
1
Drowning in Data, Dying
of Thirst for Knowledge

Information may be the most valuable commodity in the modern world. It can take many dif-
ferent forms: accounting and payroll information, information about customers and orders,
scientifi c and statistical data, graphics, and multimedia, to mention just a few. We are virtually
swamped with data, and we cannot (or at least we’d like to think about it this way) afford to
lose it. As a society, we produce and consume ever increasing amounts of information, and
database management systems were created to help us cope with informational deluge. These
days we simply have too much data to keep storing it in fi le cabinets or cardboard boxes, and
the data might come in all shapes and colors (fi guratively speaking). The need to store large
collections of persistent data safely, and “slice and dice” it effi ciently, from different angles, by
multiple users, and update it easily when necessary, is critical for every enterprise.

Besides storing the information, which is what electronic fi les are for, we need to be able to
fi nd it when needed and to fi lter out what is unnecessary and redundant. With the informa-
tional deluge brought about by Internet fi ndability, the data formats have exploded, and most
data comes unstructured: pictures, sounds, text, and so on. The approach that served us for
decades — shredding data according to some predefi ned taxonomy — gave in to the greater
fl exibility of unstructured and semistructured data, and all this can still fi t under the umbrella
of a database (a broader concept than the “data banks” of the 1970s).

The databases evolved to accommodate all this, and their language, which was designed to
work with characters and numbers, evolved along with it. The concept of gathering and orga-
nizing data in a database replaced with the concept of a data hub (“I might not have it, but I
know where to fi nd it”) with your data at the core, surrounded with ever less related (and less
reliable) data at the rim.

When does data transform into information? When it is organized and is given a context. Raw
data collection does not give you much. For example, the number 110110 could be a decimal
number 54 in binary representation; November 1, 2010, the date of D. Hamilton Jackson
Memorial Day commemorating establishment of the fi rst press in the U.S. Virgin Islands;
House Committee Report #110 for the 110th U.S. Congress (2007–2008), you get the idea.

c01.indd 1c01.indd 1 3/15/2011 12:04:37 PM3/15/2011 12:04:37 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

To transform data into information, you can aggregate the data, add context, cross-reference with
other data, and so on. This is as far as databases can take you. The next step, transforming informa-
tion into knowledge, normally requires human involvement.

DATA DELUGE AND INFORMATIONAL OVERLOAD

One of the reasons behind building a database of your information is to fi lter the information
specifi c to your needs, to separate the wheat from the chaff. Anybody who uses Internet search
engines such as Google or Bing can attest that results brought back are far from being unambiguous
because the search engine tries to fi nd the best matches in the sea of relevant, tangentially relevant,
and absolutely irrelevant information. Your database is created to serve your unique needs: to track
your sales, your employees, and your book collection. In doing so, it might reach out and get some
additional information (for example, getting a book’s information from Amazon.com), but it will be
information specifi c to your particular needs.

Another important aspect of the database is security. How secure do you need your data? Can any-
body see it and modify? Does it need to be protected from unauthorized access due to compliance
requirements and simply common sense?

Database management systems, otherwise known as DBMSs, answer all these questions, and more.

Database Management Systems (DBMSs)

What makes a database management system a system? It’s a package deal: You get managed storage
for your data, security, scalability, and facilities to get data in and out, and more. These are things
to keep in mind when selecting a DBMS. The following sections describe a few of the factors that
you should consider.

Storage Capacity

Will the selected DBMS be suffi cient for current and future needs? If you intend to store your
favorite recipes or manage your home library, you might decide to use a desktop database such as
Microsoft Access. When you need to store terabytes of information (for example, New York Stock
Exchange fi nancial transactions for the last 50 years), you should shop for an enterprise class DBMS
such as Oracle, Microsoft SQL Server, or IBM DB2.

Number of Users

If you are the only user of your database, you might not need some of the features designed to
accommodate concurrent data use in your database. The current version of Microsoft Access, for
instance, supports up to 255 concurrent users (in practice, actual numbers will depend on many
factors, including network, bandwidths, and processing power). And with advanced clustering tech-
nologies, there is theoretically no limit on the number of users in an enterprise DBMS such as Oracle.

Security

How secure do you want your data to be? You might not be overly concerned if your favorite recipes
are stolen, but you’d want your banking or health information to be as secure as possible (and there

c01.indd 2c01.indd 2 3/15/2011 12:04:41 PM3/15/2011 12:04:41 PM

Data Deluge and Informational Overload x 3

are regulations to mandate certain levels of protection for various kinds of data collected). One of
the major differentiators between enterprise class DBMSs and their desktop counterparts is a robust,
fi nely grained security implementation. A simple fi le that is a Microsoft Access database is more
insecure than a server-based IBM DB2 installation with multiple levels of protection.

Performance

How fast does your database need to be? Can you wait minutes for the information to come back,
or must you have a subsecond response, as in a stock trading platform? The answers tie into the
question about concurrent users and also scalability. Some DBMSs are inherently slower than
the others, and should not be deployed in environments they cannot handle.

Scalability

As Yogi Berra used to say, “Predictions are hard, especially about the future.” Databases must be able
to accommodate changing business needs. While one cannot anticipate all the changes down the road,
one could make an educated guess based upon likely scenarios and industry trends. Your business will
change (growths, acquisitions), and your database needs will change with it. You can bet that your
data will live longer than the database it lives in. The operating system might change (mainframe,
UNIX/Linux, Windows); the programming environments might change (COBOL, C/C++, Java, .Net);
regulations might change, but your data must endure, and not entirely for sentimental reasons.

Any of the modern enterprise DBMSs will get a decent score on any of these factors; ultimately, your
business needs will dictate the technology choice. Expert advice will be needed for large production
deployment, and qualifi ed database administrators to keep your database in the best shape possible.
Once you master the language, your data could be transformed into information; it will be up to
you to take it to the next level: knowledge.

Costs

Of course, it is important to consider costs associated with installing and operating a database.
Vendors might charge hundreds of thousands of dollars for an enterprise class DBMS or it could be
had for free as an open source DBMS. Remember: “There ain’t no such thing as a free lunch.” An
open source DBMS might save you money in upfront costs, but would quickly catch up in expertise,
time, tools availability, and maintenance costs later on. The total cost of ownership (TCO) must be
considered for every DBMS installation.

Recording Data

As far as recorded history goes, humans kept, well, records. Some philosophers even argue that one
of the major differences between humans and animals is the ability to record (and recall) past events.

Oral Records

In all probability, oral records were the fi rst kind of persistent storage that humans mastered. The
information was transmitted from generation to generation through painstaking memorization;
mnemonic techniques such as melody and rhyming were developed along the way. Information
transmitted orally was highly storage-dependent, and could deteriorate (as in a game of Chinese

c01.indd 3c01.indd 3 3/15/2011 12:04:41 PM3/15/2011 12:04:41 PM

4 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

whispers) or disappear altogether after an unfortunate encounter by the bearer with a lion, a shark,
or a grizzly bear.

Pictures

Pictures such as petroglyphs or cave paintings were much sturdier and somewhat less dependent on
vagaries in an individual’s fate. They were recorded on a variety of media: clay, stone, bark, skin;
and some have survived to the modern age. Unfortunately, much of the context for these pictures
was lost, and their interpretation became a guessing game for the archeologists.

Written Records

The beginning of written records, fi rst pictographs and then hieroglyphs, dates back to around 3000
BC, when the Sumerians invented wedge-shaped writing on clay tablets, or cuneiform. This activity
gradually evolved into a number of alphabets, each with its own writing system, some related, some
autochthonous. This opened the door to storing textual information in pretty much the same form
that we use even now. The medium for the writing records also improved over time: clay, papyrus,
calf skin, silk, and paper.

Printed Word

Recording and disseminating the information was a painstakingly manual process. Each record had
to be copied by hand, which severely limited access to information. The next step was to automate
the process with printing. First came woodblock printing, with the earliest surviving example in
China dating back to 220 AD. This sped up the process dramatically; a single woodblock could
produce hundreds of copies with relatively little effort. The invention of movable type, fi rst by the
Chinese and Koreans (1040 and 1230, respectively) and then by Johannes Gutenberg in 15th cen-
tury Europe, led to dramatically increased access to information through automated duplication.
Still, single storage (book) could only be used by a single user (reader) at a time, and searching was
a painstaking manual process, even with invention of indexing systems (a list of keywords linked to
the pages where these keywords were used).

