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Section 1
Agrobacterium-Mediated Transformation
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1 Host Factors Involved in Genetic Transformation of Plant
Cells by Agrobacterium
Benoı̂t Lacroix, Adi Zaltsman, and Vitaly Citovsky

Introduction

Agrobacterium tumefaciens and several other species of the Agrobacterium genus possess the
unique ability to transfer a DNA segment from a specialized plasmid (tumor inducing or Ti
plasmid in the case of A. tumefaciens and hairy root inducing or Ri plasmid for Agrobacterium
rhizogenes, the two main species of pathogenic Agrobacterium) into a host plant cell. This
feature is widely used in plant biotechnology, and Agrobacterium is, by far, the most important
tool employed to produce transgenic plants (Newell 2000). Not surprisingly, the biology of
Agrobacterium and its interactions with host plant have been the subject of numerous studies in
the past three decades (for recent reviews, see Gelvin 2003; Citovsky et al. 2007; Dafny-Yelin
et al. 2008).

In brief, the main steps of host genetic transformation mediated by A. tumefaciens are the
following. The induction of Agrobacterium’s virulence machinery results in expression and
activation of the virulence genes (vir genes) (Stachel et al. 1985b, 1986; McLean et al. 1994;
Turk et al. 1994; Lee et al. 1996). This first step mobilizes a single-stranded DNA segment
from the Ti or Ri plasmid. This segment of transferred DNA (T-DNA), delimited by two 25-bp
direct repeat sequences known as left and right borders (LB and RB) (Peralta and Ream 1985;
Wang et al. 1987), is termed the T-strand, and it represents the substrate of DNA transfer
to the host cell. VirD2, associated with VirD1, forms a nuclease able to excise the T-strand
by a strand-replacement mechanism, at the completion of which VirD2 remains covalently
linked to the 5′-end (RB) of the T-strand (Ward and Barnes 1988; Young and Nester 1988;
Durrenberger et al. 1989; Pansegrau et al. 1993; Jasper et al. 1994; Scheiffele et al. 1995; Relic
et al. 1998). This VirD2–T-DNA complex is then translocated into the host cell cytoplasm by
a mechanism relying on the VirB/VirD4 secretion system (Zupan et al. 1998; Vergunst et al.
2000; Christie 2004). The 11 proteins encoded by the VirB operon together with the VirD4
protein form a type IV secretion system, similar to the system allowing plasmid exchange by
conjugation between bacteria. The type IV secretion system consists of a protein complex,
spanning Agrobacterium internal membrane, periplasm and external membrane, and of an
extracellular appendage, termed the T-pilus, composed mostly of VirB2 molecules forming a
hollow channel (Christie et al. 2005). The VirB/VirD4 secretion system mediates the export of
the VirD2–T-DNA complex out of the bacterial cytoplasm, and likely plays a role in its entry
in the host cell. This secretion system is also required for the export of several Agrobacterium
virulence proteins, that is, VirD5, VirE2, VirE3, and VirF, via their C-terminal secretion signals
(Vergunst et al. 2000; Schrammeijer et al. 2003; Vergunst et al. 2003; 2005; Lacroix et al. 2005).
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There, the T-DNA–VirD2 complex is packaged by the single-stranded DNA-binding protein
VirE2 (Christie et al. 1988; Citovsky et al. 1989; Sen et al. 1989). The resulting helical structure,
called the T-complex, with the help of several bacterial and host proteins, is then imported into
the host cell nucleus, targeted to the host chromatin, and ultimately integrated into the host
genome (reviewed in Gelvin 2003; Lacroix et al. 2006a; Citovsky et al. 2007). The native T-
DNA contains genes encoding enzymes that modify growth regulators and induce uncontrolled
cell proliferation, which results in neoplastic cell growths (crown galls), and proteins mediating
production and secretion of opines, amino acid, and sugar phosphate derivatives, secreted by the
transformed cells and utilized almost exclusively by the Agrobacterium as carbon and nitrogen
source (Escobar and Dandekar 2003).

The transfer of T-DNA is not sequence-specific, and any sequence of interest can be inserted
between the T-DNA borders. The ability to engineer Agrobacterium to introduce genes of
interest for plant genetic transformation is the basis of Agrobacterium’s use in biotechnology.
The natural host range of Agrobacterium is very large, including most of the dicotyledonous
and gymnosperm families (De Cleene and De Ley 1976). However, although the number of
plant species transformable by Agrobacterium under laboratory conditions is always increasing
(Newell 2000), in practice, producing transgenic plants efficiently is still a challenge for many
plant species. Moreover, even nonplant species can be transformed by Agrobacterium under
laboratory conditions (Lacroix et al. 2006b), including yeast (Bundock et al. 1995; Piers et al.
1996), various fungi (de Groot et al. 1998; Michielse et al. 2005), and cultured human cells
(Kunik et al. 2001). This chapter focuses on numerous host plant factors that play important
roles in the transformation process, from the initial interactions between Agrobacterium and
plant cells and the activation of Agrobacterium’s virulence, to the integration of T-DNA into
the host genome.

Plant Signals Affecting Agrobacterium’s Virulence Machinery

The rhizosphere is a complex and dynamic environment, where plant-associated bacteria such
as Agrobacterium need subtle regulation systems to efficiently induce their virulence machinery
(Brencic and Winans 2005). Agrobacterium’s virulence depends mostly on transcriptional
activation of a set of virulence (vir) genes; this regulatory system allows the integration of
environmental signals to ensure a timely expression of these genes. Moreover, the induction
of virulence system obviously represents a high cost in energy for the bacterial cell, and its
activation must be tightly regulated to ensure that it occurs only at the proximity of a susceptible
host tissue. To this end, Agrobacterium harbors sensors able to recognize signals emitted by its
host plants, and to activate the virulence machinery in response to these signals. The induction of
vir gene expression in Agrobacterium relies on a two-component regulatory system encoded by
the virA and virG genes that respond, directly or indirectly, to different plant and environmental
cues (Klee et al. 1983; Stachel and Nester 1986). virA and virG have low basal expression,
but their expression is highly inducible by a self-regulated system (Winans et al. 1988). The
expression of other vir genes is virtually nonexistent in absence of induction, and it is strongly
enhanced when the VirA–VirG system is activated. VirA–VirG represents a two-component
regulatory system, in which VirA is the membrane-spanning sensor kinase that responds to
external signals and activates the response regulator VirG by phosphorylation. Phosphorylated
VirG recognizes and binds to a 12-bp long specific sequence, the vir box, which is present in
all vir gene promoters, and serves to activate transcription (Brencic and Winans 2005).
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Table 1.1. Plant and environmental signals that influence Agrobacterium virulence.

Phenotype Signal Bacterial receptors References

Virulence activation Phenolics (i.e., acetosyringone
and related molecules)

VirA Stachel et al. (1985a) and Lee et al. (1992,
1995)

Monosaccharides ChvE Cangelosi et al. (1990) and Shimoda et al.
(1990)

Low pH ChvG/ChvI Melchers et al. (1989b) and Gao and Lynn
(2005)

Virulence inhibition DIMBOA, MDIBOA VirA Sahi et al. (1990) and Zhang et al. (2000)

IAA VirA Liu and Nester (2006)

Salicylic acid VirA Yuan et al. (2007) and Anand et al. (2008)

Ethylene Unknown Nonaka et al. (2008b)

Several signals, from both host plants and the environment, can modulate vir gene expression
(Table 1.1); these include phenolic compounds, monosaccharides, low pH, and low phosphate
(McCullen and Binns 2006). Among these signals, only phenolics are absolutely required for
virulence induction, whereas the other signals render Agrobacterium cells more sensitive to
phenolics and/or enhance virulence induction levels.

