

PART

I

The Sun
Certified Java

Programmer
Exam

4419Book.fm Page 1 Tuesday, March 8, 2005 12:32 PM

CO
PYRIG

HTED
 M

ATERIA
L

4419Book.fm Page 2 Tuesday, March 8, 2005 12:32 PM

Chapter

1

Language
Fundamentals

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

1.1 Develop code that declares classes (including abstract

and all forms of nested classes), interfaces, and enums,

and includes the appropriate use of package and import

statements (including static imports).

�

1.3 Develop code that declares, initializes, and uses

primitives, arrays, enums, and objects as static, instance,

and local variables. Also, use legal identifiers for variable

names.

�

7.2 Given an example of a class and a command-line,

determine the expected runtime behavior.

�

7.3 Determine the effect upon object references and primitive

values when they are passed into methods that perform

assignments or other modifying operations on the

parameters.

�

7.4 Given a code example, recognize the point at which

an object becomes eligible for garbage collection, and

determine what is and is not guaranteed by the garbage

collection system. Recognize the behaviors of System.gc

and finalization.

4419Book.fm Page 3 Tuesday, March 8, 2005 12:32 PM

This book is not an introduction to Java. Since you’re getting
ready to take the Programmer Exam, it’s safe to assume that you
know how to write code, what an object is, what a constructor is,

and so on. So we’re going to dive right in and start looking at what you need to know to pass
the exam.

This chapter covers a lot of objectives. They may seem unrelated, but they all have a common
thread: they deal with the fundamentals of the language. Here you will look at Java’s keywords
and identifiers. Then you’ll read about primitive data types and the literal values that can be
assigned to them. You’ll also cover some vital information about arrays, variable initialization,
argument passing, and garbage collection.

Source Files

All Java source files must end with the

.java

 extension. A source file should generally con-
tain, at most, one top-level public class definition; if a public class is present, the class name
should match the unextended filename. For example, if a source file contains a public class
called

RayTraceApplet

, then the file must be called

RayTraceApplet.java

. A source file
may contain an unlimited number of non-public class definitions.

This is not actually a language requirement, but it is an implementation require-
ment of many compilers, including the reference compilers from Sun. It is unwise
to ignore this convention, because doing so limits the portability of your source

files (but not, of course, your compiled files).

Three top-level elements known as

compilation units

 may appear in a file. None of these
elements is required. If they are present, then they must appear in the following order:

1.

Package declaration

2.

Import statements

3.

Class, interface, and enum definitions

The format of the package declaration is quite simple. The keyword

package

 occurs first and
is followed by the package name. The package name is a series of elements separated by periods.
When class files are created, they must be placed in a directory hierarchy that reflects their package
names. You must be careful that each component of your package name hierarchy is a legitimate

4419c01.fm Page 4 Tuesday, March 8, 2005 1:07 PM

Keywords and Identifiers

5

directory name on all platforms. Therefore, you must not use characters such as the space, for-
ward slash, backslash, or other symbols. Use only alphanumeric characters in package names.

Import statements have a similar form, but you may import either an individual class from
a package or the entire package. To import an individual class, simply place the fully qualified
class name after the

import

 keyword and finish the statement with a semicolon (;); to import
an entire package, simply add an asterisk (*) to the end of the package name.

Java’s import functionality was enhanced in 5.0. For more information, see the

“Importing” section later in this chapter.

White space and comments may appear before or after any of these elements.
For example, a file called

Test.java

 might look like this:

1. // Package declaration

2. package exam.prepguide;

3.

4. // Imports

5. import java.awt.Button; // imports a specific class

6. import java.util.*; // imports an entire package

7.

8. // Class definition

9. public class Test {...}

Sometimes you might use classes with the same name in two different pack-
ages, such as the

Date

 classes in the packages

java.util

 and

java.sql

. If you
use the asterisk form of import to import both entire packages and then attempt
to use a class simply called

Date

, you will get a compiler error reporting that
this usage is ambiguous. You must either make an additional import, naming
one or the other

Date

 class explicitly, or you must refer to the class using its

fully qualified name.

Keywords and Identifiers

A

keyword

 is a word whose meaning is defined by the programming language. Anyone who
claims to be competent in a language must at the very least be familiar with that language’s key-
words. Java’s keywords and other special-meaning words are listed in Table 1.1.

Most of the words in Table 1.1 are keywords. Strictly speaking,

true

 and

false

 aren’t really
keywords, they are literal boolean values. Also,

goto

 and

const

 are

reserved words

, which
means that although they have no meaning to the Java compiler, programmers may not use
them as identifiers.

4419Book.fm Page 5 Tuesday, March 8, 2005 12:32 PM

6

Chapter 1 �

Language Fundamentals

Fortunately, the exam doesn’t require you to distinguish among keywords, lit-
eral booleans, and reserved words. You won't be asked trick questions like “Is

goto

 a keyword?” You

will

 be expected to know what each word in Table 1.1

does, except for

strictfp

,

transient

, and

volatile

.

An

identifier

 is a word used by a programmer to name a variable, method, class, or label.
Keywords and reserved words may not be used as identifiers. An identifier must begin with a
letter, a dollar sign ($), or an underscore (_); subsequent characters may be letters, dollar signs,
underscores, or digits.

Some examples are

foobar // legal

BIGinterface // legal: embedded keywords are ok

$incomeAfterTaxes // legal

3_node5 // illegal: starts with a digit

!theCase // illegal: bad 1

st

 char

Identifiers are case sensitive—for example,

radius

 and

Radius

 are distinct identifiers.

The exam is careful to avoid potentially ambiguous questions that require you

to make purely academic distinctions between reserved words and keywords.

T A B L E 1 . 1

Java Keywords and Reserved Words

abstract class extends implements null strictfp true

assert const false import package super try

boolean continue final instanceof private switch void

break default finally int protected synchronized volatile

byte do float interface public this

while

case double for long return throw

catch else goto native short throws

char enum if new static transient

4419c01.fm Page 6 Tuesday, March 8, 2005 1:12 PM

Primitive Data Types

7

Primitive Data Types

A

primitive

 is a simple non-object data type that represents a single value. Java’s primitive data
types are
�

boolean

�

char

�

byte

�

short

�

int

�

long

�

float

�

double

The apparent bit patterns of these types are defined in the Java language specification, and
their effective sizes are listed in Table 1.2.