All of the Above

Technological advances made it possible to accumulate information in a variety of media (text, pic-
tures, and sounds). Not until electronic data storage was developed did it become possible to store them
all together and cross-reference them for later automated retrieval. The data had to be digitized fi rst.

Analog versus Digital Data

Up until the invention of the fi rst computers, most information was created and stored in human-
readable format. Various mechanical systems were invented to facilitate storage and retrieval of the
information, but the information itself remained analogous: print, painting, and recorded sound.
Sounds recorded on LP disks are analog, and sounds recorded on CD are digital. The most dedi-
cated audiophiles claim that a CD is but an approximation of the real sound (and they are correct),
but most people do not notice the difference. One cannot deny the convenience afforded by a digital
CD (or, better yet, an audio fi le stored on one’s computer).

c01.indd 4c01.indd 4 3/15/2011 12:04:41 PM3/15/2011 12:04:41 PM

Data Deluge and Informational Overload x 5

The idea to represent data in binary format came independently to several people around the world,
with MIT engineer Claude Shannon formulating principles of binary computation in 1938, and
German scientist Konrad Zuse creating a fully functional binary computer in 1941. It turns out that
a binary system is uniquely suited for the electrical signal processing; it was humans’ turn to adapt
to a machine.

The familiar letters and punctuation were translated into combinations of ones and zeroes, starting
with the Extended Binary Coded Decimal Interchange Code (EBCDIC), developed by IBM in the
early 1950s; through the American Standard Code for Information Interchange (ASCII) character-
encoding scheme introduced in the early 1960s; to the advent of Unicode, which made its debut in
1991. The latter system was designed to accommodate every writing system on Earth, and can cur-
rently represent 109,000 characters covering 93 distinct scripts.

While initial efforts were focused on representing characters and numbers, the other types of data
were not far behind. Pictures and then sounds became digitized and eventually made their way into
databases.

To Store or Not to Store?

In 1956, IBM was selling fi ve megabyte persistent storage drives for a whopping $10,000 per
megabyte (no wonder it had to make this agonizing decision to store dates as two digits instead of
four; also known as the Y2K problem); this came down to just under $200 per megabyte in 1981
(Morrow Designs). In August 2010, a Western Digital 1 terabyte hard drive was selling for $70,
which translates into 122 megabytes per one cent!

When storage was dear, people had to be very selective about what data they wanted to keep; with
costs plummeting, we’ve set our sights on capturing and storing everything.

The Holy Grail of the DBMS for years was to structure and organize data in a format that comput-
ers could manipulate; the preferred way was to collect the data and sort it, and then store it in bits
and pieces into some sort of a database (it was called a data bank in those days, with policies to
match). You had to own all your data. With the proliferation of the Internet, this is no longer the
case. Distributed data is now the norm; instead of bringing the data in, you might choose to store
information about where the data could be found and leave it at that.

Of course, you may need to keep some of your data closer to the vest (fi nancial data and personal
data, for example). Storing the actual data will give you full control of how this data is accessed and
modifi ed; this is what databases do best.

With all this dizzying variety of data formats, one needs to make a decision on how this data is
to be stored. Despite advances in processing unstructured data, organizing it into taxonomies (a
process called data modeling; see Chapters 2 and 3 for more information) has distinct benefi ts
both in speed and fl exibility. Breaking your data down into the smallest bits and pieces requires
a lot of upfront effort, but it gives you an ability to use it in many more ways than when stored
as monolithic blocks. Compare a Lego bricks castle with a premolded plastic castle. The latter
stays a castle forever, while the former could be used to build a racing car model, if needed. The
tradeoffs between structured and unstructured data (and everything in-between) will be dis-
cussed in Chapter 11.

c01.indd 5c01.indd 5 3/15/2011 12:04:41 PM3/15/2011 12:04:41 PM

6 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

Relational Database Management Systems

This book is about SQL, the language of relational databases, or relational database management
systems (RDBMSs). Since the theoretical foundations was laid down in the 1970s by Dr. Codd,
quite a few implementations have come into existence, and many more are yet to come.

Many people consider DB2 to be the granddaddy of all databases, given that the very term relational
was introduced by IBM researcher Dr. Edgar Frank Codd in 1969, when he published his paper,
“Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks” in an IBM
research report. This assertion is contested by others who point to Oracle’s version 2 commercial
release in 1979; Multics Relational Data Store sold by Honeywell Information Systems in 1976; or
the Micro DBMS experimental designs (pioneering some of the principles formulated by Dr. Codd
two years later) of the University of Michigan from 1968 (the last instance of Micro DBMS in pro-
duction was decommissioned in 1998). The RDBMS road is marked by a multitude of milestones
(and an occasional gravestone) of other RDBMS products, including IBM PRTV (1976); IBM SQL/DS
(1980); QBE(1976); Informix (1986); Sybase (1986); Teradata (1979); and Ingres, an open source
project that gave inspiration to many other successful systems such as PostgreSQL (1996), Nonstop
SQL (1987), and Microsoft SQL Server (1988) — to mention but a few. These systems used different
dialects of primordial SQL: SEQUEL, QUEL, Informix-SQL, and so on. It was not until 1987 when
the fi rst attempt was made to standardize the language; arguably, the battle is still going on.

The current RDBMS market is split among heavyweight proprietary relational databases Oracle
(48 percent), IBM (25 percent), and Microsoft (18 percent); smaller proprietary systems Teradata
and Sybase, each with a distant 2 percent; and the other vendors, as well as open source databases,
comprising about 10 percent of the total market.

For a sizeable enterprise, selecting a database foundation for their applications is a decision not to
be taken lightly. Not only does it cost tens of thousands of dollars in upfront licensing fees for the
software, and hundreds of thousands of dollars in maintenance and support fees, but it is also an
important factor in determining the overall enterprise architecture that aligns all other investments
in software, hardware, and human resources. Although migrating from one RDBMS to another
became easier in recent years, still the mere thought of it might give your CFO nightmares.

IBM DB2 LUW

IBM is a long-term front-runner in the RDBMS arena, from the mainframe world with the MVS
family of operating systems, to z/OS, and later to UNIX and Windows. The current version is IBM
DB2 9.7 LUW (Linux, UNIX, and Windows).

The IBM DB2 9.7 keeps the absolute record in transaction processing speed (see Chapter 9 for more
information) and comes in a variety of editions, from Advanced Server Enterprise to a free (albeit
limited) DB2 Express-C edition used to run samples provided with this book.

DB2 in its version 9.7 is still only compliant with the ANSI/ISO SQL 92 Entry standard (see later in
this chapter) and supports some of the more advanced features from other standards organizations
such as the Open Geospatial Consortium, JDBC, X/Open XA, as well as bits and pieces of the latest
SQL:2008 Standard. In addition to its own built-in procedural extension language, SQL PL, it also
provides support for Oracle’s PL/SQL, Java, and even Microsoft’s .NET family languages for creat-
ing stored procedures (see Chapter 4 for more information).

c01.indd 6c01.indd 6 3/15/2011 12:04:42 PM3/15/2011 12:04:42 PM

Data Deluge and Informational Overload x 7

Oracle

Oracle traces its roots back to the fi rst release of Oracle version 2 in 1979, initially for older
VAX/VMS systems, with UNIX support following in 1983. Over the years, it added support
for most of the features specifi ed in SQL Standard, culminating in the latest release of Oracle
11g, which claims compliance with the “many features” of the latest release of SQL:2008
Standard.

Oracle holds second place in the high-performance transaction processing benchmarking and is at
the center of the company’s ecosystem. It is a secure, robust, scalable, high-performance database
that has dominated the UNIX market for decades. In addition to SQL support, it comes with a
built-in procedural language, PL/SQL (see Chapter 4 for more information on procedural exten-
sions), as well as support for general programming languages such as Java.

At of the time of this writing, the latest version is Oracle 11g; the free express edition is available
only for Oracle 10g, which has some limits on the data storage size and number of processors
(CPUs) the RDBMS is capable of utilizing. The express edition has full support for all SQL features
discussed in this book.