Phenolic Compounds Activating Agrobacterium’s Virulence

Initially, during the analyses of plant cell exudates, a single phenolic compound, acetosyringone
(3,5-dimethoxyacetophenone) was identified. It was present at elevated concentrations and able
to induce vir gene expression even in the absence of the plant cells (Stachel et al. 1985a, 1986;
Bolton et al. 1986). Since then, more than 80 related phenolics, including glycoside derivatives
(Joubert et al. 2004), have been shown to act as vir inducers with variable efficiency (Melchers
et al. 1989a; Palmer et al. 2004). These studies revealed that all vir-inducing molecules share
common structural features that enable this family of chemicals to interact with bacterial
receptors and to act as virulence inducers, suggesting that these molecules are recognized by
a unique bacterial receptor (Lee et al. 1992). Whereas direct interaction between radioactively
labeled acetosyringone and VirA has not been detected (Lee et al. 1992), genetic studies have
demonstrated that phenolic inducers most likely interact directly with the linker domain of
VirA, thereby activating VirA’s kinase activity (Lee et al. 1995). Indeed, the specific range of
phenolic compounds recognized by different Agrobacterium strains was dependent on the virA
locus, and could be transferred from one strain to another via the transfer of virA.

Reducing Monosaccharides

Sugar monomers are involved in vir gene activation in two ways: by enhancing VirA–VirG sys-
tem sensitivity to phenols and by elevating the saturating concentration of phenols for virulence
activation (Cangelosi et al. 1990; Shimoda et al. 1990). In addition, the range of phenolics rec-
ognized by the Agrobacterium vir gene induction system increases when monosaccharides are
present as they act as coinducers (Peng et al. 1998). Several monosaccharides, such as d-glucose
and d-galactose, are coinducers (Ankenbauer and Nester 1990; Shimoda et al. 1990), which
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share minimal structural features (i.e., the presence of a pyranose ring and acidic groups), also
suggesting that they are recognized by a specific receptor. The virulence response to monosac-
charides indeed relies on a chromosome-encoded factor, ChvE. This periplasmic sugar-binding
protein is believed first to bind monosaccharides, then to interact with the periplasmic domain
of VirA, and to enhance the VirA ability to activate vir gene expression (Cangelosi et al. 1990;
Lee et al. 1992; Shimoda et al. 1993; Banta et al. 1994).

Low pH and Low Phosphate

Low pH (i.e., ∼5.7) enhances virulence activation, and this effect is mediated by VirA (Melchers
et al. 1989b; Chang et al. 1996) as well as ChvE (Gao and Lynn 2005). Low pH and low
concentration of phosphate (both are frequently observed in a variety of soils) activate the virG
expression (Winans 1990), likely by inducing another two-component regulatory system—also
required for vir gene induction—composed of ChvG and ChvI (Charles and Nester 1993).

Production of Virulence Inducers by Plant Tissues

The presence of the vir gene inducers mentioned above can be associated with some character-
istics of the plant cell or tissues susceptible to Agrobacterium DNA transfer. It is well known
that wounded sites of the plant tissue are particularly susceptible to Agrobacterium infection
(Smith and Townsend 1907), and wounding of plant tissue is thus classically used in many
Agrobacterium-mediated plant genetic transformation protocols. Consistently, wound repair is
usually associated with low pH, high activity of the phenylpropanoid pathway, and presence of
monosaccharides involved in cell wall modification and synthesis (Baron and Zambryski 1995),
showing that the most vulnerable sites for infection are usually associated with the presence
of virulence-inducing signals. Moreover, phenolic compounds are classically secreted by plant
roots in the rhizosphere, along with sugars, organic acids, amino acids, and other secondary
metabolites (Walker et al. 2003).

Wounding is not absolutely required for infection (Escudero et al. 1995; Brencic et al. 2005);
thus, alternative pathways of Agrobacterium infection are possible. Indeed, acetosyringone was
first isolated from intact tissues, such as root exudates, and plant cell culture (Stachel et al.
1985a, 1986); thus, intact plant cells may release sufficient amount of phenolic compounds for
vir gene induction. In addition, several studies of the modification of plant gene expression in
response to Agrobacterium contact and infection have shown that many enzymes of the phe-
nolic metabolism, potentially involved in the production of acetosyringone and other phenolic
inducers of Agrobacterium virulence, are induced on interaction with Agrobacterium (Ditt et al.
2001, 2006; Veena et al. 2003). Consistently, the phenolic metabolism is modified in response
to Agrobacterium infection (Simoh et al. 2009). Interestingly, phenolic molecules are usually
produced by plants as part of defense reaction, and are toxic for many bacterial pathogens;
Agrobacterium likely has evolved resistance to these molecules and utilize them as signals for
induction of virulence.

In addition to their most important role as vir gene inducers, phenolics and monosaccharides
also trigger a chemotactic response in Agrobacterium, directing the bacterial cell to move
toward a potential point of infection in the plant tissue. Chemotaxis of Agrobacterium cells
toward several vir inducer phenolics is constitutive and does not require vir gene induction
(Parke et al. 1987), but relies on a chromosome-encoded cluster of genes (Wright et al. 1998).
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Plant-Produced Inhibitors of Bacterial Virulence

Several extracellular plant metabolites are able to inhibit Agrobacterium vir gene expression
and might, together with virulence inducers, contribute to the variability of susceptibility to
Agrobacterium between plant species and tissues.

Homogenates of corn seedlings have a strong inhibitory effect on both growth and
acetosyringone-dependent virulence activation of A. tumefaciens (Sahi et al. 1990). The sub-
stance responsible for this inhibitory effect was identified as DIMBOA (2,4-dihydroxy-7-
methoxy-2H-1,4-benzoxazin-3(4H)-one). DIMBOA, like indole acetic acid (IAA) and other
auxins, is derived from the tryptophan biosynthetic pathway (Melanson et al. 1997). A similar
molecule, MDIBOA (2-hydroxy-4,7-dimethoxybenzoxazin-3-one), is present at high concen-
tration (up to 98%) in corn seedling root exudates. MDIBOA is also a potent inhibitor of
Agrobacterium virulence, but has limited effect on bacterial growth (Zhang et al. 2000).

The auxin IAA itself inactivates vir gene expression by competing with the inducing phe-
nolic compound acetosyringone for interaction with VirA (Liu and Nester 2006). In natural
conditions, IAA is produced at relatively high concentrations by crown galls that develop after
transformation, and is likely to inhibit new transformation.

Salicylic acid (SA) is a phenolic compound commonly produced by plants in response to
many types of abiotic or biotic stress, and it is the major signal molecule of the systemic acquired
resistance (SAR) in plants (Loake and Grant 2007). SA acts as an inhibitor of vir expression;
most likely, SA shuts down virA and virG by attenuating the VirA protein kinase activity (Yuan
et al. 2007), which would result in inhibition of expression of all vir genes. Arabidopsis mutants
deficient in SA accumulation are more sensitive to Agrobacterium infection, whereas mutants
overproducing SA are relatively recalcitrant (Yuan et al. 2007). Similar effects of SA on vir
gene expression were observed in Nicotiana benthamiana, using either mutant plants altered in
SA metabolism or exogenous application of SA (Anand et al. 2008).

The plant gaseous growth regulator ethylene was also suggested to inhibit the virulence of
Agrobacterium. Indeed, plants impaired in ethylene production are more sensitive to Agrobac-
terium, whereas plants overproducing ethylene are more resistant (Nonaka et al. 2008b). Consis-
tently, expression in Agrobacterium of 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
an enzyme that degrades ACC, the immediate precursor of ethylene in higher plants, enhances
the efficiency of Agrobacterium infection (Nonaka et al. 2008a). However, although these data
suggest that ethylene might inhibit Agrobacterium virulence, a direct effect of ethylene on the
vir gene regulation system has not been conclusively demonstrated.

