
Chapter 1

Creating Your First C#
Windows Program

In This Chapter
� What’s a program? What is C#? Where am I?

� Creating a Windows program

� Making sure your Visual Studio 2005 C# is in tune

In this chapter, I explain a little bit about computers, computer languages,
C#, and Visual Studio 2005. Then, I take you through the steps for creating

a very simple Windows program written in C#.

Getting a Handle on Computer
Languages, C#, and .NET

A computer is an amazingly fast, but incredibly stupid servant. Computers
will do anything you ask them to (within reason), and they do it extremely
fast — and they’re getting faster all the time. As of this writing, the common
PC processing chip can handle well over a billion instructions per second.
That’s billion, with a “b.”

Unfortunately, computers don’t understand anything that resembles a human
language. Oh, you may come back at me and say something like, “Hey, my
telephone lets me dial my friend by just speaking his name. I know that a tiny
computer runs my telephone. So that computer speaks English.” But it’s a
computer program that understands English, not the computer itself.

The language that computers understand is often called machine language.
It is possible, but extremely difficult and error prone, for humans to write
machine language.

05_597043 ch01.qxd 9/20/05 1:10 PM Page 11

CO
PYRIG

HTED
 M

ATERIA
L

For historical reasons, machine language is also known as assembly language.
In the old days, each manufacturer provided a program called an assembler
that would convert special words into individual machine instructions. Thus,
you might write something really cryptic like MOV AX,CX. (That’s an actual
Intel processor instruction, by the way.) The assembler would convert that
instruction into a pattern of bits corresponding to a single machine instruction.

Humans and computers have decided to meet somewhere in the middle.
Programmers create their programs in a language that is not nearly as free as
human speech but a lot more flexible and easy to use than machine language.
The languages that occupy this middle ground — C#, for example — are called
high-level computer languages. (High is a relative term here.)

What’s a program?
What is a program? In one sense, a Windows program is an executable file that
you can run by double-clicking its icon. For example, the version of Microsoft
Word that I’m using to write this book is a program. You call that an executable
program, or executable for short. The names of executable program files gener-
ally end with the extension .exe.

But a program is something else, as well. An executable program consists
of one or more source files. A C# program file is a text file that contains a
sequence of C# commands, which fit together according to the laws of C#
grammar. This file is known as a source file, probably because it’s a source of
frustration and anxiety.

What’s C#?
The C# programming language is one of those intermediate languages that
programmers use to create executable programs. C# fills the gap between the
powerful-but-complicated C++ and the easy-to-use-but-limited Visual Basic —
well, versions 6.0 and earlier, anyway. (Visual Basic’s newer .NET incarnation
is almost on par with C# in most respects. As the flagship language of .NET,
C# tends to introduce most new features first.) A C# program file carries the
extension .CS.

Some wags have pointed out that C-sharp and D-flat are the same note, but
you should not refer to this new language as D-flat within earshot of
Redmond, Washington.

12 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 12

C# is

� Flexible: C# programs can execute on the current machine, or they can
be transmitted over the Web and executed on some distant computer.

� Powerful: C# has essentially the same command set as C++, but with the
rough edges filed smooth.

� Easier to use: C# modifies the commands responsible for most C++
errors so you spend far less time chasing down those errors.

� Visually oriented: The .NET code library that C# uses for many of its
capabilities provides the help needed to readily create complicated dis-
play frames with drop-down lists, tabbed windows, grouped buttons,
scroll bars, and background images, to name just a few.

� Internet friendly: C# plays a pivotal role in the .NET Framework,
Microsoft’s current approach to programming for Windows, the Internet,
and beyond. .NET is pronounced dot net.

� Secure: Any language intended for use on the Internet must include
serious security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

What’s .NET?
.NET began a few years ago as Microsoft’s strategy to open up the Web to
mere mortals like you and me. Today it’s bigger than that, encompassing
everything Microsoft does. In particular, it’s the new way to program for
Windows. It also gives a C-based language, C#, the simple, visual tools that
made Visual Basic so popular. A little background will help you see the roots
of C# and .NET.

