandText = “SELECT EmployeeID, FirstName, LastName FROM Employees”
odbReader = cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
‘Process additional resultsets
With odbReader

If .HasRows Then
While .Read

‘Process additional rows
lstEmployees.Items.Add(.Item(0).ToString + “ - “ + _

.Item(1).ToString + “ “ + .Item(2).ToString)
End While

End If
‘Close the OleDbDataReader and the OleDbConnection
.Close()

End With
End Sub

You must close the first DataReader before you change the CommandText property to reuse the
OleDbCommand object.

Replace SqlConnection and SqlCommand with SqlXmlCommand
Returning XmlReader objects with the OleDb data provider requires adding a project reference to
Microsoft.Data.SqlXml. Adding an Imports Microsoft.Data.SqlXml statement to your form’s
class file simplifies references to its classes. An interesting feature of the SqlXmlCommand object is
that it doesn’t require an SqlConnection object, as illustrated by the following listing for the
OpenSqlXmlReader procedure:

Private Sub OpenSqlXmlReader()
‘This procedure requires installing SQLXML 3.0 SP-2 or later
‘and a project reference to Microsoft.Data.SqlXml

‘Define OleDb connection string
Dim strConn As String = “Provider=SQLOLEDB;Data Source=localhost;” + _

“Initial Catalog=Northwind;Integrated Security=SSPI”

‘Define the SqlXmlCommand
Dim strSQL As String = “SELECT * FROM Shippers FOR XML AUTO, Elements”
Dim cmdXml As SqlXmlCommand = New SqlXmlCommand(strConn)
cmdXml.CommandText = strSQL
Dim xrShippers As System.Xml.XmlReader = cmdXml.ExecuteXmlReader
With xrShippers

.Read()
Do While .ReadState <> Xml.ReadState.EndOfFile

txtXML.Text += .ReadOuterXml
Loop
‘Format the result
txtXML.Text = Replace(txtXML.Text, “><”, “>” + vbCrLf + “<”)
.Close()

End With
End Sub

20

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 20

Test the Odbc Data Provider
You’re not likely to use an Odbc data provider unless you’re working with a legacy database server for
which an OLE DB data provider isn’t available. The following OpenOdbcDataReader procedure listing
is present for completeness only:

Private Sub OpenOdbcDataReader()
‘Define and open the OdbcConnection object
Dim strConn As String = “DRIVER={SQL Server};SERVER=localhost;” + _

“Trusted_connection=yes;DATABASE=Northwind;”

Dim cnnNwind As OdbcConnection = New OdbcConnection(strConn)
cnnNwind.Open()

‘Define the OdbcCommand
Dim strSQL As String = “SELECT * FROM Shippers”
Dim cmdReader As OdbcCommand = New OdbcCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the OdbcDataReader
‘Close the connection when closing the OdbcDataReader
Dim sdrReader As OdbcDataReader = _
cmdReader.ExecuteReader(CommandBehavior.CloseConnection)

If chkUseOdbc.Checked Then
lstShippers.Items.Clear()

End If
With sdrReader

If .HasRows Then
While .Read

‘Process the rows
Dim intShipperID As Integer = .GetInt32(0)
Dim strCompany As String = .GetString(1)
Dim strPhone As String = .GetString(2)
If chkUseOdbc.Checked Then

lstShippers.Items.Add(.Item(0).ToString + _
“ - “ + .Item(1).ToString)

End If
End While

End If
‘Close the OdbcDataReader and the OdbcConnection
.Close()

End With
End Sub

Working with Typed DataReader and SqlResultSet Data
The preceding code examples use Reader.Item(ColumnIndex).ToString, Reader.GetString
(ColumnIndex), and Reader.GetInt32(ColumnIndex) methods to extract column values to native
.NET data types, which the System namespace defines. ADO.NET 2.0 provides the following data-specific
enumerations:

21

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 21

❑ System.Data.DbType is a generic enumeration for setting the data types of OleDb and Odbc
parameters, fields, and properties.