Variables of type

boolean

 may take only the values

true

 or

false

. Their repre-

sentation size might vary.

T A B L E 1 . 2 Primitive Data Types and Their Effective Sizes

Type Effective Representation Size (bits)

byte 8

int 32

float 32

char 16

short 16

long 64

double 64

4419Book.fm Page 7 Tuesday, March 8, 2005 12:32 PM

8 Chapter 1 � Language Fundamentals

A signed data type is a numeric type whose value can be positive, zero, or negative. (So the
number has an implicit plus sign or minus sign.) An unsigned data type is a numeric type whose
value can only be positive or zero. The four signed integral data types are
� byte

� short

� int

� long

Variables of these types are two’s-complement numbers; their ranges are given in Table 1.3.
Notice that for each type, the exponent of 2 in the minimum and maximum is one less than the
size of the type.

Two’s-complement is a way of representing signed integers that was originally
developed for microprocessors in such a way as to have a single binary repre-
sentation for the number 0. The most significant bit is used as the sign bit,
where 0 is positive and 1 is negative.

The char type is integral but unsigned. The range of a variable of type char is from 0 through
216 − 1. Java characters are in Unicode, which is a 16-bit encoding capable of representing a wide
range of international characters. If the most significant 9 bits of a char are all 0, then the encod-
ing is the same as 7-bit ASCII.

The two floating-point types are
� float

� double

The ranges of the floating-point primitive types are given in Table 1.4.

T A B L E 1 . 3 Ranges of the Integral Primitive Types

Type Size Minimum Maximum

byte 8 bits −27 27 − 1

short 16 bits −215 215 − 1

int 32 bits −231 231 − 1

long 64 bits −263 263 − 1

4419Book.fm Page 8 Tuesday, March 8, 2005 12:32 PM

Literals

9

These types conform to the IEEE 754 specification. Many mathematical operations can yield
results that have no expression in numbers (infinity, for example). To describe such non-numeric
situations, both

double

 and

float

 can take on values that are bit patterns that do not represent
numbers. Rather, these patterns represent non-numeric values. The patterns are defined in the

Float

 and

Double

 classes and may be referenced as follows (NaN stands for Not a Number):
�

Float.NaN

�

Float.NEGATIVE_INFINITY

�

Float.POSITIVE_INFINITY

�

Double.NaN

�

Double.NEGATIVE_INFINITY

�

Double.POSITIVE_INFINITY

The following code fragment shows the use of these constants:

1. double d = -10.0 / 0.0;

2. if (d == Double.NEGATIVE_INFINITY) {

3. System.out.println(“d just exploded: “ + d);

4. }

In this code fragment, the test on line 2 passes, so line 3 is executed.

All numeric primitive types are signed.

Literals

A

literal

 is a value specified in the program source, as opposed to one determined at runtime.
Literals can represent primitive or string variables and may appear on the right side of assign-
ments or in method calls. You cannot assign values into literals, so they cannot appear on the
left side of assignments.

T A B L E 1 . 4

Ranges of the Floating-Point Primitive Types

Type Size Minimum Maximum

float

32 bits +/–1.40239846

–45

+/–3.40282347

+38

double

64 bits +/–4.94065645841246544

–324

+/–1.79769313486231570

+308

4419c01.fm Page 9 Tuesday, September 30, 2008 1:05 PM

10 Chapter 1 � Language Fundamentals

In this section you’ll look at the literal values that can be assigned to boolean, character, integer,
floating-point, and String variables.

 The only valid literals of boolean type are true and false. For example:

1. boolean isBig = true;

2. boolean isLittle = false;

A chararacter literal (char) represents a single Unicode character. (Unicode is a convention
for using 16-bit unsigned numeric values to represent characters of all languages. For more on
Unicode, see Chapter 9, “I/O and Streams”. Usually a char literal can be expressed by enclosing
the desired character in single quotes, as shown here:

char c = ’w’;

Of course, this technique works only if the desired character is available on the keyboard at hand.
Another way to express a char literal is as a Unicode value specified using four hexadecimal digits,
preceded by \u, with the entire expression in single quotes. For example:

char c1 = ’\u4567’;

Java supports a few escape sequences for denoting special characters:
� ’\n’ for new line
� ’\r’ for return
� ’\t’ for tab
� ’\b’ for backspace
� ’\f’ for formfeed
� ’\’’ for single quote
� ’\” ’ for double quote
� ’\\’ for backslash

Integral literals may be assigned to any numeric primitive data type. They may be expressed
in decimal, octal, or hexadecimal. The default is decimal. To indicate octal, prefix the literal
with 0 (zero). To indicate hexadecimal, prefix the literal with 0x or 0X; the hex digits may be
upper- or lowercase. The value 28 may thus be expressed six ways:
� 28

� 034

� 0x1c

� 0x1C

� 0X1c

� 0X1C

4419Book.fm Page 10 Tuesday, March 8, 2005 12:32 PM

Arrays 11

By default, an integral literal is a 32-bit value. To indicate a long (64-bit) literal, append the
suffix L to the literal expression. (The suffix can be lowercase, but then it looks so much like a
one that your readers are bound to be confused.)

A floating-point literal expresses a floating-point number. In order to be interpreted as a
floating-point literal, a numerical expression must contain one of the following:
� A decimal point, such as 1.414
� The letter E or e, indicating scientific notation, such as 4.23E+21
� The suffix F or f, indicating a float literal, such as 1.828f
� The suffix D or d, indicating a double literal, such as 1234d

A floating-point literal with no F or D suffix defaults to double type.

String Literals

A string literal is a sequence of characters enclosed in double quotes. For example:

String s = “Characters in strings are 16-bit Unicode.”;

Java provides many advanced facilities for specifying non-literal string values, including a
concatenation operator and some sophisticated constructors for the String class. These facil-
ities are discussed in detail in Chapter 8, “The java.lang and java.util Packages.”

Arrays
A Java array is an ordered collection of primitives, object references, or other arrays. Java arrays
are homogeneous: except as allowed by polymorphism, all elements of an array must be of the
same type. That is, when you create an array, you specify the element type, and the resulting
array can contain only elements that are instances of that class or subclasses of that class.