Internet programming was traditionally very difficult in older languages like C
and C++. Sun Microsystems responded to that problem by creating the Java
programming language. To create Java, Sun took the grammar of C++, made it
a lot more user friendly, and centered it around distributed development.

When programmers say “distributed,” they’re describing geographically dis-
persed computers running programs that talk to each other — in many cases,
via the Internet.

When Microsoft licensed Java some years ago, it ran into legal difficulties with
Sun over changes it wanted to make to the language. As a result, Microsoft
more or less gave up on Java and started looking for ways to compete with it.

13Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 13

Being forced out of Java was just as well because Java has a serious problem:
Although Java is a capable language, you pretty much have to write your
entire program in Java to get its full benefit. Microsoft had too many develop-
ers and too many millions of lines of existing source code, so Microsoft had
to come up with some way to support multiple languages. Enter .NET.

.NET is a framework, in many ways similar to Java’s libraries, because the C#
language is highly similar to the Java language. Just as Java is both the lan-
guage itself and its extensive code library, C# is really much more than just
the keywords and syntax of the C# language. It’s those things empowered by
a thoroughly object-oriented library containing thousands of code elements
that simplify doing about any kind of programming you can imagine, from
Web-based databases to cryptography to the humble Windows dialog box.

The previous generation platform was made up of a hodgepodge of tools
with cryptic names. .NET updates all that with Visual Studio 2005, with more
focused .NET versions of its Web and database technologies, newer versions
of Windows, and .NET-enabled servers. .NET supports emerging communica-
tion standards such as XML and SOAP rather than Microsoft’s proprietary
formats. Finally, .NET supports the hottest buzzwords since object-oriented:
Web Services.

Microsoft would claim that .NET is much superior to Sun’s suite of Web tools
based on Java, but that’s not the point. Unlike Java, .NET does not require
you to rewrite existing programs. A Visual Basic programmer can add just a
few lines to make an existing program “Web knowledgeable” (meaning that
it knows how to get data off the Internet). .NET supports all the common
Microsoft languages and more than 40 other languages written by third-party
vendors (see www.gotdotnet.com/team/lang for the latest list). However,
C# is the flagship language of the .NET fleet. C# is always the first language to
access every new feature of .NET.

What is Visual Studio 2005?
What about Visual C#?
You sure ask lots of questions. The first “Visual” language from Microsoft was
Visual Basic, code-named “Thunder.” The first popular C-based programming
language from Microsoft was Visual C++. Like Visual Basic, it was called
“Visual” because it had a built-in graphical user interface (GUI — pronounced
gooey). This GUI included everything you needed to develop nifty-giffy C++
programs.

Eventually, Microsoft rolled all its languages into a single environment —
Visual Studio. As Visual Studio 6.0 started getting a little long in the tooth,
developers anxiously awaited Version 7. Shortly before its release, however,
Microsoft decided to rename it Visual Studio .NET to highlight this new envi-
ronment’s relationship to .NET.

14 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 14

That sounded like a marketing ploy to me until I started delving into it. Visual
Studio .NET differed quite a bit from its predecessors — enough so to warrant
a new name. Visual Studio 2005 is the successor to the original Visual Studio
.NET. (See Bonus Chapter 4 on the CD for a tour of some of Visual Studio’s more
potent features.)

Microsoft calls its implementation of the language Visual C#. In reality, Visual
C# is nothing more than the C# component of Visual Studio. C# is C#, with or
without the Visual Studio.

Okay, that’s it. No more questions.

Creating a Windows Application with C#
To help you get your feet wet with C# and Visual Studio, this section takes you
through the steps for creating a simple Windows program. Windows programs
are commonly called Windows applications, WinApps or WinForms apps for
short.

Because this book focuses on the C# language, it’s not a Web-programming
book, a database book, or a Windows programming book per se. In particular,
this chapter constitutes the only coverage of Windows Forms visual program-
ming. All I have room to do is give you this small taste.

In addition to introducing Windows Forms, this program serves as a test of
your Visual Studio environment. This is a test; this is only a test. Had it been
an actual Windows program . . . Wait, it is an actual Windows program. If you
can successfully create, build, and execute this program, your Visual Studio
environment is set up properly, and you’re ready to rock.

