
Chapter 1

Wading into Visual Basic
In This Chapter
� Seeing where VB fits in with .NET

� Writing your first Visual Basic 2005 program

� Exploiting the newfound power of VB

To get started with Visual Basic 2005, I recommend that you jump right in
and write software! And to help you with such an assertive approach, this

chapter gives you just what you need to test the waters of the Visual Basic pool
and get comfortable with its place in the larger Visual Studio environment.

Then, you can really get your feet wet as you build Hello World — your first
VB 2005 Windows Forms application — right here in the first few pages! You
find out how to launch Visual Studio 2005 (the development tool for your VB
applications), how to start a new project, and how to build a form visually
and make it work with code.

Also in this chapter, I give you a glimpse into the deeper power of Visual Basic.
Specifically, I introduce how VB 2005 integrates with the Microsoft .NET
Framework and offer insight into what that means to you as a programmer.

Visual Basic’s Role in the Framework
Microsoft created the .NET Framework to make development for the various
Windows operating systems easier. But because of the differences between
Visual Basic 6.0 and Visual Basic 7.0 (the first .NET version), most VB devel-
opers found development much harder. For example, VB 7.0 made all vari-
ables into objects, which removed the programmer’s ability to define a
variable type on the fly.

05_57728x ch01.qxd 10/3/05 6:38 PM Page 11

CO
PYRIG

HTED
 M

ATERIA
L

But developing applications in .NET doesn’t have to be harder than it was in
VB 6.0. The .NET Framework and Visual Basic 2005 can be powerful tools, and
the trick is discovering how they work together through the Visual Studio
Integrated Development Environment (IDE).

Part of the difficulty that many programmers face when moving to the .NET
Framework is the terminology, which can get confusing. I’d like to put the
problem with terminology to bed right now, so check out this list of the
potentially confusing terms used in .NET development:

� Visual Basic 2005: The programming language described throughout
this whole book. No longer can you run or load Visual Basic as a sepa-
rate entity. It is simply one programming language that speaks to the
Microsoft .NET Framework, which is the next term in the list.

� .NET Framework: The layer that sits between the language (in this case,
Visual Basic) and the operating system, which can be Windows 98,
Windows ME, Windows 2000, Windows XP, Windows Server 2003, or any
of the sub-versions of those (such as the Tablet PC edition). The .NET
Framework layer serves to provide functionality based on the operation
of the Windows system on which it resides, as well as to provide
libraries for other functionality (such as math computations and data-
base access). Figure 1-1 is a visual representation of the relationship of
all the layers in the framework.

� Visual Studio 2005: The tool that you use to create any kind of applica-
tion using any compatible programming language. Visual Studio replaces
the Visual Basic 6.0 program that was formerly part of the Visual Studio
suite (all individual suite components were labeled Version 6.0). When
you go to write a new program in the .NET environment, you run Visual
Studio 2005 and select the kind of program you want to write in the pro-
gramming language you want to use. For example, you may choose to

Windows COM+ Services

Common Language Runtime

Base Class Library

ADO.NET and XML

ASP.NET Windows Forms

Common Language Specification

VB C++ C# JScript …

Visual Studio.N
ET

Figure 1-1:
The .NET

Framework
hierarchy.

12 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 12

create a Windows Forms program using the Visual Basic language, just
like the old days. Or you might want to write an application for a smart
device using C#.

� Windows Forms: The new term for an old-fashioned Visual Basic appli-
cation. This term refers to an application that is written using the .NET
Framework and has a Windows user interface.

� Web Forms: The term for an application with a Web page interface writ-
ten using the .NET Framework. Creating a Web Forms application is very
similar to writing a Windows Forms application.

� Web services: The class libraries that are written using a standard
defined by the same people who defined standards for the World Wide
Web. Web services are used for interaction between divergent systems.

The .NET Framework is what you may already know as the Win32 layer in the
old Windows DNA system. Like the new .NET Framework, the Win32 layer
gave you the ability to get to the functions of the operating system when
developing for a Windows platform. Also, the .NET Framework includes a lot
of adjunct functionality, such as math and data libraries, that makes program-
ming a more cohesive experience.