Cell-to-Cell Contact and Passage of T-DNA through Host Cell Barriers

A close cell-to-cell contact is necessary for the T-DNA transfer from Agrobacterium to its host
cell. Indeed, Agrobacterium mutants impaired in their ability to attach to plant cell generally
show a diminished virulence (Matthysse 1987). Putative plant and Agrobacterium proteins that
mediate cellular recognition and attachment have been suggested; however, the actual nature
of the factors involved remains elusive. By analogy with other plant-associated Rhizobiaceae,
a two-step mechanism was proposed (Smit et al. 1992; Rodriguez-Navarro et al. 2007). First,
a contact between Agrobacterium and plant cells is initiated by as yet unidentified bacterial
and plant extracellular receptors; these cellular interactions are believed to be nonspecific
and reversible. Second, the attachment is consolidated by cellulose fibrils synthesized by the
bacterial cells (Matthysse et al. 1981; Matthysse 1983).
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Initial Cellular Interactions: Is There a Plant Cell Surface Receptor for Agrobacterium?

Plant lectins (proteins that bind reversibly to mono- or oligosaccharides) could play a role in
binding bacterial exopolysaccharides (Hirsch 1999), as they do in the case of other Rhizobiaceae.
Indeed, A. tumefaciens mutants in chvA, chvB, and exoC (pscA) that encode enzymes involved in
the synthesis of an exocellular cyclic glucan (cyclic 1,2-β-d-glucan) were deficient in virulence,
likely because of impaired attachment to the plant cell (Cangelosi et al. 1989; de Iannino and
Ugalde 1989). However, the specific plant receptors for recognition of exocellular glucan
produced by Agrobacterium have not been identified so far.

Rhicadhesin, an extracellular protein initially isolated from Rhizobium, inhibits attachment
of Rhizobium and Agrobacterium to the plant cell surface when added exogenously, likely by
saturating a putative plant cell surface receptor (Smit et al. 1989). It was, thus, suggested that
Agrobacterium also encodes a similar protein, which might be responsible for initial attachment
to plant cells, in a Ca2+-dependent manner. However, the gene encoding an Agrobacterium
rhicadhesin-like protein has not been identified, even though complete genome sequences
have already become available for three Agrobacterium strains (Goodner et al. 2001; Wood
et al. 2001; Slater et al. 2009). Several putative plant rhicadhesin-like receptors have been
identified (Wagner and Matthysse 1992; Swart et al. 1994), but their actual functionality in
Agrobacterium virulence has not been demonstrated. Because exogenous human vitronectin
as well as antibodies against vitronectin inhibited binding of Agrobacterium to carrot cells,
it was suggested that a vitronectin-like protein on the plant cell surface may bind bacterial
rhicadhesin and thereby act as a receptor for initial attachment of Agrobacterium to the plant
cell. However, recent data (Clauce-Coupel et al. 2008) demonstrated that whereas a vitronectin-
like protein is present in the cell wall of plant tissues susceptible to Agrobacterium, this protein
is involved neither in Agrobacterium attachment nor in its virulence. Using a bioassay based
on suppression of rhicadhesin activity, a pea cell wall glycoprotein, which shows similarity
to germin-like proteins present in many plant species, was also proposed to be a rhicadhesin
receptor. Nevertheless, its actual interaction with rhicadhesin and its role in Agrobacterium
infection have not been demonstrated.

Another series of putative plant proteins potentially involved in Agrobacterium attachment
was identified using Arabidopsis insertional mutants, disrupted in genes encoding cell wall
proteins. In a genetic screen for Arabidopsis mutants resistant to Agrobacterium (rat mutants)
(Nam et al. 1999), several mutant lines impaired in their ability to allow Agrobacterium attach-
ment were discovered. For example, the rat1 phenotype results from the absence of expression
of AtAGP17 (Gaspar et al. 2004). Agrobacterium attachment seems to be reduced in the rat1
mutant, but the effect of the mutation might also be the result of other pathways, such as signal-
ing or carbon allocation. rat4 is deficient in CSLA9, a homolog of cellulose synthase (Zhu et al.
2003), the activity of which could modify the properties of the plant cell surface and influence
bacterial attachment.

From the bacterial side, extracellular proteins involved in virulence, such as the components
of the type IV secretion system, VirB1∗, VirB2, and VirB5, might play a role in initial attachment
(Aly and Baron 2007; Backert et al. 2008). A search for potential plant interactors of these
proteins could help understand these cellular interactions. However, it remains unknown whether
VirB1∗, VirB2, and/or VirB5 are required at the earlier infection step of cell–cell recognition
and attachment, or they function only later, during the transfer of DNA and proteins into the
host cell cytoplasm. So far, the only identified bacterial factors essential both for attachment and
for virulence are chvA, chvB, and exoC, which are all involved in exocellular oligosaccharide
production. The vir region seems not to be essential for attachment, whereas the att region,
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located in the pAt linear chromosome and initially considered to be involved in attachment
(Matthysse et al. 1996; Matthysse and McMahan 1998), is not required for DNA transfer to
plants, but mostly for control of quorum sensing (Nair et al. 2003).

Consolidation of Agrobacterium Attachment to Plant Cells by Cellulose Fibril Synthesis

In a second stage, the Agrobacterium–host cell interaction is consolidated by the production of
cellulose fibrils by the bacterial cell, ending in irreversible binding and formation of bacterial
aggregates at the plant cell surface. The mutants of Agrobacterium disrupted in the celABCDE
operon were unable to form cellulose and showed a weaker attachment to plant cells as compared
with wild-type bacteria (Matthysse 1983; Robertson et al. 1988). However, tumorigenicity of
these mutants was only slightly reduced, but not completely blocked (Matthysse and McMahan
1998). Thus, this second step of attachment might not be absolutely necessary for T-DNA
transfer, but it might be required to allow bacterial cells to remain in the vicinity of the
transformed tissue (galls) and to use opines produced by the tumors. There are no known plant
factors involved in binding of the bacterial cellulose fibrils on the plant cell surface.

When considering attachment of Agrobacterium cells to the host cell surface, the formation
of bacterial biofilm in which bacteria are embedded appears to be essential for Agrobacterium
virulence (Matthysse et al. 2005), and more generally for the virulence of many pathogenic
bacteria (Danhorn and Fuqua 2007). Consistent with the ability of Agrobacterium to infect
many different unrelated hosts, including nonplant species, it is uncertain whether there exists
any absolutely required specific receptor(s) on the surface of the host cell; indeed, none of the
putative receptors described above have ever been substantiated. Biofilm formation, which relies
on the production of exocellular glucans, for example, cyclic 1,2-β-d-glucan and cellulose, could
then be sufficient for the Agrobacterium’s attachment and virulence. Structural and chemical
properties of the host cell surface could influence the genesis of biofilms.