Microsoft SQL Server

SQL Server began as partnership between Sybase, Microsoft, and Ashton-Tate, with the initial idea
to adapt existing UNIX-only Sybase SQL Server to then-new IBM operating system OS/2. Ashton-
Tate later dropped out of the partnership, and the IBM OS/2 operating system faded into oblivion.
Microsoft and Sybase were to share the world, being careful not to step on each other’s toes. Microsoft
was to develop and support SQL Server on Windows and OS/2, and Sybase was to take over UNIX
platforms. The partnership formally ended in 1994, although at its core, Microsoft SQL Server still
used fair chunks of Sybase technology. In 1998, beginning with the release of Microsoft SQL Server
7.0, the last traces of Sybase legacy were eliminated, and a brand spanking new RDBMS set out to
conquer the world (the Windows world, that is). As of today, Microsoft holds about 20 percent of the
RDBMS market, though on Windows it reigns supreme.

The latest version as of this writing is Microsoft SQL Server 2008 Release 2; a limited Express
 edition available for free that supports all features of SQL covered here.

Microsoft Access

Microsoft Access, known lately as Microsoft Offi ce Access, is a desktop relational database (rela-
tively relational, as some might quip). It purports to be an integrated solution combining elements
of a relational database engine, application development infrastructure (complete with built-in
programming language and programming model), and reporting platform. Unlike other RDBMSs
discussed in the book, this is a fi le-based database and as such has inherent limitations in per-
formance and scalability. For example, while the latest version theoretically allows for up to 255
 concurrent users, in practice anything more than a dozen users slows the performance to a crawl.
It also supports only a subset of SQL Standard, as well as a number of features available in its
own environment only.

One of the features is linking in tables from remote databases that allow it to be used as an applica-
tion front end to any ODBC/OLEDB-compliant database.

c01.indd 7c01.indd 7 3/15/2011 12:04:42 PM3/15/2011 12:04:42 PM

8 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

PostgreSQL

PostgreSQL evolved from a project at the University of California at Berkeley lead by Michael
Stonebraker, one of the pioneers of the relational databases theory. The principles that went into the
original Ingres project, and its successor PostgreSQL, also found their way into many other RDBMs
products such as Sybase, Informix, EnterpriseDB, and Greenplum.

The fi rst version of PostgreSQL (with this exact name) came in 1996; it was released in version 6.0
the next year, and remained an open source project maintained by group of dedicated developers.
There are numerous commercial versions of PostgreSQL; most notable is EnterpriseDB, a private
company that offers enterprise support (along with variety of proprietary management tools) for the
product and has convinced many high-profi le customers such as Sony and Vonage to rely on an open
source RDBMS for some critical enterprise class applications.

PostgreSQL is arguably the closest in terms of support for the SQL standards in addition to a
number of features found nowhere else. Unlike its peers (such as MySQL), it provided referential
integrity and transactional support from the beginning. It also comes with built-in support for the
PL/pgSQL procedural extension language, as well as the capability to adapt virtually any other
language to the same purpose.

MySQL

MySQL was fi rst developed by Michael Widenius and David Axmark back in 1994, with its fi rst
release in 1995. It was initially positioned as a lightweight, fast database to serve as the back end for
data-driven websites. Even though it was lacking many features of the more mature RDBMS prod-
ucts, it was fast in serving information and “good enough” for many scenarios. (To be really fast,
MySQL can bypass referential integrity constraints and ditch transactional support; see Chapters 3
and 10 for additional information.) Plus you could not beat the price; it was free. No wonder it grew
up to be the most popular relational database among small- and medium-sized users. There were a
number of other free database products on the market that lacked features, near-commercial polish,
or both. Not one of the big guys — Oracle, IBM, Microsoft, and Sybase — offered free express ver-
sions of their respective RDBMSs back then. MySQL was acquired by Sun Microsystems in 2008,
which was subsequently swallowed by Oracle.

Currently, Oracle offers a commercially supported version of MySQL as well as a Community
Edition. Following this acquisition, a number of fork versions sprang up, such as MariaDB and
Percona Server, committed to maintain free status under the General Public License (GPL), one of
the least restrictive open source licenses.

The latest released version of MySQL is 5.5, with version 6 on the horizon. It is multiplatform
(Linux/UNIX/Windows), and supports most of the features of SQL:1999; some of the features
depend on the selected options (for example, a storage engine).

The storage engine option is a feature unique to MySQL, which allows handling
of different table types differently. Each engine comes with unique capabilities
and limitations (transactional support, index clustering, storage limits, and so
on). A database table could be created with different storage engine options,
with the default being MyISAM engine.

c01.indd 8c01.indd 8 3/15/2011 12:04:42 PM3/15/2011 12:04:42 PM

What Is SQL? x 9

HSQLDB and OpenOffi ce BASE

Hyper Structured Query Language Database (HSQLDB), a relational database management sys-
tem implemented in the Java programming language, is available as open source under the Berkley
Software Distribution (BSD) license (meaning pretty much free for all).

This is a default RDBMS engine shipped with the OpenOffi ce.org BASE, a desktop database posi-
tioned to compete in the same market as Microsoft Access. It is a relational database, robust, versatile,
and reasonably fast, and is supported on multiple platforms including Linux, various fl avors of UNIX,
and Microsoft Windows. It claims to be almost fully compliant with SQL:1992 Standard, which cov-
ers most of the SQL subset discussed in this book.

An adaptation of HSQLDB serves as an embedded back end to the OpenOffi ce.org suite component
BASE and became part of the suite starting with version 2.0. Like Microsoft Access, the OpenOffi ce
BASE can connect to a variety of RDBMSs, provided that there is a suitable driver; a number of Java
Database Connectivity (JDBC) and ODBC (Open Database Connectivity) drivers are available and
ship with the product.

Following Oracle’s acquisition of OpenOffi ce and its uncertain status as an open
source project under Oracle’s patronage, the OpenOffi ce.org community decided
to start a new project called LibreOffi ce, with the intent of implementing all the
functionality of OpenOffi ce as free software under the original BSD license.

Relational databases are not the only game in town. Some of the older technologies, seemingly for-
ever defeated by relational database theory, came back, helped by ever faster/cheaper hardware and
software innovations. The quest for better performance and ease of creating applications spawned
research into columnar and object-oriented databases, frameworks that make the “all data in one
bucket” approach workable, domain-specifi c extensions (such as geodetic data management or mul-
timedia), and various data access mechanisms. We discuss this topic in Chapter 12.

WHAT IS SQL?

Before the advent of commercially available databases, every system in need of persistent storage had
no choice but to implement its own, usually in some proprietary fi le format (binary or text) that only
this application could read from and write to. This required every application that used these fi les
to be intimately familiar with the structure of the fi le, which made switching to a different storage
all but impossible. Additionally, you had to learn a vendor-specifi c access mechanism to be able to
use it. Relational model dealt with complexities of data structures, organizing data on logical level,
but it had nothing to say about the specifi cs of storage and retrieval except that it had to be set-
based and follow relational algebra rules. Left to their own devices, the early RDBMSs implemented
a number of languages, including SEQUEL, developed by Donald D. Chamberlin and Raymond
F. Boyce in the early 1970s while working at IBM; and QUEL, the original language of Ingres.
Eventually these efforts converged into a workable SQL, the Structured Query Language.

SQL is a RDBMS programming language designed to defi ne relational constructs (such as schemas
and tables) and provide data manipulation capabilities. Unlike many programming languages in

c01.indd 9c01.indd 9 3/15/2011 12:04:42 PM3/15/2011 12:04:42 PM

10 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

general use, it does not exist outside the relational model. It cannot create stand-alone programs; it
can only be used inside RDBMSs. This is a declarative type of language. It instructs the database
about what you want to do, and leaves details of implementation (how to do it) to the RDBMS itself.
In Chapter 2, we will go over the elements of the language in detail.

From the very beginning there were different dialects bearing the same SQL name, some of them
quite different from each other. This worked for the vendors, as it assured lock-in to specifi c technol-
ogy, but it also defi ed the purpose of creating SQL in the fi rst place.

The SQL Standard

To bring greater conformity among vendors, the American National Standards Institute (ANSI) pub-
lished its fi rst SQL Standard in 1986 and a second widely adopted standard in 1989. ANSI released
updates in 1992, known as SQL92 and SQL2, and again in 1999: SQL99 and SQL3. Each time,
ANSI added new features and incorporated new commands and capabilities into the language.