Creating the template
Writing Windows applications from scratch is a notoriously difficult process.
With numerous session handles, descriptors, and contexts, creating even a
simple Windows program poses innumerable challenges.

Visual Studio 2005 in general and C# in particular greatly simplify the task of
creating your basic WinApp. To be honest, I’m a little disappointed that you
don’t get to go through the thrill of doing it by hand. In fact, why not switch
over to Visual C++ and . . . okay, bad idea.

Because Visual C# is built specifically to execute under Windows, it can shield
you from many of the complexities of writing Windows programs from scratch.
In addition, Visual Studio 2005 includes an Applications Wizard that builds
template programs.

15Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 15

Typically, template programs don’t actually do anything — at least, not any-
thing useful (sounds like most of my programs). However, they do get you
beyond that initial hurdle of getting started. Some template programs are rea-
sonably sophisticated. In fact, you’ll be amazed at how much capability the
App Wizard can build on its own.

After you’ve completed the Visual Studio 2005 installation, follow these steps
to create the template:

1. To start Visual Studio, choose Start➪All Programs➪Microsoft Visual
Studio 2005➪Microsoft Visual Studio 2005, as shown in Figure 1-1.

After some gnashing of CPU teeth and thrashing of disk, the Visual
Studio desktop appears. Now things are getting interesting.

2. Choose File➪New➪Project, as shown in Figure 1-2.

Visual Studio responds by opening the New Project dialog box, as shown
in Figure 1-3.

A project is a collection of files that Visual Studio builds together to
make a single program. You’ll be creating C# source files, which carry
the extension .CS. Project files use the extension .CSPROJ.

Figure 1-1:
What a

tangled web
we weave

when a
C# program

we do
conceive.

16 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 16

3. Under Project Types, select Visual C#, and under that, click Windows.
Under Templates, click Windows Application.

If you don’t see the correct template icon right away, don’t panic — you
may need to scroll around in the Templates pane a bit.

Don’t click OK, yet.

Figure 1-3:
The Visual

Studio
Application

Wizard is
just waiting

to create
a new

Windows
program
for you.

Figure 1-2:
Creating a

new project
starts you
down the

road to
a better

Windows
application.

17Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 17

4. In the Name text box, enter a name for your project, or use the default
name.

The Application Wizard will create a folder in which it stores various files,
including the project’s initial C# source file. The Application Wizard uses
the name you enter in the Name text box as the name of that folder. The
initial default name is WindowsApplication1. If you’ve been here before,
the default name may be WindowsApplication2, WindowsApplication3,
and so on.

For this example, you can use the default name and the default location
for this new folder: My Documents\Visual Studio Projects\
WindowsApplication1. I put my real code there too, but for this
book, I’ve changed the default location to a shorter file path. To
change the default location, choose Tools➪Options➪Projects and
Solutions➪General. Select the new location — C:\C#Programs for this
book — in the Visual Studio Projects Location box, and click OK. (You
can create the new directory in the Project Location dialog box at the
same time. Click the folder icon with a small sunburst at the top of
the dialog box. The directory may already exist if you’ve installed the
example programs from the CD.)

5. Click OK.

The Application Wizard makes the disk light blink for a few seconds
before opening a blank Form1 in the middle of the display.

Building and running your first
Windows Forms program
After the Application Wizard loads the template program, Visual Studio opens
the program in Design mode. You should convert this empty C# source pro-
gram into a Windows Application, just to make sure that the template the
Application Wizard generated doesn’t have any errors.

The act of converting a C# source file into a living, breathing Windows
Application is called building (or compiling). If your source file has any errors,
Visual C# will find them during the build process.

To build and run your first Windows Forms program, follow these steps:

1. Choose Build➪Build projectname (where projectname is a name like
WindowsApplication1 or MyProject).

The Output window may open. If not, you can open it before you build
if you like. Choose View➪Other Windows➪Output. Then Build. In the
Output window, a set of messages scrolls by. The last message in the
Output window should be Build: 1 succeeded, 0 failed,0 skipped

18 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 18

(or something very close to that). This is the computer equivalent of “No
runs, no hits, no errors.” If you don’t bother with the Output window, you
should see Build succeeded or Build failed in the status bar just
above the Start menu.