Translocation of T-DNA and Virulence Proteins across the Plant Cell Wall
and Plasma Membrane

The T-DNA and virulence proteins are exported from Agrobacterium via its VirB/VirD4 type IV
secretion system (Ding et al. 2003; Christie 2004; Christie et al. 2005). The molecular details of
T-DNA interactions with proteins of the VirB/VirD4 secretion system during transport through
the bacterial membranes and periplasm were studied by coimmunoprecipitation (Cascales and
Christie 2004). This study identified contacts of a T-DNA substrate with several subunits of
the VirB/VirD4 system, and, using mutants in different vir genes, suggested the transport
pathway for T-DNA substrate. However, this study was performed in bacteria and, thus, it
provides information only about the first step of the T-DNA transfer, that is its export out of
bacterial cells. The second step of the transfer process, that is, the passage of the translocated
macromolecules through the host cell wall and plasma membrane, and the mechanism by which
the extracellular proteins of the type IV secretion system, mainly VirB2, VirB5, and VirB7,
could be involved in this process remain largely uncharacterized. During this second step of
the T-DNA transfer, the T-pilus could act as a hollow needle allowing the injection of these
macromolecules directly from the bacterial to the plant cytoplasm (Kado 2000), similar to how
protein transport is mediated by type III secretion systems. However, the role of the T-pilus is
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still debated, and it could also function mainly by mechanically perforating the host cell wall
and plasma membrane and allowing entry of macromolecules via another pathway (Llosa et al.
2002). Indeed, T-DNA transfer can occur in absence of detectable levels of T-pilus biogenesis;
for example, the inhibition of T-pilus formation by blocking polymerization of VirB2 monomers
does not abolish substrate transfer through the VirB/VirD4 type IV secretion system channel
(Zhou and Christie 1997; Sagulenko et al. 2001; Jakubowski et al. 2005). Whether the VirD2–T-
DNA complex and the exported virulence proteins move through the T-pilus or not, it is possible
that plant factors interacting with components of the T-pilus and located in the plant cell wall,
plasma membrane, and/or cytoplasm, play a role in this mechanism.

In a search for these putative receptors, four Arabidopsis proteins interacting with the pro-
cessed C-terminal VirB2—that does not contain the 42-amino acid signal peptide, cleaved
before T-pilus biogenesis—were identified (Hwang and Gelvin 2004). Three related proteins of
unknown function, termed BTI1, 2, and 3, and a membrane-associated GTPase, AtRAB8, were
found. Inhibition of expression of these proteins in Arabidopsis conferred relative resistance to
Agrobacterium, whereas overexpression of BTI1 induced a hypersensitive phenotype. Although
it is not clear exactly at which step these proteins might play a role, for example, during the
initial attachment of Agrobacterium to the plant cell surface or later during the entry of the T-
DNA, or virulence proteins into the host cell cytoplasm, they represent good candidates for host
cell receptors required in the early Agrobacterium–plant cell interaction and/or macromolecule
translocation.

Another possible pathway for translocation of the T-strand–VirD2 complex was suggested by
the ability of the VirE2 molecule to form membrane-spanning channels, which allow passage
of negatively charged macromolecules, such as oligonucleotides, in artificial lipid bilayers
(Dumas et al. 2001). If this VirE2 channel also forms in plant cell membranes during the
Agrobacterium–plant interaction, it may allow passage of macromolecules. Furthermore, the
cooperative binding of VirE2 to the T-strand molecule during formation of the T-complex in
the host cell cytoplasm may actively pull this DNA molecule, for example, out of the VirB/VirD4
and/or VirE2 channels, without the need for external energy sources (Grange et al. 2008).
Although these activities of VirE2 have not been demonstrated in vivo so far, they might also
involve interactions with plant factors in the cell wall or plasma membrane.

Overall, the host factors involved in macromolecular transfer between the Agrobacterium
cell and the host cell cytoplasm are perhaps the least well characterized among all host factors
that participate in the infection process. It is noteworthy that Agrobacterium can transfer DNA
and proteins to numerous nonplant species (Lacroix et al. 2006b), suggesting a general nature
of its macromolecular transfer machinery. That can be explained either by ancestral factors
involved in host–pathogen interactions, which are conserved among eukaryotic organisms, or
by the Agrobacterium’s ability to transport its macromolecules into host cell cytoplasm via a
host-independent pathway, such as the one that does not rely on a specific host cell receptor.

Roles of Plant Factors in Transcytoplasmic Transport and Nuclear Import
of the T-Complex

Structure of the T-Complex

The movement of a large DNA molecule, such as a segment of DNA of the typical size of
the nopaline-type T-DNA (∼20 kilobases), is limited in the environment of the cytoplasm of a
eukaryotic cell. In the cytoplasm, DNA movement could be impaired by molecular crowding
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and, more importantly, by electrostatic associations. This is because DNA molecules are densely
charged polyanions that could interact with many cellular components (Verkman 2002). Thus,
large segments of free DNA are unlikely to reach the cell nucleus by simple diffusion. Indeed,
studies in mammalian cells have shown that diffusion of circular or linear plasmid DNA
molecules is extremely slow in the cytoplasm, and is negatively correlated with molecule
size (Leonetti et al. 1991; Lukacs et al. 2000). Moreover, the free T-strand would form a
polymeric random coil in the absence of packaging proteins. Typically, a randomly coiled free
single-stranded DNA corresponding to a 20-kilobase T-DNA would reach a diameter, that is, the
geometric mean of its extended length and its persistence length (Briels 1986), of about 300 nm;
molecules of this size are unable to move freely in the cytoplasm and are also much larger than
the nuclear pore exclusion limit of about 25 nm (Dworetzky and Feldherr 1988; Forbes 1992).
Furthermore, even much larger T-DNA molecules, of up to 150 kilobases, can be transferred
into the cells of tobacco (Hamilton et al. 1996) and tomato (Frary and Hamilton 2001) and
integrated in their genomes. Packaging into transferable forms more suited for transcytoplasmic
traffic and nuclear import is obviously required for such large molecules. Consequently, the
T-strand must undergo a specific spatial organization that relies on interactions with packaging
proteins in order to travel to, and subsequently enter the host cell nucleus. Indeed, within the
host cell, the T-strand is thought to exist in a form of a nucleoprotein complex, the T-complex
(Citovsky et al. 1988, 1989; Gelvin 1998).

In the T-complex, two bacterial virulence proteins, VirD2 and VirE2, which are essential
for Agrobacterium virulence (Stachel et al. 1985a), directly associate with the T-strand (Young
and Nester 1988; Citovsky et al. 1989; Sen et al. 1989). The T-complex is formed in the host
cell cytoplasm (Figure 1.1, step 1) after VirE2 and the T-strand with covalently attached VirD2
are translocated independently of each other from Agrobacterium to the host cell (Otten et al.
1984; Citovsky et al. 1992; Gelvin 1998; Vergunst et al. 2000). Structural analyses of artificially
reconstituted T-complexes (Citovsky et al. 1997; Abu-Arish et al. 2004; Grange et al. 2008)
indicated that its diameter is about 15 nm (Abu-Arish et al. 2004); this is larger than the 9
nm diffusion limit of the nuclear pore (reviewed in Forbes 1992). Overall, the size of the T-
complex suggests that its transport through the host cell cytoplasm and subsequent import into
the nucleus occur by active mechanisms.