The ANSI standards formalized many SQL behaviors and syntax structures across a variety of
products. These standards become even more important as open source database products (such
as MySQL, mSQL, and PostgreSQL) grow in popularity and are developed by virtual teams rather
than large corporations.

The SQL Standard is now maintained by both ANSI and the International Standards Organization
(ISO) as ISO/IEC 9075 standard. The latest released standard is SQL:2008, and work is underway
to release the next version of the standard to accommodate new developments in the way RDBMSs
collect and disseminate data.

Dialects of SQL

Even with a standard in place, the constantly evolving nature of the SQL Standard has given rise to
a number of SQL dialects among the various vendors and products. These dialects most commonly
evolved because the user community of a given database vendor required capabilities in the database
before the ANSI committee created a standard. Occasionally, though, a new feature is introduced
by the academic or research communities due to competitive pressures from competing technologies.
For example, many database vendors are augmenting their current programmatic offerings with
Java (as is the case with Oracle and Sybase) or .Net (Microsoft’s SQL Server Integration Services,
embedded common language runtime [CLR]).

Nonetheless, each of these procedural dialects includes conditional processing (such as that controlled
through IF … THEN statements), control-of-fl ow functions (such as WHILE loops), variables, and
error handling. Because ANSI had not yet developed a standard for these important features at the
time, RDBMS developers and vendors were free to create their own commands and syntax. In fact,
some of the earliest vendors from the 1980s have variances in the most fundamental language ele-
ments, such as SELECT, because their implementations predate the standards. Some popular dialects
of SQL include the following:

 � PL/SQL — Found in Oracle. PL/SQL, which stands for Procedural Language/SQL and contains
many similarities to the general programming language Ada; IBM DB2 added (limited) support
for Oracle’s PL/SQL in version 9.5.

c01.indd 10c01.indd 10 3/15/2011 12:04:43 PM3/15/2011 12:04:43 PM

Let There Be Database! x 11

 � Transact-SQL — Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and
Sybase have moved away from the common platform they shared early in the 1990s, their imple-
mentations of Transact-SQL have also diverged, producing two distinct dialects of Transact-SQL.

 � SQL PL — IBM DB2’s procedural extension for SQL, introduced in version 7.0, provides constructs
necessary for implementing control fl ow logic around traditional SQL queries and operations.

 � PL/pgSQL — The name of the SQL dialect and extensions implemented in PostgreSQL. The
acronym stands for Procedural Language/postgreSQL.

 � MySQL — MySQL has introduced a procedural language into its database in version 5, but
there is no offi cial name for it. It is conceivable that with Oracle’s acquiring the RDBMS it
might introduce PL/SQL as part of the MySQL.

Not the Only Game in Town

Over the years there were many efforts to improve upon SQL and extend it beyond original purpose.
With the advent of object-oriented programming, there came demand to store objects in the data-
base; proliferation of Internet and multimedia increased demand for storage, indexing and retrieval
of the binary information and XML data, and so on. While SQL standards were keeping pace with
these and other demands, some decided to create a better mousetrap and came up with some inge-
nious ideas. For instance, HTSQL is a language that allows you to query data over Internet HTPP
protocol; Datalog was envisioned as a data equivalent of Prolog, an artifi cial intelligence language;
and MUMPS (going back to the 1960s!) mixes and matches procedural and data access elements.

The latest entry came from the NoSQL family of databases that depart from conventional relational
database theory and eerily reminds us of a data bucket with key/value indexed storage. We will have
a brief discussion about evolution of SQL in the last chapter of this book.

LET THERE BE DATABASE!

There is a bit of groundwork to be performed before we could submit our SQL statements to
RDBMSs. If you have followed the instructions in Appendix B, complemented by the presentation
slides on the accompanying book sites (both at www.wrox.com and at www.agilitator.com), you
should have an up-and-running one (or all) of the RDBMSs used in this book; alternatively,
you should have Microsoft Access or OpenOffi ce BASE installed. Please refer to Appendix B for
step by step installation procedures for the RDBMS, and to Appendix A for instructions on how
to install the Library sample database.

The following, with minor modifi cations, will work in server RDBMSs: Oracle,
IBM DB2, Microsoft SQL Server, PostgreSQL, and MySQL. In Microsoft
Access and OpenOffi ce BASE/HSQLDB, you’d need to create a project.

The concept of a database, a logically confi ned data storage (exemplifi ed by the now rarely used
term data bank), managed by a program is rather intuitive. When using a desktop database such

c01.indd 11c01.indd 11 3/15/2011 12:04:43 PM3/15/2011 12:04:43 PM

12 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

as Microsoft Access, your database is a fi le that Access creates for every new project you start; the
server-based RDBMSs use a similar concept, though the details of implementation are much more
complex. Fortunately, the declarative nature of SQL hides this complexity. It tells what needs to be
done, not how to do it.

In the beginning, there was a database. The database we will use throughout the book will contain
all the books we have on the shelves; a book tracking database that stores titles, ISBN numbers,
authors, price, and so on — quite helpful in fi guring out what you have.

The following statement creates a database named LIBRARY in your RDBMS (as long as it is Microsoft
SQL Server, IBM DB2, PostgreSQL and MySQL; things are a bit different with Oracle, which sub-
scribes to a different notion of what is considered a database; see Appendix A for more details).

CREATE DATABASE library;

If you have suffi cient privileges in the RDBMS instance, the preceding statement will create a data-
base, a logical structure to hold your data, along with all supporting structures, fi les, and multitudes
of other objects necessary for its operations. You need to know nothing about these; all the blanks
are fi lled with default values. Behold the power of a declarative language!

Oracle’s syntax would be similar to this:

CREATE USER library IDENTIFIED BY discover;

With USER being roughly an equivalent of the DATABASE in other RDBMS. A
discussion of the similarities and differences between the two are outside scope
of this book.

Of course, there is much more to creating a database that would adequately perform in a production
environment; there are a myriad of options and tradeoffs to be considered, but the basic data storage
will be created and made available to you with these three words.

Once created, a database can be destroyed just as easily, using SQL’s DROP statement; you cannot
destroy objects that do not exist (and the RDBMS will warn you about it should you attempt to):

DROP DATABASE library;

In Oracle, of course, you’d be dropping a USER.

Now the database is gone from your server; in Microsoft Access and OpenOffi ce BASE, this is
equivalent to deleting corresponding fi les.

Due to certain differences in terms of usage across RDBMSs, the concept of
database is different among various proprietary databases. For example, what
SQL Server defi nes as a database is in a way similar to both the SCHEMA and
USER in Oracle, but in the context of this book, these differences are not par-
ticularly important.

c01.indd 12c01.indd 12 3/15/2011 12:04:43 PM3/15/2011 12:04:43 PM

Let There Be Database! x 13

Creating a Table

Now that we have a database, we can use it to create objects in the database, such as a table.
A table is place where all your data will be stored, and this is where common sense logic and that
of RDBMS begin to diverge.

If your refrigerator is anything like ours, you will have all kind of things held to its surface by mag-
nets, some goofy keepsakes from a trip to a zoo, a calendar sent to you by your friendly insurance
agent, your kid’s school menu (and school attendance phone line), a shopping list, photos of your
dog, photos of your children, the pizza hotline… Think of it as your personal database. You could
just stick anything to it: text, pictures, calendars, and what not. In contrast, the RDBMS is much
more particular. It will ask you to sort your data according to data types. A detailed discussion of
data types will take place later, in Chapter 2. Here, we just stick to the data type most intuitively
understood and best dealt with by the RDBMS: the text.

Creating a table is just as easy as creating the database in the previous example, with a minor differ-
ence of specifying a name for the table column and its data type:

CREATE TABLE myLibrary (all_my_books VARCHAR(4000));

The column ALL_MY_BOOKS is defi ned as a character data type (see Chapter 2 for more informa-
tion of data types), and it can hold as many as 4,000 characters.

As you might have guessed, there is much more to the CREATE TABLE syntax
than the preceding example implies. A full syntax listing all options in any given
RDBMS would span more than one page, and mastering these options requires
advanced understanding of SQL, for which this book is but a fi rst step.

As you’ll see in Chapter 2, a table, once created, can be modifi ed (altered), or dropped from the
database altogether. The SQL provides you with full control over the database objects, with power
to create, change, and destroy.