❑ System.Data.SqlDbType is an enumeration for use with SqlParameter objects only. VS 2005
automatically adds SqlParameters when you create typed DataSets from SQL Server tables in
the following sections.

❑ System.Data.SqlTypes is a namespace that contains structures for all SQL Server 2000 and
2005 data types, except timestamp, and related classes and enumerations. Using SqlTypes
structures improves data-access performance by eliminating conversion to native .NET types,
and assures that column values aren’t truncated.

VS 2005’s online help provides adequate documentation for DbType and SqlDbType enumerations, and
SqlTypes structures, so this chapter doesn’t provide a table to relate these enumerations and types.

The following OpenDataReaderSqlTypes listing shows examples of the use of typical
GetSqlDataType(ColumnIndex) methods:

Private Sub OpenDataReaderSqlTypes()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim sdrReader As SqlDataReader
Try

cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT Orders.*, “ + _
“ProductID, UnitPrice, Quantity, Discount “ + _
“FROM Orders INNER JOIN [Order Details] ON “ + _
“Orders.OrderID = [Order Details].OrderID WHERE CustomerID = ‘ALFKI’”

Dim cmdReader As SqlCommand = New SqlCommand(strSQL, cnnNwind)

‘Create, and traverse the SqlDataReader, assigning SqlTypes to variables
sdrReader = cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
With sdrReader

If .HasRows Then
While .Read

‘Get typical SqlTypes
Dim s_intOrderID As SqlInt32 = .GetSqlInt32(0)
Dim s_strCustomerID As SqlString = .GetSqlString(1)
Dim s_datOrderDate As SqlDateTime = .GetSqlDateTime(3)
Dim s_curUnitPrice As SqlMoney = .GetSqlMoney(15)
Dim s_sngDiscount As SqlSingle = .GetSqlSingle(17)

End While
End If

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally

‘Close the SqlDataReader and the SqlConnection
sdrReader.Close()

End Try
End Sub

22

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 22

You can update SqlResultSet object column values with strongly typed variables by invoking the
SqlResultSet.SetSqlDataType(ColumnIndex) method. You’ll see more examples of strongly typed
SQL Server data retrieval and update operations that use these methods in later chapters.

ADO.NET Typed DataSet Objects
The DataSet object is unique to ADO.NET and typed DataSets are the preferred method for retrieving
and updating relational tables, although DataSets aren’t limited to processing relational data. You create
typed DataSets, which are defined by an XML schema and implemented by a very large amount of
auto-generated VB 2005 code, with VS 2005 designers. Untyped DataSets are runtime objects that you
create with code. DataSets have no corresponding ADODB object, but both classes of DataSets behave
similarly to disconnected Recordsets in the following ways:

❑ They open a connection, retrieve and cache the data to edit, and then close the connection.

❑ They bind to simple and complex Windows form controls for editing.

❑ They permit editing locally cached data while the connection is closed.

❑ They can be saved to local files and reopened for editing.

❑ They let you reopen the connection and apply updates to base tables in batches.

❑ They implement optimistic concurrency for base table updates. You must write code to handle
concurrency violations gracefully.

Following are the most important differences between DataSets and disconnected Recordsets:

❑ A DataSet consists of cached copies of one or more sets of records — called DataTable objects —
selected from one or more individual base tables. A Recordset is a single set of records that can
represent a view of one or two or more related tables.

❑ Persisting a DataSet serializes the DataTables’ records to a hierarchical, element-centric XML
Infoset document and saves it to the local file system. Disconnected Recordsets store data locally
as a flat, attribute-centric XML file.

❑ DataTables usually are — but need not be — related by primary-key/foreign-key relationships.

❑ Primary-key and foreign-key constraints, and table relationships, must be manually defined,
unless you create the DataSet automatically with VS 2005’s Data Source Configuration Wizard.

❑ You can create DataTables from base tables of any accessible database server instance.