Roles of Molecular Motors and the Cytoskeleton in the T-Complex Movement through the
Host Cell Cytoplasm

Before nuclear import can begin, the T-complex has to be transported across the cytoplasm
from its point of entry and assembly to the cell nucleus. By analogy to many DNA viruses,
which depend on dynein motors and microtubule networks for their transport toward the host
cell nucleus, the transcytoplasmic transport of the T-complex might also represent an active
process. Two lines of evidence support this notion. A plant VirE2-interacting protein 1 (VIP1)
(Tzfira et al. 2001), which participates in nuclear import and intranuclear transport of the T-
complex (see below), was shown to interact with the dynein-like DLC3 protein of Arabidopsis,
suggesting a role for molecular motors in the T-complex movement through the cytoplasm
(Tzfira 2006). That this movement might involve cytoskeletal elements is suggested by the
observations that active transport of artificial T-complexes in a cell-free system occurs along the
microtubule network (Salman et al. 2005). To date, the mechanism of the T-complex movement
toward the host cell nucleus remains relatively unexplored and in need of more experimentation.
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Figure 1.1. Nuclear import of the T-complex and virulence proteins. (1) The exported virulence proteins VirD5, VirE2,
VirE3, and VirF and the T-strand covalently attached to VirD2 and enter independently of each other into the host cell
cytoplasm via the VirB/VirD2 type IV secretion system. VirE2 then associates with the T-strand, forming the T-complex.
Besides packaging the T-strand into a protected form suited for transcytoplasmic and nuclear transport, VirE2 might provide
the energy needed for pulling the T-strand into the host cell. (2) Plant proteins interact with the T-complex and facilitate
its movement across the cytoplasm toward the nuclear pore. The transcytoplasmic movement is likely mediated by the
cytoskeleton and molecular motors; the latter might interact with VIP1, which is bound to VirE2. For nuclear targeting,
VirD2 binds directly to importin-α, whereas VirE2 binds to VIP1 (and VirE3), which, in turn, binds to importin-α. (3) The
T-complex passes through nuclear pores, likely in a polar manner, and importins are released inside the nucleus, whereas the
T-complex is targeted to the host chromatin. The biological function of VirD5 in the process of the T-DNA transfer remains
unknown. (For a color version of this figure, see Plate 1.)

Nuclear Import of the T-Complex

VirD2 is a nuclear protein when synthesized in eukaryotic cells, and it directly interacts with
plant importin-α, which is a part of the cell nuclear import machinery that mediates the nuclear
import of VirD2 (Ballas and Citovsky 1997). VirD2 carries two nuclear localization signals
(NLSs), a monopartite N-terminal NLS and a bipartite C-terminal NLS (Herrera-Estrella et al.
1990; Howard et al. 1992; Tinland et al. 1992), but only the latter is essential for its nuclear
import (Howard et al. 1992; Ziemienowicz et al. 2001). Several other plant VirD2 interactors
could play a role in its subcellular localization. For example, Arabidopsis cyclophilins interact
with VirD2 and might assist its nuclear targeting (Deng et al. 1998). In addition, VirD2 nuclear
import might be regulated by phosphorylation/dephosphorylation of VirD2 itself. An enzymat-
ically active type 2C serine/threonine protein phosphatase from tomato was found to interact
with VirD2, and its overexpression resulted in inhibition of the VirD2 nuclear import (Tao et al.
2004).
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Unlike VirD2, the nuclear import of VirE2 likely requires a more complex mechanism.
VirE2 nuclear import in plant cells is strongly dependent on the presence of VIP1, a plant
nuclear protein with a basic leucine zipper (bZIP) motif (Tzfira et al. 2001). VIP1, via its
direct interactions with VirE2 and importin-α, likely links between VirE2 and the host nuclear
import machinery (Tzfira et al. 2001, 2002). Consistently, Agrobacterium-mediated transfor-
mation efficiency is positively correlated with the expression level of VIP1 (Tzfira et al. 2001,
2002).

Interestingly, the VIP1’s own nuclear import depends on its phosphorylation at a specific
site (Djamei et al. 2007). This phosphorylation is mediated by the MAP kinase 3 (MPK3), an
enzyme expressed as a part of a plant defense reaction that is elicited, among other factors,
by Agrobacterium. MAP kinases are key factors in signal transduction during plant responses
to many biotic and abiotic signals (Colcombet and Hirt 2008). It has been shown that an
Arabidopsis insertional mutant in the MPK3 gene is also resistant to Agrobacterium (Djamei
et al. 2007). Thus, Agrobacterium might have evolved mechanisms to subvert the host defense
response, that is, induction of MPK3 and phosphorylation of VIP1, to enhance its ability to
infect its host (Djamei et al. 2007).

Recently, VirE2 has been shown to interact with some isoforms of plant importin-α, par-
ticularly importin-α-4 (Bhattacharjee et al. 2008); however, it is still unclear whether this
interaction is functionally important for the VirE2 nuclear import. Generally, there might exist
several pathways for nuclear import of VirE2 that Agrobacterium can utilize, depending on the
host species and/or physiological conditions.

While it appears that there is redundancy between the roles of VirE2 and VirD2 in mediating
T-DNA nuclear import, it is more likely that, in natural conditions, an efficient polar transport
of the T-complex requires both factors (Figure 1.1, step 2) (Ziemienowicz et al. 2001). Both
VirD2 (Ziemienowicz et al. 1999) and VirE2 (Zupan et al. 1996; Gelvin 1998) can mediate,
independently of each other, nuclear import of short single-stranded DNA segments in animal
(Ziemienowicz et al. 1999) and plant cells (Zupan et al. 1996; Gelvin 1998). The most likely
mechanism, which is consistent with the polar structure of the T-complex, is that VirD2, attached
to the 5′-end of the T-strand, directs the T-complex to the nuclear pore, while VirE2 and the
associated VIP1, which presumably are distributed along the entire length of the T-strand, assist
in its movement first through the cytoplasm (Tzfira 2006) and then through the nuclear pore
(Ziemienowicz et al. 2001) (Figure 1.1, steps 2 and 3).

Another Agrobacterium virulence protein translocated to plant cells, VirE3, can interact
with VirE2 and importin-α and facilitate the VirE2 nuclear import, thus partially mimicking
the VIP1 function (Lacroix et al. 2005). Whereas VirE3 is not essential for plant genetic
transformation, it is known to act as a host range factor of Agrobacterium (Hirooka and Kado
1986), potentially compensating for the lack or low amounts of VIP1-like proteins in some
plant species. This strategy of Agrobacterium to improve its infection efficiency by exporting
an effector protein that mimics functionally a host factor required for infection might represent
a general adaptation of infectious microorganisms, including animal pathogens (Nagai and Roy
2003). Additionally, VirE3, as a nuclear protein in plant cells (Lacroix et al. 2005), could be
involved in transcriptional regulation of yet unidentified host genes (Garcia-Rodriguez et al.
2006).

Remarkably, some strains of A. rhizogenes do not possess the virE2 gene, yet are able to
transfer and integrate DNA into their host genomes. In these strains, the function of VirE2 is
likely fulfilled by the GALLS protein (Hodges et al. 2004, 2006, 2009) because virulence of an
A. tumefaciens mutant in the virE2 gene was restored by expression of the A. rhizogenes GALLS
gene in the mutant bacterial cells (Hodges et al. 2004). Whether GALLS and VirE2 function
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by the same molecular mechanism remains unclear. On the one hand, the full-length GALLS
(Hodges et al. 2006) and VirE2 (Simone et al. 2001; Vergunst et al. 2003, 2005) both contain
C-terminal signals for export from the bacterial cell through the type IV secretion system.
Also, both GALLS (Hodges et al. 2006, 2009) and VirE2 (Citovsky et al. 1992, 1994; Tzfira
and Citovsky 2001; Ziemienowicz et al. 2001) accumulate in the plant cell nucleus. Unlike
VirE2, however, GALLS contains ATP-binding and helicase motifs (Hodges et al. 2006). The
sequences of GALLS and VirE2 also do not share any homology.

Intranuclear Movement of the T-Complex and Its Uncoating

Chromatin Targeting of the T-Complex

Little is known about movement of the T-complex within the host nucleus toward the chromatin.
Similarly to its transport in the cytoplasm, interactions of proteins coating the T-DNA with the
host factors are likely to be involved (Figure 1.2, step 1).