To create and use an array, you must follow three steps:

1. Declaration

2. Construction

3. Initialization

Declaration tells the compiler the array’s name and what type its elements will be. For example:

1. int[] ints;

2. Dimension[] dims;

3. float[][] twoDee;

4419Book.fm Page 11 Tuesday, March 8, 2005 12:32 PM

12 Chapter 1 � Language Fundamentals

Line 1 declares an array of a primitive type. Line 2 declares an array of object references
(Dimension is a class in the java.awt package). Line 3 declares a two-dimensional array—that
is, an array of arrays of floats.

The square brackets can come before or after the array variable name. This is also true, and
perhaps most useful, in method declarations. A method that takes an array of doubles could
be declared as myMethod(double dubs[]) or as myMethod(double[] dubs); a method that
returns an array of doubles may be declared as either double[] anotherMethod() or as
double anotherMethod()[]. In this last case, the first form is probably more readable.

Generally, placing the square brackets adjacent to the type, rather than follow-
ing the variable or method, allows the type declaration part to be read as a single
unit: int array or float array, which might make more sense. However, C/C++
programmers will be more familiar with the form where the brackets are placed
to the right of the variable or method declaration. Given the number of mag-
azine articles that have been dedicated to ways to correctly interpret complex
C/C++ declarations (perhaps you recall the “spiral rule”), it’s probably not a
bad thing that Java has modified the syntax for these declarations. Either way,
you need to recognize both forms.

Notice that the declaration does not specify the size of an array. Size is specified at runtime,
when the array is allocated via the new keyword. For example

1. int[] ints; // Declaration to the compiler

2. ints = new int[25]; // Runtime construction

Since array size is not used until runtime, it is legal to specify size with a variable rather than
a literal:

1. int size = 1152 * 900;

2. int[] raster;

3. raster = new int[size];

Declaration and construction may be performed in a single line:

1. int[] ints = new int[25];

When an array is constructed, its elements are automatically initialized to their default values.
These defaults are the same as for object member variables. Numerical elements are initialized to
0; non-numeric elements are initialized to 0-like values, as shown in Table 1.5.

Arrays are actually objects, even to the extent that you can execute methods on
them (mostly the methods of the Object class), although you cannot subclass
the array class. So this initialization is exactly the same as for other objects, and
as a consequence you will see this table again in the next section.

4419Book.fm Page 12 Tuesday, March 8, 2005 12:32 PM

Arrays 13

If you want to initialize an array to values other than those shown in Table 1.5, you can com-
bine declaration, construction, and initialization into a single step. The following line of code
creates a custom-initialized array of five floats:

1. float[] diameters = {1.1f, 2.2f, 3.3f, 4.4f, 5.5f};

The array size is inferred from the number of elements within the curly braces.
Of course, an array can also be initialized by explicitly assigning a value to each element,

starting at array index 0:

1. long[] squares;

2. squares = new long[6000];

3. for (int i = 0; i < 6000; i++) {

4. squares[i] = i * i;

5. }

When the array is created at line 2, it is full of default values (0L), which are replaced in lines
3–4. The code in the example works but can be improved. If you later need to change the array
size (in line 2), the loop counter will have to change (in line 3), and the program could be dam-
aged if line 3 is not taken care of. The safest way to refer to the size of an array is to append the
.length member variable to the array name. Thus, our example becomes

1. long[] squares;

2. squares = new long[6000];

T A B L E 1 . 5 Array Element Initialization Values

Element Type Initial Value

byte 0

int 0

float 0.0f

char ‘\u0000’

object reference null

short 0

long 0L

double 0.0d

boolean false

4419Book.fm Page 13 Tuesday, March 8, 2005 12:32 PM

14 Chapter 1 � Language Fundamentals

3. for (int i = 0; i < squares.length; i++) {

4. squares[i] = i * i;

5. }

When an array has more than one dimension, there is more going on than you might think.
Consider this declaration plus initialization:

int[][] myInts = new int[3][4];

It’s natural to assume that the myInts contains 12 ints and to imagine them as organized into
rows and columns, as shown in Figure 1.1.

Actually, Figure 1.1 is misleading. myInts is actually an array with three elements. Each element
is a reference to an array containing 4 ints, as shown in Figure 1.2.

The subordinate arrays in a multi-dimension array don’t have to all be the same length. It’s
possible to create an array that looks like Figure 1.3.

F I G U R E 1 . 1 The wrong way to think about multi-dimension arrays

F I G U R E 1 . 2 The right way to think about multi-dimension arrays

1 2 3 4

91 92 93 94

2001 2002 2003 2004

1

2

3

4

91

92

93

94

2001

2002

2003

2004

4419Book.fm Page 14 Tuesday, March 8, 2005 12:32 PM

Importing 15

F I G U R E 1 . 3 An irregular multi-dimension array

Figure 1.3 shows an array whose elements are an array of 3 ints, an array of 4 ints, and an
array of 2 ints. Such an array may be created like this:

int[][] myInts = { {1, 2, 3}, {91, 92, 93, 94}, {2001, 2002} };

When you realize that the outermost array is a single-dimension array containing references,
you understand that you can replace any of the references with a reference to a different sub-
ordinate array, provided the new subordinate array is of the right type. For example, you can
do the following:

int[][] myInts = { {1, 2, 3}, {91, 92, 93, 94}, {2001, 2002} };

int[] replacement = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

myInts[1] = replacement;

Importing
The term “import” can be confusing. In common speech, import means to bring something
from abroad into one’s own territory. In the Java context, it’s natural to wonder what is getting
brought in, and where it is getting brought into. A common mistake is to guess that importing
has something to do with class loading. It’s a reasonable mistake, since the class loader is the
only obvious Java entity that brings something (class definitions) into somewhere (the Java Vir-
tual Machine). However, the guess is dead wrong.

What gets brought in is the import class’ name. The name is brought into the source file’s
namespace. A namespace is a kind of place—not a physical place, but an abstract place such as

1

2

3

91

92

93

94

2001

2002

4419Book.fm Page 15 Tuesday, March 8, 2005 12:32 PM

16 Chapter 1 � Language Fundamentals

a directory or a source file—that contains items with unique names. The easiest example is a
directory: within a directory, all filenames must be different from all other filenames. Names
may be duplicated in different namespaces. For example, readme.txt may appear only once
within a single directory but may appear in any other directory.

Items that appear in namespaces have short names and long names. The short name is for
use within the namespace. The long name is for use outside the namespace. Suppose directory
C:\MyCode\Projects contains a file named Sphinx.java. When you are working in C:\MyCode\
Projects, you can refer to the file by its short name: Sphinx.java. However, when your work-
ing directory is not C:\MyCode\Projects, you need to use the file’s full name: C:\MyCode\
Projects\Sphinx.java.