❑ You can create DataTables from structured (tabular) XML Infoset documents.

❑ TableAdapters fill and update DataTables through a managed connection. TableAdapters are
wrappers over DataAdapter objects.

❑ The Data Source Configuration Wizard lets you choose an existing data connection that’s
defined in the Server Explorer, or create a new connection object. The wizard then generates
parameterized SQL queries or stored procedures for performing UPDATE, INSERT, and DELETE
operations. These queries are based on the SELECT query or stored procedure that you specify
for filling each DataTable.

23

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 23

❑ DataSets cache copies of original and modified table data in XML format. Thus, DataSets that
have a large number of rows consume much more client RAM resources than Recordsets that
have the same number of rows.

❑ You can write code to create runtime data connections, DataAdapters, and basic DataSets, but
it’s much easier to take advantage of VS 2005 automated processes for generating the code to
create typed DataSets, which are defined by an XML schema.

❑ DataSet updates occur row-by-row if you don’t specify a value greater than 1 for the new
DataAdapter.BatchSize property, which sets the maximum number of updated rows per
batch.

Figure 1-5 compares the objects required by updatable ADODB Recordsets and ADO.NET 1.x and 2.0
typed DataSets. Components that are new in ADO.NET 2.0 are shaded. Parameters are optional for
ADODB commands, but not for updatable TableAdapters, which have four standard commands —
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand. Use of the new ADO.NET
2.0 BindingNavigator components is optional. The section “Add a DataGridView and DataNavigator
Controls,” later in this chapter, describes how the BindingSource fits into ADO.NET 2.0’s data access
architecture.

The following sections show you alternative methods for generating Figure 1-5’s ADO.NET objects with
VS 2005 and SQL Server 2000 or 2005.

VS 2005 materializes TableAdapters, DataSets, BindingSources, and BindingNavigators as named
objects in the form design tray. TableAdapters and DataSets also appear in the Toolbox’s ProjectName
Components section; the Data section has DataSet, BindingSource, and BindingNavigator controls.
During the early part of VS 2005’s long gestation period, these design-time objects collectively were
called Data Components, BindingSource was called a DataConnector, and BindingNavigator was
DataNavigator. This book uses the term data component to refer to named design-time data objects that
reside in the form design tray.

Add a Typed DataSet from an SQL Server Data Source
ADO.NET uses the term data source as a synonym for a typed DataSet with a predefined, persistent
database connection. The process of creating an ADO.NET data source is similar to using VB6’s Data
Environment Designer to specify an OLE DB data provider from one or more tables. Unlike the
Data Environment Designer, multi-table DataSets don’t have the hierarchical structure that the OLE DB
Shape provider creates for display in VB6’s Hierarchical FlexGrid control.

Web services and object instances also can act as ADO.NET data sources, as you’ll see in later chapters.

24

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 24

Figure 1-5

OLE CB
Provider SQL Server

7.0+

SqlClient
Provider

SqlConnection

TableAdapters
(DataAdapters)

Typed DataSet
with Schema

DataBound
Controls

BindingSourceBindingNavigator

Standard Set of
SqlCommands

(SELECT, INSERT,
UPDATE, DELETE)

Constraints and
Relationships

DataTables

ADODB
Connection

ADODB
Commands

ADODB
Recordsets

DataBound
Controls

Parameters
Collections

Parameters
Collections

Navigation
Controls

ADODBADODB ADO.NET 1.x and 2.0ADO.NET 1.x and 2.0

2.0

1.x

2.0

2.0

25

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 25

Here’s how to add a new SQL Server Northwind data source for a new Windows form project and
automatically generate a typed DataSet and its components from the Customers table:

1. Choose Data ➪ Show Data Sources to open the Data Sources window, if necessary, and click
Add New Data Source to start the Data Source Configuration Wizard.

2. On the Choose a Data Source Type page, accept the default Database type, and click Next to
open the Choose Your Database Connection page, which displays existing data connections, if
any, in a dropdown list.