Basically, everything that Windows does is exposed by the .NET Framework.
Specifically, the .NET Framework gives a programmatic name to every object
and event that Windows can control. A programmer can use that name to refer
to anything having code in the operating system. Do you need to tell the
printer to make two copies of your document? Try referring to My.Computer.
Printers.DefaultPrinter.PrinterSettings.Copies = 2. Do you need
to paint some item on the screen blue? Try System.Drawing.Brushes.Blue.

13Chapter 1: Wading into Visual Basic

How VB 2005 differs from VB 6
Visual Basic 6 was a standalone program, and
Visual Basic 2005 is one language in a larger
development system. To go back to VB’s roots,
Basic was a programming language used 20
years ago as part of MS-DOS. In 1985, Basic
became Visual Basic and was made into a part
of the Windows application-building tool.
There’s a lot more to the Visual Basic 6 program
than just the language — its form-building soft-
ware, for example, is called Ruby.

In Visual Basic 2005, you have a new forms gen-
erator, and with it, a new way to interact with
the Windows operating system. The real reason
to understand the extent of this larger develop-
ment system — and the complexity of the .NET
Framework that surrounds VB 2005 — is so that
reading related books and documentation is
easier.

05_57728x ch01.qxd 10/3/05 6:38 PM Page 13

In this .NET world, the programming language becomes just a way to interact
with the framework and, therefore, with the Windows operating system. All
programs need a set of established rules to handle the flow (decisions, loops,
and the like) within programs. Visual Basic provides one such set of rules,
and the framework provides the objects and events to interact with.

Saying Hello to VB 2005!
In this section, I get you started with the classic Hello World program. Although
this isn’t the single most exciting application you can build, it helps to make
sure that your development environment is set up the best way possible.

Setting up Visual Studio
To follow this example, you need to start by running Visual Studio 2005,
which is the development environment used throughout this book to build
applications in Visual Basic. Before you can run Visual Studio, you need to
install it!

Visual Studio comes in a number of editions:

� Team System: Designed for full programming staffs in large corpora-
tions, this edition includes large-scale application system design tools
such as test-driven development and Team Foundation Server.

� Professional Edition: Designed for the developers working with users in
a standalone setting. The Professional Edition is more common for the
solo developer or for mid-sized application development. This is the edi-
tion I use in this book.

� Standard Edition: Designed for building smaller, standalone applica-
tions, this version is perfectly functional for 80 percent of applications
built. But if you plan to build large systems that need to be enterprise-
quality and may have many users, go for the Professional Edition.

� Express Edition: Designed for students and hobbyists. This version
lacks a lot of the project types that the other versions have.

If you don’t have access to the MSDN Library (Microsoft’s handy technical
archive), I highly recommend getting it. You can load up a machine with your
choice of sample code, documentation, and other reference material on
Visual Studio editions, operating systems, and server software. You can find
out about the library at http://msdn.microsoft.com, and you can buy sub-
scriptions from several resellers, including your favorite software dealer.

14 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 14

Installing Visual Studio can be rough, so I recommend going with the defaults
for your first time. The installation process takes quite a while, too. Even if
you are using the DVD, expect to spend two hours installing. If you are work-
ing from the CDs, expect to spend four hours.

After installing Visual Studio, you can run it by choosing Start➪All Programs➪
Microsoft Visual Studio 2005➪Microsoft Visual Studio 2005. The environment
loads, and you can get started on a program by choosing File➪New➪Project
from the main menu. Next, you need to make choices about your project type
and language, as described in the next section.

Starting a Windows Forms project
After you choose File➪New➪Project from the Visual Studio main menu, the
New Project dialog box appears, as shown in Figure 1-2. In the Project Types
pane, you find a folder structure that lists the languages loaded with your
installation and the project types available for those languages. I suggest
beginning with a plain old Windows Application — which is the Visual Basic
2005 answer to the traditional (and perhaps familiar) VB 6.0 application.