The namespace of a Java source file contains the names of all classes and interfaces in the
source file’s package. In other words, within the source file you may refer to any class by its
short name; classes outside the package must be called by their complete names. Suppose the
current package contains a class named Formula. The following code creates an instance of
Formula and an instance of Vector:

1. Formula f = new Formula();

2. java.util.Vector vec = new java.util.Vector();

Line 2 is a mess. The Vector class resides in the java.util package, so it must be referred
to by its full name…twice! (Once in the declaration, and again in the constructor call.) If there
were no workaround, the only thing worse than writing Java code would be reading Java code.
Fortunately, Java provides a workaround. The source file needs an import statement:

import java.util.Vector;

Then line 2 becomes

2. Vector vec = new Vector();

This statement imports the name “Vector” into the namespace, allowing it to be used without
the “java.util” prefix. When the compiler encounters a short class name, it checks the current
package. If the class name is not found, the compiler then checks its import statements. In our
example, the compiler will notice that there is no Vector class in the current package, but there
is an import statement. The import tells the compiler, “When I say Vector, I really mean
java.util.Vector.”

Java’s static import facility, which was introduced in rev 5.0, allows you to import static
data and methods, as well as classes. In other words, you may refer to static data and methods
in external classes without using full names. For example, the java.awt.Color class contains
static data members names RED, GREEN, BLUE, and so on. Suppose you want to set myColor to
GREEN. Without static imports, you have to do the following:

import java.awt.Color;

…

myColor = Color.GREEN;

4419Book.fm Page 16 Tuesday, March 8, 2005 12:32 PM

Importing 17

With a static import, you can import the name “GREEN” into your namespace:

import static java.awt.Color.GREEN;

…

myColor = GREEN;

Note that the import keyword is followed by static. This tells the compiler to import the
name of a static element of a class, rather than a class name.

Static imports eliminate the nuisance of constant interfaces. Constant interfaces are fairly
common, since before rev 5.0 there was no good alternative. Many packages or applications
define constants that are needed by more than one source file. For example, an application that
uses both English and metric weights might need the following:

public static float LBS_PER_KG = 2.2f;

public static float KGS_PER_LB = 1 / LBS_PER_KG;

Now the question is, where do these lines belong? The general answer to this question is that
they belong in the most appropriate class or interface. Unfortunately, “most appropriate”
doesn’t always mean most convenient. Suppose you put our two lines in a class called Scales.
Since the constants are in the namespace of Scales, they may appear there without prefix. For
example, Scales might contain

massInPounds = massInKgs * LBS_PER_KG;

However, other classes must go to more trouble. Any class except Scales has to do the
following:

massInPounds = massInKgs * Scales.LBS_PER_KG;

Many programmers, wishing to avoid the inconvenience of prefixing, have discovered the
trick of creating an interface (known as a constant interface) to contain constants. This trick has
two benefits. First, you don’t have to decide which class to put the constants in; they go in the
interface. Second, in any class that implements the constant interface, you don’t have to prefix
the constants. In our example, you might be tempted to place the constant definitions in an
interface called Conversion. Then the Scales class, and all other classes that convert between
pounds and kilos, can implement Conversion.

Unfortunately, constant interfaces have several drawbacks. In the first place, to say that a
class implements an interface really means that the class exposes the public methods listed in the
interface. Interfaces are for defining types and should be used exclusively for that purpose. Con-
stant interfaces only contain data, so they definitely don’t define types.

The second disadvantage is a bit more complicated. Suppose someone you work with writes
some code that uses an instance of Scales. This person can legally reference that instance with
a variable of type Conversion, even though doing so would be quite inappropriate. Later, if
you wanted to eliminate the Conversion interface, you couldn’t do so, because your misguided
colleague would be relying on the existence of the interface.

4419Book.fm Page 17 Tuesday, March 8, 2005 12:32 PM

18

Chapter 1 �

Language Fundamentals

With static imports, you have an alternative to constant interfaces. To use static imports, you
first locate your constants in the classes where they belong. Let’s assume you put

LBS_PER_KG

and

KGS_PER_LB

 in the

Scales

 class. Now any other source file can use the following syntax:

import static Scales.LBS_PER_KG;

import static Scales.KGS_PER_LB;

Any source file that uses these statements may refer to

LBS_PER_KG

 and

KGS_PER_LB

, rather
than

Scales.LBS_PER_KG

 and

Scales.KGS_PER_LB

.
The

static import

 facility is aware of packages and access modes. To do a static import
from a class in a different package, you have to prefix the class name with its package path. For
example, to import the constant

NORTH

 from class

java.awt.BorderLayout

, you would use

import static java.awt.BorderLayout.NORTH;

Only public data may be imported from classes in external packages. Data imported from
other classes in the same package may be public, protected, or default, but not private. These
rules are consistent with the meanings of public, protected, default, and private.

Java’s access modes are discussed in detail in Chapter 3, “Modifiers.”

You can use the star notation to import all accessible constants from a class. The line

import static pkga.pkgb.AClassName.*;

will import all non-private constants if

AClassName

 is in the current package or all public constants
if

AClassName

 is in a different package.
Static importing gives you access to static methods as well as static data. Suppose class

measure.Scales

 has a method called

poundsToMicrograms()

 that looks like this:

public static float poundsToMicrograms(float pounds) {

 return pounds * KGS_PER_LB * 1.0e6f;

}

Any source file can import this method as follows:

import static measure.Scales.poundsToMicrograms;

A source file that performs this import may invoke the method as (for example)

float ugs = poundsToMicrograms(lbs);

This is a bit more convenient than

float ugs = Scales.poundsToMicrograms(lbs);

4419c01.fm Page 18 Tuesday, September 30, 2008 1:07 PM

Class Fundamentals 19

As with ordinary imports, static imports have only a slight compile-time cost and zero run-
time cost. Many programmers are unclear on this point, perhaps because the word “import”
feels like such an active verb; it seems as if surely the class loader or some other mechanism must
be hard at work. Remember that importing does nothing more than bring a name into the local
namespace. So importing and static importing are quite inexpensive.

Class Fundamentals
Java is all about classes, and a review of the exam objectives will show that you need to be
intimately familiar with them. Classes are discussed in detail in Chapter 6, “Objects and
Classes.” For now, let’s examine a few fundamentals.