3. Click the New Connection button to open a simplified Add Connection dialog, which usually
defaults to Microsoft SQL Server Database File. This option requires attaching a copy of
northwnd.mdb to your SQL Server or SQLX instance, so click the Change button to open the
Change Data Source dialog, select Microsoft SQL Server in the Data Source list, and click
Continue to open the full version of the Add Connection dialog.

4. Type localhost or .\SQLEXPRESS in the Select or Enter a Server Name combo box.
Alternatively, select a local or networked SQL Server or MSDE instance that has a Northwind or
NorthwindCS database.

5. Accept the default Use Windows NT Integrated Security option, and open the Select or Enter a
Database Name list and select Northwind. Click Test Connection to verify the SqlConnection
object, as shown in Figure 1-6.

Figure 1-6

26

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 26

6. Click OK to close the dialog and return to the Choose Your Data Connection page, which dis-
plays ServerName.Northwind.dbo as the new connection name, System.Data.SqlClient as the
Provider, and Data Source=localhost;Integrated Security=True;Database=Northwind
as the Connection String.

7. Click Next to display the Save the Connection String to the Application Configuration File page.
Mark the Yes, Save the Connection As checkbox and accept the default
NorthwindConnectionString as the connection string name.

8. Click Next to open the Choose Your Database Objects page, which displays treeview Tables,
Views, Stored Procedures, and table-returning Functions. Expand the Tables node and mark the
Customers table. Accept NorthwindDataSet as the DataSet Name, as shown in Figure 1-7.

Figure 1-7

Selecting a table automatically generates the SelectCommand that retrieves all table rows, and an
UpdateCommand, InsertCommand, and DeleteCommand for base table updates.

9. Click Finish to generate the NorthwindDataSet typed DataSet and display it in the Data Sources
window. Expand the Customers node to display the Customers table’s columns, as shown in
Figure 1-8.

27

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 27

Figure 1-8

The new SqlConnection object you created in preceding Steps 3 through 5 appears under Server
Explorer’s DataConnections node as ServerName.Northwind.dbo. You can rename the node in Server
Explorer to a simpler name, such as localhost.Northwind; doing this doesn’t affect dependent objects
in your project.

Adding a typed DataSet generates an XSD schema, NorthwindDataSet.xsd for this example, and adds 1,197
lines of VB 2005 code to the NorthwindDataSet.Designer.vb partial class file, which weighs in at 73KB.
Partial classes are a new VB 2005 and C# feature that enable extending a class, such as NorthwindDataSet,
with additional class files. VB 2005 uses the Public Partial Class className statement to identify a
partial class file. You must choose Project ➪ Show All Files to see NorthwindDataSet.Designer.vb and two
empty NorthwindDataSet.xsc and NorthwindDataSet.xss files.

Double-click the NorthwindDataSet.xsd node in Project Explorer to display the Customers DataTable
and its associated Customers TableAdapter, as shown in Figure 1-9, in the Schema Designer window.
The VB 2005 code in DataSetName.Designer.vb provides IntelliSense for DataSet objects and lets you
early-bind DataTable and DataSet objects. The code also provides direct access to named classes, methods,
and events for the DataSet and its TableAdapter(s) — Customers TableAdapter for this example — in the
NorthwindDataSet.Designer.vb code window’s Classes and Methods lists.

Figure 1-10 shows Internet Explorer displaying the first few lines of the 352-line schema .

If you’ve worked with typed DataSets in VS 2003, you’ll notice that the schema for ADO 2.0 DataSets is
much more verbose than the ADO 1.x version, which has only 30 lines that define the Customers DataSet.
ADO.NET 2.0 prefixes the design-time schema with 258 lines of <xs:annotation> information,
which provide a full definition of the DataSet and its connection string, commands and their parameters,
and column mapping data. The part of the schema that defines the elements for the table fields grows
from 30 to 94 lines because element definitions now contain maxLength attribute values and use
restrictionBase attributes to specify XSD data types.