TRY IT OUT Creating a Database in Microsoft SQL Server 2008

Creating a database is normally a database administrator’s task, especially in a production environ-
ment; there are too many options and tradeoffs to consider to leave everything set to the default. For
our purposes, we can use the basic syntax, however. There are several ways to create a database in
Microsoft SQL Server, and using SQL Server Management Studio Express is arguably the easiest one.
Follow these steps:

1. Make sure that you have your SQL Server instance up and running (refer to Appendix B for instal-
lation instructions).

2. Start SQL Server Management Studio Express by going to the Microsoft SQL Server 2008 menu
option (this exercise assumes that SQL Server is installed on your local computer so you can con-
nect automatically with Windows Authentication).

c01.indd 13c01.indd 13 3/15/2011 12:04:44 PM3/15/2011 12:04:44 PM

14 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

 3. The fi rst screen you see is a prompt to connect to your server. If not already fi lled by default, select
the server type Database Engine, the server name .\SQLEXPRESS (if you followed the instructions
in Appendix B; otherwise, select another name from the drop-down box; it only displays instances
of SQL Server visible from your computer), and authentication set to Windows Authentication.

 4. Click the Connect button.

 5. SQL Server Management Studio Express will display a win-
dow with several panes; for the purposes of this tutorial, we
are only interested in the New Query button located in the
upper-left corner of the window, right under the File menu
(shown in Figure 1-1). Click the New Query button.

 6. A new query window would appear in the middle of the win-
dow; this is where you will enter your SQL commands.

 7. Type in the SQL statement for creating a database:

CREATE DATABASE library;

 8. Click the Execute button located on the upper
toolbar, as shown in Figure 1-2.

 9. Observe the message “Command(s) completed
successfully” in the lower pane, Messages tab.

 10. Your newly created database will appear on the Databases list in the
pane on the left, with the title Object Explorer (see Figure 1-3). Click the
plus sign next to the node Databases node.

How It Works
Microsoft SQL Server takes out much of the complexity from creating the
database process. Behind the scenes, the SQL Server created several fi les on
the hard drive of your computer (or on an external storage device), created dozens of entries in the
Windows registry and the SQL Server–specifi c confi guration fi les, and created additional supporting
objects for the database operations (you can take a look at these by expanding the node LIBRARY in
your newly created database).

By omitting all optional confi guration options, your database was created using all the default values:
storage fi le names, locations, and initial sizes; collation orders; and so on. While this is not a recipe for
creating an optimally performing database (see Chapter 9 for optimization considerations), it will be
adequate for the purposes of this book.

Getting the Data In: INSERT Statement

The myLibrary table in our LIBRARY database is now ready to be populated with data, which is
a task for the INSERT statement. Since the stated purpose of our database is to keep track of the
books, let’s insert some data using one of the books we do have on our shelf, SQL Bible. Here is
some data.

FIGURE 1-1

FIGURE 1-2

FIGURE 1-3

c01.indd 14c01.indd 14 3/15/2011 12:04:44 PM3/15/2011 12:04:44 PM

Let There Be Database! x 15

SQL Bible by Alex Kriegel Boris M. Trukhnov Paperback: 888 pages
Publisher: Wiley; 2 edition (April 7, 2008) Language: English
ISBN-13: 978-0470229064

This is a lot of information and all in one long string of characters. The INSERT statement would
look like follows:

INSERT INTO myLibrary VALUES (‘SQL Bible by Alex Kriegel Boris M. Trukhnov
Paperback: 888 pages Publisher: Wiley; 2 edition (April 7,2008)
Language:English ISBN-13: 978-0470229064’);

The keywords INSERT, INTO, and VALUES are the elements of the SQL language and together
instruct the RDBMS to place the character data (in the parentheses, surrounded by single quotation
marks) into the myLibrary table. Note that we did not indicate the column name; fi rst because we
have but a single column in which to insert, and second because RDBMS is smart enough to fi gure
out what data goes where by matching a list of values to the implied list of columns. Both parenthe-
ses and quotation marks are absolutely necessary: the former signifi es a list of data to be inserted,
and the latter tells the RDBMS that it is dealing with text (character data type).

In database parlance, we have created a record in the table. There are many more books on the
shelf, so how do we enter them? One way would be to add all of them on the same line, creating a
huge single record. Although that is possible, within limits, it would be impractical, creating a pile
of data not unlike the refrigerator model we discussed earlier: easy to add and diffi cult to fi nd. Do I
hear “multiple records”? Absolutely!

The previous statement could be repeated multiple times with different data until all books are
entered into the table; creating a new record every time. Instead of a refrigerator model with all data
all in one place, we moved onto “chest drawer model” with every book having a record of its own.

TRY IT OUT Inserting Data into a Column

Make sure you are at the step where you can enter and execute SQL commands. Repeat Steps 1 through 6
of the fi rst Try It Out exercise and then run these statements to insert four records in your single table, single
column database:

 1. Type in (or download from a website) the following queries:

USE library;
INSERT INTO myLibrary VALUES (‘SQL Bible by Alex Kriegel Boris M. Trukhnov
Paperback: 888 pages Publisher: Wiley; 2 edition (April 7,2008) Language:English
ISBN-13: 978-0470229064’);

INSERT INTO myLibrary VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course by
Alex Kriegel Paperback: 408 pages Publisher: Wiley (October 15, 2001)
Language:English ISBN-13: 978-0764548406’);

INSERT INTO myLibrary (all_my_books) VALUES (‘Letters From The Earth by Mark Twain
Paperback: 52 pages Publisher: Greenbook Publications, LLC (June 7, 2010)
Language:English ISBN-13: 978-1617430060’);

INSERT INTO myLibrary (all_my_books) VALUES (‘Mindswap by Robert Sheckley
Paperback: 224 pages Publisher: Orb Books (May 30, 2006)
Language:English ISBN-13: 978-0765315601’);

c01.indd 15c01.indd 15 3/15/2011 12:04:44 PM3/15/2011 12:04:44 PM

16 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

 2. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

 3. Observe four confi rmations “(1 row(s) affected)” in the Messages tab in the lower window.

How It Works
The INSERT statement populates columns in the table by creating a record, a single row of data. The
list of columns could be omitted as the list of values corresponds exactly to the list of columns (see later
in this chapter for more information). If a column is specifi ed, it has to appear in parentheses without
any quotation marks; and the corresponding data goes into the list after the VALUES keyword, in
parentheses, with quotation marks around the data to indicate the character nature of the value.

Give Me the World: SELECT Statement

Now that we have our data, we could query it to fi nd out exactly what we have. The SELECT state-
ment will help us to get the data out of the table; all we need is to tell it what table and what column.

SELECT all_my_books FROM myLibrary;

While it did produce a list of the books’ information, it is far cry from being useful. Let’s face it; it
is a mess of a data, and the only advantage from being stored in a relational database is that it can
be easily recalled, and possibly printed. What about search? To fi nd out whether you have a specifi c
book, you’d have to pull all the records and manually go over each and every one of them! Hardly a
result you would expect from a sophisticated piece of software, which is RDBMS.

We need a way to address specifi c keywords in the records that we store in the table, such as the
book title or ISBN number. A standard programming answer to this problem is to parse the record:
chop it into pieces and scroll them in a loop looking for a specifi c one, repeating this process for
each record in the table. The SQL cannot do any of this without vendor-specifi c procedural exten-
sions. This would defy declarative nature of the language and would require intimate understanding
of the data structure. Let’s take another look at the fi rst record of data we entered:

SQL Bible by Alex Kriegel Boris M. Trukhnov Paperback: 888 pages
Publisher: Wiley; 2 edition (April 7, 2008) Language: English
ISBN-13: 978-0470229064

How would you go about chopping the record into chunks? What would be the markers for each,
and how do you distinguish a book title from an author? Using a blank space for this purpose
would put “SQL” and “Bible” into different buckets while they logically belong together. How do
we know that “by” is a preposition, and not part of the author’s name? The answer comes from the
structured nature of SQL, which is, after all, a structured query language; we need more columns.
Splitting the one unwieldy string into semantically coherent data chunks would allow us to address
each of them separately as each chunk becomes a column unto its own. Back to the CREATE
TABLE (but let’s fi rst drop the existing one):

DROP TABLE myLibrary;

Create a new one according to the epiphany we just had:

c01.indd 16c01.indd 16 3/15/2011 12:04:45 PM3/15/2011 12:04:45 PM

Let There Be Database! x 17

CREATE TABLE myLibrary
(
 title VARCHAR(100)
 , author VARCHAR(100)
 , author2 VARCHAR(100)
 , publisher VARCHAR(100)
 , pages INTEGER
 , publish_date VARCHAR(100)
 , isbn VARCHAR(100)
 , book_language VARCHAR(100)
)

A single column became eight columns with an opportunity to add a ninth by splitting the
authors’ fi rst and last names into separate columns (this is part of the data modeling process to
be discussed in Chapter 3). For now, we’ve used the same data type, albeit shortened the number
of characters, with a single exception: We made the PAGES column a number for reasons to be
explained later in this chapter. You might also consider changing the data type of the column
PUBLISH_DATE. Normally, a date behaves differently from a character, and the DBMS offers a
date– and time–specifi c data type.