To get started building your Hello World application, following these steps:

1. Select the project type from the Templates pane in the New Project
dialog box.

For this example, select Windows Application. Also, make sure Visual
Basic is the language selected in the Project Types pane. If you loaded
other languages during installation, you may have other choices.

Figure 1-2:
The New

Project
dialog box.

15Chapter 1: Wading into Visual Basic

05_57728x ch01.qxd 10/3/05 6:38 PM Page 15

2. Type the name you want to give your project to replace the default
name in the Name text box.

In this example, I type Hello World in the text box.

3. Click OK.

Visual Basic loads the default form (called Form1) and presents it to you
in the Design View. The default form comes complete with a workspace,
the title bar, and familiar windows elements like the resize buttons and
the Close button. You do most of the work to customize your form using
this visual view.

4. Click the word Toolbox on the left side of the screen.

The Toolbox appears, with Windows Forms controls loaded, as shown in
Figure 1-3.

5. Double-click the Button control.

Visual Studio loads a button onto the default form in Design View.

6. On the default Form1, click the Button control and drag it to reposi-
tion it on the form.

Figure 1-4 shows the result of dragging the button to the middle of the
Form1 window.

Figure 1-3:
Choosing

the Button
control from
the Toolbox.

16 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 16

This step list gives you the beginnings of the Windows Forms application,
which you see as a Form1 in the Design View. But to see where Visual Basic
comes in, you have to find the code behind the form. Visual Studio offers you
(surprise!) the Code View when you’re ready to use Visual Basic to add func-
tionality to your form.

Adding functionality to the
form with VB code
To add a little functionality to the Windows form you build in the preceding
section, follow these steps:

1. Double-click the Button control to enter Code View.

In the Code View window, you see basic button-click code that looks like
the following:

Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

End Sub
End Class

This code is a template that wraps the code that will be run when you
click the button. Visual Studio does the hard part for you, making sure
the formatting of the Sub is correct!

2. In the Code View window, type a line of code to change the text that
appears on the Button control to Hello World.

Figure 1-4:
Moving

the button
around

the form.

17Chapter 1: Wading into Visual Basic

05_57728x ch01.qxd 10/3/05 6:38 PM Page 17

Specifically, type the following code on the line preceding the End Sub
line:

Button1.Text = “Hello World”

Your button’s code now looks like the following:

Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

Button1.Text = “Hello World”

End Sub
End Class

Running and operating your Windows form
So, this experience is pretty cool, right? Programming with Visual Basic is so
easy that, here in Chapter 1, you can already write a Windows Forms applica-
tion. But what can you do with it? Check out the following:

� Run your Windows Forms application within the Visual Studio envi-
ronment. Press the F5 key on your keyboard, and Visual Studio opens
your active project as a Windows program. It appears in your taskbar
and everything. Click the button on your form, and the button text
changes to “Hello World,” (or whatever text you specified in the code).
Pretty neat, huh? Your Windows form should look something like the
image in Figure 1-5.

Figure 1-5:
Your

Hello World
application.

18 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 18

� Run your application outside of the Visual Studio environment. If you
are still in Debug mode, you will need to stop your program first by
using the Stop button on the toolbar or by closing the form window.
Then you can save and move on.

The very simple way to run an application outside of Visual Studio is as
follows:

1. Choose File➪Save All from the Visual Studio main menu.

The Save Project dialog box appears, and Visual Studio prompts
you to pick a location to save your project (see Figure 1-6). In this
case, accept the default folder.

2. Click the Save button.

3. Choose Build➪Build Program Name from the main menu.

In this example, choose Build➪Build HelloWorld, and Visual Studio
compiles your application into a usable Windows program (with
file extension .exe) and stores it in the default folder.

4. Navigate to the default folder containing your new Windows
application.

For my application, the path is C:\Documents and Settings\
sempf\My Documents\Visual Studio\Projects\Hello
World\Hello World\bin\debug.

5. Double-click the filename for the compiled program to run it.

You may see a host of files in the default folder, but in the example,
Hello World.exe is the file you’re looking for.