Figure 1-4 shows what Visual Studio looks like after building the default
Windows program, complete with Output window. Don’t sweat the posi-
tions of the windows. You can move them around as needed. The impor-
tant parts are the Forms Designer window and the Output window. The
designer window’s tab is labeled “Form1.cs [Design].”

2. You can now execute this program by choosing Debug➪Start Without
Debugging.

The program starts and opens a window that looks just like the one in
the Forms Designer window, as shown in Figure 1-5.

In C# terms, this window is called a form. A form has a border and a title
bar across the top with the little Minimize, Maximize, and Close buttons.

Forms
Designer

Forms Designer
toolbar

Solution ExplorerOutput window

Figure 1-4:
The initial
Windows
template
program
isn’t very
exciting.

19Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 19

3. Click the little Close button in the upper-right corner of the frame to
terminate the program.

See! C# programming isn’t so hard.

As much as anything, this initial program is a test of your installation. If
you’ve gotten this far, your Visual Studio is in good shape and ready for the
programs throughout the rest of this book.

Go ahead and update your resume to note that you are officially a Windows
applications programmer. Well, maybe an application (as in one) programmer,
so far.

Painting pretty pictures
The default Windows program isn’t very exciting, but you can jazz it up a
little bit. Return to Visual Studio and select the window with the tab
Form1.cs [Design] (refer to Figure 1-4). This is the Forms Designer window.

The Forms Designer is a powerful feature that enables you to “paint” your
program into the form. When you’re done, click Build, and the Forms Designer
creates the C# code necessary to make a C# application with a pretty frame
just like the one you painted.

In this section, I introduce several new Forms Designer features that simplify
your Windows Forms programming. You find out how to build an application
with two text boxes and a button. The user can type into one of the text boxes
(the one labeled Source) but not in the other (which is labeled Target). When
the user clicks a button labeled Copy, the program copies the text from the
Source text box into the Target text box. That’s it.

Figure 1-5:
The

template
Windows

application
works, but

it won’t
convince

your spouse
that Visual

Studio 2005
is worth the

price.

20 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 20

Putting some controls in place
The labeled windows that make up the Visual Studio user interface are called
document windows and control windows. Document windows are for creating
and editing documents, such as the C# source files that make up a C# pro-
gram. Control windows like the Solution Explorer shown in Figure 1-4 are for
managing things in Visual Studio while you program. For much more about
Visual Studio’s windows, menus, and other features, read the first half of
Bonus Chapter 4 on the CD that accompanies this book.

All those little doodads like buttons and text boxes are known as controls.
(You also may hear the term widget.) As a Windows programmer, you use
these tools to build the graphical user interface (GUI), usually the most diffi-
cult part of a Windows program. In the Forms Designer, these tools live in a
control window known as the Toolbox.

If your Toolbox isn’t open, choose View➪Toolbox. Figure 1-6 shows Visual
Studio with the Toolbox open on the right side of the screen.

Don’t worry if your windows are not in the same places as in Figure 1-6. For
example, your Toolbox may be on the left side of the screen, on the right, or
in the middle. You can move any of the views anywhere on the desktop, if you
want. Bonus Chapter 4 on the CD explains how.

The Toolbox has various sections, including Data, Components, and Windows
Forms. These sections, commonly known as tabs, simply organize the con-
trols so you’re not overwhelmed by them all. The Toolbox comes loaded with
many controls, and you can make up your own.

Figure 1-6:
The Visual

Studio
Toolbox is

chock-full of
interesting

controls.

21Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 21

Click the plus sign next to Common Controls (or the one labeled All Windows
Forms) to reveal the options below it, as shown in Figure 1-6. You use these
controls to jazz up a form. The scroll bar on the right enables you to scroll up
and down within the controls listed in the Toolbox.