Now that we don’t have to dump all data into the same bucket, we can be much more selective
about data types, and use different types for different columns. It is not recommended that you mix
up the data types when inserting or updating (see later in this chapter) the columns.

We will revisit data types again later in this chapter, and in more detail in Chapter 2.

You might have noticed that we have two “author” columns in our table now,
to accommodate the fact that there are two authors. This raises the question of
what to do when there is only one author, or when there are six of them. These
questions will be explored in depth in a data modeling session in Chapters 2
and 3; here we just note that unused columns are populated automatically with
default values, and if you fi nd yourself needing to add columns to your table
often, it might be the time to read about database normalization (see Chapter 3).

Now we need to populate our new table. The process is identical to the one described before, only
the VALUES list will be longer as it will contain eight members instead of one. All supplied data
must be in single quotes with the exception of the one going to PAGES column; quotes signify char-
acter data, absence thereof means numbers:

INSERT INTO myLibrary VALUES (
 ‘SQL Bible’
 ,‘Alex Kriegel’
 ,‘Boris M. Trukhnov’
 ,‘Wiley’
 ,888
 ,‘April 7,2008’
 ,‘978-0470229064’
 ,‘English’);

c01.indd 17c01.indd 17 3/15/2011 12:04:45 PM3/15/2011 12:04:45 PM

18 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

As long as we keep the order of the values matching the structure of the table exactly, we do not
need to spell out the columns, which are the placeholder labels for the data, but if the order is differ-
ent or if you insert less than a full record (say, three out of eight columns), you must list the match-
ing columns as well:

INSERT INTO myLibrary (
 title
 , author
 , book_language
 , publisher
 , pages
 , author2
 , publish_date
 , isbn
)VALUES (
 ‘SQL Bible’
 ,‘Alex Kriegel’
 ,‘English’
 ,‘Wiley’
 ,888
 ,‘Boris M. Trukhnov’
 ,‘April 7,2008’
 ,‘978-0470229064’);

Repeat the previous statement with different sets of data for each of the books on the shelf. (Yes,
some data entry clerks hate their jobs, too.) Alternatively, you can just download a ready-to-go script
from the book’s accompanying website, and install it following the instructions in Appendix A.
You’ll get all you information you need in a structured format, ready to be queried with SQL:

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
 isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’
,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
 isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30,
2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
 isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,
100, ‘1972’,’978-0075119616’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
 isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’
,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

What happens if you omit both the column name and the value? The columns listed in the statement
will get populated, but the omitted column would stay empty. To signify this emptiness, the SQL
marks it as having NULL value.

In the preceding examples, the values for the AUTHOR2 column will be populated with NULL(s).
As you will see in Chapter 2, a NULL has a special meaning in the database, and behaves according
to rather specifi c rules.

c01.indd 18c01.indd 18 3/15/2011 12:04:45 PM3/15/2011 12:04:45 PM

Let There Be Database! x 19

To save yourself some typing, you might want download scripts for this chapter
from www.wrox.com, or from www.agilitator.com. The installation procedures
are described in Appendix A.

Here is a SELECT query that returns all the records you’ve entered into the myLibrary table:

SELECT title
 , author
 , author2
 , publisher
 , pages
 , publish_date
 , isbn
 , book_language
) FROM myLibrary;

Instead of listing all columns, we could have used a handy shortcut provided by SQL, an asterisk
symbol (*) that instructs the RDBMS to fetch back all columns.

SELECT * FROM myLibrary;

The results of this query eerily resemble what we’ve just discarded for being unstructured, with a
minor distinction: The data is displayed in separate columns. It makes all the difference!

First, we can now combine data in any order by just shuffl ing the columns around or asking for spe-
cifi c columns instead. For example, to produce a list of authors and titles only, we could just execute
this query:

SELECT title
 , author
 , author2
) FROM myLibrary;

Second, and much more important, is the ability to address these columns by name in a WHERE
clause. This clause serves as a fi lter, allowing you to select records that match some specifi ed condi-
tion, such as all books written by Alex Kriegel or only these published by Wiley. The syntax of the
query is very intuitive, and resembles English:

SELECT * FROM myLibrary WHERE publisher = ‘Wiley’;

The results of the query list only records where the value stored in the PUBLISHER column equals
‘Wiley’ (note that the value is also enclosed in single quotes to notify the database that this is a char-
acter data type we are comparing).

The WHERE clause allows you to narrow down your search to a specifi c record or a set of records
matching your criteria, as there might be millions of records in your database. This is where power
of SQL as a set-based declarative language comes forward. With a simple statement that is not
unlike a simple English sentence, you can comb through the records returning only a subset of the

c01.indd 19c01.indd 19 3/15/2011 12:04:45 PM3/15/2011 12:04:45 PM

20 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

result, without worrying how this data is stored, or even where it resides. The previous SELECT
statements will return identical results when run in Microsoft Access, Oracle, PostgreSQL, MySQL,
SQL Server or IBM DB2.

Another important component of the WHERE clause is the use of operators. The previous query
used an equivalence operator, fi ltering only the records in which the publisher’s name equals
‘Wiley’. You could just as easily ask for books that were not published by Wiley using the non-equal
operator:

SELECT * FROM myLibrary WHERE publisher <>‘Wiley’;

Several operators could be strung together to provide ever more stringent selection criteria using
AND and OR logical operators. For instance, to fi nd a book published by Wiley and written by
Alex Kriegel, you might use the following query:

SELECT * FROM myLibrary
 WHERE publisher = ‘Wiley’ AND author= ‘Alex Kriegel’;

The query returned only records satisfying both criteria; using the OR operator would bring back
results satisfying either criterion, and not necessarily together. You need to be careful when using
operators as they apply Boolean logic to the search conditions, and results might be quite unex-
pected unless you understand the rules.

The logic of operators will be further explored in Chapter 2, along with syntactical differences
among the vendors and precedence rules.

TRY IT OUT Exploring the SELECT Statement

Here, we are going to take SELECT statement for a spin using the Microsoft SQL Server 2008 environ-
ment. Repeat Steps 1 through 6 of the fi rst Try It Out exercise to get to the stage where you can enter
and execute SQL commands.

 1. Type in the following statements to insert data into the table:

USE library;
INSERT INTO myLibrary (title, author , book_language , publisher , pages ,
author2 , publish_date , isbn)VALUES (‘SQL Bible’,‘Alex Kriegel’,‘English’,
‘Wiley’,888,‘Boris M. Trukhnov’,‘April 7,2008’ ,‘978-0470229064’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’
,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30,
2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,
100, ‘1972’,’978-0075119616’);

c01.indd 20c01.indd 20 3/15/2011 12:04:46 PM3/15/2011 12:04:46 PM

Let There Be Database! x 21

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’
,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

 2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

 3. Observe fi ve confi rmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

 4. The following statement will select all rows and all columns from the table (the display of the
actual records in these examples are omitted because of space limitations):

SELECT * FROM myLibrary;

(5 row(s) affected)

 5. To narrow the search, add a WHERE clause:

SELECT * FROM myLibrary
 WHERE publisher = ‘Wiley’;

(2 row(s) affected)

 6. To narrow it even further, specify two fi ltering criteria in the WHERE clause: only books published
by Wiley and only those that have more than 800 pages:

SELECT * FROM myLibrary
 WHERE publisher = ‘Wiley’ and pages > 800;

(1 row(s) affected)7. To select only specifi c columns, execute the following statement:

SELECT title , author FROM myLibrary
title author
--- -----------------------
SQL Bible Alex Kriegel
Microsoft SQL Server 2000 Weekend Crash Course Alex Kriegel
Mindswap Robert Sheckley
Jonathan Livingston Seagull Richard Bach
A Short History of Nearly Everything Bill Bryson

(5 row(s) affected)

How It Works
The inserted data is stored in the table, each chunk in a column of its own, together constituting a
record; this allows for addressing specifi c columns by name when selecting the data.