Class Paths

When the Java compiler or the Virtual Machine needs a classfile, it searches all the locations
listed in its classpath. The classpath is formed by merging the CLASSPATH environment variable
and any locations specified in -classpath or -cp command line arguments. The members of
a classpath may be directories or jar files.

Let’s take an example. Suppose the compiler is looking for class sgsware.sphinx.Domain.
The package structure sgsware.sphinx requires that the Domain.class file must be in a directory
called sphinx, which must be in a directory called sgsware. So the compiler checks each class-
path member to see if it contains sgsware\sphinx\Domain.class.

On Windows platforms, directories and jar files in a classpath are separated by a semicolon
(“;”). On UNIX platforms the separator is a colon (“:”).

The main() Method

The main() method is the entry point for standalone Java applications. To create an applica-
tion, you write a class definition that includes a main() method. To execute an application, type
java at the command line, followed by the name of the class containing the main() method to
be executed.

The signature for main() is

public static void main(String[] args)

The main() method must be public so that the JVM can call it. It is static so that it can be
executed without the necessity of constructing an instance of the application class. The return
type must be void.

The argument to main() is a single-dimension array of Strings, containing any arguments
that the user might have entered on the command line. For example, consider the following
command line:

% java Mapper France Belgium

4419Book.fm Page 19 Tuesday, March 8, 2005 12:32 PM

20 Chapter 1 � Language Fundamentals

With this command line, the args[] array has two elements: France in args[0], and Belgium
in args[1]. Note that neither the class name (Mapper) nor the command name (java) appears in
the array. Of course, the name args is purely arbitrary: any legal identifier may be used, pro-
vided the array is a single-dimension array of String objects.

Variables and Initialization

Java supports variables of three different lifetimes:

Member variable A member variable of a class is created when an instance is created, and it
is destroyed when the object is destroyed. Subject to accessibility rules and the need for a ref-
erence to the object, member variables are accessible as long as the enclosing object exists.

Automatic variable An automatic variable of a method is created on entry to the method and
exists only during execution of the method, and therefore it is accessible only during the exe-
cution of that method. (You’ll see an exception to this rule when you look at inner classes, but
don’t worry about that for now.)

Class variable A class variable (also known as a static variable) is created when the class is
loaded and is destroyed when the class is unloaded. There is only one copy of a class variable, and
it exists regardless of the number of instances of the class, even if the class is never instantiated.

All member variables that are not explicitly assigned a value upon declaration are automat-
ically assigned an initial value. The initialization value for member variables depends on the
member variable’s type. Values are listed in Table 1.6.

The values in Table 1.6 are the same as those in Table 1.5; member variable initialization values
are the same as array element initialization values.

A member value may be initialized in its own declaration line:

1. class HasVariables {

2. int x = 20;

3. static int y = 30;

When this technique is used, nonstatic instance variables are initialized just before the class con-
structor is executed; here x would be set to 20 just before invocation of any HasVariables con-
structor. Static variables are initialized at class load time; here y would be set to 30 when the
HasVariables class is loaded.

Automatic variables (also known as method local variables are not initialized by the system;
every automatic variable must be explicitly initialized before being used. For example, this
method will not compile:

1. public int wrong() {

2. int i;

3. return i+5;

4. }

4419Book.fm Page 20 Tuesday, March 8, 2005 12:32 PM

Class Fundamentals 21

The compiler error at line 3 is, “Variable i may not have been initialized.” This error often
appears when initialization of an automatic variable occurs at a lower level of curly braces than the
use of that variable. For example, the following method returns the fourth root of a positive number:

1. public double fourthRoot(double d) {

2. double result;

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

6. return result;

7. }

Here the result is initialized on line 4, but the initialization takes place within the curly braces
of lines 3 and 5. The compiler will flag line 6, complaining that “Variable result may not have
been initialized.” A common solution is to initialize result to some reasonable default as soon
as it is declared:

1. public double fourthRoot(double d) {

2. double result = 0.0; // Initialize

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

6. return result;

7. }

Now result is satisfactorily initialized. Line 2 demonstrates that an automatic variable may
be initialized in its declaration line. Initialization on a separate line is also possible.

Class variables are initialized in the same manner as for member variables.

T A B L E 1 . 6 Initialization Values for Member Variables

Element Type Initial Value Element Type Initial Value

byte 0 short 0

int 0 long 0L

float 0.0f double 0.0d

char ‘\u0000’ boolean false

object reference null

4419Book.fm Page 21 Tuesday, March 8, 2005 12:32 PM

22 Chapter 1 � Language Fundamentals

Argument Passing: By Reference
or by Value
When Java passes an argument into a method call, a copy of the argument is actually passed.
Consider the following code fragment:

1. double radians = 1.2345;

2. System.out.println(“Sine of “ + radians +

3. “ = “ + Math.sin(radians));

The variable radians contains a pattern of bits that represents the number 1.2345. On line 2,
a copy of this bit pattern is passed into the method-calling apparatus of the JVM.

When an argument is passed into a method, changes to the argument value by the method
do not affect the original data. Consider the following method:

1. public void bumper(int bumpMe) {

2. bumpMe += 15;

3. }

Line 2 modifies a copy of the parameter passed by the caller. For example

1. int xx = 12345;

2. bumper(xx);

3. System.out.println(“Now xx is “ + xx);

On line 2, the caller’s xx variable is copied; the copy is passed into the bumper() method and
incremented by 15. Because the original xx is untouched, line 3 will report that xx is still
12345.

This is also true when the argument to be passed is an object rather than a primitive. How-
ever, it is crucial for you to understand that the effect is very different. In order to understand
the process, you have to understand the concept of the object reference.

Java programs do not deal directly with objects. When an object is constructed, the construc-
tor returns a value—a bit pattern—that uniquely identifies the object. This value is known as a
reference to the object. For example, consider the following code:

1. Button btn;

2. btn = new Button(“Ok“);

In line 2, the Button constructor returns a reference to the just-constructed button—not the
actual button object or a copy of the button object. This reference is stored in the variable btn.
In some implementations of the JVM, a reference is simply the address of the object; however,
the JVM specification gives wide latitude as to how references can be implemented. You can
think of a reference as simply a pattern of bits that uniquely identifies an individual object.