When discussing chromatin targeting, it is important first to understand whether this targeting
aims at specific sites within the genome or it is random. Several analyses of the T-DNA
integration sites have shown that T-DNA integrates randomly into the host genome (Tinland

VIP2

1

2
VirF

Cullin

ASK1
SCFVirF

3

VIP1

Nucleus

Figure 1.2. The fate of the T-complex in the host nucleus. (1) The T-complex is targeted to the host chromatin by a mechanism
that might rely on the VIP1–nucleosome interaction and/or by interactions with proteins that target the DNA repair machinery
to DSBs in the host genome. (2) Proteins associated with the T-DNA are removed by proteasomal degradation via the SCFVirF

pathway; at this stage, the T-strand is likely converted into a double-stranded form. (3) The T-DNA is integrated in the host
genome by the host DNA repair machinery. (For a color version of this figure, see Plate 2.)
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1996; Alonso and Stepanova 2003). Other studies suggested bias toward transcriptionally active
chromatin and toward the regulatory regions of genes (Barakat et al. 2000; Chen et al. 2003;
Schneeberger et al. 2005). However, this apparent bias might be an artifact of selection of
high-expression transgenic plants. Recovery of transgenic plants in these studies relied on the
expression of reporter or selectable marker genes that favored detection of integration events in
transcriptionally active chromatin regions and caused underrepresentation of integration events
in regions of low transcriptional activity. Indeed, two recent studies have shown that there is
no integration bias when transgenic plants are recovered without selection that is dependent
on expression of the transgene (Dominguez et al. 2002; Kim et al. 2007). Consequently, the
Agrobacterium T-DNA most likely integrates randomly and, thus, has access to all areas of the
host chromatin.

Several plant factors could assist the targeting of the T-complex to the host chromatin.
CAK2M, a conserved plant ortholog of cyclin-dependent kinase-activating kinases, was identi-
fied as an interactor of VirD2 (Bako et al. 2003). CAK2M is a nuclear protein that also interacts
with the largest subunit of RNA polymerase II, which recruits TATA box-binding proteins
(TBPs). VirD2 was also found tightly associated with the TBP in vivo (Bako et al. 2003). Thus,
VirD2 could play a role in the T-complex chromatin targeting by associating with CAK2M
and/or TBP, which, in turn, naturally associate with the chromatin.

VIP1 is another candidate for a host factor involved in chromatin targeting of the T-complex.
VIP1 is a transcription factor (Djamei et al. 2007), and as such it is expected to associate with the
chromatin. Indeed, VIP1 was shown to bind to all four types of purified Xenopus core histones
in vitro (Loyter et al. 2005), and to at least one plant core histone, H2A, in vivo (Li et al. 2005a).
It was thus suggested that VIP1 acts as a molecular link between the VirE2 component of the
T-complex and the core histone component of the host chromatin. This hypothesis is consistent
with the known requirement of several core histones, and particularly H2A, for the T-DNA
integration (Mysore et al. 2000b; Yi et al. 2002). Recent data indicate that VIP1 can have a
strong interaction with purified plant nucleosomes in vitro that can be competitively inhibited
by free histone H2A. In the same experiment, VIP1 also mediated binding of free VirE2 as
well as a synthetic T-complex composed of VirE2 and single-stranded DNA to nucleosomes
(Lacroix et al. 2008).

Because T-DNA integration occurs preferentially into double-stranded breaks (DSBs) in the
host genome (Salomon and Puchta 1998; Chilton and Que 2003; Tzfira et al. 2003) (see also
below), the proteins that recognize and target the DNA repair machinery to DSBs might also
assist the targeting of the T-complex. Furthermore, another plant protein, VIP2, interacting with
VirE2, was found necessary for stable plant transformation, but not for transient T-DNA gene
expression (Anand et al. 2007). Thus, VIP2 presumably is involved in the T-complex chromatin
targeting and/or T-DNA integration, although the mechanism of this involvement is not yet
understood. VIP2 is a transcriptional regulator that modifies the expression levels of many
genes, including the core histones (Anand et al. 2007), and its effect on the Agrobacterium
T-DNA integration may also be indirect, via altering the expression of histones.

Proteasomal Uncoating of the T-Complex

The removal (“uncoating”) of the proteins protecting the T-strand is necessary to allow the
second strand synthesis, which likely occurs before integration (Chilton and Que 2003; Tzfira
et al. 2003) (Figure 1.2, step 2) as well as to expose the T-DNA to the host cell DNA repair
machinery that mediates the integration event (Tzfira et al. 2004a).
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The first indication that proteasomal degradation may be involved in the uncoating process
was provided by the presence of an F-box domain in VirF (Regensburg-Tuink and Hooykaas
1993), an Agrobacterium virulence protein exported to the host plant (Vergunst et al. 2000). In
eukaryotic cells, F-box proteins represent a component of the Skp1/Cullin/F-box protein (SCF)
E3 ligase complex, and they function to recognize and direct specific substrates to degradation
by the 26S proteasome (reviewed in Deshaies 1999; Kipreos and Pagano 2000; Cardozo and
Pagano 2004). VirF interacts with Arabidopsis Skp1-like protein 1 (ASK1), a plant homolog
of the yeast Skp1 protein (Schrammeijer et al. 2001; Tzfira et al. 2004b), and both VirF and
ASK1 localize in the plant cell nucleus (Tzfira et al. 2004b), where the T-complex uncoating is
expected to occur. One of the cellular substrates recognized by VirF is VIP1; VirF binds VIP1
and destabilizes it in plants and in yeast cells (Tzfira et al. 2004b), which are known to be
genetically transformed by Agrobacterium (Bundock et al. 1995; Piers et al. 1996). In addition,
VirF, which does not bind VirE2, promotes VirE2 destabilization in the presence of VIP1 (Tzfira
et al. 2004b), suggesting that VirF can destabilize the entire VIP1–VirE2 complex. In yeast,
VIP1 and VirE2 destabilization by VirF is Skp1-dependent as it does not occur in an skp1-4
mutant (Connelly and Hieter 1996), indicating that this destabilization occurs via the SCFVirF

pathway (Tzfira et al. 2004b). That VirF might help to uncoat the T-complex, docked at the host
chromatin, is supported by the ability of VirF to associate simultaneously with purified VIP1,
VirE2, single-stranded DNA, and nucleosomes in vitro (Lacroix et al. 2008). The involvement
of the 26S proteasome in Agrobacterium infection is consistent with the inhibitory effect of the
proteasomal inhibitor MG132 on the transformation process (Tzfira et al. 2004b).

Historically, VirF has been considered to be a bacterial host range factor (Melchers et al.
1990; Regensburg-Tuink and Hooykaas 1993). For example, VirF enhances Agrobacterium
infectivity in tomato and Nicotiana glauca (Regensburg-Tuink and Hooykaas 1993), but it is
not required for infection of tobacco or Arabidopsis. Thus, in plant species for which infection
does not require VirF, the plant might produce proteins that have F-box protein functions
that can substitute for VirF during transformation. Among several Arabidopsis F-box proteins
induced by Agrobacterium infection (Ditt et al. 2006), we have identified one, designated VIP1-
binding F-box protein (VBF), that binds VIP1 and promotes proteasomal destabilization of VIP1
and VIP1–VirE2 complexes in yeast and plants. Moreover, suppression of VBF expression
in Arabidopsis reduced their susceptibility to Agrobacterium-induced tumor formation (Adi
Zaltsman and Vitaly Citovsky, unpublished data).