Step 4 instructs the database engine to return all available records from the myLibrary table; instead of
listing all columns in the SELECT list, the query uses the asterisk symbol shortcut.

Steps 5 and 6 progressively narrow the returned result set by adding fi ltering criteria to the query as part
of the WHERE clause; they use SQL operators to specify the equality and “greater than” conditions.

c01.indd 21c01.indd 21 3/15/2011 12:04:46 PM3/15/2011 12:04:46 PM

22 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

The last step demonstrates the ability to select only specifi c columns for the records returned and
addressing them by name. They appear in the order specifi ed in the query regardless of how they were
entered or stored in the table.

Good Riddance: the DELETE Statement

Getting rid of unwanted information is just as important as getting it into the database in the fi rst
place. In the case of the Library database, a book might be lost or sold, and there is no need to keep
the data any longer. The SQL provides a DELETE statement to deal with the situation. To delete all
records from a table, you would use the following statement:

DELETE FROM myLibrary;

There is no need to use FROM keyword in many RDBMS, just a table name would suffi ce, but some
will insist. Now the records are gone, and you have an empty table in the database that you could
populate again using the same INSERT scripts found on www.wrox.com or www.agilitator.com.

Can these records be restored? It depends. In order to be able to undo changes
made to the data in the RDBMS, you need to perform all operations in the con-
text of a transaction that, at the end, would either commit all the changes (mak-
ing them permanent) or roll them back (restoring the data to the original state).
We will discuss transactional support in Chapter 10.

The DELETE statement could be much more selective in its approach if used together with WHERE
clause you encountered earlier. To delete a specifi c set of records, you need to specify criteria. The
following query will indiscriminately delete all records satisfying the WHERE clause condition:

DELETE FROM myLibrary
 WHERE publisher = ‘Wiley’;

All Wiley titles will be gone from your table, which might not be quite what you wanted. How do
you pinpoint a single record to be removed from possible thousands sitting in your table? You need
to specify a set of criteria that uniquely identify this record. Here’s an example:

DELETE FROM myLibrary
 WHERE publisher = ‘Wiley’ AND pages = 888;

You can’t get any more unique than this, right? Actually, you can: Although improbable, it is not
impossible for a large database to have more than one record satisfying the previous criteria. The
better way is to go by ISBN code that is unique:

DELETE FROM myLibrary
 WHERE isbn=‘978-0470229064’;

What do you do when a record does not contain an easily identifi able unique marker? There are
several ways to ensure the uniqueness of a record in the table (see Chapters 3 and 8), but here we’ll

c01.indd 22c01.indd 22 3/15/2011 12:04:46 PM3/15/2011 12:04:46 PM

Let There Be Database! x 23

introduce a concept of a special column which purpose, among the others, will be to uniquely
identify records in the table (also called PRIMARY KEY by the initiated). Had you numbered the
records as you entered them into the table, there would be an easy way to refer to a specifi c record;
and assuming that your special column does not allow duplicate numbers, there would be no
ambiguity in your deleting a single record. Unfortunately, this would require changing the table
structure again.

TRY IT OUT Deleting Records from a Table

Let’s delete some records from a table created in Microsoft SQL Server 2008. Repeat Steps 1 through 6
of the fi rst Try It Out exercise to get to the stage where you can enter and execute SQL commands.

 1. The following query blows all records from the myLibrary table:

USE library;
DELETE myLibrary

(5 row(s) affected)

 2. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

 3. Insert the records anew:

USE library;
INSERT INTO myLibrary (title, author , book_language , publisher , pages , author2
, publish_date , isbn)VALUES (‘SQL Bible’,‘Alex Kriegel’,‘English’,‘Wiley’,888,
‘Boris M. Trukhnov’,‘April 7,2008’ ,‘978-0470229064’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Microsoft SQL Server 2000 Weekend Crash Course’,’Alex Kriegel’
,’English’,’Wiley’,408, ‘October 15, 2001’,’978-0764548406’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Mindswap’,’Robert Sheckley’ ,’English’,’Orb Books’,224,’May 30,
2006’,’978-0765315601’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘Jonathan Livingston Seagull’,’Richard Bach’ ,’English’,’MacMillan’,
100, ‘1972’,’978-0075119616’);

INSERT INTO myLibrary(title, author, book_language, publisher, pages, publish_date,
isbn) VALUES (‘A Short History of Nearly Everything’,’Bill Bryson’
,’English’,’Broadway’,624, ‘October 5, 2010’,’978-0307885159’);

 4. Click the Execute button located on the upper toolbar, as shown earlier in Figure 1-2.

 5. Delete a more selective group of records: all books with the exception of those published by Wiley.
Type in the following SQL statement, and click the Execute button:

DELETE myLibrary
 WHERE publisher <> ‘Wiley’;

(3 row(s) affected)

c01.indd 23c01.indd 23 3/15/2011 12:04:46 PM3/15/2011 12:04:46 PM

24 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

How It Works
The SQL command submitted to the database engine instructs it to delete all records from the myLi-
brary table. Five records disappear from the database. In order to continue, you must reinsert the
records so you have some data with which to work.

Step 5 demonstrates that the records could be deleted, selectively based upon conditions specifi ed in the
WHERE clause of the query. Only three of the fi ve satisfi ed the criterion WHERE publisher <> ‘Wiley’
and were deleted.

One way to add a new column to a table would be to drop the entire table and re-create it from
scratch with a new column; in fact, this was the only way for many RDBMSs for a long time.
Now, we just alter the table to sneak a column in (or remove it, for that matter). While the com-
plete syntax is rather complex and differs signifi cantly from RDBMS to RDBMS, the basic syntax
is deceptively simple:

ALTER TABLE myLibrary
ADD COLUMN book_id INTEGER;

This will add an empty column to the myLibrary table of the numeric data type INTEGER. (When
it comes to computers, numbers are what they understand best; in fact, the numbers are all they
understand.) All human-readable characters, sounds, and pictures are internally represented as long
chains of binary numbers: ones and zeroes. To add data to this new column we would have to use
the UPDATE statement, the subject of the next section in this chapter.

Some of the DBMSs might have a slightly different syntax for adding columns. For instance,
Microsoft SQL Server does not need the keyword COLUMN, inferring what needs to be added
from the statement itself, so that the query for SQL Server would look like this:

ALTER TABLE myLibrary
ADD book_id INTEGER;

Deleting unwanted columns from the table is just as easy except you have to use DROP statement:

ALTER TABLE myLibrary
DROP COLUMN book_id;

Removing a column requires you to know only its name and that of the table of which it is a part.
No data type or any other qualifi ers are needed. There are ramifi cations to be considered when
modifying table structure, especially when the table is not empty or columns are being used by some
other table in the database. Please see Chapters 2, 7, and 8 for more information.

Notice the distinction between the DELETE and DROP statements: You use
DELETE to get rid of the data and you use DROP to destroy database objects
such as tables, views, procedures, or the database itself. As you’ll learn in
Chapter 2, these statements belong to different branches of SQL, data manipu-
lation and data defi nition languages, respectively.

c01.indd 24c01.indd 24 3/15/2011 12:04:46 PM3/15/2011 12:04:46 PM

Let There Be Database! x 25

I Can Fix That: the UPDATE Statement

One of the main benefi ts of electronic data storage is its fl exibility, nothing is written in stone, parch-
ment, or even paper. The data can be created, deleted, or modifi ed at will. So far, you’ve learned
how to get the data in and out, and how to get rid of the data. The UPDATE statement allows you
to modify data by changing the existing values for the columns. If you have suddenly discovered that
the page number you’ve entered is wrong, you could fi x it by running the following statement:

UPDATE myLibrary SET pages = 500;

Because the column data type is number (INTEGER), there is no need to enclose 500 in brackets
(this is the rule for all numeric data types in all RDBMSs).