4419Book.fm Page 22 Tuesday, March 8, 2005 12:32 PM

Argument Passing: By Reference or by Value 23

In most JVMs, the reference value is actually the address of an address. This
second address refers to the real data. This approach, called double indirection,
allows the garbage collector to relocate objects to reduce memory fragmentation.

When Java code appears to store objects in variables or pass objects into method calls, the
object references are stored or passed.

Consider this code fragment:

1. Button btn;

2. btn = new Button(“Pink“);

3. replacer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void replacer(Button replaceMe) {

7. replaceMe = new Button(“Blue“);

8. }

Line 2 constructs a button and stores a reference to that button in btn. In line 3, a copy of
the reference is passed into the replacer() method. Before execution of line 7, the value in
replaceMe is a reference to the Pink button. Then line 7 constructs a second button and stores
a reference to the second button in replaceMe, thus overwriting the reference to the Pink button.

How to Create a Reference to a Primitive

This is a useful technique if you need to create the effect of passing primitive values by refer-
ence. Simply pass an array of one primitive element over the method call, and the called
method can now change the value seen by the caller. To do so, use code like this:

 1. public class PrimitiveReference {

 2. public static void main(String args[]) {

 3. int [] myValue = { 1 };

 4. modifyIt(myValue);

 5. System.out.println(“myValue contains “ +

 6. myValue[0]);

 7. }

 8. public static void modifyIt(int [] value) {

 9. value[0]++;

10. }

11. }

4419Book.fm Page 23 Tuesday, March 8, 2005 12:32 PM

24 Chapter 1 � Language Fundamentals

However, the caller’s copy of the reference is not affected, so on line 4 the call to btn.getLabel()
calls the original button; the string printed out is “Pink”.

You have seen that called methods cannot affect the original value of their arguments—that is,
the values stored by the caller. However, when the called method operates on an object via the ref-
erence value that is passed to it, there are important consequences. If the method modifies the
object via the reference, as distinguished from modifying the method argument—the reference—
then the changes will be visible to the caller. For example

1. Button btn;

2. btn = new Button(“Pink“);

3. changer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void changer(Button changeMe) {

7. changeMe.setLabel(“Blue“);

8. }

In this example, the variable changeMe is a copy of the reference btn, just as before. How-
ever, this time the code uses the copy of the reference to change the actual original object rather
than trying to change the reference. Because the caller’s object is changed rather than the callee’s
reference, the change is visible and the value printed out by line 4 is “Blue”.

Arrays are objects, meaning that programs deal with references to arrays, not with arrays
themselves. What gets passed into a method is a copy of a reference to an array. It is therefore
possible for a called method to modify the contents of a caller’s array.

Garbage Collection
Most modern languages permit you to allocate data storage during a program run. In Java, this
is done directly when you create an object with the new operation and indirectly when you call
a method that has local variables or arguments. Method locals and arguments are allocated
space on the stack and are discarded when the method exits, but objects are allocated space on
the heap and have a longer lifetime.

Each process has its own stack and heap, and they are located on opposite
sides of the process address space. The sizes of the stack and heap are limited
by the amount of memory that is available on the host running the program.
They may be further limited by the operating system or user-specific limits.

4419Book.fm Page 24 Tuesday, March 8, 2005 12:32 PM

Garbage Collection 25

It is important to recognize that objects are always allocated on the heap. Even if they are
created in a method using code like

public void aMethod() {

 MyClass mc = new MyClass();

}

the local variable mc is a reference, allocated on the stack, whereas the object to which that
variable refers, an instance of MyClass, is allocated on the heap.

In this discussion, we are concerned with recovery of space allocated on the heap. The increased
lifetime raises the question of when storage allocation on the heap can be released. Some lan-
guages require that you, the programmer, explicitly release the storage when you have finished
with it. This approach has proven seriously error-prone, because you might release the storage
too soon (causing corrupted data if any other reference to the data is still in use) or forget to
release it altogether (causing a memory shortage). Java’s garbage collection solves the first of these
problems and greatly simplifies the second.

How to Cause Leaks in a Garbage Collection System

The nature of automatic garbage collection has an important consequence: you can still get
memory leaks. If you allow live, accessible references to unneeded objects to persist in your
programs, then those objects cannot be garbage collected. Therefore, it may be a good idea to
explicitly assign null into a variable when you have finished with it. This issue is particularly
noticeable if you are implementing a collection of some kind.

In this example, assume the array storage is being used to maintain the storage of a stack. This
pop() method is inappropriate:

1. public Object pop() {

2. return storage[index--];

3. }

If the caller of this pop() method abandons the popped value, it will not be eligible for garbage
collection until the array element containing a reference to it is overwritten. This might take a
long time. You can speed up the process like this:

1. public Object pop() {

2. Object returnValue = storage[index];

3. storage[index--] = null;

4. return returnValue;

5. }

4419Book.fm Page 25 Tuesday, March 8, 2005 12:32 PM

26 Chapter 1 � Language Fundamentals

In Java, you never explicitly free memory that you have allocated; instead, Java provides
automatic garbage collection. The runtime system keeps track of the memory that is allocated
and is able to determine whether that memory is still useable. This work is usually done in the
background by a low-priority thread that is referred to as the garbage collector. When the gar-
bage collector finds memory that is no longer accessible from any live thread (the object is out
of scope), it takes steps to release it back into the heap for re-use. Specifically, the garbage col-
lector calls the class destructor method called finalize() (if it is defined) and then frees the
memory.

Garbage collection can be done in a number of different ways; each has advantages and
disadvantages, depending on the type of program that is running. A real-time control system,
for example, needs to know that nothing will prevent it from responding quickly to interrupts;
this application requires a garbage collector that can work in small chunks or that can be inter-
rupted easily. On the other hand, a memory-intensive program might work better with a garbage
collector that stops the program from time to time but recovers memory more urgently as a
result. At present, garbage collection is hardwired into the Java runtime system; most garbage
collection algorithms use an approach that gives a reasonable compromise between speed of
memory recovery and responsiveness. In the future, you will probably be able to plug in dif-
ferent garbage-collection algorithms or buy different JVMs with appropriate collection algo-
rithms, according to your particular needs.

This discussion leaves one crucial question unanswered: When is storage recovered? The best
answer is that storage is not recovered unless it is definitely no longer in use. That’s it. Even though
you are not using an object any longer, you cannot say if it will be collected in 1 millisecond, in 100
milliseconds, or even if it will be collected at all. The methods System.gc() and Runtime.gc()
look as if they run the garbage collector, but even these cannot be relied upon in general, because
some other thread might prevent the garbage-collection thread from running. In fact, the documen-
tation for the gc() methods states:

Calling this method suggests that the Java Virtual Machine expends effort
toward recycling unused objects.