28

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 28

Figure 1-9

Figure 1-10

29

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 29

Using the DataSet.WriteXml and DataSet.WriteXmlSchema methods to persist DataSets to
local files shows that the Customers DataSet schema, which differs greatly from the design-time version,
is 9.31KB and the XML data document is 37.3KB. The section “Create a Complete Data Entry Form
in One Step,” later in this chapter, includes code to save the schema for the Northwind Customers
DataSet. You can’t open the saved schema in the project’s Schema Designer.

Add a DataGridView and BindingNavigator Controls
Opening Form1 and the Data Sources window changes the appearance of the DataSource nodes. By
default, the Customers DataTable icon now represents a DataGridView control. Dragging the Customers
table node from the Data Sources window to your project’s default Form1 autogenerates four compo-
nents in the tray below the form designer and adds DataGridView and DataNavigator controls to a dra-
matically expanded form, as shown in Figure 1-11.

Figure 1-11

“Surfacing” is a common term for adding data and other components to the tray.

30

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 30

Here are descriptions of the four tray components shown in Figure 1-11:

❑ NorthwindDataSet is the form’s reference to the data source for the form,
NorthwindDataSource.xsd.

❑ CustomersTableAdapter is the form’s wrapper for an SqlDataAdapter object, which fills the
NorthwindDataSet’s Customers DataTable by invoking the CustomersTableAdapter.Fill
method. Update, Insert, and Delete methods send DataSet changes to the database server.
The CustomersTableAdapter.Adapter property lets you access the underlying
SqlDataAdapter.

❑ CustomersBindingSource is a form-based BindingSource object that unifies control data
binding and row data navigation for the Customers DataTable by providing direct access to
the BindingManager object. To make it easier for VB6 developers to adapt to ADO.NET 2.0,
BindingSources have properties and methods that emulate ADODB.Recordset objects. Examples
are AllowEdit, AllowAddNew, and AllowRemove (delete) properties, and corresponding
AddNew, CancelNew, EndNew, Edit, CancelEdit, and EndEdit methods. Familiar MoveFirst,
MoveLast, MoveNext, and MovePrevious methods handle row navigation. Enabling navigation
requires binding a DataGridView or adding other controls to manipulate the BindingSource.

❑ CustomersBindingNavigator is a custom ToolStrip control that emulates the VCR and
other buttons of an ADODB.DataControl. Binding the CustomersBindingNavigator
to the CustomersBindingSource enables the buttons to invoke the Move..., AddNew, and
Cancel... methods. By default, BindingNavigators dock to the top of the form. When you run
the form, you can drag a BindingNavigator to a more natural position at the bottom of the form;
alternatively, you can set a DataNavigator’s Dock property value to Bottom in the designer.

DataComponents, DataConnectors, and DataNavigators are new ADO.NET 2.0 components and
controls that replace ADO.NET 1.x’s form-based DataConnections and DataAdapters. VS 2005 data
sources automatically create DataSet Relationships between tables, which previously required manual
intervention. DataConnectors simplify code for navigating data tables. The DataSet.vb file contains the
classes, interfaces, and event handlers for the data components.

The final step in the VS 2005 data form autogeneration process is adding the CustomersComponent
.Fill method to the Form1_Load event handler, and code to save DataSet changes isn’t added to the
bindingNavigatorSaveItem_Click handler automatically, because of code complexity when the
DataSet contains multiple DataTables. Saving multiple changes to parent and child tables requires
sequencing inserts, updates, and deletions to maintain referential integrity.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
‘TODO: This line of code loads data into the ‘NorthwindDataSet.Customers’ table.
‘You can move, or remove it, as needed.
Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)

End Sub

Private Sub dataNavigatorSaveItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles dataNavigatorSaveItem.Click
Me.CustomersBindingSource.EndEdit()
Me.CustomersTableAdapter.Update(Me.NorthwindDataSet.Customers)

End Sub

31

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 31

Figure 1-12 shows the final form after reducing the form’s size, expanding the DataGridView control to
fill the available space, and pressing F5 to build, debug, and run the project.