The problem with the preceding statement is that the value of 500 will be entered into every record in
the table, hardly a result we’ve intended. Just as with DELETE, we have to be much more selective when
modifying the data, updating only the records we want to update, and leaving the rest alone. This is the
job for the WHERE clause, and again we need some marker that would uniquely identify a record:

UPDATE myLibrary SET pages = 500
 WHERE isbn=‘978-0470229064’;

If you’ve discovered that you have more than one column to update for the record, you could add all
these to the UPDATE comma-separated list:

UPDATE myLibrary SET
 pages = 500
 , title = ‘SQL Bible, 2nd Edition’
 WHERE isbn=‘978-0470229064’;

The UPDATE operation is implemented in such a way as to allow for using the existing data to be
used as a fi ltering criterion. For instance, you could fi nd the book by its title and change the title in
the same query:

UPDATE myLibrary SET title = ‘SQL Bible, 2nd Edition’
 WHERE title = ‘SQL Bible’;

Of course, after the data is changed, the preceding query won’t be able to fi nd the same record again
using the same WHERE clause criterion. The same principle could be applied when the new data
you’re supplying includes the exiting data as a component. To add the ‘2nd Edition’ qualifi er to
‘SQL Bible’ we do not have to supply the whole string, just the second part of it, and use the concat-
enation operator:

UPDATE myLibrary SET title = title + ‘, 2nd Edition’
 WHERE title = ‘SQL Bible’;

The preceding syntax with the plus sign (‘+’) as concatenation operator is valid in Microsoft SQL
Server only. Oracle and PostgreSQL use the || operator; Microsoft Access uses the ampersand (&);
and IBM DB2, MySQL, and HSQLDB prefer to use the SQL function CONCAT. See Chapter 2 for
information on SQL operators and SQL functions, respectively.

So far it was implied that columns are being updated with the same data type: characters to char-
acters and numbers to numbers. What happens when you mix the data type and try to insert or

c01.indd 25c01.indd 25 3/15/2011 12:04:47 PM3/15/2011 12:04:47 PM

26 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

update? For example, what would happen if you tried to update a character column with a number?
The answer is the same dreaded “it depends.” Some RDBMSs will choke on the incompatible data,
and spit out an error message; others will try their best within compatibility limits to convert the
data into the data type of the column. The latter modus operandi is known as implicit data type
conversion, whose uses and misuses will be discussed in Chapter 2.

TRY IT OUT Modifying Table Structure with the ALTER Statement, and Table Data

with the UPDATE Statement

To explore the scenario mentioned earlier, let’s add a numeric column to our table and populate it with
data in Microsoft SQL Server 2008.

First, we need to make sure we are at the step where we can enter and execute SQL commands. Repeat
Steps 1 through 6 of the fi rst Try It Out exercise, repeat the steps to create and populate the myLibrary
table as shown in exercises 2 and 3, and then follow these instructions:

 1. To add a column to a table, type in the following:

USE library;
ALTER TABLE myLibrary
ADD book_id INTEGER;

 2. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

 3. Observe the message “Command(s) completed successfully” in the lower pane of the Messages tab.

 4. Query your table to make sure that the column appears at the end of the data set, and is empty
(NULL), as shown in Figure 1-4.

FI GURE 1-4

 5. Now we need to update the new column because all it contains currently is NULL(s). Delete every
statement from the query window and type in the following commands:

USE library;
UPDATE myLibrary SET bk_id = 1 WHERE isbn=’978-0470229064’;
UPDATE myLibrary SET bk_id = 2 WHERE isbn=’978-0764548406’;
UPDATE myLibrary SET bk_id = 3 WHERE isbn=’978-0765315601’;
UPDATE myLibrary SET bk_id = 4 WHERE isbn=’978-0075119616’;

c01.indd 26c01.indd 26 3/15/2011 12:04:47 PM3/15/2011 12:04:47 PM

Let There Be Database! x 27

 6. Click the Execute button located on the upper toolbar, as shown on Figure 1-2.

 7. Observe four confi rmations “(1 row(s) affected)” in the Messages tab in the lower pane window.

 8. Verify that the data indeed was inserted by executing a SELECT query against the myLibrary table:

USE library;
SELECT bk_id, isbn FROM myLibrary;

bk_id isbn
----------- ---------------
1 978-0470229064
2 978-0764548406
3 978-0765315601
4 978-0075119616
NULL 978-0307885159

 9. The following statement updates all columns in a single query, effectively replacing record #1:

USE library;
UPDATE myLibrary SET
 isbn = ‘978-1617430060’
 , pages = 52
 , title = ‘Letters From The Earth’
 , author = ‘Mark Twain’
 , author2 = NULL
 , publisher = ‘Greenbook Publications, LLC’
 , publish_date = ‘June 7, 2010
WHERE bk_id = 1;

 10. Run the SELECT statement from Step 8 to verify the changes:

USE library;
SELECT bk_id, isbn FROM myLibrary;

bk_id isbn
----------- ---------------
1 978-1617430060
2 978-0470101865
. . .
NULL 978-0307885159

How It Works
The fi rst statement in the batch indicates that the commands are to be executed in the context of the
Library database; it only needs to be executed once at the beginning of the session (see Chapter 10
for more information). The ALTER TABLE command adds a column of INTEGER numeric data
type to the myLibrary table created in previous exercises; the newly created columns contain only
NULL(s) at this point, indicating the absence of any data. The UPDATE statements populate this
column for specifi c records uniquely identifi ed by setting the WHERE clause to fi lter for the ISBN
column in the same table. Without it, the BK_ID column will be updated with the same value for
all records.

As you can see from the output produced by the SELECT statement in Step 8, only four records have
data in the BK_ID column now; for the rest of the records it is empty.

c01.indd 27c01.indd 27 3/15/2011 12:04:47 PM3/15/2011 12:04:47 PM

28 x CHAPTER 1 DROWNING IN DATA, DYING OF THIRST FOR KNOWLEDGE

In Step 9 we are using the UPDATE statement to replace the contents of the entire record, column by
column, ending up with a different book in our database. Because the book does not have a co-author,
the value is plugged with NULL to indicate absence of any data. Had it been omitted, the column
would retain the previous value.

In a multiuser environment, the problems with modifying the data are that somebody else might be
reading or modifying it at the same time. This gives rise to a number of potential data integrity prob-
lems. The RDBMSs solve this problem with various locking mechanisms discussed in Chapter 10.
The trick here is not to overdo it, as locking could potentially slow the database down. A popular open
source database (MySQL, for instance) has different storage mechanisms for the databases used mostly
to serve the information (SELECT) and those in need of data integrity protection.

SUMMARY

We produce and consume ever-increasing amounts of information, and database management sys-
tems were created to help us cope with the informational deluge.

Database management systems (DBMSs) accumulate and manage data in various forms, text,
images, and sounds, both structured and unstructured. The underlying format for all electroni-
cally stored data is digital. DBMSs built upon the relational model are called RDBMS (Relational
Database Management Systems).

The RDBMSs manage both data and access to it, applying security policies, and auditing activity.
There is a multitude of databases on the market, from desktop to enterprise class servers, from pro-
prietary to open source. A variety of factors must be considered for each RDBMS package deploy-
ment: storage capacity, scalability, security, and costs, to name a few. The most popular enterprise
class RDBMS packages include Oracle, IBM DB2, and Microsoft SQL Server; the popular open
source contenders are PostgreSQL and MySQL; desktop databases are represented by Microsoft
Access and OpenOffi ce embedded HSQLDB.

The Structured Query Language (SQL) is lingua franca of the relational database management
systems (RDBMSs) and has roots in IBM research conducted in the late 1960s. The fi rst attempt to
standardize SQL was by the American National Standards Institute (ANSI) in 1986, and the cur-
rent standard is SQL:2008, endorsed by the International Standards Organization (ISO). Despite the
published standard, virtually every RDBMS supports its own dialect of SQL, each being somewhat
different in syntax and implementation details. In addition, many RDBMSs support procedural
extensions introducing procedural logic in an otherwise set-based declarative language.

For each RDBMS system discussed in the book, the basic element is the table residing in a data-
base. The table organizes data into rows and columns of specifi c data types; and SQL provides
language constructs to insert and manipulate the data trough statements such as INSERT, SELECT,
DELETE, and UPDATE.

RDBMSs provide an inherently multiuser environment and facilities to ensure data integrity as
 different users work with the same data at the same time.

c01.indd 28c01.indd 28 3/15/2011 12:04:47 PM3/15/2011 12:04:47 PM