Summary
This chapter has covered a variety of topics. You learned that a source file’s elements must
appear in this order:

1. Package declaration

2. Import statements

3. Class, interface, and enum definitions

Imports may be static. There should be, at most, one public class definition per source file; the
filename must match the name of the public class.

You also learned that an identifier must begin with a letter, a dollar sign, or an underscore;
subsequent characters may be letters, dollar signs, underscores, or digits. Java has four signed

4419Book.fm Page 26 Tuesday, March 8, 2005 12:32 PM

Exam Essentials 27

integral primitive data types: byte, short, int, and long; all four types display the behavior
of two’s-complement representation. Java’s two floating-point primitive data types are float
and double; the char type is unsigned and represents a Unicode character; the boolean type
may take on only the values true and false.

In addition, you learned that arrays must be (in order)

1. Declared

2. Constructed

3. Initialized

Default initialization is applied to member variables, class variables, and array elements, but not
automatic variables. The default values are 0 for numeric types, the null value for object ref-
erences, the null character for char, and false for boolean. The length member of an array
gives the number of elements in the array. A class with a main() method can be invoked from
the command line as a Java application. The signature for main() is public static void
main(String[] args). The args[] array contains all command-line arguments that appeared
after the name of the application class.

You should also understand that method arguments are copies, not originals. For arguments
of primitive data type, this means that modifications to an argument within a method are not
visible to the caller of the method. For arguments of object type (including arrays), modifica-
tions to an argument value within a method are still not visible to the caller of the method; how-
ever, modifications in the object or array to which the argument refers do appear to the caller.

Finally, Java’s garbage-collection mechanism may recover only memory that is definitely
unused. It is not possible to force garbage collection reliably. It is not possible to predict when
a piece of unused memory will be collected, only to say when it becomes eligible for collection.
Garbage collection does not prevent memory leaks; they can still occur if unused references are
not cleared to null or destroyed.

Exam Essentials
Recognize and create correctly constructed source files. You should know the various kinds
of compilation units and their required order of appearance.

Recognize and create correctly constructed declarations. You should be familiar with decla-
rations of packages, classes, interfaces, methods, and variables.

Recognize Java keywords. You should recognize the keywords and reserved words listed in
Table 1.1.

Distinguish between legal and illegal identifiers. You should know the rules that restrict the
first character and the subsequent characters of an identifier.

Know all the primitive data types and the ranges of the integral data types. These are summa-
rized in Tables 1.2 and 1.3.

4419Book.fm Page 27 Tuesday, March 8, 2005 12:32 PM

28 Chapter 1 � Language Fundamentals

Recognize correctly formatted literals. You should be familiar with all formats for literal
characters, strings, and numbers.

Know how to declare and construct arrays. The declaration includes one empty pair of
square brackets for each dimension of the array. The square brackets can appear before or after
the array name. Arrays are constructed with the keyword new.

Know the default initialization values for all possible types of class variables and array elements.
Know when data is initialized. Initialization takes place when a class or array is constructed.
The initialization values are 0 for numeric type arrays, false for boolean arrays, and null for
object reference type arrays.

Understand importing and static importing. Be aware of the difference between traditional
importing and the new static import facility.

Know the contents of the argument list of an application’s main() method, given the command
line that invoked the application. Be aware that the list is an array of Strings containing every-
thing on the command line except the java command, command-line options, and the name of
the class.

Know that Java passes method arguments by value. Changes made to a method argument
are not visible to the caller, because the method argument changes a copy of the argument.
Objects are not passed to methods; only references to objects are passed.

Understand memory reclamation and the circumstances under which memory will be reclaimed.
If an object is still accessible to any live thread, that object will certainly not be collected. This is
true even if the program will never access the object again—the logic is simple and cannot make
inferences about the semantics of the code. No guarantees are made about reclaiming available
memory or the timing of reclamation if it does occur. A standard JVM has no entirely reliable,
platform-independent way to force garbage collection. The System and Runtime classes each
have a gc() method, and these methods make it more likely that garbage collection will run, but
they provide no guarantee.

4419Book.fm Page 28 Tuesday, March 8, 2005 12:32 PM

Review Questions 29

Review Questions
1. A signed data type has an equal number of non-zero positive and negative values available.

A. True

B. False

2. Choose the valid identifiers from those listed here. (Choose all that apply.)

A. BigOlLongStringWithMeaninglessName

B. $int

C. bytes

D. $1

E. finalist

3. Which of the following signatures are valid for the main() method entry point of an application?
(Choose all that apply.)

A. public static void main()

B. public static void main(String arg[])

C. public void main(String [] arg)

D. public static void main(String[] args)

E. public static int main(String [] arg)

4. If all three top-level elements occur in a source file, they must appear in which order?

A. Imports, package declarations, classes/interfaces/enums

B. Classes/interfaces/enums, imports, package declarations

C. Package declaration must come first; order for imports and class/interfaces/enum definitions
is not significant

D. Package declaration, imports, class/interface/enum definitions.

E. Imports must come first; order for package declarations and class/interface/enum definitions
is not significant

5. Consider the following line of code:

int[] x = new int[25];

After execution, which statements are true? (Choose all that apply.)

A. x[24] is 0

B. x[24] is undefined

C. x[25] is 0

D. x[0] is null

E. x.length is 25

4419Book.fm Page 29 Tuesday, March 8, 2005 12:32 PM

30 Chapter 1 � Language Fundamentals

6. Consider the following application:

 1. class Q6 {

 2. public static void main(String args[]) {

 3. Holder h = new Holder();

 4. h.held = 100;

 5. h.bump(h);

 6. System.out.println(h.held);

 7. }

 8. }

 9.

10. class Holder {

11. public int held;

12. public void bump(Holder theHolder) {

13. theHolder.held++; }

14. }

15. }

What value is printed out at line 6?

A. 0

B. 1

C. 100

D. 101

7. Consider the following application:

 1. class Q7 {

 2. public static void main(String args[]) {

 3. double d = 12.3;

 4. Decrementer dec = new Decrementer();

 5. dec.decrement(d);

 6. System.out.println(d);

 7. }

 8. }

 9.