Figure 1-12

The CustomersDataGridView is bound to the Northwind Customers table, and editing is enabled
by default. Changes you make to the DataGridView don’t propagate to the table until you click the
Save Data button. To make editing easier, you can automate increasing the column widths to match the
content by setting the DataGridView’s AutoSizeColumnsMode property value to AllCells or
DisplayedCells, which adds a horizontal scrollbar to the control.

Persist and Reopen the DataSet
The project’s frmDataGridView_Load event handler includes the following code to save the
NorthwindDataSet’s XML data document — with and without an embedded schema — and the schema
only. You can add similar code after the last DataComponent.Fill or DataAdapter.Fill invocation of
any data project to persist its DataSet.

Private Sub frmDataGridView_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)
Dim strPath As String = Application.StartupPath
With Me.NorthwindDataSet

.WriteXml(strPath + “CustsNoSchema.xml”, XmlWriteMode.IgnoreSchema)

.WriteXml(strPath + “CustsWithSchema.xml”, XmlWriteMode.WriteSchema)

.WriteXmlSchema(strPath + “CustsSchema.xsd”)
End With

End Sub

Persisting the DataSet as an XML document without the embedded schema lets you support discon-
nected users by reloading the DataSet from the file. You can substitute the following statement for Me
.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers) when the user is disconnected:

32

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 32

Me.NorthwindDataSet.ReadXml(strPath + “CustsNoSchema.xml”, XmlReadMode.Auto)

The real-world scenario for persisting and reloading DataSets is more complex than that shown here.
Later chapters describe how to save and reload pending DataSet changes that haven’t been committed to
the base tables. The XmlReadMode.Auto argument is the default, so including it is optional.

The sample project at this point is GeneratedDataGridView.sln in your \VB2005DB\Chapter01\
GeneratedDataGridView folder.

Change from a DataViewGrid to a Details Form
The default combination of DataViewGrid and DataNavigator controls speeds the creation of a usable
form. However, a DataNavigator is much more useful for a details form that displays column values
in text boxes or other bound controls, such as date pickers for DateTime and checkboxes for Boolean
values. The Data Sources window makes it easy to change a DataGridView to a details form. Delete the
DataGridView control, display the Data Sources window, open the dropdown list for the DataTable, and
select Details, as shown in Figure 1-13.

Figure 1-13

Drag the DataTable icon to the form to automatically add a column of labels with associated data-bound
controls — text boxes for this example — to the form. Figure 1-14, which is a modified version of the
GeneratedDataGridView project, shows the labels and text boxes rearranged to reduce form height.

33

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 33

Figure 1-14

The completed GeneratedDetailView.sln project is in the \VB2005DB\Chapter01\
GeneratedDetailView folder.

Add a Related DataBound Control
You can add a related table to the Data Sources window and then add a control, such as a DataGridView,
that you bind to the related BindingAdapter. To add a related OrdersDataGridView control to a copy of
the GeneratedDetailView.sln project, do the following:

1. Copy and paste the GeneratedDetailView folder, and rename the new folder OrdersDetailView.
Don’t rename the solution or project.

2. Press F5 to build and compile the project. Correct any object name errors that the debugger
reports.

3. Open the Data Source window, and click the Configure DataSet with Wizard button to open the
Choose Your Database Objects page.

4. Expand the Tables node, mark the Orders table checkbox, and click Finish, which adds in the
Data Sources window a related Orders node to the Customers table and a standalone Orders
node (see Figure 1-15).

34

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 34

Figure 1-15

5. With DataGridView selected in the dropdown list, drag the related Orders node below the
bound text boxes of the form to autogenerate an OrdersDataGridView control.