You add a control to a form by dragging the control and dropping it where
you want. Follow these steps to use the Toolbox to create two text boxes and
a button:

1. Grab the Textbox control, drag it over to the form labeled Form1, and
release the mouse button.

You might have to scroll the Toolbox. After you drag the control, a text
box appears in the form. If the text box contains text (it may not), it says
textBox1. This is the name the Forms Designer assigned to that particu-
lar control. (In addition to its Name property, a control has a Text prop-
erty that needn’t match the Name.) You can resize the text box by
clicking and dragging its corners.

You can only make the text box wider. You can’t make it taller because
by default these are single-line text boxes. The little right-pointing arrow
on the text box — called a smart tag — lets you change that, but ignore it
until you read Bonus Chapter 4 on the CD.

2. Grab the Textbox control again and drop it underneath the first
text box.

Notice that thin blue alignment guides — called snaplines — appear to
help you align the second text box with other controls. That’s a cool new
feature.

3. Now grab the Button control and drop it below the two text boxes.

A button now appears below the two text boxes.

4. Resize the form and use the alignment guides as you move everything
around until the form looks pretty.

Figure 1-7 shows the form. Yours may look a little different.

Figure 1-7:
The initial

layout of the
form looks

like this.

22 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 22

Controlling the properties
The most glaring problem with the application now is that button label.
button1 is not very descriptive. You need to fix that first.

Each control has a set of properties that determine the control’s appearance
and the way it works. You access these properties through the Properties
window. Follow these steps to change the properties of different controls:

1. Select the button by clicking it.

2. Enable the Properties window by choosing View➪Properties Window.

The button control has several sets of properties: the appearance set
listed at the top, the behavior properties down below, and several
others. You need to change the Text property, which is under
Appearance. (To see the properties listed alphabetically rather than in
categories, click the icon at the top of the window with AZ on it.)

3. In the Properties view, select the box in the right-hand column next to
the Text property. Type in Copy and then press Enter.

Figure 1-8 shows these settings in the Properties view and the resulting
form. The button is now labeled Copy.

4. Change the initial contents of the Textbox controls. Select the upper
text box and repeat Step 3, typing the text User types in here. Do
the same for the lower text box, typing the text Program copies text
into here.

Doing this lets the user know what to do when the program starts.
Nothing baffles users more than a confusing dialog box.

Figure 1-8:
The

Properties
view gives

you control
over your
controls.

23Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 23

5. Similarly, changing the Text property of the Form changes the text in
the title bar. Click somewhere in the Form, type in the new name in
the Text property, and then press Enter.

I set the title bar to “Text Copy Application.”

6. While you’re changing Form properties, click the AcceptButton prop-
erty (under Misc in the Properties window). Click the space to the
right of AcceptButton to specify which button responds when the user
presses the Enter key. In this case, select button1.

“Copy” is the text on this button, but the name is still button1. You
could change that too, if you like. It’s the Form’s Name property — a
form property, not a button property.

7. Select the lower text box and scroll through the Behavior properties
until you get to one called ReadOnly. Set that to True by clicking it
and selecting from the drop-down list, as shown in Figure 1-9.

8. Click the Save button in the Visual Studio toolbar to save your work.

While you work, click the Save button every once in awhile just to make
sure you don’t lose too much if your dog trips over the computer’s
power cord. Unsaved files show an asterisk in the tab at the top of the
Forms Designer window.

Building the application
Choose Build➪Build WindowsApplication1 to rebuild the application. This step
builds a new Windows Application with the Form you’ve just created. In the
Output window you should see a 1 succeeded, 0 failed, 0 skipped
message.

Figure 1-9:
Setting the
text box to
read only

keeps users
from editing

the field
when the

program is
executing.

24 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 24

Now execute the program by choosing Debug➪Start Without Debugging. The
resulting program opens a form that looks like the one you’ve been editing, as
shown in Figure 1-10. You can type into the upper text box, but you can’t type
into the lower text box (unless you forgot to change the ReadOnly property).

Make it do something, Daddy
The program looks right but it doesn’t do anything. If you click the Copy
button, nothing happens. So far, you’ve only set the Appearance properties —
the properties that manage the appearance of the controls. Now, follow these
steps to put the smarts into the Copy button to actually copy the text from the
source text box to the target:

1. In the Forms Designer, select the Copy button again.

2. In the Properties window, click the little lightning bolt icon above the
list of properties to open a new set of properties.