10. class Decrementer {

11. public void decrement(double decMe) {

12. decMe = decMe - 1.0;

13. }

14. }

4419Book.fm Page 30 Tuesday, March 8, 2005 12:32 PM

Review Questions 31

What value is printed out at line 6?

A. 0.0

B. 1.0

C. 12.3

D. 11.3

8. How can you force garbage collection of an object?

A. Garbage collection cannot be forced.

B. Call System.gc().

C. Call System.gc(), passing in a reference to the object to be garbage-collected.

D. Call Runtime.gc().

E. Set all references to the object to new values (null, for example).

9. What is the range of values that can be assigned to a variable of type short?

A. Depends on the underlying hardware

B. 0 through 216 − 1

C. 0 through 232 − 1

D. −215 through 215 − 1

E. −231 through 231 − 1

10. What is the range of values that can be assigned to a variable of type byte?

A. Depends on the underlying hardware

B. 0 through 28 − 1

C. 0 through 216 − 1

D. −27 through 27 − 1

E. −215 through 215 − 1

11. Suppose a source file contains a large number of import statements. How do the imports affect
the time required to compile the source file?

A. Compilation takes no additional time.

B. Compilation takes slightly more time.

C. Compilation takes significantly more time.

12. Suppose a source file contains a large number of import statements and one class definition.
How do the imports affect the time required to load the class?

A. Class loading takes no additional time.

B. Class loading takes slightly more time.

C. Class loading takes significantly more time.

4419Book.fm Page 31 Tuesday, March 8, 2005 12:32 PM

32 Chapter 1 � Language Fundamentals

13. Which of the following are legal import statements?

A. import java.util.Vector;

B. static import java.util.Vector.*;

C. import static java.util.Vector.*;

D. import java.util.Vector static;

14. Which of the following may be statically imported? (Choose all that apply.)

A. Package names

B. Static method names

C. Static field names

D. Method-local variable names

15. What happens when you try to compile and run the following code?

public class Q15 {

 static String s;

 public static void main(String[] args) {

 System.out.println(“>>” + s + “<<”);

 }

}

A. The code does not compile

B. The code compiles, and prints out >><<

C. The code compiles, and prints out >>null<<

16. Which of the following are legal? (Choose all that apply.)

A. int a = abcd;

B. int b = ABCD;

C. int c = 0xabcd;

D. int d = 0XABCD;

E. int e = 0abcd;

F. int f = 0ABCD;

17. Which of the following are legal? (Choose all that apply.)

A. double d = 1.2d;

B. double d = 1.2D;

C. double d = 1.2d5;

D. double d = 1.2D5;

4419Book.fm Page 32 Tuesday, March 8, 2005 12:32 PM

Review Questions 33

18. Which of the following are legal?

A. char c = 0x1234;

B. char c = \u1234;

C. char c = ‘\u1234’;

19. Consider the following code:

1. StringBuffer sbuf = new StringBuffer();

2. sbuf = null;

3. System.gc();

Choose all true statements:

A. After line 2 executes, the StringBuffer object is garbage collected.

B. After line 3 executes, the StringBuffer object is garbage collected.

C. After line 2 executes, the StringBuffer object is eligible for garbage collection.

D. After line 3 executes, the StringBuffer object is eligible for garbage collection.

20. Which of the following are true? (Choose all that apply.)

A. Primitives are passed by reference.

B. Primitives are passed by value.

C. References are passed by reference.

D. References are passed by value.

4419Book.fm Page 33 Tuesday, March 8, 2005 12:32 PM

34 Chapter 1 � Language Fundamentals

Answers to Review Questions
1. B. The range of negative numbers is greater by one than the range of positive numbers.

2. A, B, C, D, E. All of the identifiers are valid. An identifier begins with a letter, a dollar sign, or
an underscore; subsequent characters may be letters, dollar signs, underscores, or digits. And of
course keywords and their kin may not be identifiers.

3. B, D. All the choices are valid method signatures. However, in order to be the entry point of an
application, a main() method must be public, static, and void; it must take a single argument
of type String[].

4. D. Package declaration must come first, followed by imports, followed by class/interface/enum
definitions.

5. A, E. The array has 25 elements, indexed from 0 through 24. All elements are initialized to 0.

6. D. A holder is constructed on line 3. A reference to that holder is passed into method bump() on
line 5. Within the method call, the holder’s held variable is bumped from 100 to 101.

7. C. The decrement() method is passed a copy of the argument d; the copy gets decremented, but
the original is untouched.

8. A. Garbage collection cannot be forced. Calling System.gc() or Runtime.gc() is not 100 per-
cent reliable, because the garbage-collection thread might defer to a thread of higher priority;
thus options B and D are incorrect. Option C is incorrect because the two gc() methods do not
take arguments; in fact, if you still have a reference to pass into any method, the object is not yet
eligible to be collected. Option E will make the object eligible for collection the next time the gar-
bage collector runs.

9. D. The range for a 16-bit short is −215 through 215 − 1. This range is part of the Java specifi-
cation, regardless of the underlying hardware.

10. D. The range for an 8-bit byte is −27 through 27 −1. Table 1.3 lists the ranges for Java’s integral
primitive data types.

11. B . Importing slightly increases compilation time.

12. A.. Importing is strictly a compile-time function. It has no effect on class loading or on any other
run-time function.

13. A, C. The import keyword may optionally be followed by the static keyword.

14. B, C. You may statically import method and field names.

15. C. The code compiles without error. At static initialization time, s is initialized to null (and not
to a reference to an empty string, as suggested by C).

16. C, D. The characters a–f and A–F may be combined with the digits 0–9 to create a hexadecimal
literal, which must begin with 0x.

4419Book.fm Page 34 Tuesday, March 8, 2005 12:32 PM

Answers to Review Questions

35

17.

A, B. The d suffix in option A and the D suffix in option B are optional. Options C and D are
illegal because the notation requires e or E, not d or D.

18.

A, C. A legally assigns a literal numeric value to a char. To assign a literal unicode value, the
literal must be enclosed in single quotes as in C.

19.

C.. After line 2 executes, there are no references to the

StringBuffer

 object, so it becomes
eligible for garbage collection.

20.

B, D. In Java, all arguments are passed by value.

4419c01.fm Page 35 Tuesday, September 30, 2008 1:09 PM

4419Book.fm Page 36 Tuesday, March 8, 2005 12:32 PM