T-DNA Integration into the Host Genome

Recent advances have substantially enhanced our understanding of the T-DNA integration
pathways and uncovered many host factors that participate in these events (Tzfira et al. 2004a).
The likely model for Agrobacterium T-DNA integration includes two major steps: first, the
T-strand is converted to a double-stranded form; second, the host cell DNA repair machinery
mediates the double-stranded T-DNA integration into DSBs in the host genome (Tzfira et al.
2004a).

Early studies of the T-DNA integration mechanisms focused on the role of virulence proteins
accompanying the T-DNA. In particular, VirD2 was suggested to act as an integrase or a ligase
because it contains an H-R-Y motif typical of the phage λ integrase (Tinland et al. 1995), and it
can cleave and ligate single-stranded DNA in vitro (Pansegrau et al. 1993). However, mutations
in the H-R-Y motif reduce precision of T-DNA integration, but not its efficiency (Tinland et al.
1995), and the cleavage/ligation activity was strictly sequence-specific (Pansegrau et al. 1993),
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which is not consistent with the direct function of VirD2 in integration. A later study revealed
that, in fact, VirD2 itself does not act as a DNA ligase in vitro, suggesting that T-DNA integration
is more likely to be mediated by host enzymes (Ziemienowicz et al. 2000). It cannot be ruled
out, however, that VirD2 is involved in T-DNA integration by recruiting host plant factors that
mediate integration.

The first proposed T-DNA integration model (Tinland 1996), named SSGR (single-stranded
gap repair), was based on the sequence of a few T-DNA integration sites. In this model, T-
DNA integration started by annealing of the T-DNA right border to microhomologies in the
host genomic DNA, followed by synthesis of the second strand and ligation of the left border
(Tinland 1996). This model was challenged by subsequent data (Tzfira et al. 2004a). On the
one hand, several T-DNA integration patterns, incompatible with the SSGR model, have been
discovered. Analysis of a large number of T-DNA integration sites in plant genomes revealed
that microhomologies are not consistently observed at these sites (Alonso et al. 2003). Moreover,
some complex integration patterns involving multiple T-DNAs, which can be integrated at the
same site in direct or reverse orientation and with or without filler DNA, cannot be explained
by the SSGR model (De Neve et al. 1997; De Buck et al. 1999). Specifically, the occurrence
of two T-DNA molecules integrated in a head-to-head orientation is not compatible with the
SSGR model because head-to-head recombination is not possible for single-stranded DNA.
In addition, the presence of filler DNA cannot be explained by the SSGR model. On the
other hand, increasing evidence points to a role for DSBs and the DSB repair machinery in
T-DNA integration, suggesting that T-strands are converted to double-strand molecules before
integration. Generation of DSBs in the plant genome by a rare-cutting DNA endonuclease
resulted in higher frequencies of foreign DNA integration, in direct transformation (Salomon
and Puchta 1998) as well as in Agrobacterium-mediated transformation (Salomon and Puchta
1998). Finally, the use of rare-cutting endonuclease sites present both in the host DNA and
in the T-DNA provided direct proof that T-strand becomes double-stranded before integration
(Chilton and Que 2003; Tzfira et al. 2003). In these studies, integration of T-DNA molecules
digested in vivo by the rare-cutting endonuclease was observed, including precise ligation of
the T-DNA, which reconstituted the original enzyme recognition site at the junction between
the T-DNA and the host DNA. Because the endonuclease used in these studies can cleave only
double-stranded DNA, the T-strand must have been converted into the double-stranded form
prior to integration. Overall, T-DNA integration occurs preferentially at DSBs, as shown by
analysis of frequency of integration (Salomon and Puchta 1998; Chilton and Que 2003; Tzfira
et al. 2003; Windels et al. 2003). This observation suggests that DSBs “attract” T-DNA for
integration, and it is consistent with the higher frequency of transgene integration after X-ray
treatment, known to induce DSBs (Leskov et al. 2001).

The use of Saccharomyces cerevisiae as a heterologous host for Agrobacterium (Bundock
et al. 1995) has been instrumental for the identification of host factors mediating the T-DNA
integration. These experiments strongly indicated that T-DNA integration depends mostly on
host factors. Indeed, whereas in plants, the T-DNA integration occurs mostly by nonhomol-
ogous recombination (NHR), integration by homologous recombination (HR) can occur in
yeast, provided that the T-DNA contains sequence homology to a target sequence in the yeast
genome. Using yeast mutants in HR or NHR machinery made it possible to direct the T-DNA
integration toward the remaining pathway. From the two key enzymes involved in these in-
tegration mechanisms, Rad52, a single-stranded DNA-binding protein was necessary for HR
(van Attikum et al. 2001), and Ku70, a double-stranded DNA-binding protein that functions
in a heterodimer with Ku80, was required for NHR (van Attikum and Hooykaas 2003). No
T-DNA integration at all was observed in mutants in both of these genes. The involvement of
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other cellular proteins in each of these T-DNA integration pathways was also demonstrated
(van Attikum et al. 2001; van Attikum and Hooykaas 2003). For example, Rad51 is involved
in homologous DNA pairing and strand exchange reaction (Sung et al. 2003), and during
yeast transformation by Agrobacterium, Rad51 was required for T-DNA integration via the
HR pathway (van Attikum and Hooykaas 2003). Interestingly, an Arabidopsis mutant in the
RAD5 gene, which is closely related to the yeast RAD51, displayed a reduced susceptibility to
Agrobacterium (Sonti et al. 1995). The Mre11 protein functions in complex with Rad50 and
Xrs2, and it has an exonuclease activity that plays a role in both HR and NHR (Usui et al.
1998). In Agrobacterium-infected yeast cells, Mre11 was necessary for T-DNA integration via
the NHR pathway (van Attikum et al. 2001). Taken together, these observations strongly suggest
that, at least in yeast, T-DNA integration is mainly dependent on the host, rather than bacterial
factors.

In higher plants, integration of foreign DNA occurs mainly by NHR, although HR can also
take place, albeit at extremely low rates (Gheysen et al. 1991; Mayerhofer et al. 1991; Terada
et al. 2002). Unlike yeast mutants, experiments with Arabidopsis mutants in the HR and NHR
pathways were difficult to interpret. For example, the Arabidopsis ligase AtLig4 (Friesner and
Britt 2003) and AtKu80 were reported to be required (Friesner and Britt 2003; Li et al. 2005b)
or dispensable (Gallego et al. 2003) for T-DNA integration. These discrepancies and differences
from the yeast system might reflect more complex and redundant pathways for HR and NHR in
plants, as well as the differences between the techniques, that is, floral-dipping versus root tissue
regeneration, used for transformation; interestingly, floral-dipping that transforms germline cells
is effective even in mutants that are resistant to transformation of roots (Mysore et al. 2000a).
The T-DNA integration pathways in plants can be modified by expression of yeast components
of the HR pathway. Specifically, expression of the yeast RAD54 in transgenic Arabidopsis leads
to a two-order-of-magnitude increase in the frequency of T-DNA integration by HR (Shaked
et al. 2005). RAD54 is a member of the SWI2/SNF2 superfamily of chromatin remodeling
genes known to promote recombination between homologous DNA segments in yeast (Tan
et al. 2003); moreover, RAD54 disruption leads to lower rates of targeted gene integration in
yeast and in animal cells (Bezzubova et al. 1997; Essers et al. 1997).

In addition to the DNA repair machinery, plant host factors are important for T-DNA integra-
tion. For example, core histones, such as H2A, are required for an efficient T-DNA integration
into the host genome (Mysore et al. 2000b; Yi et al. 2002). The role of core histones in T-DNA
integration can, in turn, be related to the ability of VIP1 to link between them and the T-complex
(see above). Chromatin assembly factor 1 (CAF), which is involved in chromatin remodeling,
might represent a plant factor that negatively regulates T-DNA integration, potentially by mod-
ifying the target chromatin structure. Arabidopsis plants deficient in CAF were more sensitive
to stable transformation by Agrobacterium (Endo et al. 2006). Interestingly, deficiency in CAF
also increased the frequency of T-DNA integration by HR (Endo et al. 2006). Finally, VIP2 is
also known to be required for the T-DNA integration (Anand et al. 2007).