There is a more complex method for running your VB programs outside the
Visual Studio environment. You use a Setup Project, which is a very cool tool
but beyond the scope of this book. Research the term Setup Project in the
MSDN Library when you’re ready to find out more about this device, which
helps you distribute your application to other users.

Figure 1-6:
The Save

Project
dialog box.

19Chapter 1: Wading into Visual Basic

05_57728x ch01_2.qxd 3/1/07 8:53 AM Page 19

Finding More Power in Visual Studio
Earlier in this chapter, I show you the Windows Forms application develop-
ment environment and a little of the new Visual Basic 2005 code. If you are
familiar with VB 6.0, the form and the code look pretty familiar at this point.
In fact, the major Windows development tools for any programming language
work pretty much this way.

But when you look beyond the Windows form and the code structure, a few
more details become evident. For instance, Visual Studio takes your VB code
beyond the Windows form. The following sections give you an overview of
the development power that you find in Visual Studio.

Visual Studio doesn’t just do Windows!
The first evident change that sets Visual Studio apart as a development tool
is this: You can use Visual Studio to write programs that run on the World
Wide Web as well as on Windows computers. When you click the File menu
to add a new project, notice the second option in the menu. As shown in
Figure 1-7, the second project option is a new Web Site.

Choose this option to create a Web application, which incorporates a whole
host of technologies — the .NET Framework, ASP.NET, Visual Basic, and
HTML — that each have essential roles for enabling an application to run
online.

Figure 1-7:
The File
menu in

Visual
Studio.

20 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 20

Visual Basic goes mobile
Mobile computing devices make their move into Visual Basic 2005. Two pro-
ject types that run on such devices are built right into Visual Studio.
Windows CE, Pocket PC 2003, and SmartPhone platforms are all represented.

I don’t give examples of these specific project types in this book because you
can create a mobile device application in the same manner you create a
Windows Forms application (like the Hello World program discussed earlier
in the chapter). You should know that getting familiar with the Visual Basic
language as presented in this book puts you on the right track for creating
applications for a Pocket PC. Mobile computing applications require some
special programming practices, so make sure to grab some device-specific
information when you work on those project types.

Writing routines to use with other software is easier with Visual Basic 2005.
You can write add-ins for Microsoft Office apps, including Excel and Word
templates with VB code running behind them. These routines don’t use the
VBScript that you may have seen before; a completely new part of Office 2003
allows you to write templates with special, built-in functionality. For example,
I’ve built a Word template that automates a reporting process by asking the
user for a report number, checking that number against a database of all the
reports filed, and filling out part of the document-in-process with the relevant
information from the database.

VB as your one-stop development shop
Generally, Visual Studio and the .NET Framework are designed to be the one-
stop shop for any kind of development on Windows machines. But in this ver-
sion, Visual Basic 2005 can also do it all. The language can now touch all of
the parts of the .NET Framework that any of the other languages can get to,
without resorting to the cryptic function calls necessary in prior versions
of VB.

The new features covered in this book include

� Security: Encryption, validation, and permissions. Securing your code
using sophisticated encryption is now built in to the framework, among
other things.

� Data: Collections of information, accessing databases, and XML. There
are new Data controls for your forms pages, too!

21Chapter 1: Wading into Visual Basic

05_57728x ch01.qxd 10/3/05 6:38 PM Page 21

� IO: Integrate program activities with files, disks, and folders in a way
that requires writing much less code.

� System.Net: VB knows about the Internet. Web, FTP, and Mail are all in
one place.

� Drawing: Comprehensive screen graphics for Web and Windows —
even 3D.

� The My Object: Get to the hard-to-reach places more easily with this
simple-to-use set of shortcuts.

This list shows you that Visual Basic has grown up somewhat. If you don’t
know VB 6, then you have no worries! Getting chummy with this version
(Visual Basic 2005) is a much better place to be. If you do know VB 6, then
welcome home. This is where you always wanted to be.

22 Part I: Getting to Know .NET Using VB

05_57728x ch01.qxd 10/3/05 6:38 PM Page 22