These are called the control’s events. They manage what a control does
while the program executes.

You need to set the Click event. This determines what the button does
when the user clicks it. That makes sense.

3. Double-click the Click event and watch all heck break loose.

The Design view is one of two different ways of looking at your applica-
tion. The other is the Code view, which shows the C# source code that
the Forms Designer has been building for you behind the scenes. Visual
Studio knows that you need to enter some C# code to make the program
transfer the text.

Instead of the lightning bolt, you can simply double-click the button
itself on the Forms Designer.

Figure 1-10:
The

program
window

looks like
the Form
you just

built.

25Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 25

When you set the Click event, Visual Studio switches the display to the
Code view and creates a new method. Visual Studio gives this method
the descriptive name button1_Click(). When the user clicks the Copy
button, this method will perform the actual transfer of text from
textBox1, the source, to textBox2, the target.

Don’t worry too much about what a method is. I describe methods in
Chapter 8. Just go with the flow for now.

This method simply copies the Text property from textBox1 to
textBox2, right at the blinking insertion point.

4. Because button1 is now labeled “Copy,” rename the method with
the Refactor menu. Double-click the name button1_Click in the
Code window. Choose Refactor➪Rename. In the New Name box,
type CopyClick. Press Enter twice (but take a look at the dialog
boxes).

It’s good for a control’s text to reflect its purpose clearly.

New in Visual Studio 2005, the Refactor menu is the safest way to make
certain changes to the code. For instance, just manually changing the
name button1_Click for the method would miss another reference to
the method elsewhere in the code that the Forms Designer has gener-
ated on your behalf.

The second dialog box for the Rename refactoring shows things that will
change: the method and any references to it in comments, text strings,
or other places in the code. You can deselect items in the upper pane to
prevent them from changing. The lower Preview Code Changes pane lets
you see what will actually change. Use the Refactor menu to save your-
self lots of error-prone work.

5. Add the following line of code to the CopyClick() method:

textBox2.Text = textBox1.Text;

Notice how C# tries to help you out as you type. Figure 1-11 shows the dis-
play as you type the last part of the preceding line. The drop-down list of
the properties for a text box helps to jog your memory about which prop-
erties are available and how they’re used. This auto-complete feature is a
great help during programming. (If auto-complete doesn’t pop up, press
Ctrl-Space to display it.)

6. Choose Build➪Build WindowsApplication1 to add the new click
method into the program.

26 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 26

Trying out the final product
Choose Debug➪Start Without Debugging to execute the program one last time.
Type some text in the source text box and then click the Copy button. The
text is magically copied over to the target text box, as shown in Figure 1-12.
Gleefully repeat the process, typing whatever you want and copying away until
you get tired of it.

Figure 1-12:
It works!

Figure 1-11:
The auto-
complete

feature
displays the

property
names as
you type.

27Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 27

Looking back on the creation process, you may be struck by how picture-
oriented it all is. Grab controls, drop them around on the frame, set proper-
ties, and that’s about it. You only had to write one line of C# code.

You could argue that the program doesn’t do much, but I would disagree.
Look back at some of the earlier Windows programming books in the days
before App Wizards, and you’ll see how many hours of coding even a simple
application like this would have taken.

Visual Basic 6.0 programmers, beware!
To those Visual Basic 6.0 programmers among you, this probably seems mun-
dane. In fact, the Forms Designer works a lot like the one in later versions of
Visual Basic. However, the .NET Forms Designer, which Visual C# uses, is
much more powerful than its Visual Basic 6.0 counterpart. .NET and C# (and
Visual Basic .NET, for that matter) use the .NET library of routines, which is
more powerful, extensive, and consistent than the old Visual Basic library.
And .NET supports developing distributed programs for the network as well
as programs using multiple languages, which Visual Basic did not. But the
chief improvement in the Forms Designer used by C# and Visual Basic .NET
over the Visual Basic 6.0 predecessor is that all the code it generates for you
is just code, which you can easily modify. In Visual Basic 6.0, you were stuck
with what the designer gave you.

28 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 28