Our present knowledge about T-DNA integration is synthesized into the model, shown in
Figure 1.3 (Tzfira et al. 2004a). In this model, the T-strand is first converted to double-stranded
DNA, likely by host cell factors (i.e., the host DNA replication machinery) that have yet to
be characterized. Then, the double-stranded T-DNA is targeted to DSBs in the host genome,
potentially via interaction with Ku70 and Ku80 as well as other proteins involved in DSB repair.
At this stage, it is possible that several T-DNA molecules become ligated to each other, resulting
in multiple T-DNA integrations in different orientations and patterns. The T-DNA or T-DNA
multimers are then ligated to the free ends of the DSB by the components of the host DSB
repair machinery.
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Figure 1.3. Integration of T-DNA into the host genome. (1) The T-DNA is uncoated of its associated proteins and converted
to a double-stranded molecule. (2) Proteins of the DSB repair machinery interact with the double-stranded T-DNA molecule,
and might assist its targeting to DSBs in the host genome. (3) The T-DNA associates with a DSB site in the host genome. (4)
Host proteins mediate the ligation of the T-DNA into DSB. (For a color version of this figure, see Plate 3.)

Activation and Modulation of the Host Plant Defense Reaction

Agrobacterium infection does not elicit hypersensitive response or tissue necrosis in the host.
However, on the basis of genomic and proteomic analyses, Agrobacterium cellular contact with
infection of the host alters expression of numerous host defense response genes.

Two studies in cultured plant cells have shown that many genes involved in plant defense are
induced by inoculation with Agrobacterium (Ditt et al. 2005, 2006). Similarly, the expression
of several defense response genes, such as those encoding β-1,3-glucanase and phenylalanine
ammonia-lyase, is activated during Arabidopsis infection by Agrobacterium (Veena et al. 2003).
Importantly, this work suggests that plant response to Agrobacterium takes place in two distinct
stages. First, during the initial 12 hours after inoculation, a “general” response is observed
with activation of many defense-related genes, which is very similar to the general plant
response to biotic stress. Second, after these 12 hours, most of the defense-related genes are
downregulated to their initial levels, and a second set of host genes involved in cell division
and cell growth, which might be important for the transformation process, is activated (Veena
et al. 2003). Thus, there must be a mechanism by which, during more advanced stages of the
infection, Agrobacterium is able to repress expression of plant defense-related genes, avoiding
the initiation of hypersensitive response in the infected tissue. The nature of this mechanism
remains unknown.

RNA silencing is a common host defense reaction against many plant viruses, while viruses
have developed various antisilencing strategies to suppress this defense (Ding and Voinnet
2007). Similarly, during Agrobacterium infection, small interfering RNAs (siRNAs), which
often mediate RNA silencing (Ding and Voinnet 2007), specific for the T-DNA sequences are
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produced by the host plant (Dunoyer et al. 2006). Thus, plants respond to the invading bacterial
and viral genetic material in a similar fashion. This RNA silencing-based innate immunity
underlies the relatively short, 2–3 days after Agrobacterium inoculation, period during which
the T-DNA is transiently expressed at high levels in most transformation experiments. Most
likely, after this period, the RNA silencing response takes effect, reducing or even eliminating
T-DNA expression. Indeed, coexpression with plant viral silencing suppressors, such as P19 or
HCPro, substantially enhances and prolongs transient T-DNA expression (Voinnet et al. 2003).

It is tempting to speculate that, similarly to plant viruses that encode RNA silencing suppres-
sors that overcome the host defense (Li and Ding 2001; Wang and Metzlaff 2005; Levy et al.
2008), Agrobacterium also has evolved a mechanism to export a suppressor into the host cell,
either as a protein effector or as a T-DNA-encoded gene. To date, no such Agrobacterium factor
has been identified. Recent data indicate that a decrease in siRNAs specific for the oncogenic
T-DNA is observed within tumors (Dunoyer et al. 2006). This antisilencing effect, however, ap-
peared to be an indirect consequence of modification of the hormonal status of the tumor tissue
rather than the activity of a putative Agrobacterium silencing suppressor (Dunoyer et al. 2006).

Interestingly, Agrobacterium infection also suppresses the SAR response of the host plant.
SA accumulation, as well as the expression levels of pathogenesis-related genes PR-1 and PR-5,
was lower in Agrobacterium-infected Arabidopsis plants than in healthy plants (Gaspar et al.
2004). Modulation of SAR by Agrobacterium might involve AtAGP17, an Arabidopsis lysine-
rich arabinogalactan protein; a mutant in AtAGP17 (rat1) was resistant to Agrobacterium and
did not exhibit reduced expression of PR-1 and PR-5 on Agrobacterium infection (Gaspar et al.
2004). However, the effect of Agrobacterium infection on the PR gene expression might vary by
host species. In tobacco, the PR-1 gene expression is, in fact, induced following Agrobacterium
inoculation (Pruss et al. 2008). The elevated level of PR-1 was sufficient to elicit resistance
to Tobacco mosaic virus (TMV). This induction of the host defense by Agrobacterium did not
depend on the presence of T-DNA, and it was reduced only slightly when the entire Ti plasmid
was absent. Thus, PR-1 induction likely represents a general host response to bacterial challenge
rather than a specific reaction to transfer of foreign genetic material and/or proteins (Pruss et al.
2008). Agrobacterium infection of tobacco plants also elevated the levels of miR393, a micro-
RNA that represses auxin signaling and contributes to antibacterial resistance. Unlike PR-1
induction, the miR393 induction depended on the presence of the oncogenic Ti plasmid (Pruss
et al. 2008).

An additional plant defense pathway that could target Agrobacterium involves the host cell
caspase-like proteases. These enzymes, involved in the programmed cell death in plants and
induced in tobacco by TMV infection, have been shown to cleave specifically the VirD2 protein
(Chichkova et al. 2004). It remains unclear whether Agrobacterium infection itself can induce
the caspase-based response. However, once induced, this response appears to defend against
the Agrobacterium-mediated transformation, because mutating VirD2 to render it insensitive to
caspase cleavage enhanced transformation efficiency (Reavy et al. 2007). Overall, the Agrobac-
terium–plant cell interaction appears to induce, as well as suppress, a variety of host defense
mechanisms, and the end result of these reactions and counterreactions might contribute to the
differences among plant species’ susceptibility to Agrobacterium.

Concluding Remarks

As more and more host factors involved in Agrobacterium infection are discovered, the complex-
ity of the mechanism by which T-DNA is transported into the host plant cell and incorporated
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into its genome is revealed. That Agrobacterium can transfer DNA into many kinds of organ-
isms, plants and nonplants, indicates either that the mechanisms involved rely on widespread
evolutionary-conserved host factors, or that the Agrobacterium DNA transfer machinery has
been able to adapt itself to various host species and utilize different pathways, depending on the
host. The value of increasing our knowledge about these host factors is twofold. First, it allows
us to better understand the basic cellular biology processes and systems among eukaryotes
involved in diverse and fundamental processes such as cell–cell recognition, macromolecu-
lar transport across membranes, nuclear and intranuclear transport, chromatin targeting, and
DNA repair and integration. Second, it opens new possibilities to improve the transformation
efficiency of the many plant species that remain difficult for both research and biotechnology
applications.
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