6. Adjust the size and location of the controls, and set the OrdersDataGridView
.AutoSizeRowsMode property value to DisplayedCells. Optionally, alter the form’s Text
property to reflect the design change.

7. Press F5 to build and run the project. The form appears as shown in Figure 1-16.

35

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 35

Figure 1-16

Dragging the related Orders table node to the form adds an OrdersTableAdapter and
OrdersBindingSource to the tray and the OrdersDataGridView control to the form. The
OrdersDataGridView control’s DataSource property value is the OrdersBindingSource.
The OrdersBindingSource’s DataSource property value is CustomersBindingSource and the
DataMember property value is FK_Orders_Customers, which is the foreign-key relationship on the
CustomerID field between the Customers and Orders tables. To verify the properties of FK_Orders
_Customers, open NorthwindDataSet.xsd in the DataSet Designer, right-click the relation line between
the Orders and Customers tables, and choose Edit Relation to open the Relation dialog (see Figure 1-17).

36

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 36

Figure 1-17

Relations you define by adding related tables to the Data Sources window don’t enforce referential
integrity by default. You must change the default Relation Only property value to one of the other
options to maintain referential integrity. You also can specify cascade or other options for Update,
Delete, and Accept/Reject Rules.

Summary
Microsoft designed the basic ADO.NET feature set to resemble that of ADO. The code to create a
database connection with ADO.NET’s SqlClient, OleDb, or Odbc managed providers is quite similar to
that for ADODB.Connection objects. The same is true for ADO.NET’s connection-specific commands
and parameters. The primary differences between ADO and ADO.NET involve processing resultsets.
DataReaders correspond to ADO’s default forward-only, read-only Recordsets. The SqlClient data
provider provides a substantial performance boost by eliminating the COM-based OLE DB layer and
communicating with SQL Server 7.0 and later using SQL Server’s native TDS protocol.

ADO.NET data binding to typed DataSet objects and data-related event handling differ radically
from ADO. Many experienced VB6 database developers discovered that migrating from ADODB
Recordsets to ADO.NET 1.x DataAdapters, typed DataSets, and databound controls wasn’t a walk in the
park. Creating an ordinary data entry form with ADO.NET 1.x’s DataGrid or other controls bound to a
DataSet’s DataTable and adding record navigation buttons involved writing much more code than that

37

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 37

required for a corresponding VB6 project. To ease the pain of the transition from VS 6 to VS 2005,
ADO.NET 2.0 provides drag-and-drop methods for autogenerating the components and controls to create
a basic, single-table form with the new DataGridView and DataNavigator controls, plus DataComponent
and DataContainer components. Changing the DataGridView to a details view with individual
databound controls takes only a minute or two.

The new drag-and-drop methods and component configuration wizards are useful for product demos by
Microsoft’s .NET evangelists, which elicit “oohs” and “aahs” from conference and user-group attendees.
Autogenerated data entry forms can help programmers gain a basic understanding of ADO.NET data
binding and flatten the ADO.NET learning curve. But you’ll probably find that autogenerated forms
aren’t useful in real-world production applications. A major shortcoming is the default to parameterized
SQL statements for data retrieval and update operations; most DBAs require stored procedures for all
operations on base tables. Fortunately, you can intervene in the autogeneration process to specify and
create the required stored procedures. Another issue is the BindingNavigator’s lack of shortcut keys,
which are a necessity for heads-down data entry. You’ll discover other limitations of autogenerated forms
and their workarounds as you progress through the book.

The preceding comments on databound control autogeneration doesn’t apply to generating typed
DataSets. Writing VB 2005 code for typed DataSets isn’t a practical alternative. You can, however,
create lightweight, untyped DataSets with only a few lines of code. Later chapters provide code examples
to create untyped DataSets at runtime.

The following chapters of Parts I and II show you how to create production-quality Windows data entry
forms by combining some of the techniques you learned in this chapter with DataSets, TableAdapters,
and VB 2005 code to manage data retrieval, DataTable navigation, and multiple base table updates.

38

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 38

